EP0483554B1 - Method for minimising the NOx emissions from a combustion - Google Patents

Method for minimising the NOx emissions from a combustion Download PDF

Info

Publication number
EP0483554B1
EP0483554B1 EP91117113A EP91117113A EP0483554B1 EP 0483554 B1 EP0483554 B1 EP 0483554B1 EP 91117113 A EP91117113 A EP 91117113A EP 91117113 A EP91117113 A EP 91117113A EP 0483554 B1 EP0483554 B1 EP 0483554B1
Authority
EP
European Patent Office
Prior art keywords
burner
flow
bodies
nozzle
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91117113A
Other languages
German (de)
French (fr)
Other versions
EP0483554A1 (en
Inventor
Manfred Dr. Aigner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0483554A1 publication Critical patent/EP0483554A1/en
Application granted granted Critical
Publication of EP0483554B1 publication Critical patent/EP0483554B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2203/00Flame cooling methods otherwise than by staging or recirculation
    • F23C2203/30Injection of tempering fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a burner for operating a heat-generating apparatus according to the preamble of claim 1.
  • a premix-like combustion of a liquid fuel in a burner without a premixing section has become known from EP-A-0 321 809.
  • the burner itself consists of at least two hollow, nested, conical partial bodies, the longitudinal axes of symmetry of which are offset from one another, in such a way that tangential air inlet slots are created as a result.
  • a nozzle forms a conical liquid fuel column that spreads in the flow direction and is enclosed by the rotating combustion air streams flowing tangentially into the burner.
  • the mixture is ignited at the end of the burner, a backflow zone being established in this area of the burner mouth.
  • the invention seeks to remedy this.
  • the invention is based on the object of supplying the water to the combustion in a burner of the type mentioned in such a way that a minimization of the NOx emissions is achieved, but this without negative effects on the combustion in To cause an increase in CO emissions and other pollutants.
  • a further advantage of the invention is that when these full jets are used, in narrow burners or combustion chambers, it is avoided that the water can splash onto the walls, because then the desired reduction in NOx formation would not occur from the combustion process.
  • the burner A according to FIG. 1 consists of two half hollow partial cone bodies 1, 2, which are radially offset with respect to one another with respect to their longitudinal axis of symmetry and stand on one another.
  • the offset of the respective longitudinal axis of symmetry 1b, 2b to one another creates a tangential inlet slot 19, 20 on both sides of the partial cone body 1, 2 in the opposite inflow arrangement (see FIG. 2-4) through which a combustion air flow 15 into the interior of the burner A, that is, flows into a conical cavity 14 formed by both partial cone bodies 1, 2.
  • the conical shape of the partial conical bodies 1, 2 shown in the direction of flow has a certain fixed angle.
  • the partial cone bodies 1, 2 can be progressive in the direction of flow or have degressive cone angles.
  • the two last-mentioned embodiments are not included in the drawing, since they can easily be reread. Which form will ultimately be used essentially depends on the parameters specified in the combustion environment.
  • the two partial cone bodies 1, 2 each have a cylindrical initial part 1a, 2a, which, analogous to the partial cone bodies 1, 2, are offset from one another, so that the tangential air inlet slots 19, 20 are present continuously over the entire length of the burner A.
  • a nozzle 3 is accommodated in this cylindrical starting part 1a, 2a, the injection 4 of a preferably liquid fuel 12 coinciding with the narrowest cross section of the conical cavity 14 formed by the two partial cone bodies 1, 2.
  • a gaseous fuel or a mixture of different fuels in different physical states can also be burned.
  • This fuel injection 4 is preferably placed in the center of the nozzle.
  • the nozzle 3 also has a number of further injections 18, via which water 24 is injected into the conical cavity 14.
  • the number of these water jets 18 and their circumferential placement on the end face of the nozzle 3 essentially depends on the size of the burner A and on its combustion characteristics.
  • the water jets 18 are preferably to be provided in such a way that they form a ring with respect to the fuel injection 4. wherein the distance to the center of the nozzle 3 is discussed in more detail below.
