EP0794383B1 - Method of operating a pressurised atomising nozzle - Google Patents

Method of operating a pressurised atomising nozzle Download PDF

Info

Publication number
EP0794383B1
EP0794383B1 EP97810083A EP97810083A EP0794383B1 EP 0794383 B1 EP0794383 B1 EP 0794383B1 EP 97810083 A EP97810083 A EP 97810083A EP 97810083 A EP97810083 A EP 97810083A EP 0794383 B1 EP0794383 B1 EP 0794383B1
Authority
EP
European Patent Office
Prior art keywords
swirl
liquid
nozzle
atomized
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810083A
Other languages
German (de)
French (fr)
Other versions
EP0794383A3 (en
EP0794383A2 (en
Inventor
Klaus Dr. Döbbeling
Peter Dr. Jansohn
Hans Peter Knöpfel
Christian Dr. Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP0794383A2 publication Critical patent/EP0794383A2/en
Publication of EP0794383A3 publication Critical patent/EP0794383A3/en
Application granted granted Critical
Publication of EP0794383B1 publication Critical patent/EP0794383B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3478Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet the liquid flowing at least two different courses before reaching the swirl chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3442Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cone having the same axis as the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0408Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing two or more liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • F23D11/26Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • F23D11/383Nozzles; Cleaning devices therefor with swirl means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3447Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cylinder having the same axis as the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to the field of combustion technology. It affects on Method for operating a pressure atomizing nozzle in a Gas turbine combustion chamber according to the generic term of the Claim 1.
  • Atomizer burners are known in which the for combustion oil is mechanically finely distributed. It will be fine Droplets of approx. 10 to 400 ⁇ m in diameter (oil mist) broken down, which are mixed with the combustion air in the Vaporize and burn the flame.
  • pressure atomizers see Lueger - Lexicon of Technology, Deutsche Verlags-Anstalt Stuttgart, 1965, volume 7, p.600
  • the oil gets into tangential slots a swirl chamber and leaves the nozzle through a nozzle bore. This ensures that the oil particles have two motion components, one axial and one radial.
  • the atomized oil forms one Cone of more or less large opening angle.
  • Swirl nozzles pressure atomizers
  • air-assisted atomizers the known types with a pressure up to approx. 100 bar are hardly suitable for this because they do not have a small angle of propagation allow the atomization quality to be restricted and the impulse of the drop spray is low.
  • the fuel pre-pressure drops due to the falling total fuel mass flow.
  • the atomizer required energy for pressure atomizers is over given the fuel admission pressure, so that in this load range the atomization quality deteriorates and the penetration depth of the fuel spray into the air flow through the low fuel pressure becomes lower.
  • the invention tries to avoid the disadvantages of the known prior art. It is based on the task of a method for operating a pressure atomizing nozzle with two To develop pressure swirl stages, with which a to the respective operating conditions meritet. Spray angle of the atomized Liquid is made possible.
  • this pressure atomizing nozzle in a gas turbine burner is said to be even with small ones Fuel mass flows (approx. 25% based on nominal load conditions) a sufficiently large nozzle pressure is generated, while the nozzle with large fuel mass flows (approx. 100-120% based on nominal load conditions) not too high Nozzle form should need. With the drop spray created in this way should over the entire load range of the gas turbine a low-pollutant and stable combustion are made possible.
  • the pressure atomizing nozzle comprises a nozzle body in which one Swirl chamber is formed, which has a nozzle bore communicates with an outside space and at least a first feed channel for the liquid to be atomized through which said liquid is supplied with swirl under pressure will and in the chamber at least another feed channel for part of the atomized Liquid or for a second liquid to be atomized flows through which said part of the liquid, or the second liquid is supplied under pressure and with swirl by doing that the pressure atomizer nozzle at full and Overload operation of the gas turbine via a main pressure swirl stage with low Swirl is operated by the entire atomizer Liquid over the first
  • the swirl chamber feed channel is swirled is generated, where there is a swirled flow which is then through the at least one nozzle bore got into the outside space and that the Pressure atomizer nozzle for partial and low-load operation of the gas turbine additionally over a further pressure swirl stage
  • the advantages of the invention include that thereby an adjustment of the pot spray (atomization quality, drop size, spray angle) to the respective load conditions is made possible.
  • a smooth switchover between the two is advantageous Stages, and depending on the load conditions, the operation of the nozzle with only one of the two stages.
  • the nozzle and the method for operating the nozzle are advantageously used in a premix burner of the double-cone design or a four-slot burner used, with a part in the vicinity of the nozzle the combustion air (approx. 3 to 7%) in the jacket flow around the nozzle to be led. This makes local detachment and recirculation areas avoided. It prevents the recirculation zone is moved inside the burner.
  • 1 to 3 show a first embodiment of the invention
  • 1 shows the pressure atomizing nozzle in a partial longitudinal section
  • FIGS. 2 and 3 two cross sections show in different levels.
  • the pressure atomizing nozzle comprises a nozzle body 30, consisting of from a first tube 31, which at its in the flow direction seen end closed by a conical cover 32 is. In the middle of the cover 32 is a nozzle bore 33 arranged, the longitudinal axis of which is designated 34. In the tube 31 is a second, a smaller outside diameter as the inside diameter of the first pipe 31 Tube 35 used, which extends up to the cover 32 and rests on it. The annular space 36 between the both tubes 31 and 35 are used to supply the or a part the liquid to be atomized 37 '.
  • the Pressure atomizer nozzle also with more or fewer slots 38 or feed channels 41a. Another is the same Distribution of the channels over the circumference possible.
  • the feed channels 41a are in the filler 40 made tangential, see above that the liquid to be atomized 37 both through the channels 38 and also swirls into the chamber 39 via the channels 41a arrives. It is important that the liquid to be atomized 37 only a slight twist that leads to a narrow spray cone angle ⁇ leads, receives when it flows through the channels 41a has, while the swirl of the liquid 37 after flowing through the channels 38 is larger and thus a larger one Spray cone angle ⁇ can be reached. In the embodiment according to Fig. 1 is shown that the nozzle of two to be atomized Liquids 37 and 37 'is applied.
  • Both Liquids 37, 37 'are the chamber 39 in this Case is a pure swirl chamber, swirl fed, where the liquid 37 is less swirled than the liquid 37 '. Due to the different twist, the spray cone angle ⁇ and thus the distribution of the liquid mass flow after the nozzle. Of course you can Issue of two liquids 37, 37 'also only one to be atomized Liquid 37 can be used for both twist stiffeners.
  • Fig. 4 shows a possible representation in a schematic representation Liquid supply system to the pressure atomizer nozzle.
  • a Pump 42 becomes the liquid to be atomized, in this case liquid fuel (oil) 12, in a pressure vessel 43 pumped.
  • a return valve 49 is used to set the pump admission pressure.
  • a shut-off valve 50 is arranged in the fuel line.
  • Two lines 44, 45 extend from the pressure vessel 43, whereby the line 44 the annular space 36 (and thus the swirl atomizer stage) feeds and line 45 with the supply channels 41a (swirl atomizer stage) communicates.
  • a control valve 46 and 47 arranged which a regulation allow the amount of liquid supplied.
  • one of the two valves can also be used 46, 47 must be completely closed, so that in this case only one of the two atomizing stages of the nozzle is in operation. Smooth switching is possible between the two stages.
  • this fuel supply system should several burners, for example a gas turbine combustion chamber be supplied with fuel.
  • the one shown Circuit has the advantage of regulating the two atomizer stages only the two valves 46, 47, i.e. just one Control valve per stage are necessary.
  • FIG. 5 shows another embodiment variant analogous to FIG. 4.
  • the pressure atomizing nozzle is fed with water 51 via a feed line 44 and with oil 12 via a feed line 45.
  • a pump 42 is arranged in each of the lines 44 and 45 and a shut-off valve 50 is arranged downstream, with which the lines 44 and 45 can optionally be closed.
  • the amount of the liquids 12, 51 to be atomized is regulated by means of the control valves 46, 47. If, as indicated in FIG.
  • FIG. 6 shows the distribution of the fuel mass flow m in BS as a function of the radius R of the spray in a pressure atomizing nozzle according to the embodiment variant shown in FIG. 1 at a certain distance from the nozzle.
  • the pressure atomizing nozzle according to the invention can, for example installed in a gas turbine burner and operated as follows become:
  • a pressure atomizing nozzle according to FIG. 1 If a pressure atomizing nozzle according to FIG. 1 is used, then with full and overload operation of the gas turbine, the entire Fuel to be atomized via at least one first feed channel 41a (four feed channels 41a according to FIG. 1) of the swirl chamber 39 fed with little twist, where there is a twisted Flow is generated, which then through the Nozzle bore 33 reaches the outside. Due to the low Twist, a narrow spray cone angle ⁇ is realized, which at high pressures for a fine atomization of the fuel leads. In the case of partial and low-load operation, an is also added Part of the fuel to be atomized over the minimum a further feed channel 38 (four feed channels according to FIG. 1) 38) is more swirled in the chamber 39.
  • the pressure atomizing nozzle according to the invention can, for example in a premix burner of the double-cone type, the principal of which Structure is described in EP 0 321 809 B1 become.
  • Fig. 7 shows a perspective view of the double-cone burner with integrated premixing zone.
  • the two partial cone bodies 1, 2 are with respect to their longitudinal symmetry axes 1b, 2b arranged radially offset from one another. This creates on both sides of the partial cone body 1, 2 in opposite Inflow arrangement each tangential air inlet slots 19, 20, through which the combustion air 15 in the Interior 14 of the burner, i.e. in that of the two partial cone bodies 1, 2 formed cone cavity flows.
  • the partial cone bodies 1, 2 expand in a straight line in the direction of flow, i.e. they have a constant angle ⁇ with the burner axis 5 on.
  • the two partial cone bodies 1, 2 each have one cylindrical initial part 1a, 2a, which is also offset run.
  • the pressure atomizing nozzle 3 according to the invention, which is roughly in the narrowest cross section of the conical interior 14 of the burner is arranged.
  • the liquid fuel 12 is by means of atomized the nozzle 3 in the manner described above.
  • spray cone angles ⁇ there are different spray cone angles ⁇ .
  • the Fuel spray 4 is in the interior 14 of the burner from the through the air inlet slots 19, 20 tangentially into the Combustion air flow 15 flowing into the burner, the mixture is ignited only at the burner outlet, the flame passing through in the area of the burner mouth a backflow zone 6 is stabilized.
  • the two partial cone bodies 1, 2 have along the air inlet slots 19, 20 each have a fuel feed line 8, 9, which are provided on the long side with openings 17 through which another fuel 13 (gaseous or liquid) flow can.
  • This fuel 13 is the tangential Air inlet slots 19, 20 in the interior of the burner flowing combustion air 15 admixed, which by the Arrows 16 is shown. A mixed operation of the burner Via the nozzle 3 and the fuel feeds 8, 9 is possible.
  • a front plate 10 with openings is arranged on the combustion chamber side 11, through which, if necessary, dilution air or cooling air are fed to the combustion chamber 22. It also ensures this air supply ensures that flame stabilization on Output of the burner takes place. There is a stable one Flame front 7 with a backflow zone 6.
  • baffles 21a, 21b can be around a pivot point, for example 23 can be opened or closed, so that the original gap size of the tangential air inlet slots 19, 20 is changed.
  • the Burners can also be operated without these baffles 21a, 21b.
  • a channel around the nozzle 3 24 is arranged through which a jacket air flow 15a as Purge air flows.
  • the jacket air flow 15a is about 3 to 7% of the combustion air flow 15.
  • a burner can be operated, essentially consisting of a swirl generator 100 for a combustion air flow 15 and from means for injecting a fuel, a mixing section at the downstream of the swirl generator 100 220 is arranged and this within a first Section part 200 in the flow direction transition channels 201 for transferring one in the swirl generator 100 formed flow in the downstream of the transition channels 201 downstream flow cross section 18 of the mixing section 220, wherein the means for injecting the fuel is a pressure atomizing nozzle according to the invention, which according to one of the methods described above is operated.
  • the Swirl generator 100 is preferably a conical structure, the tangential multiple (e.g.
  • This combustion air flow 15 wraps around the fuel drop spray 4, previously by atomizing the liquid Fuel 12 in the two-stage pressure atomizer nozzle 3 was formed.
  • the flow that is formed is based on a Transition geometry provided downstream of the swirl generator 100 (Transition channels 201) seamlessly into a transition piece 200 transferred, which is extended by a tube 18. Both Parts form the mixing section 220 to which the downstream side is located connects the actual combustion chamber, not shown here.
  • the mixing section allows very good premixing of the fuel with the combustion air low-loss flow and prevented by a A maximum of axial speed on the axis a flashback the flame from the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Nozzles (AREA)

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft ein Verfahren zum Betrieb einer Druckzerstäuberdüse in einer Gasturbinenbrennkammer nach dem Oberbegriff des Patentanspruches 1.The invention relates to the field of combustion technology. It affects on Method for operating a pressure atomizing nozzle in a Gas turbine combustion chamber according to the generic term of the Claim 1.

Stand der TechnikState of the art

Bekannt sind Zerstäuberbrenner, in denen das zur Verbrennung gelangende Öl mechanisch fein verteilt wird. Es wird in feine Tröpfchen von ca. 10 bis 400 µm Durchmesser (Ölnebel) zerlegt, die unter Mischung mit der Verbrennungsluft in der Flamme verdampfen und verbrennen. In Druckzerstäubern (siehe Lueger - Lexikon der Technik, Deutsche Verlags-Anstalt Stuttgart, 1965, Band 7, S.600) wird durch eine Ölpumpe das Öl unter hohem Druck einer Zerstäuberdüse zugeführt. Über im wesentlichen tangential verlaufende Schlitze gelangt das Öl in eine Wirbelkammer und verlässt die Düse über eine Düsenbohrung. Dadurch wird erreicht, dass die Ölteilchen zwei Bewegungskomponenten, eine axiale und eine radiale, erhalten. Der als rotierender Hohlzylinder aus der Düsenbohrung austretende Ölfilm weitet sich aufgrund der Fliehkraft zu einem Hohlkegel aus, dessen Ränder in instabile Schwingungen geraten und zu kleinen Öltröpfchen zerreissen. Das zerstäubte Öl bildet einen Kegel mehr oder weniger grossen Öffnungswinkels.Atomizer burners are known in which the for combustion oil is mechanically finely distributed. It will be fine Droplets of approx. 10 to 400 µm in diameter (oil mist) broken down, which are mixed with the combustion air in the Vaporize and burn the flame. In pressure atomizers (see Lueger - Lexicon of Technology, Deutsche Verlags-Anstalt Stuttgart, 1965, volume 7, p.600) is the oil under by an oil pump high pressure supplied to an atomizer nozzle. About essentially The oil gets into tangential slots a swirl chamber and leaves the nozzle through a nozzle bore. This ensures that the oil particles have two motion components, one axial and one radial. The emerging from the nozzle bore as a rotating hollow cylinder Oil film widens to a hollow cone due to the centrifugal force whose edges get into unstable vibrations and close tear small oil droplets. The atomized oil forms one Cone of more or less large opening angle.

Bei der schadstoffarmen Verbrennung von mineralischen Brennstoffen in modernen Brennern, beispielsweise in Vormischbrennern der Doppelkegelbauart, die in ihrem prinzipiellen Aufbau in EP 0 321 809 B1, beschrieben sind, werden aber besondere Anforderungen an die Zerstäubung des flüssigen Brennstoffes gestellt. Diese sind vor allem folgende:

  • 1. Die Tröpfchengrösse muss gering sein, damit die Öltröpfchen vor der Verbrennung vollständig verdampfen können.
  • 2. Der öffnungswinkel (Ausbreitungswinkel) des Ölnebels soll insbesondere bei der Verbrennung unter erhöhtem Druck klein sein.
  • 3. Die Tropfen müssen eine hohe Geschwindigkeit und einen hohen Impuls haben, um weit genug in den verdichteten Verbrennungsluftmassenstrom eindringen zu können, damit sich der Brennstoffdampf vollständig mit der Verbrennungsluft vor Erreichen der Flammenfront vormischen kann.
  • In the low-pollutant combustion of mineral fuels in modern burners, for example in premix burners of the double-cone type, which are described in their basic structure in EP 0 321 809 B1, special requirements are placed on the atomization of the liquid fuel. The main ones are:
  • 1. The droplet size must be small so that the oil droplets can evaporate completely before combustion.
  • 2. The opening angle (angle of spread) of the oil mist should be small, in particular when burning under increased pressure.
  • 3. The drops must have a high speed and a high momentum in order to be able to penetrate far enough into the compressed combustion air mass flow so that the fuel vapor can premix completely with the combustion air before reaching the flame front.
  • Dralldüsen (Druckzerstäuber) und luftunterstützte Zerstäuber der bekannten Bauarten mit einem Druck bis zu ca. 100 bar sind dafür kaum geeignet, weil sie keinen kleinen Ausbreitungswinkel erlauben, die Zerstäubungsqualität eingeschränkt ist und der Impuls des Tropfensprays gering ist.Swirl nozzles (pressure atomizers) and air-assisted atomizers the known types with a pressure up to approx. 100 bar are hardly suitable for this because they do not have a small angle of propagation allow the atomization quality to be restricted and the impulse of the drop spray is low.

    Als Folge dieser ungenügenden Verdampfung und Vormischung des Brennstoffes ist deshalb eine Wasserzugabe zum lokalen Absenken der Flammentemperatur und damit der NOx-Bildung notwendig. Da das zugeführte Wasser oftmals auch Flammenzonen stört, die zwar an sich wenig NOx erzeugen, aber für die Flammenstabilität sehr wichtig sind, treten häufig Instabilitäten, wie Flammenpulsation und/oder schlechter Ausbrand auf, was zum Anstieg des CO-Ausstosses führt. As a result of this insufficient evaporation and premixing of the Fuel is therefore an addition of water for local lowering the flame temperature and thus the formation of NOx. Since the water supplied often also flame zones disturbing, which generate little NOx per se, but for those Flame stability is very important, instabilities often occur, like flame pulsation and / or bad burnout, which leads to an increase in CO emissions.

    Eine Verbesserung ist mit der aus EP 0 496 016 B1 bekannten Hochdruckzerstäuberdüse zu erreichen. Diese besteht aus einem Düsenkörper, in welchem eine Turbulenzkammer ausgebildet ist, welche über mindestens eine Düsenbohrung mit einem Aussenraum in Verbindung steht, und welche mindestens einen Zufuhrkanal für die unter Druck zuführbare zu zerstäubende Flüssigkeit aufweist. Sie ist dadurch gekennzeichnet, dass die Querschnittsfläche des in die Turbulenzkammer mündenden Zufuhrkanales um den Faktor 2 bis 10 grösser ist als die Querschnittsfläche der Düsenbohrung. Durch diese Anordnung gelingt es, in der Turbulenzkammer ein hohes Turbulenzniveau zu erzeugen, das auf dem Weg bis zum Austritt aus der Düse nicht abklingt. Der Flüssigkeitsstrahl wird durch die vor der Düsenbohrung erzeugte Turbulenz im Aussenraum, also nach Verlassen der Düsenbohrung zum raschen Zerfall gebracht, wobei sich niedrige Ausbreitungswinkel von 20° und weniger ergeben. Die Tröpfchengrösse ist ebenfalls sehr niedrig.An improvement is known from EP 0 496 016 B1 To reach high pressure atomizer nozzle. This consists of one Nozzle body, in which a turbulence chamber is formed, which has at least one nozzle bore with an outside space is connected, and which at least one feed channel for the liquid to be atomized under pressure having. It is characterized in that the cross-sectional area of the feed channel opening into the turbulence chamber is larger by a factor of 2 to 10 than the cross-sectional area the nozzle bore. This arrangement succeeds it to a high level of turbulence in the turbulence chamber generate that on the way to the exit from the nozzle not subsides. The liquid jet is through the front of the nozzle bore Turbulence generated in the outside space, i.e. after leaving the nozzle bore decayed rapidly, whereby there are low propagation angles of 20 ° and less. The droplet size is also very small.

    Beim Betrieb von Gasturbinenbrennern mit flüssigem Brennstoff ist man bestrebt, möglichst über den gesamten Lastbereich der Gasturbine (ca. 10% bis 120% Brennstoffmassenstrom bezogen auf Nennlastbedingungen) ein Tropfenspray zu erzeugen, das im gesamten Bereich eine schadstoffarme und stabile Verbrennung in einem vorgegebenen Luftströmungsfeld ermöglicht.When operating gas turbine burners with liquid fuel one strives, if possible, over the entire load range of the Gas turbine (approx. 10% to 120% fuel mass flow related on nominal load conditions) to generate a drop spray that entire pollutant-free and stable combustion in a given air flow field.

    Der Einsatz einer oben beschriebenen Hochdruckzerstäuberdüse zum Zerstäuben von flüssigem Brennstoff in Gasturbinenbrennern führt bei Vollast und Überlast (100-120%) wunschgemäss zwar zu einem nicht zu hohen Druck (100 bar) und einer geringen Tröpfchengrösse, wobei aufgrund des engen Spraywinkels unerwünschte Wandbenetzung und Verkokung vermieden werden.The use of a high pressure atomizer nozzle described above for atomizing liquid fuel in gas turbine burners performs at full load and overload (100-120%) as desired at a not too high pressure (100 bar) and a low one Droplet size, due to the narrow spray angle unwanted wall wetting and coking can be avoided.