  • the burner A can be provided in a purely conical manner, that is to say without cylindrical starting parts 1a, 2a.
  • Both partial cone bodies 1, 2 each have a fuel line 8, 9 provided with openings 17, through which a gaseous fuel 13 is fed, which in turn admixes the combustion air 15 flowing into the conical cavity 14 through the tangential air inlet slots 19, 20 becomes.
  • the fuel lines 8, 9 are preferably to be provided at the end of the tangential inflow, immediately before entering the conical cavity 14, in order to achieve an optimal speed-related admixture 16 between the fuel 13 and the inflowing combustion air 15.
  • an optimal speed-related admixture 16 between the fuel 13 and the inflowing combustion air 15.
  • the outlet opening of the burner A merges into a front wall 10, in which bores (not shown in the figure) can be provided, in order to be able to introduce dilution air or cooling air into the front part of the combustion chamber 22 if necessary.
  • the tapered liquid combustion profile 5 is enclosed by the combustion air 15 flowing in tangentially and a further combustion air flow 15a brought axially around the nozzle 3.
  • the concentration of the liquid fuel 12 is continuously reduced by the combustion air streams 15, 15a introduced.
  • gaseous fuel 13 is used via the fuel lines 8, 9, the mixture formation with the combustion air 15 takes place, as has already been briefly explained above, directly in the area of the air inlet slots 19, 20, at the entry into the conical hollow body 14
  • the optimal homogeneous fuel concentration over the cross section is achieved in the area of the vortex burst, ie in the area of the backflow zone 6. Ignition takes place at the top of the backflow zone 6.
  • a flashback of the flame into the interior of the burner A as can always occur latently in known premixing sections, while remedial measures are sought there with complicated flame holders is not to be feared here.
  • the combustion air 15 is preheated.
  • These water jets 11 then burst in the interior of the flame, in such a way that the water is distributed, but in a very small area, exactly where there is the potential risk of NOx emissions being formed. This prevents the entire flame body from being acted on, which would lead to instabilities, flame pulsations and poor burnout, which would result in a surge in CO emissions.
  • the alignment of these water jets 11 from the nozzle 3 is to be provided in such a way that firstly penetration of the flame front 7 is ensured and secondly has a selective effect on those zones where there is a potential for NOx emissions to occur.
  • the design of the burner A is particularly suitable, given the given overall length of the burner A, of changing the size of the tangential combustion air inlet slots 19, 20 by pushing the partial cone bodies 1, 2 towards or away from one another, as a result of which the distance between the two central axes 1b, 2b reduced or enlarges accordingly
  • the gap size of the tangential combustion air inlet slots 19, 20 changed, as can be seen particularly well from FIGS. 4-6.
  • the partial cone bodies 1, 2 can also be displaced relative to one another in another plane, as a result of which even an overlap thereof can be controlled. Yes, it is even possible to move the partial cone bodies 1, 2 spirally into one another by a counter-rotating movement, or to move the partial cone bodies 1, 2 against one another by an axial movement. It is therefore possible to vary the shape and size of the tangential combustion air inlet slots 19, 20 as desired, with which burner A covers a certain operating range without changing its overall length.
  • the guide plates 21a, 21b show the geometric configuration of the guide plates 21a, 21b. They have a flow introduction function, these guide plates, depending on their length, extending the respective end of the partial cone bodies 1, 2 in the direction of flow of the combustion air 15.
  • the channeling of the combustion air 15 into the conical cavity 14 can be optimized by opening or closing the guide plates 21a, 21b about a pivot point 23 located in the area of the entrance to the cavity 14; this is particularly necessary if the original gap size of the tangential combustion air inlet slots 19, 20 is changed.
  • the burner A can also be operated without baffles 21a, 21b, or other aids can be provided for this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

Technisches GebietTechnical field

Die vorliegende Erfindung betrifft einen Brenner zum Betrieb eines wärmeerzeugenden Apparates gemäss Oberbegriff des Anspruchs 1.The present invention relates to a burner for operating a heat-generating apparatus according to the preamble of claim 1.

Stand der TechnikState of the art

Bei der Verbrennung von Oel, Gas und andere hochkalorischen Brennstoffen unterliegen die Abgaszusammensetzungen bezüglich der entstehenden Schadstoffe zunehmend strenger werdenden gesetzlichen Vorschriften. So bereitet beispielsweise beim Betrieb einer Gasturbine vor allem die Einhaltung der Vorschriften über die maximal erlaubten NOx-Emissionen grosse Schweirigkeiten. Dabei ist es zur Einhaltung dieser Stickstoffemissionen üblich, bei der Verbrennung der erwähnten hochkalorischen Brennstoffe Wasser in die Flamme zu Spritzen, mit dem finalen Zweck, damit die Stickoxidemissionen zu senken. Dabei wird mit diesem Wassezufuhr die heissen Zonen in der Flamme abgekühlt, dergestalt, dass die NOx-Produktion, die extrem stark von der maximal auftretenden Temperatur abhängt, damit reduziert werden können. In diesem Zusammenhang wird auf das Schrifttum von Arthur H. Lefebvre, Gas Turbine Combustion, McGraw-Hill Series in Energy, Combustion and Environment, New York, Seite 484 ff. verwiesen. Problematisch bei dieser Methode ist die Tatsache, dass das zugeführte Wasser oftmals auch Flammenzonen stört, die an sich wenig NOx erzeugen, jedoch für die Flammenstabilität eminent wichtig sind. So werden mit der üblichen feinen Zerstäubung von Wasser, wie dies auch von Lefebvre empfohlen wird, grosse Bereiche der Zündzone, wo frisch zugeführtes Brennstoff/Luft-Gemisch beständig neu gezündet werden muss, abgeschreckt. Die Folge davon sind auftretende Instabilitäten, wie Flammenpulsationen und/oder schlechter, beispielsweise strähmiger Ausbrand im Verbrennungsprozess, Wirkungen diese, die für ein Emporschnellen des CO-Ausstosses verantwortlich sind.When burning oil, gas and other high-calorific fuels, the exhaust gas compositions are subject to increasingly stringent legal regulations with regard to the pollutants that arise. When operating a gas turbine, for example, compliance with the regulations on the maximum permitted NOx emissions is particularly difficult. In order to comply with these nitrogen emissions, it is customary to spray water into the flame when burning the high-calorific fuels mentioned, with the ultimate purpose of reducing nitrogen oxide emissions. With this water supply, the hot zones in the flame cooled, so that the NOx production, which is extremely dependent on the maximum temperature, can be reduced. In this context, reference is made to the literature by Arthur H. Lefebvre, Gas Turbine Combustion, McGraw-Hill Series in Energy, Combustion and Environment, New York, page 484 ff. The problem with this method is the fact that the water supplied often interferes with flame zones, which in themselves generate little NOx, but are extremely important for flame stability. With the usual fine atomization of water, as recommended by Lefebvre, large areas of the ignition zone, where freshly supplied fuel / air mixture must be constantly re-ignited, are quenched. The consequence of this are instabilities that occur, such as flame pulsations and / or worse, for example, streaky burn-out in the combustion process, effects which are responsible for a rapid rise in CO emissions.

Aus der Druckschrift EP-A-0 321 809 ist eine vormischartige Verbrennung eines flüssigen Brennstoffes in einem Brenner ohne Vormischstrecke bekanntgeworden. Der Brenner selbst besteht aus mindestens zwei hohlen, ineinandergeschachtelten, kegelförmigen Teilkörpern, deren Längssymmetrieachsen zueinander versetzt verlaufen, dergestalt, dass dadurch tangentiale Lufteintrittsschlitze entstehen. Dabei wird im Innenraum dieses Brenners durch eine Düse eine in Strömungsrichtung sich ausbreitende, kegelförmige Flüssigbrennstoffsäule gebildet, welche von den tangential in den Brenner einströmenden, rotierenden Verbrennungsluftströmen umschlossen wird. Die Zündung des Gemisches findet am Ende des Brenners statt, wobei sich in diesem Bereich der Brennermündung eine Rückströmzone einstellt. Bei einer solchen Konfiguration lassen sich durch die stattfindende Vormischung die NOx-Emissionen wesentlich absenken. Im transienten Bereich oder beim Einsatz von schwereren Brennölen lässt sich die Vormischung aber nicht immer optimal erzielen, so dass die immanente Gefahr besteht, dass entweder die Flammentemperatur nach oben ausschlägt, oder in die Flammenzone unverdampfte Brennöltröpfchen gelangen: Bei beiden Vorkommnissen steigen aber die NOx-Emissionen über die zulässigen Grenzen an.A premix-like combustion of a liquid fuel in a burner without a premixing section has become known from EP-A-0 321 809. The burner itself consists of at least two hollow, nested, conical partial bodies, the longitudinal axes of symmetry of which are offset from one another, in such a way that tangential air inlet slots are created as a result. In the interior of this burner, a nozzle forms a conical liquid fuel column that spreads in the flow direction and is enclosed by the rotating combustion air streams flowing tangentially into the burner. The mixture is ignited at the end of the burner, a backflow zone being established in this area of the burner mouth. With such a configuration, the premixing that takes place can significantly reduce the NOx emissions. In the transient area or when using heavier fuel oils, however, the premixing cannot always be optimally achieved, so that there is an inherent risk that either the flame temperature will rise or that unevaporated fuel oil droplets will get into the flame zone. However, the NOx increases in both cases. Emissions beyond the permissible limits.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art das Wasser der Verbrennung so zuzuführen, dass damit eine Minimierung der NOx-Emissionen erzielt wird, dies jedoch ohne negative Rückwirkungen auf die Verbrennung im Sinne einer Erhöhung der CO-Emissionen und anderer Schadstoffe zu verursachen.The invention seeks to remedy this. The invention, as characterized in the claims, is based on the object of supplying the water to the combustion in a burner of the type mentioned in such a way that a minimization of the NOx emissions is achieved, but this without negative effects on the combustion in To cause an increase in CO emissions and other pollutants.