    Bei Teillast sinkt jedoch der Brennstoffvordruck aufgrund des fallenden Gesamtbrennstoffmassenstromes ab. Die zur Zerstäubung erforderliche Energie für Druckzerstäuber ist aber über den Brennstoffvordruck gegeben, so dass sich in diesem Lastbereich die Zerstäubungsgüte verschlechtert und die Eindringtiefe des Brennstoffsprays in die Luftströmung durch den niedrigen Brennstoffvordruck geringer wird.At partial load, however, the fuel pre-pressure drops due to the falling total fuel mass flow. The atomizer required energy for pressure atomizers is over given the fuel admission pressure, so that in this load range the atomization quality deteriorates and the penetration depth of the fuel spray into the air flow through the low fuel pressure becomes lower.

    Aus US 2 628 867 und DE 893 133 sind Brennstoffdüsen mit 2 Druckdrallstufen bekannt, bei denen die zweite stufe erst bei Vollast zugeschaltet wird.From US 2,628,867 and DE 893 133 are fuel nozzles known with 2 pressure swirl stages, in which the second stage is only switched on at full load.

    Darstellung der ErfindungPresentation of the invention

    Die Erfindung versucht, die Nachteile des bekanntes Standes der Technik zu vermeiden. Ihr liegt die Aufgabe zugrunde, ein Verfahren zum betrieb einer Druckzerstäuberdüse mit zwei Druckdrallstufen zu entwickeln, mit welchem ein an die jeweiligen Betriebsbedingungen angepasstet. Spraywinkel der zu zerstäubenden Flüssigkeit ermöglicht wird. Beim Einsatz dieser Druckzerstäuberdüse in einem Gasturbinenbrenner soll schon bei kleinen Brennstoffmassenströmen (ca. 25% bezogen auf Nennlastbedingungen) ein hinreichend grosser Düsenvordruck erzeugt werden, während die Düse bei grossen Brennstoffmassenströmen (ca. 100-120% bezogen auf Nennlastbedingungen) einen nicht zu hohen Düsenvordruck benötigen soll. Mit dem so erzeugten Tropfenspray soll über den gesamten Lastbereich der Gasturbine eine schadstoffarme und stabile Verbrennung ermöglicht werden.The invention tries to avoid the disadvantages of the known prior art. It is based on the task of a method for operating a pressure atomizing nozzle with two To develop pressure swirl stages, with which a to the respective operating conditions angepasstet. Spray angle of the atomized Liquid is made possible. When using this pressure atomizing nozzle in a gas turbine burner is said to be even with small ones Fuel mass flows (approx. 25% based on nominal load conditions) a sufficiently large nozzle pressure is generated, while the nozzle with large fuel mass flows (approx. 100-120% based on nominal load conditions) not too high Nozzle form should need. With the drop spray created in this way should over the entire load range of the gas turbine a low-pollutant and stable combustion are made possible.

    Erfindungsgemäss wird das bei einem Verfahren zum Betrieb einer Druckzerstäuberdüse in einem Gasturbinenbrenner, wobei die Druckzerstäuberdüse einen Düsenkörper umfasst, in welchem eine Drallkammer ausgebildet ist, welche über eine Düsenbohrung mit einem Aussenraum in Verbindung steht und mindestens einen ersten Zufuhrkanal für die zu zerstäubende Flüssigkeit aufweist, durch welchen besagte Flüssigkeit drallbehaftet unter Druck zugeführt wird und in die Kammer mindestens ein weiterer Zufuhrkanal für einen Teil der zu zerstäubende Flüssigkeit bzw. für eine zweite zu zerstäubende Flüssigkeit mündet, durch welchen besagter Teil der Flüssigkeit, bzw. die zweite Flüssigkeit unter Druck und mit Drall zugeführt wird dadurch erreicht, dass die Druckzerstäuberdüse bei Voll- und Uberlastbetrieb der Gasturbine über eine Druckdrallhauptstufe mit geringem Drall betrieben wird, indem die gesamte zu zerstäubende Flüssigkeit über den ersten Zufuhrkanal der Drallkammer verdrallt zugeführt wird, wobei dort eine verdrallte Strömung erzeugt wird, welche anschliessend durch die mindestens eine Düsenbohrung in den Aussenraum gelangt, und dass die Druckzerstäuberdüse bei Teil- und Niedriglastbetrieb der Gasturbine zusätzlich über eine weitere Druckdrallstufe mit grösserem Drall betrieben wird, indem ein Teil der zu zerstäubenden Flüssigkeit oder die zweite zu zerstäubende Flüssigkeit über den mindestens einen weiteren Zufuhrkanal stärker verdrallt der Kammer zugeführt wird und dort eine stark verdrallte Strömung erzeugt wird, welche anschliessend durch die mindestens eine Düsenbohrung in den Aussenraum gelangt, wobei der Anteil der über die weitere Drallstufe zugeführten stärker verdrallten Flüssigkeit mit fallendem Gesamtflüssigkeitsmassenstrom vergrössert wird. According to the invention, this is achieved in a method for operating a pressure atomizing nozzle in a gas turbine burner, wherein the pressure atomizing nozzle comprises a nozzle body in which one Swirl chamber is formed, which has a nozzle bore communicates with an outside space and at least a first feed channel for the liquid to be atomized through which said liquid is supplied with swirl under pressure will and in the chamber at least another feed channel for part of the atomized Liquid or for a second liquid to be atomized flows through which said part of the liquid, or the second liquid is supplied under pressure and with swirl by doing that the pressure atomizer nozzle at full and Overload operation of the gas turbine via a main pressure swirl stage with low Swirl is operated by the entire atomizer Liquid over the first The swirl chamber feed channel is swirled is generated, where there is a swirled flow which is then through the at least one nozzle bore got into the outside space and that the Pressure atomizer nozzle for partial and low-load operation of the gas turbine additionally over a further pressure swirl stage with a larger one Swirl is operated by part of the atomized Liquid or the second to be atomized Liquid via the at least one further feed channel more swirled fed to the chamber is generated and there a strong swirled flow which is then replaced by the at least a nozzle hole gets into the outside space, whereby the proportion of the supplied via the further swirl stage more twisted liquid with falling Total liquid mass flow is increased.

    Die Vorteile der Erfindung bestehen unter anderem darin, dass dadurch eine Anpassung des Topfensprays (Zerstäubungsgüte, Tropfengrösse, Spraywinkel) an die jeweiligen Lastbedingungen ermöglicht wird. The advantages of the invention include that thereby an adjustment of the pot spray (atomization quality, drop size, spray angle) to the respective load conditions is made possible.

    Vorteilhaft ist ein gleitendes Umschalten zwischen den beiden Stufen, sowie je nach Lastbedingungen der Betrieb der Düse mit nur einer der beiden Stufen. A smooth switchover between the two is advantageous Stages, and depending on the load conditions, the operation of the nozzle with only one of the two stages.

    Schliesslich werden mit Vorteil die Düse und das Verfahren zum Betrieb der Düse in einem Vormischbrenner der Doppelkegelbauart oder einem Vierschlitzbrenner eingesetzt, wobei im Düsennahbereich ein Teil der Verbrennungsluft (ca. 3 bis 7%) im Mantelstrom um die Düse geführt wird. Dadurch werden lokale Ablöse- und Rezirkulationsgebiete vermieden. Es wird verhindert, dass die Rezirkulationszone in das Innere des Brenners verschoben wird.Finally, the nozzle and the method for operating the nozzle are advantageously used in a premix burner of the double-cone design or a four-slot burner used, with a part in the vicinity of the nozzle the combustion air (approx. 3 to 7%) in the jacket flow around the nozzle to be led. This makes local detachment and recirculation areas avoided. It prevents the recirculation zone is moved inside the burner.

    Kurze Beschreibung der ZeichnungBrief description of the drawing

    In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung dargestellt.In the drawing are several embodiments of the invention shown.

    Es zeigen:

    Fig. 1
    einen Teillängsschnitt einer Druckzerstäuberdüse mit zwei Drallstufen;
    Fig. 2
    einen Querschnitt der Druckzerstäuberdüse nach Fig. 1 im Bereich der Drallhauptstufe entlang der Linie V-V;
    Fig. 3
    einen Querschnitt der Druckzerstäuberdüse nach Fig. 1 im Bereich der weiteren Drallstufe entlang der Linie VI-VI;
    Fig. 4
    eine schematische Darstellung des Flüssigkeitszufuhrsystems zur zweistufigen Druckzerstäuberdüse, wobei in beiden Stufen Öl zerstäubt wird;
    Fig. 5
    eine schematische Darstellung des Flüssigkeitszufuhrsystems zur zweistufigen Druckzerstäuberdüse, wobei in beiden Stufen jeweils unterschiedliche Flüssigkeiten(Öl, Wasser) zerstäubt werden;
    Fig. 6
    eine schematische Darstellung der Massenstromverteilung für eine Düse gemäss Fig. 1;
    Fig. 7
    einen Vormischbrenner der Doppelkegelbauart in perspektivischer Darstellung
    Fig. 8
    einen vereinfacht dargestellten Schnitt in der Ebene XIII-XIII gemäss Fig. 7;
    Fig. 9
    einen vereinfacht dargestellten Schnitt in der Ebene XIV-XIV gemäss Fig. 7;
    Fig. 10
    einen vereinfacht dargestellten Schnitt in der Ebene XV-XV gemäss Fig. 7;
    Fig. 11
    eine-schematische Ansicht eines Doppelkegelbrenners mit Mantelluftstromführung im Düsennahbereich;
    Fig. 12
    eine schematische Ansicht eines Vierschlitzbrenners mit Mantelluftstromführung im Düsennahbereich.
    Show it:
    Fig. 1
    a partial longitudinal section of a pressure atomizing nozzle with two swirl stages;
    Fig. 2
    a cross section of the pressure atomizing nozzle of Figure 1 in the region of the main swirl stage along the line VV.
    Fig. 3
    a cross section of the pressure atomizing nozzle of Figure 1 in the area of the further swirl stage along the line VI-VI.
    Fig. 4
    a schematic representation of the liquid supply system to the two-stage pressure atomizing nozzle, with oil being atomized in both stages;
    Fig. 5
    a schematic representation of the liquid supply system for the two-stage pressure atomizing nozzle, different liquids (oil, water) being atomized in each of the two stages;
    Fig. 6
    a schematic representation of the mass flow distribution for a nozzle according to FIG. 1;
    Fig. 7
    a premix burner of the double cone type in perspective
    Fig. 8
    a simplified section in the plane XIII-XIII of FIG. 7;
    Fig. 9
    a simplified section in the plane XIV-XIV of FIG. 7;
    Fig. 10
    a simplified section in the plane XV-XV of FIG. 7;
    Fig. 11
    a schematic view of a double-cone burner with jacket air flow in the vicinity of the nozzle;
    Fig. 12
    is a schematic view of a four-slot burner with jacket air flow in the vicinity of the nozzle.

    Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen bezeichnet.It is only essential for understanding the invention Elements shown. The same elements are in the different Figures with the same reference numerals. The Flow direction of the media is indicated by arrows.

    Weg zur Ausführung der ErfindungWay of carrying out the invention

    Nachfolgend wird die Erfindung anhand von mehreren Ausführungsbeispielen und der Figuren 1 bis 12 näher erläutert.The invention is described below using several exemplary embodiments and Figures 1 to 12 explained in more detail.

    Fig. 1 bis 3 zeigen ein erstes Ausführungsbeispiel der Erfindung, wobei Fig. 1 die Druckzerstäuberdüse in einem Teillängsschnitt darstellt und die Fig. 2 und 3 zwei Querschnitte in unterschiedlichen Ebenen zeigen.1 to 3 show a first embodiment of the invention, 1 shows the pressure atomizing nozzle in a partial longitudinal section represents and FIGS. 2 and 3 two cross sections show in different levels.

    Die Druckzerstäuberdüse umfasst einen Düsenkörper 30, bestehend aus einem ersten Rohr 31, das an seinem in Strömungsrichtung gesehenen Ende durch einen kegeligen Deckel 32 verschlossen ist. In der Mitte des Deckels 32 ist eine Düsenbohrung 33 angeordnet, deren Längsachse mit 34 bezeichnet ist. In das Rohr 31 ist ein zweites, einen kleineren Aussendurchmesser als der Innendurchmesser des ersten Rohres 31 aufweisendes Rohr 35 eingesetzt, das bis an den Deckel 32 heranreicht und auf diesem aufliegt. Der Ringraum 36 zwischen den beiden Rohren 31 und 35 dient der Zufuhr der bzw. eines Teiles der zu zerstäubenden Flüssigkeit 37'. Das auf dem Deckel 32 aufliegende Ende des Rohres 35 ist mit vier tangential angestellten Schlitzen 38 versehen, die eine Verbindung des Ringraumes 36 mit einer Kammer 39 herstellen, welche als Drallkammer für die durch die Schlitze 38 einströmende zu zerstäubende Flüssigkeit 37' dient. Die Kammer 39 wird begrenzt durch die Innenwände des Deckels 32 und des zweiten Rohres 35, sowie durch ein Füllstück 40, welches im Inneren des zweiten Rohres 35 eingeschoben und darin befestigt ist. Dieses Füllstück 40 ist von der Oberkante der Schlitze 38 beabstandet, es kann sich aber bei einer anderen Ausführungsvariante auch auf gleicher Höhe befinden. Im Füllstück 40 sind vier Zufuhrkanäle 41a für die zu zerstäubende Flüssigkeit 37 angeordnet.The pressure atomizing nozzle comprises a nozzle body 30, consisting of from a first tube 31, which at its in the flow direction seen end closed by a conical cover 32 is. In the middle of the cover 32 is a nozzle bore 33 arranged, the longitudinal axis of which is designated 34. In the tube 31 is a second, a smaller outside diameter as the inside diameter of the first pipe 31 Tube 35 used, which extends up to the cover 32 and rests on it. The annular space 36 between the both tubes 31 and 35 are used to supply the or a part the liquid to be atomized 37 '. That on the lid 32 resting end of the tube 35 is made tangentially with four Slots 38 provided which connect the Create annular space 36 with a chamber 39, which as Swirl chamber for the inflowing through the slots 38 to atomizing liquid 37 'is used. Chamber 39 is confined through the inner walls of the lid 32 and the second Tube 35, and by a filler 40, which inside of the second tube 35 is inserted and fastened therein. This filler 40 is spaced from the top edge of the slots 38, but it can be in a different embodiment are also at the same level. In the filler 40 are four feed channels 41a for the liquid 37 to be atomized arranged.

    Abweichend vom dargestellten Ausführungsbeispiel kann die Druckzerstäuberdüse auch mit mehr oder weniger Schlitzen 38 bzw. Zufuhrkanälen 41a versehen sein. Ebenso ist auch eine andere Verteilung der Kanäle über den Umfang möglich.Deviating from the illustrated embodiment, the Pressure atomizer nozzle also with more or fewer slots 38 or feed channels 41a. Another is the same Distribution of the channels over the circumference possible.

    Die Zufuhrkanäle 41a sind im Füllstück 40 tangential angestellt, so dass die zu zerstäubende Flüssigkeit 37 sowohl über die Kanäle 38 als auch über die Kanäle 41a verdrallt in die Kammer 39 gelangt. Dabei ist wichtig, dass die zu zerstäubende Flüssigkeit 37 nur einen geringen Drall, der zu einem engen Spraykegelwinkel  führt, erhält, wenn sie die Kanäle 41a durchströmt hat, während der Drall der Flüssigkeit 37 nach Durchströmen der Kanäle 38 grösser ist und damit ein grösserer Spraykegelwinkel  erreichbar ist. Im Ausführungsbeispiel gemäss Fig. 1 ist dargestellt, dass die Düse von zwei zu zerstäubenden Flüssigkeiten 37 und 37' beaufschlagt wird. Beide Flüssigkeiten 37, 37' werden der Kammer 39, die in diesem Falle eine reine Drallkammer ist, verdrallt zugeführt, wobei die Flüssigkeit 37 weniger verdrallt ist als die Flüssigkeit 37'. Durch die unterschiedliche Verdrallung kann der Spraykegelwinkel  und damit die Verteilung des Flüssigkeitsmassenstromes nach der Düse beeinflusst werden. Selbstverständlich kann austelle von 2 Flüssigkeiten 37, 37' auch nur eine zu zerstänbende Flüssigkeit 37 für beide Drallsteifen benutzt werden. The feed channels 41a are in the filler 40 made tangential, see above that the liquid to be atomized 37 both through the channels 38 and also swirls into the chamber 39 via the channels 41a arrives. It is important that the liquid to be atomized 37 only a slight twist that leads to a narrow spray cone angle  leads, receives when it flows through the channels 41a has, while the swirl of the liquid 37 after flowing through the channels 38 is larger and thus a larger one Spray cone angle  can be reached. In the embodiment according to Fig. 1 is shown that the nozzle of two to be atomized Liquids 37 and 37 'is applied. Both Liquids 37, 37 'are the chamber 39 in this Case is a pure swirl chamber, swirl fed, where the liquid 37 is less swirled than the liquid 37 '. Due to the different twist, the spray cone angle  and thus the distribution of the liquid mass flow after the nozzle. Of course you can Issue of two liquids 37, 37 'also only one to be atomized Liquid 37 can be used for both twist stiffeners.

    Fig. 4 zeigt in einer schematischen Darstellung ein mögliches Flüssigkeitszufuhrsystem zur Druckzerstäuberdüse. Über eine Pumpe 42 wird die zu zerstäubende Flüssigkeit, in diesem Falle flüssiger Brennstoff (Öl) 12, in einen Druckbehälter 43 gepumpt. Ein Rücklaufventil 49 dient der Einstellung des Pumpenvordruckes. Zwischen der Pumpe 42 und dem Druckbehälter 43 ist in der Brennstoffleitung ein Absperrventil 50 angeordnet. Vom Druckbehälter 43 gehen zwei Leitungen 44, 45 ab, wobei die Leitung 44 den Ringraum 36 (und damit die Drallzerstäuberstufe) speist und die Leitung 45 mit den Zufuhrkanälen 41a (Drallzerstäuberstufe) in Verbindung steht. In den Leitungen 44 und 45 ist jeweils ein Steuerventil 46 bzw. 47 angeordnet, welche eine Regulierung der jeweiligen zugeführten Flüssigkeitsmenge gestatten. Je nach Bedarf kann auch eines der beiden Ventile 46, 47 völlig geschlossen sein, so dass in diesem Falle nur eine der beiden Zerstäuberstufen der Düse in Betrieb ist. Zwischen beiden Stufen ist ein gleitendes Umschalten möglich. Wie in Fig. 4 angedeutet ist, sollen über dieses Brennstoffzufuhrsystem mehrere Brenner beispielsweise einer Gasturbinenbrennkammer mit Brennstoff versorgt werden. Die gezeigte Schaltung hat den Vorteil, dass zur Regelung der zwei Zerstäuberstufen nur die beiden Ventile 46, 47, d.h. nur ein Steuerventil pro Stufe, notwendig sind.Fig. 4 shows a possible representation in a schematic representation Liquid supply system to the pressure atomizer nozzle. Over a Pump 42 becomes the liquid to be atomized, in this case liquid fuel (oil) 12, in a pressure vessel 43 pumped. A return valve 49 is used to set the pump admission pressure. Between the pump 42 and the pressure vessel 43 a shut-off valve 50 is arranged in the fuel line. Two lines 44, 45 extend from the pressure vessel 43, whereby the line 44 the annular space 36 (and thus the swirl atomizer stage) feeds and line 45 with the supply channels 41a (swirl atomizer stage) communicates. In lines 44 and 45, respectively a control valve 46 and 47 arranged which a regulation allow the amount of liquid supplied. Depending on requirements, one of the two valves can also be used 46, 47 must be completely closed, so that in this case only one of the two atomizing stages of the nozzle is in operation. Smooth switching is possible between the two stages. As indicated in Fig. 4, this fuel supply system should several burners, for example a gas turbine combustion chamber be supplied with fuel. The one shown Circuit has the advantage of regulating the two atomizer stages only the two valves 46, 47, i.e. just one Control valve per stage are necessary.