Der Erfindungsgedanke besteht nun darin, das Wasser eben nicht von vornerein fein zu verteilen, sondern in Form eines oder auch mehreren kompakten Strahlen durch die bereits oben erwähnte empfindliche Zündzone, wo ein frisch zugeführtes Brennstoff/Luftgemisch beständig neu gezündet wird, hindurchzuführen. Durch diese sogenannten "Vollstrahlen" wird jeweils nur ein sehr kleiner Bereich gestört, was praktisch auf die Verbrennung rückwirkungsfrei bleibt. Im Innern der Flamme platzt der oder die Strahlen dann auf, und das Wasser verteilt sich. Diese Abläufe werden unterstützt durch:

  • a) die Auswahl einer Düse, deren Wasserstrahl nach der gewünschten Wegstrecke aufplatzt;
  • b) hohe Turbulenz und Wärmezufuhr innerhalb des Flammenkernes, welche den Wasserstrahl destabilisieren.
The idea of the invention is now not to distribute the water finely from the outset, but to pass it in the form of one or more compact jets through the sensitive ignition zone mentioned above, where a freshly supplied fuel / air mixture is constantly re-ignited. Only a very small area is disturbed by these so-called "full jets", which practically remains without effect on the combustion. The rays burst inside the flame and the water is distributed. These processes are supported by:
  • a) the selection of a nozzle whose water jet bursts after the desired distance;
  • b) high turbulence and heat input within the flame core, which destabilize the water jet.

Ein weiterer Vorteil der Erfindung besteht darin, dass beim Einsatz dieser Vollstrahlen, in engen Brennern oder Brennräumen, vermieden wird, dass das Wasser an die Wände spritzen kann, denn dann bliebe die angestrebte Reduzierung der NOx-Bildung aus dem Verbrennungsprozess aus.A further advantage of the invention is that when these full jets are used, in narrow burners or combustion chambers, it is avoided that the water can splash onto the walls, because then the desired reduction in NOx formation would not occur from the combustion process.

Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den abhängigen Patentansprüchen gekennzeichnet.Advantageous and expedient developments of the task solution according to the invention are characterized in the dependent claims.

Im folgenden wird anhand der Zeichnung ein Ausführungsbeispiel der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. In den verschiedenen Figuren sind gleiche Elemente jeweils mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen gekennzeichnet.An exemplary embodiment of the invention is explained in more detail below with reference to the drawing. All elements not necessary for the immediate understanding of the invention have been omitted. In the different figures, the same elements are provided with the same reference numerals. The flow direction of the media is marked with arrows.

Kurze Beschreibung der FigurenBrief description of the figures

Es zeigt:

Fig. 1
einen Brenner von der Form eines Doppelkegelbrenners, in perspektivischer Darstellung, entsprechend aufgeschnitten und
Fig. 2, 3, 4
entsprechende Schnitte durch die Ebenen II-II (Fig. 2), III-III (Fig. 3) und IV-IV (Fig. 4), wobei diese Schnitte nur eine schematische, vereinfachte Darstellung des Doppelkegelbrenners gemäss Fig. 3 sind.
It shows:
Fig. 1
a burner in the form of a double-cone burner, in perspective, accordingly cut open and
2, 3, 4
corresponding sections through the planes II-II (Fig. 2), III-III (Fig. 3) and IV-IV (Fig. 4), these sections being only a schematic, simplified representation of the double-cone burner according to Fig. 3.