    In Fig. 5 ist eine andere Ausführungsvariante analog zu Fig. 4 dargestellt. Die Druckzerstäuberdüse wird in diesem Falle über eine Zufuhrleitung 44 mit Wasser 51 und eine Zufuhrleitung 45 mit Öl 12 gespeist. In den Leitungen 44 und 45 ist jeweils eine Pumpe 42 und stromabwärts ein Abstellventil 50 angeordnet, mit dem wahlweise die Leitungen 44 und 45 geschlossen werden können. Die Menge der zu zerstäubenden Flüssigkeiten 12, 51 wird mittels der Steuerventile 46, 47 geregelt. Werden, wie in Fig. 5 angedeutet, über dieses Flüssigkeitszufuhrystem mehrere Brenner beispielsweise einer Gasturbinenbrennkammer mit flüssigem Brennstoff 12 bzw. Wasser 51 versorgt, so kann beim Start bzw. bei Teillast die Düse betrieben werden, indem nur Öl 12 über die Drallhauptstufe fein zerstäubt wird. Die Drallstufe kann dabei für Maximaldruck bei maximalem Brennstoffmassenstrom m ˙Bs ausgelegt werden. Bei höherer Last bzw. Vollast erfolgt dann über die Leitung 44 eine Zufuhr von Wasser 51. Wasser 51 und Öl 12 vermischen sich in der Kammer 39 und bilden eine Emulsion, welche beim Austritt aus der Düse zerstäubt wird. Dies führt zur Senkung der NOx-Emissionen. Auch hier ergibt sich als Vorteil, dass nur ein Steuerventil pro Zerstäuberstufe notwendig ist, dass für den Gasturbinenbetrieb nur eine Ölleitung notwendig ist und dass die Drallstufe für reinen Ölbetrieb ausgelegt werden kann, da die Zufuhr von Wasser 51 durch die Leitung 44 zu einer Erhöhung des Gesamtmassenstromes bei gleichem Druck führt.5 shows another embodiment variant analogous to FIG. 4. In this case, the pressure atomizing nozzle is fed with water 51 via a feed line 44 and with oil 12 via a feed line 45. A pump 42 is arranged in each of the lines 44 and 45 and a shut-off valve 50 is arranged downstream, with which the lines 44 and 45 can optionally be closed. The amount of the liquids 12, 51 to be atomized is regulated by means of the control valves 46, 47. If, as indicated in FIG. 5, several burners, for example a gas turbine combustion chamber, are supplied with liquid fuel 12 or water 51 via this liquid supply system, the nozzle can be operated at the start or at partial load by only atomizing oil 12 finely via the main swirl stage , The swirl stage can be designed for maximum pressure at maximum fuel mass flow m ˙ Bs . At higher loads or full loads, water 51 is then supplied via line 44. Water 51 and oil 12 mix in chamber 39 and form an emulsion which is atomized when it emerges from the nozzle. This leads to a reduction in NOx emissions. Here, too, there is an advantage that only one control valve is required per atomizer stage, that only one oil line is required for gas turbine operation, and that the swirl stage can be designed for pure oil operation, since the supply of water 51 through line 44 increases the Total mass flow at the same pressure leads.

    Fig. 6 zeigt die Verteilung des Brennstoffmassenstromes m ˙BS in Abhängigkeit vom Radius R des Sprays bei einer Druckzerstäuberdüse gemäss der in Fig. 1 dargestellten Ausführungsvariante in einem gewissen Abstand von der Düse. Beim kombinierten Betrieb der beiden mit unterschiedlichen Spraykegelwinkeln  arbeitenden Drallstufen kann die Massenstromverteilung zwischen beiden Stufen variiert werden.FIG. 6 shows the distribution of the fuel mass flow m in BS as a function of the radius R of the spray in a pressure atomizing nozzle according to the embodiment variant shown in FIG. 1 at a certain distance from the nozzle. When operating the two swirl stages operating with different spray cone angles , the mass flow distribution between the two stages can be varied.

    Die erfindungsgemässe Druckzerstäuberdüse kann beispielsweise in einen Gasturbinenbrenner eingebaut und folgendermassen betrieben werden: The pressure atomizing nozzle according to the invention can, for example installed in a gas turbine burner and operated as follows become:

    Wird eine Druckzerstäuberdüse gemäss Fig. 1 verwendet, so wird bei Voll- und Überlastbetrieb der Gasturbine der gesamte zu zerstäubende Brennstoff über mindestens einen ersten Zufuhrkanal 41a (nach Fig. 1 vier Zufuhrkanäle 41a) der Drallkammer 39 mit geringem Drall zugeführt, wobei dort eine verdrallte Strömung erzeugt wird, welche anschliessend durch die Düsenbohrung 33 in den Aussenraum gelangt. Durch den geringen Drall wird ein enger Spraykegelwinkel  realisiert, der bei hohen Drücken zu einer feinen Zerstäubung des Brennstoffes führt. Bei Teil- und Niedriglastbetrieb wird zusätzlich ein Teil des zu zerstäubenden Brennstoffes über den mindestens einen weiteren Zufuhrkanal 38 (nach Fig. 1 vier Zufuhrkanäle 38) stärker verdrallt der Kammer 39 zugeführt. In der Kammer 39 wird dadurch eine stärker verdrallte Strömung erzeugt, welche anschliessend durch die Düsenbohrung 33 in den Aussenraum gelangt, wobei der Anteil des über die weitere Drallstufe zugeführten stärker verdrallten Brennstoffmassenstromes mit fallendem Gesamtbrennstoffmassenstrom vergrössert wird. Die starke Verdrallung führt hierbei zu einem grösseren Spraykegelwinkel , welcher wiederum die niedrigere Eindringtiefe des Brennstoffsprays in die Luftströmung kompensiert. Durch die variable Gestaltung des Spraykegelwinkels  kann eine optimale Anpassung der Zerstäubung des Brennstoffes an die jeweiligen Betriebsbedingungen des Gasturbine erfolgen. Im Gegensatz zu üblichen zweistufigen Dralldüsen werden bei der erfindungsgemässen Ausführung beide Stufen in einer gemeinsamen Drallkammer zusammengeführt. Ausserdem ist es möglich, je nach Lastbereich verschiedene Flüssigkeiten, z.B. Öl 12 und Wasser 51, in den beiden Stufen zu zerstäuben.If a pressure atomizing nozzle according to FIG. 1 is used, then with full and overload operation of the gas turbine, the entire Fuel to be atomized via at least one first feed channel 41a (four feed channels 41a according to FIG. 1) of the swirl chamber 39 fed with little twist, where there is a twisted Flow is generated, which then through the Nozzle bore 33 reaches the outside. Due to the low Twist, a narrow spray cone angle  is realized, which at high pressures for a fine atomization of the fuel leads. In the case of partial and low-load operation, an is also added Part of the fuel to be atomized over the minimum a further feed channel 38 (four feed channels according to FIG. 1) 38) is more swirled in the chamber 39. In the chamber 39 this creates a more swirled flow, which then through the nozzle bore 33 into the outside space arrives, the share of the over the swirl stage supplied more swirled fuel mass flow is increased with falling total fuel mass flow. The strong swirl leads to a larger one Spray cone angle , which in turn is the lower penetration depth of the fuel spray in the air flow is compensated. Due to the variable design of the spray cone angle  an optimal adaptation of the atomization of the fuel the respective operating conditions of the gas turbine take place. In contrast to the usual two-stage swirl nozzles the inventive design, both stages in a common Swirl chamber merged. It is also possible different liquids depending on the load range, e.g. oil 12 and water 51 to atomize in the two stages.

    Die erfindungsgemässe Druckzerstäuberdüse kann beispielsweise in einem Vormischbrenner der Doppelkegelbauart, dessen prinzipieller Aufbau in EP 0 321 809 B1 beschrieben ist, eingebaut werden.The pressure atomizing nozzle according to the invention can, for example in a premix burner of the double-cone type, the principal of which Structure is described in EP 0 321 809 B1 become.

    Fig. 7 zeigt in perspektivischer Darstellung den Doppelkegelbrenner mit integrierter Vormischzone. Die beiden Teilkegelkörper 1, 2 sind bezüglich ihrer Längssymmetrieachsen 1b, 2b radial versetzt zueinander angeordnet. Dadurch entstehen auf beiden Seiten der Teilkegelkörper 1, 2 in entgegengesetzter Einströmungsanordnung jeweils tangentiale Lufteintrittsschlitze 19, 20, durch welche die Verbrennungsluft 15 in den Innenraum 14 des Brenners, d.h. in den von den beiden Teilkegelkörpern 1, 2 gebildeten Kegelhohlraum strömt. Die Teilkegelkörper 1, 2 erweitern sich geradlinig in Strömungsrichtung, d.h. sie weisen einen konstanten Winkel α mit der Brennerachse 5 auf. Die beiden Teilkegelkörper 1, 2 haben je einen zylindrischen Anfangsteil 1a, 2a, welche ebenfalls versetzt verlaufen. In diesem zylindrischen Anfangsteil 1a, 2a befindet sich die erfindungsgemässe Druckzerstäubungsdüse 3, welche etwa im engsten Querschnitt des kegelförmigen Innenraums 14 des Brenners angeordnet ist. Selbstverständlich kann der Brenner auch ohne zylindrischen Anfangsteil, also rein kegelig ausgeführt sein. Der flüssige Brennstoff 12 wird mittels der Düse 3 in oben beschriebener Art und Weise zerstäubt. In Abhängigkeit von den jeweiligen Betriebsbedingungen ergeben sich unterschiedliche Spraykegelwinkel . Der Brennstoffspray 4 wird im Innenraum 14 des Brenners von dem durch die Lufteintrittsschlitze 19, 20 tangential in den Brenner einströmenden Verbrennungsluftstrom 15 umschlossen, die Zündung des Gemisches erfolgt erst am Ausgang des Brenners, wobei im Bereich der Brennermündung die Flamme durch eine Rückströmzone 6 stabilisiert wird.Fig. 7 shows a perspective view of the double-cone burner with integrated premixing zone. The two partial cone bodies 1, 2 are with respect to their longitudinal symmetry axes 1b, 2b arranged radially offset from one another. This creates on both sides of the partial cone body 1, 2 in opposite Inflow arrangement each tangential air inlet slots 19, 20, through which the combustion air 15 in the Interior 14 of the burner, i.e. in that of the two partial cone bodies 1, 2 formed cone cavity flows. The partial cone bodies 1, 2 expand in a straight line in the direction of flow, i.e. they have a constant angle α with the burner axis 5 on. The two partial cone bodies 1, 2 each have one cylindrical initial part 1a, 2a, which is also offset run. In this cylindrical starting part 1a, 2a there is the pressure atomizing nozzle 3 according to the invention, which is roughly in the narrowest cross section of the conical interior 14 of the burner is arranged. Of course you can the burner also without a cylindrical initial part, i.e. pure be conical. The liquid fuel 12 is by means of atomized the nozzle 3 in the manner described above. Depending on the respective operating conditions there are different spray cone angles . The Fuel spray 4 is in the interior 14 of the burner from the through the air inlet slots 19, 20 tangentially into the Combustion air flow 15 flowing into the burner, the mixture is ignited only at the burner outlet, the flame passing through in the area of the burner mouth a backflow zone 6 is stabilized.

    Die beiden Teilkegelkörper 1, 2 weisen längs der Lufteintrittsschlitze 19, 20 je eine Brennstoffzuleitung 8, 9 auf, welche längsseitig mit Öffnungen 17 versehen sind, durch welche ein weiterer Brennstoff 13 (gasförmig oder flüssig) strömen kann. Dieser Brennstoff 13 wird der durch die tangentialen Lufteintrittsschlitze 19, 20 in den Brennerinnenraum strömenden Verbrennungsluft 15 zugemischt, was durch die Pfeile 16 dargestellt wird. Ein Mischbetrieb des Brenners über die Düse 3 und die Brennstoffzuführungen 8, 9 ist möglich.The two partial cone bodies 1, 2 have along the air inlet slots 19, 20 each have a fuel feed line 8, 9, which are provided on the long side with openings 17 through which another fuel 13 (gaseous or liquid) flow can. This fuel 13 is the tangential Air inlet slots 19, 20 in the interior of the burner flowing combustion air 15 admixed, which by the Arrows 16 is shown. A mixed operation of the burner Via the nozzle 3 and the fuel feeds 8, 9 is possible.

    Brennraumseitig ist eine Frontplatte 10 angeordnet mit Öffnungen 11, durch welche bei Bedarf Verdünnungsluft oder Kühlluft dem Brennraum 22 zugeführt werden. Darüber hinaus sorgt diese Luftzuführung dafür, dass eine Flammenstabilisierung am Ausgang des Brenners stattfindet. Dort stellt sich eine stabile Flammenfront 7 mit einer Rückströmzone 6 ein.A front plate 10 with openings is arranged on the combustion chamber side 11, through which, if necessary, dilution air or cooling air are fed to the combustion chamber 22. It also ensures this air supply ensures that flame stabilization on Output of the burner takes place. There is a stable one Flame front 7 with a backflow zone 6.

    Aus den Fig. 8 bis 10 ist die Anordnung von Leitblechen 21a, 21b zu entnehmen. Diese können beispielsweise um einen Drehpunkt 23 geöffnet oder geschlossen werden, so dass dadurch die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 19, 20 verändert wird. Selbstverständlich kann der Brenner auch ohne diese Leitbleche 21a, 21b betrieben werden.8 to 10 the arrangement of baffles 21a, 21b. These can be around a pivot point, for example 23 can be opened or closed, so that the original gap size of the tangential air inlet slots 19, 20 is changed. Of course, the Burners can also be operated without these baffles 21a, 21b.

    Da bei diesen Brennern die Gefahr besteht, dass sich im Düsennahbereich Ablöse- und Rezirkulationsgebiete bilden, wird dies gemäss Fig. 11 verhindert, indem um die Düse 3 ein Kanal 24 angeordnet wird, durch den ein Mantelluftsttrom 15a als Spülluft strömt. Der Mantelluftstrom 15a beträgt etwa 3 bis 7% des Verbrennungsluftstromes 15. Since there is a risk with these burners that there is in the vicinity of the nozzle Form separation and recirculation areas This is prevented according to FIG. 11 by a channel around the nozzle 3 24 is arranged through which a jacket air flow 15a as Purge air flows. The jacket air flow 15a is about 3 to 7% of the combustion air flow 15.

    Selbstverständlich kann mit dem eben beschriebenen Verfahren auch ein Brenner (s. Fig. 12) betrieben werden, im wesentlichen bestehend aus einem Drallerzeuger 100 für einen Verbrennungsluftstrom 15 und aus Mitteln zur Eindüsung eines Brennstoffes, bei dem stromab des Drallerzeugers 100 eine Mischstrecke 220 angeordnet ist und diese innerhalb eines ersten Streckenteiles 200 in Strömungsrichtung verlaufende Übergangskanäle 201 zur Überführung einer im Drallerzeuger 100 gebildeten Strömung in den stromab der Übergangskanäle 201 nachgeschalteten Durchflussquerschnitt 18 der Mischstrecke 220 aufweist, wobei das Mittel zur Eindüsung des Brennstoffes eine erfindungsgemässe Druckzerstäuberdüse ist, welche nach einem der oben beschriebenen Verfahren betrieben wird. Der Drallerzeuger 100 ist bevorzugt ein kegelförmiges Gebilde, das tangential mehrfach (z.B. über vier Schlitze) vom tangential einströmenden Verbrennungsluftstrom 15 beaufschlagt wird. Dieser Verbrennungsluftstrom 15 legt sich um den Brennstofftropfenspray 4, der zuvor durch Zerstäubung des flüssigen Brennstoffes 12 in der zweistufigen Druckzerstäuberdüse 3 gebildet wurde. Die sich bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Übergangsgeometrie (Übergangskanäle 201) nahtlos in ein Übergangsstück 200 übergeleitet, welches durch ein Rohr 18 verlängert ist. Beide Teile bilden die Mischstrecke 220, an die sich abströmseitig die eigentliche, hier nicht dargestellte Brennkammer anschliesst. Die Mischstrecke erlaubt eine sehr gute Vormischung des Brennstoffes mit der Verbrennungsluft, ermöglicht eine verlustarme Strömungsführung und verhindert durch ein Maximum an Axialgeschwindigkeit auf der Achse eine Rückzündung der Flamme aus der Brennkammer. Da die Axialgeschwindigkeit zur Wand hin abfällt, sind in der Wand des Rohres 18 Bohrungen 48 vorgesehen, durch die Verbrennungsluft 15 einströmt, welche entlang der Wand eine Geschwindigkeitserhöhung hervorruft. Erst stromab des Mischrohres 220 bildet sich eine zentrale Rückströmzone 6, welche die Eigenschaften eines Flammenhalters aufweist. Auch hier ist es von Vorteil, wenn 3 bis 7% des Verbrennungsluftstromes 15 als Mantelluftstrom 15a um die Druckzerstäuberdüse geführt werden. Auf diese Weise werden wiederum Ablöse- und Rezirkulationsgebiete im Düsennahbereich verhindert.Of course, with the method just described also a burner (see FIG. 12) can be operated, essentially consisting of a swirl generator 100 for a combustion air flow 15 and from means for injecting a fuel, a mixing section at the downstream of the swirl generator 100 220 is arranged and this within a first Section part 200 in the flow direction transition channels 201 for transferring one in the swirl generator 100 formed flow in the downstream of the transition channels 201 downstream flow cross section 18 of the mixing section 220, wherein the means for injecting the fuel is a pressure atomizing nozzle according to the invention, which according to one of the methods described above is operated. The Swirl generator 100 is preferably a conical structure, the tangential multiple (e.g. over four slots) from the tangential inflowing combustion air flow 15 is applied becomes. This combustion air flow 15 wraps around the fuel drop spray 4, previously by atomizing the liquid Fuel 12 in the two-stage pressure atomizer nozzle 3 was formed. The flow that is formed is based on a Transition geometry provided downstream of the swirl generator 100 (Transition channels 201) seamlessly into a transition piece 200 transferred, which is extended by a tube 18. Both Parts form the mixing section 220 to which the downstream side is located connects the actual combustion chamber, not shown here. The mixing section allows very good premixing of the fuel with the combustion air low-loss flow and prevented by a A maximum of axial speed on the axis a flashback the flame from the combustion chamber. Because the axial speed drops towards the wall, are in the wall of the tube 18th Bores 48 provided through which combustion air 15 flows in, which increases speed along the wall causes. Only after the mixing tube 220 does one form central backflow zone 6, which has the properties of a Has flame holder. It is also advantageous here if 3 up to 7% of the combustion air flow 15 as jacket air flow 15a around the pressure atomizer nozzle. In this way in turn become detachment and recirculation areas in the vicinity of the nozzle prevented.

    BezugszeichenlisteLIST OF REFERENCE NUMBERS

    1, 21, 2
    TeilkegelkörperPartial conical bodies
    1a, 2a1a, 2a
    zylindrischer Anfangsteilcylindrical initial part
    1b, 2b1b, 2b
    Mittelachse der TeilkegelkörperCentral axis of the partial cone body
    33
    Zerstäuberdüseatomizer
    44
    BrennstofftropfensprayFuel droplet spray
    55
    BrennerachseBrenner
    66
    Rückströmzone (vortex breakdown)Backflow zone (vortex breakdown)
    77
    Flammenfrontflame front
    8, 98, 9
    Brennstoffzuleitungfuel supply line
    1010
    Frontplattefront panel
    1111
    Öffnungen in der FrontplatteOpenings in the front panel
    1212
    flüssiger Brennstoffliquid fuel
    1313
    weiterer Brennstoff (flüssig oder gasförmig)additional fuel (liquid or gaseous)
    1414
    Innenraum des BrennersInterior of the burner
    1515
    VerbrennungsluftstromCombustion air flow
    15a15a
    Mantelluftstrom (Teil von Pos. 15)Jacket air flow (part of item 15)
    1616
    Eindüsung BrennstoffInjection fuel
    1717
    Öffnungenopenings
    1818
    Rohrpipe
    19, 2019, 20
    tangentialer Lufteintrittsschlitztangential air inlet slot
    21a,21b21a, 21b
    Leitblechbaffle
    2222
    Brennraum abströmseitig des BrennersCombustion chamber downstream of the burner
    2323
    Drehpunktpivot point
    3030
    Düsenkörpernozzle body
    3131
    erstes Rohrfirst tube
    3232
    Deckel von Pos. 31Cover of item 31
    3333
    Düsenbohrungnozzle bore
    3434
    Längsachse der Düse Longitudinal axis of the nozzle
    3535
    zweites Rohrsecond pipe
    3636
    Ringraum zwischen Pos. 31 und 35Annulus between items 31 and 35
    3737
    zu zerstäubende Flüssigkeitliquid to be atomized
    37'37 '
    zweite zu zerstäubende Flüssigkeitsecond liquid to be atomized
    3838
    tangential angestellter Schlitztangential slit
    3939
    Turbulenz- und/oder DrallkammerTurbulence and / or swirl chamber
    4040
    Füllstückfilling
    41a41a
    Zufuhrkanal (tangential angestellt)Feed channel (set tangentially)
    4242
    Pumpepump
    4343
    Druckbehälterpressure vessel
    4444
    Leitungmanagement
    4545
    Leitungmanagement
    4646
    Ventil in Pos. 44Valve in pos. 44
    4747
    Ventil in Pos. 45Valve in pos. 45
    4848
    Bohrungen in Pos. 18Bores in pos. 18
    4949
    RücklaufventilReturn valve
    5050
    Absperrventilshut-off valve
    5151
    Wasserwater
    100100
    Drallerzeugerswirl generator
    200200
    ÜbergangsstückTransition piece
    201201
    ÜbergangskanalTransition duct
    220220
    Mischrohrmixing tube
    αα
    KegelhalbwinkelCone half angle
    SpraykegelwinkelSpray cone angle
    RR
    Radius des SpraysRadius of the spray
    m ˙BS m ˙ BS
    BrennstoffmassenstromFuel mass flow

    Claims (4)

    1. Method for operating a pressure atomizer nozzle in a gas turbine burner comprising a nozzle body (30) in which there is formed a swirl chamber (39) which is connected via a nozzle bore (33) to an outer space and has at least one first feed channel (41a) for the liquid (37) to be atomized, through which said liquid (37) is fed in with a swirl under pressure, and at least one further feed channel (38) for part of the liquid (37) to be atomized or for a second liquid (37') to be atomized opens into the chamber (39) and through this feed channel the said part of the liquid (37) or the second liquid (37') is fed in under pressure and with a swirl, characterized in that, in full-load and overload operation of the gas turbine, the pressure atomizer nozzle is operated by way of a main pressure swirl stage with little swirl by feeding all the liquid (37) to be atomized to the swirl chamber (39) with a swirl via the first feed channel (41a), a swirling flow being produced there which then passes into the outer space through the nozzle bore or bores (33), and in that, in part-load and low-load operation of the gas turbine, the pressure atomizer nozzle is additionally operated by way of a further pressure swirl stage with a greater swirl by feeding part of the liquid (37) to be atomized or the second liquid (37') to be atomized to the chamber (39) with a greater swirl via the further feed channel or channels (38) and producing there a flow with a high degree of swirl which then passes into the outer space through the nozzle bore or bores (33), the proportion of the liquid (37, 37') with a greater swirl fed in by the further swirl stage being increased as the total mass flow of liquid falls.
    2. Method according to Claim 1, characterized in that a smooth switchover is effected between the two stages.
    3. Method according to Claim 1, characterized in that both stages are operated simultaneously and with a variable throughput.
    4. Method according to Claim 1, characterized in that only one of the two stages is operated.
    EP97810083A 1996-03-05 1997-02-20 Method of operating a pressurised atomising nozzle Expired - Lifetime EP0794383B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19608349 1996-03-05
    DE19608349A DE19608349A1 (en) 1996-03-05 1996-03-05 Pressure atomizer nozzle