Wege zur Ausführung der Erfindung und gewerbliche AnwendbarkeitWays of carrying out the Invention and Industrial Applicability

Um den Aufbau des Brenners A gemäss Fig. 1 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu dieser Figur die einzelnen darin vermerkten Schnitte, die in den Figuren 2-4 ihren Niederschlag gefunden haben, herangezogen werden. Des weiteren, um Fig. 1 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach den Figuren 2-4 gezeigten Leitbleche 21a und 21b nur andeutungsweise aufgenommen worden. Im folgenden wird deshalb bei der Beschreibung von Fig. 1, nach Bedarf, auf die Schnittfiguren 2-4 verwiesen.
Der Brenner A gemäss Fig. 1 besteht aus zwei halben hohlen Teilkegelkörpern 1, 2, die bezüglich ihrer Längssymmetrieachse zueinander radial versetzt verlaufen und aufeinander stehen. Die Versetzung der jeweiligen Längssymmetrieachse 1b, 2b zueinander schafft auf beiden Seiten der Teilkegelkörper 1, 2 in entgegengesetzter Einströmungsanordnung jeweils einen tangentialen Eintrittsschlitz 19, 20 frei (vgl. hierzu Fig. 2-4), durch welche ein Verbrennungsluftstrom 15 in den Innenraum des Brenners A, d.h. in einen von beiden Teilkegelkörpern 1, 2 gebildeten kegeligen Hohlraum 14, strömt. Die Kegelform der gezeigten Teilkegelkörper 1, 2 in Strömungsrichtung weist einen bestinmmten festen Winkel auf. Selbstverständlich können die Teilkegelkörper 1, 2 in Strömungsrichtung einen progressiven oder degressiven Kegelwinkel aufweisen. Die beiden letztgenannten Ausführungsformen sind zeichnerisch nicht erfasst, da sie ohne weiteres nachempfindbar sind. Welche Form schlussendlich zum Einsatz gelangen wird, hängt im wesentlichen von den jeweils vorgegebenen Parametern im Umfeld der Verbrennung ab. Die beiden Teilkegelkörper 1, 2 haben je einen zylindrischen Anfangsteil 1a, 2a, welche, analog zu den Teilkegelkörper 1, 2, versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittsschlitze 19, 20 durchgehend über die ganze Länge des Brenners A vorhanden sind. In diesem zylindrischen Anfangsteil 1a, 2a ist eine Düse 3 untergebracht, deren Eindüsung 4 eines vorzugsweise füssigen Brennstoffes 12 mit dem engsten Querschnitt des durch die zwei Teilkegelkörper 1, 2 gebildeten kegeligen Hohlraumes 14 zusammenfällt. Je nach Betriebseinsatz des Brenners A kann auch ein gasförmiger Brennstoff oder ein Gemisch aus verschiedenen Brennstoffen in verschiedenen Aggregatzuständen zur Verbrennung gelangen. Vorzugsweise ist diese Brennstoffeindüsung 4 düsenzentral plaziert. Die Düse 3 weist überdies eine Reihe weiterer Eindüsungen 18 auf, über welche Wasser 24 in den kegeligen Hohlraum 14 eingespritzt wird. Die Anzahl dieser Wasserstrahlen 18 und ihre umfangsmässige Plazierung an der Stirnseite der Düse 3 hängt im wesentlichen von der Grösse des Brenners A sowie von dessen Verbrennungskennwerten ab. Vorzugsweise sind die Wasserstrahlen 18 so vorzusehen, dass sie gegenüber der Brennstoff-Eindüsung 4 einen Kranz bilden. wobei auf den Abstand zur Mitte der Düse 3 weiter unten näher eingegangen wird. Selbstverständlich kann der Brenner A rein kegelig, also ohne zylindrische Anfangsteile 1a, 2a, vorgesehen werden. Beide Teilkegelkörper 1, 2 weisen je eine mit Oeffnungen 17 versehene Brennstoffleitung 8, 9 auf, durch welche ein gasförmiger Brennstoff 13 herangeführt wird, welcher seinerseits der durch die tangentialen Lufteintrittsschlitze 19, 20 in den kegeligen Hohlraum 14 einströmenden Verbrennungsluft 15 beigemischt wird. Die Brennstoffleitungen 8, 9 sind vorzugsweise am Ende der tangentialen Einströmung, unmittelbar vor Eintritt in den kegeligen Hohlraum 14, vorzusehen, dies um eine optimale geschwindigkeitsbedingte Zumischung 16 zwischen Brennstoff 13 und einströmender Verbrennungsluft 15 zu erzielen. Selbstverständlich ist ein Mischbetrieb mit beiden resp. verschiedenen Brennstoffen 12, 13 