    Publications (3)

    Publication Number Publication Date
    EP0794383A2 EP0794383A2 (en) 1997-09-10
    EP0794383A3 EP0794383A3 (en) 1998-04-01
    EP0794383B1 true EP0794383B1 (en) 2002-11-06

    Family

    ID=7787198

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97810083A Expired - Lifetime EP0794383B1 (en) 1996-03-05 1997-02-20 Method of operating a pressurised atomising nozzle

    Country Status (5)

    Country Link
    US (1) US5934555A (en)
    EP (1) EP0794383B1 (en)
    JP (1) JPH09327641A (en)
    CN (1) CN1164442A (en)
    DE (2) DE19608349A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN113522640A (en) * 2021-09-16 2021-10-22 浙大宁波理工学院 A spout and glue head for giving accurate rubberizing of new energy automobile driving motor iron core

    Families Citing this family (98)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19713377A1 (en) 1997-04-01 1998-10-15 Siemens Ag Nozzle, use of a nozzle, and method of injecting a first fluid into a second fluid
    DE19730617A1 (en) * 1997-07-17 1999-01-21 Abb Research Ltd Pressure atomizer nozzle
    ATE234444T1 (en) * 1997-10-27 2003-03-15 Alstom Switzerland Ltd METHOD FOR OPERATING A PREMIX BURNER
    EP0911582B1 (en) * 1997-10-27 2003-12-10 ALSTOM (Switzerland) Ltd Method for operating a premix burner and premix burner
    DE59709924D1 (en) 1997-12-22 2003-05-28 Alstom Switzerland Ltd Two-stage pressure atomizer nozzle
    EP0924461B1 (en) * 1997-12-22 2003-04-16 ALSTOM (Switzerland) Ltd Two-stage pressurised atomising nozzle
    DE19811736A1 (en) 1998-03-18 1999-09-23 Guenter Slowik Vortex creator for jets
    DE10008389A1 (en) * 2000-02-23 2001-08-30 Guenter Slowik Influencing drop spectrum of suspensions comprises adjusting splitting ratio of partial streams divided by nozzles, and adjusting average diameter of drops using valve or pump
    US6598801B1 (en) * 2000-11-17 2003-07-29 General Electric Company Methods and apparatus for injecting water into gas turbine engines
    ATE298632T1 (en) * 2001-04-13 2005-07-15 Urea Casale Sa DEVICE FOR FLUID BED GRANULATION
    US20030155434A1 (en) * 2002-02-01 2003-08-21 Rini Daniel P. Spray nozzle apparatus and method of use
    US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
    GB0300939D0 (en) * 2003-01-16 2003-02-12 Unilever Plc Method of creating a cosmetic spray
    DE10345342A1 (en) * 2003-09-19 2005-04-28 Engelhard Arzneimittel Gmbh Producing an ivy leaf extract containing hederacoside C and alpha-hederin, useful for treating respiratory diseases comprises steaming comminuted ivy leaves before extraction
    WO2005078348A1 (en) * 2004-02-12 2005-08-25 Alstom Technology Ltd Premixing burner arrangement for operating a burner chamber and method for operating a burner chamber
    US6951455B2 (en) * 2004-02-25 2005-10-04 Jacob Goldman Gas burner
    RU2265467C1 (en) * 2004-06-16 2005-12-10 Долотказин Владимир Исмаилович Fire extinguisher
    EP1828684A1 (en) * 2004-12-23 2007-09-05 Alstom Technology Ltd Premix burner comprising a mixing section
    US7597275B2 (en) * 2005-07-25 2009-10-06 Isothermal Systems Research, Inc. Methods and apparatus for atomization of a liquid
    US7621739B2 (en) * 2005-07-25 2009-11-24 Isothermal Systems Research, Inc. Injection molding apparatus for producing an atomizer
    GB0515592D0 (en) 2005-07-28 2005-09-07 Glaxo Group Ltd Nozzle for a nasal inhaler
    FR2891314B1 (en) * 2005-09-28 2015-04-24 Snecma INJECTOR ARM ANTI-COKEFACTION.
    JP2009531642A (en) 2006-03-27 2009-09-03 アルストム テクノロジー リミテッド Burner for heat generator operation
    JP2008031847A (en) * 2006-07-26 2008-02-14 Hitachi Ltd Gas turbine combustor, its operating method, and modification method of gas turbine combustor
    EP2058590B1 (en) * 2007-11-09 2016-03-23 Alstom Technology Ltd Method for operating a burner
    GB0803959D0 (en) * 2008-03-03 2008-04-09 Pursuit Dynamics Plc An improved mist generating apparatus
    CN101910723B (en) * 2007-11-27 2013-07-24 阿尔斯通技术有限公司 Device for burning hydrogen in a premix burner
    US9291139B2 (en) * 2008-08-27 2016-03-22 Woodward, Inc. Dual action fuel injection nozzle
    EP2177273A1 (en) * 2008-10-16 2010-04-21 Urea Casale S.A. Spraying method and nozzle for atomization of a liquid
    TWM362371U (en) * 2009-02-24 2009-08-01 jin-chi Liu Nozzle structure for gas combustor
    CN101987288B (en) * 2009-08-06 2013-06-05 中国石油大学(北京) Atomizing and pelleting nozzle capable of controlling grain size
    US8141363B2 (en) * 2009-10-08 2012-03-27 General Electric Company Apparatus and method for cooling nozzles
    JP5483344B2 (en) * 2010-02-26 2014-05-07 株式会社吉野工業所 Nebulizer
    WO2012162525A2 (en) 2011-05-26 2012-11-29 Georgia-Pacific Wood Products Llc Systems and methods for adjusting moisture concentration of a veneer
    CN102580867A (en) * 2012-02-10 2012-07-18 烟台润达垃圾处理环保股份有限公司 High-speed liquid atomization machine
    US9745936B2 (en) 2012-02-16 2017-08-29 Delavan Inc Variable angle multi-point injection
    RU2493520C1 (en) * 2012-04-10 2013-09-20 Олег Савельевич Кочетов Water reuse system
    RU2493521C1 (en) * 2012-04-10 2013-09-20 Олег Савельевич Кочетов Water reuse system by kochetov
    RU2486964C1 (en) * 2012-04-19 2013-07-10 Олег Савельевич Кочетов Radial-flow vortex nozzle
    RU2482925C1 (en) * 2012-04-19 2013-05-27 Олег Савельевич Кочетов Kochetov's radial-flow vortex nozzle
    CN102765119B (en) * 2012-07-25 2015-02-25 哥乐巴环保科技(上海)有限公司 Glue applying nozzle
    RU2500482C1 (en) * 2012-08-16 2013-12-10 Олег Савельевич Кочетов Centrifugal wide-fan sprayer
    US8960571B2 (en) * 2012-08-17 2015-02-24 Spraying Systems Co. Full cone air-assisted spray nozzle assembly
    CN102872786A (en) * 2012-09-11 2013-01-16 宁波锦莱化工有限公司 Flat chlorination reaction device
    WO2014062076A1 (en) * 2012-10-17 2014-04-24 Schlumberger Canada Limited Multiphase burner
    EP2962041B1 (en) * 2013-02-28 2020-05-13 United Technologies Corporation Combustor for a gas turbine engine with a variable swirl fuel nozzle
    JP6021705B2 (en) * 2013-03-22 2016-11-09 三菱重工業株式会社 Combustor and gas turbine
    JP6209411B2 (en) * 2013-09-26 2017-10-04 新日鐵住金株式会社 Coke oven gas recovery device and coke oven gas recovery spray nozzle
    RU2550838C1 (en) * 2013-11-06 2015-05-20 Олег Савельевич Кочетов Kochetov's swirl atomiser
    RU2550839C1 (en) * 2013-11-06 2015-05-20 Олег Савельевич Кочетов Kochetov's sprayer
    RU2550837C1 (en) * 2013-11-27 2015-05-20 Олег Савельевич Кочетов Centrifugal swirl atomiser by kochetov
    RU2561974C1 (en) * 2014-04-16 2015-09-10 Олег Савельевич Кочетов Centrifugal wide-flare sprayer
    RU2564279C1 (en) * 2014-05-22 2015-09-27 Олег Савельевич Кочетов Kochetov's swirl atomiser
    CN104289339A (en) * 2014-10-29 2015-01-21 无锡纳润特科技有限公司 Desulfurization and atomization nozzle structure
    CN104390215A (en) * 2014-11-17 2015-03-04 浙江大学 Cone-shaped flame burner applicable for researching combustion characteristics of liquid fuel and method thereof
    CN104456553B (en) * 2014-11-24 2016-08-10 浙江大学 It is applicable to taper flame burner and the method thereof of Study of Liquid fuel combustion characteristics
    RU2648068C2 (en) * 2015-03-20 2018-03-22 Мария Михайловна Стареева Centrifugal wide pattern nozzle
    EP3088802A1 (en) * 2015-04-29 2016-11-02 General Electric Technology GmbH Nozzle for a gas turbine combustor
    GB201512932D0 (en) * 2015-07-22 2015-09-02 Linde Ag A Nebuliser
    RU2670831C9 (en) * 2015-09-25 2018-11-29 Анна Михайловна Стареева Kochetov swirl atomizer
    RU2605114C1 (en) * 2015-09-25 2016-12-20 Олег Савельевич Кочетов Kochetov swirl atomizer
    RU2669831C2 (en) * 2015-09-25 2018-10-16 Мария Михайловна Стареева Kochetov swirl atomizer
    RU2605115C1 (en) * 2015-09-25 2016-12-20 Олег Савельевич Кочетов Kochetov swirl atomizer
    JP6804755B2 (en) * 2015-11-26 2020-12-23 ウエムラ技研株式会社 Swirl type injection nozzle
    RU2634776C2 (en) * 2016-03-14 2017-11-03 Олег Савельевич Кочетов Centrifugal nozzle
    RU2635603C2 (en) * 2016-05-04 2017-11-14 Общество с ограниченной ответственностью "ПРОСТОР" Centrifugal atomizer
    CN105863720A (en) * 2016-05-06 2016-08-17 太原理工大学 Mining bubble atomization water mist dust settling device
    US11020758B2 (en) * 2016-07-21 2021-06-01 University Of Louisiana At Lafayette Device and method for fuel injection using swirl burst injector
    RU2645978C1 (en) * 2016-10-17 2018-02-28 Олег Савельевич Кочетов Method of recycling water supply with application of cooling tower
    CN108160359B (en) * 2016-12-08 2024-03-08 斯普瑞喷雾系统(上海)有限公司 Nozzle device capable of realizing multiple spraying functions
    CN106824578A (en) * 2016-12-26 2017-06-13 包光华 A kind of atomizer
    RU2650123C1 (en) * 2017-03-13 2018-04-09 Олег Савельевич Кочетов Swirling spray
    US10641493B2 (en) 2017-06-19 2020-05-05 General Electric Company Aerodynamic fastening of turbomachine fuel injectors
    CN107191928B (en) * 2017-06-23 2023-09-22 山西大学 Multistage atomization oil gun
    RU2657493C1 (en) * 2017-09-07 2018-06-14 Олег Савельевич Кочетов Centrifugal atomizer
    RU2664877C1 (en) * 2017-09-18 2018-08-23 Олег Савельевич Кочетов Wide flare centrifugal nozzle
    RU2665399C1 (en) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Scrubber
    RU2665408C1 (en) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Gas scrubber
    RU2665401C1 (en) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Conical jet scrubber
    RU2656445C1 (en) * 2017-11-08 2018-06-05 Олег Савельевич Кочетов Acoustic nozzle with vortex sprayer
    RU2658030C1 (en) * 2017-11-08 2018-06-19 Олег Савельевич Кочетов Swirl atomizer
    RU2658029C1 (en) * 2017-11-08 2018-06-19 Олег Савельевич Кочетов Acoustic unit for atomizer
    RU2657488C1 (en) * 2017-11-08 2018-06-14 Олег Савельевич Кочетов Vortex atomizer with a vortex unit
    RU2657487C1 (en) * 2017-11-08 2018-06-14 Олег Савельевич Кочетов Acoustic atomizer
    RU2656459C1 (en) * 2017-11-08 2018-06-05 Олег Савельевич Кочетов Vortex acoustic nozzle
    RU2654736C1 (en) * 2017-11-08 2018-05-22 Олег Савельевич Кочетов Acoustic atomizer
    RU2668898C1 (en) * 2017-12-05 2018-10-04 Олег Савельевич Кочетов Gas scrubber
    CN109909083B (en) * 2018-01-18 2024-09-06 漳州英特捷自动化科技有限公司 Can clear whirl atomizer of stifled automatically
    CN108636625B (en) 2018-03-13 2021-09-14 因诺弥斯特有限责任公司 Multi-mode fluid nozzle
    CN108745676B (en) * 2018-06-14 2024-06-18 汇专科技集团股份有限公司 Airflow constraint type fine oil mist nozzle device
    DE102018125848A1 (en) * 2018-10-18 2020-04-23 Man Energy Solutions Se Combustion chamber of a gas turbine, gas turbine and method for operating the same
    CN109027391A (en) * 2018-10-18 2018-12-18 广西卡迪亚科技有限公司 A kind of combined liquid gas two-phase fluid delicate metering spray solenoid valve
    CN110314783B (en) * 2019-07-24 2023-07-28 山东钢铁集团有限公司 Rifling acceleration type atomizing spray gun and operation method
    CN111450703B (en) * 2020-05-09 2024-05-07 中国华能集团有限公司 High-temperature ammonia spraying and denitration device for coal-fired boiler
    CN113019728B (en) * 2021-02-16 2023-01-06 河津市龙门炭黑有限公司 Secondary atomized raw oil nozzle for carbon black production
    CN114823430B (en) * 2022-06-28 2022-10-18 江苏芯梦半导体设备有限公司 Equipment and method for cleaning wafer
    EP4309799A1 (en) * 2022-07-22 2024-01-24 Blue Planet Aqua UG Device for stirring up a liquid
    CN115228642A (en) * 2022-08-02 2022-10-25 北京航空航天大学 Small-flow dispersion flow atomizing nozzle and low-flow-velocity atomizer

    Family Cites Families (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE251040C (en) *
    AT41323B (en) * 1907-12-24 1910-03-10 Adder Cash Register Syndicate Display device for cash register and the like apparatus.
    DE893133C (en) * 1944-06-14 1953-10-12 Verwertungsgesellschaft Dr Ing Method and nozzle for the continuous injection of fuel of various sizes, especially for jet engines
    DE918422C (en) * 1945-02-03 1954-09-27 Verwertungsgesellschaft Dr Ing Nozzle for the continuous injection of very different amounts of fuel
    US2539778A (en) * 1947-05-03 1951-01-30 Gilbert & Barker Mfg Co Rotary, internal-mixing, air-atomizing nozzle for oil burners
    US2628867A (en) * 1948-01-07 1953-02-17 Gen Motors Corp Duplex nozzle
    DE857924C (en) * 1949-06-03 1952-12-04 Emil Dr-Ing Kirschbaum Atomizing nozzle
    DE862599C (en) * 1950-11-03 1953-01-12 Paul Lechler Fa Atomizer for the simultaneous atomization of several substances
    US3512719A (en) * 1968-04-05 1970-05-19 Morton E Phelps Siphon nozzle
    DE2012941A1 (en) * 1969-04-01 1970-10-15 Parker-Hannifin Corp., Cleveland, Ohio (V.St.A.) Liquid fuel injector
    DE1956799A1 (en) * 1969-11-12 1971-05-13 Allpackma A Miebach Gmbh Device for dosed filling or adding flowable masses
    US3638865A (en) * 1970-08-31 1972-02-01 Gen Electric Fuel spray nozzle
    US3717306A (en) * 1971-03-10 1973-02-20 Hushon R Nozzle for spraying foaming materials
    US3804333A (en) * 1972-10-16 1974-04-16 Gulf Research Development Co Liquid waste burner
    DE2320442C3 (en) * 1973-04-21 1978-04-27 Smit Nijmegen B.V., Nijmegen (Niederlande) Burners for burning liquid fuel
    CH595555A5 (en) * 1975-12-12 1978-02-15 Bbc Brown Boveri & Cie
    US4265085A (en) * 1979-05-30 1981-05-05 United Technologies Corporation Radially staged low emission can-annular combustor
    IL63171A0 (en) * 1980-11-25 1981-09-13 Gen Electric Fuel nozzle for a gas turbine engine
    DE3312301A1 (en) * 1983-04-06 1984-10-11 Basf Ag, 6700 Ludwigshafen HOLLOW CONE SPRAYING NOZZLE
    DE3423373A1 (en) * 1983-08-29 1985-03-07 Institut für Getreideverarbeitung im VEB Kombinat Nahrungsmittel und Kaffee, DDR 1505 Bergholz-Rehbrücke Nozzle for atomising viscous fluids
    DD245825B3 (en) * 1986-02-10 1992-11-26 H J Herzog Stroemungstechnisch SPRUEHDUESE FOR THE TREATMENT OF DUSTING GLASSBRAIDS
    CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
    DE59105449D1 (en) * 1991-01-23 1995-06-14 Asea Brown Boveri High pressure atomization nozzle.
    DE4118538C2 (en) * 1991-06-06 1994-04-28 Maurer Friedrich Soehne Dual-substance nozzle
    DE4415863A1 (en) * 1994-05-05 1995-11-09 Tecaro Ag Oil burner nozzle with body in fuel supply pipe
    DE4440681C2 (en) * 1994-11-15 1996-10-17 Awab Umformtechn Gmbh & Co Kg Spray nozzle, in particular for spraying water in fire protection systems

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN113522640A (en) * 2021-09-16 2021-10-22 浙大宁波理工学院 A spout and glue head for giving accurate rubberizing of new energy automobile driving motor iron core

    Also Published As

    Publication number Publication date
    EP0794383A3 (en) 1998-04-01
    EP0794383A2 (en) 1997-09-10
    DE19608349A1 (en) 1997-09-11
    JPH09327641A (en) 1997-12-22
    CN1164442A (en) 1997-11-12
    DE59708638D1 (en) 2002-12-12
    US5934555A (en) 1999-08-10

    Similar Documents

    Publication Publication Date Title
    EP0794383B1 (en) Method of operating a pressurised atomising nozzle
    EP0892212B1 (en) Pressure spray nozzle
    EP0902233B1 (en) Combined pressurised atomising nozzle
    EP1802915B1 (en) Gas turbine burner
    EP0769655B1 (en) Air-blast spray nozzle
    EP0777081B1 (en) Premix burner
    DE60106815T2 (en) Oil atomiser
    DE3518080C2 (en)
    CH680467A5 (en)
    EP0911583B1 (en) Method of operating a premix burner
    DE2446398A1 (en) AXIAL SWIRL CARBURETOR WITH CENTRAL INJECTION
    EP0122526B1 (en) Fuel injector for the combustion chamber of a gas turbine
    EP0711953B1 (en) Premix burner
    EP0924460B1 (en) Two-stage pressurised atomising nozzle
    EP0718550B1 (en) Injection nozzle
    EP0924461B1 (en) Two-stage pressurised atomising nozzle
    EP0742411B1 (en) Air supply for a premix combustor
    EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
    EP0911582B1 (en) Method for operating a premix burner and premix burner
    DE69423900T2 (en) V-JET ATOMISATEUR
    DE2552864A1 (en) PROCEDURE AND BURNER FOR BURNING LIQUID FUEL
    EP0730121A2 (en) Premix burner
    DE19505614A1 (en) Operating method for pre-mixing burner
    DE2138746A1 (en) Liquid fuel burners
    DE4408392A1 (en) Device for forming an oil-water emulsion

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE FR GB IT

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): DE FR GB IT

    17P Request for examination filed

    Effective date: 19980825

    17Q First examination report despatched

    Effective date: 20000616

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    RTI1 Title (correction)

    Free format text: METHOD OF OPERATING A PRESSURISED ATOMISING NOZZLE

    RTI1 Title (correction)

    Free format text: METHOD OF OPERATING A PRESSURISED ATOMISING NOZZLE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20021106

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021106

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    REF Corresponds to:

    Ref document number: 59708638

    Country of ref document: DE

    Date of ref document: 20021212

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20030313

    EN Fr: translation not filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030807

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59708638

    Country of ref document: DE

    Representative=s name: UWE ROESLER, DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20120802 AND 20120808

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59708638

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Effective date: 20120713

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59708638

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

    Effective date: 20120713

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59708638

    Country of ref document: DE

    Owner name: ALSTOM TECHNOLOGY LTD., CH

    Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

    Effective date: 20120713

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160218

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160217

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59708638

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59708638

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59708638

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20170219

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170219