möglich. Brennraumseitig 22 geht die Ausgangsöffnung des Brenners A in eine Frontwand 10 über, in welcher allenfalls in der Figur nicht dargestellte Bohrungen vorgesehen werden können, dies um bei Bedarf Verdünnungsluft oder Kühlluft in den vorderen Teil des Brennraumes 22 einleiten zu können. Der durch die Düse 3, die eine luftunterstützte Düse oder eine nach dem Prinzip der Rückzerstäubung arbeitende Düse sein kann, strömende flüssige Brennstoff 12 wird in einem spitzen Winkel in den kegeligen Hohlraum 14 eingedüst, dergestalt, dass sich in der Brenneraustrittsebene ein möglichst homogenes kegeliges Sprühbild einstellt, was nur möglich und optimal ist, wenn die Innenwände der Teilkegelkörper 1, 2 durch die Brennstoffeindüsung 4 nicht benetzt werden. Zu diesem Zweck wird das kegelige Flüssigbrennprofil 5 von der tangential einströmenden Verbrennungsluft 15 und einem achsial um die Düse 3 herangeführten weiteren Verbrennungsluftstrom 15a umschlossen. In achsialer Richtung wird die Konzentration des flüssigen Brennstoffes 12 fortlaufend durch die eingebrachten Verbrennungsluftströme 15, 15a abgebaut. Wird gasförmiger Brennstoff 13 über die Brennstoffleitungen 8, 9 eingesetzt, so geschieht die Gemischbildung mit der Verbrennungsluft 15, wie dies bereits oben kurz zur Erläuterung gekommen ist, direkt im Bereich der Lufteintrittsschlitze 19, 20, am Eintritt in den kegeligen Hohlkörper 14. Im Zusammenhang mit der Eindüsung des flüssigen Brennstoffes 12 wird im Bereich des Wirbelaufplatzens, also im Bereich der Rückströmzone 6, die optimale homogene Brennstoffkonzentration über den Querschnitt erreicht. Die Zündung erfolgt an der Spitze der Rückströmzone 6. Erst an dieser Stelle kann eine stabile Flammenfront 7 entstehen. Ein Rückschlag der Flamme ins Innere des Brenners A, wie dies bei bekannten Vormischstrecken immer latent eintreten kann, wogegen dort mit komplizierten Flammenhaltern Abhilfe gesucht wird, ist hier nicht zu befürchten. Ist die Verbrennungsluft 15 vorgewärmt. so stellt sich eine beschleunigte ganzheitliche Verdampfung des flüssigen Brennstoffes 12 ein, bevor der Punkt am Ausgang des Brenners A erreicht ist, an dem die Zündung des Gemisches stattfinden kann. Der Grad der Verdampfung ist selbstverständlich von der Grösse des Brenners A, von der Tröpfengrösse des eingedüsten Brennstoffes sowie von der Temperatur der Verbrennungsluftströme 15, 15a abhängig. Minimierte Schadstoffwerte treten an sich auf, wenn zunächst eine vollständige Verdampfung des Brennstoffes vor Eintritt in die Verbrennungszone sichergestellt wird. Gleiches gilt auch für den nahstöchiometrischen Betrieb, wenn die Ueberschussluft durch rezirkulierendes Abgas ersetzt wird, womit die Verbrennungsluft aus einem Gemisch von Frischluft und Abgasen besteht, das ohne weiteres mit einem Brennstoff angereichert sein kann. In diesem Zusammenhang ist darauf hinzuweisen, dass die maximal zulässigen NOx-Emissionen weltweit einer zunehmenden Reduzierung unterworfen sind. An sich ist es bekannt, wie gegen unzulässigen NOx-Emissionen mit einfachen Mitteln vorgegangen werden kann: Indem bei der Verbrennung von Oel, Gas und anderen hochkalorischen Brennstoffen Wasser in die Flamme eingespritzt wird, können die Stickstoffemissionen nachhaltig gesenkt werden. Indessen, das zugeführte Wasser stört oftmals auch Flammenzonen, die dann zwar weniger NOx erzeugen, für die Flammenstabilität jedoch wichtig sind. Die Folge davon sind häufig Instabilitäten, wie Flammenpulsationen und/oder schlechter Ausbrand, was ein Emporschnellen des CO-Ausstosses die Folge ist. Die Rückströmzone 6 mit der Flammenfront 7 wird mit einer Anzahl kompakten Wasservollstrahlen 11 durchgedrungen, welche ohne diese empfindlichen Stabilisierungszone zu stören, dort nämlich, wo das frisch zugeführte Brennstoff/Luftgemisch beständig neu gezündet wird, zur Entfaltung kommen. Im Innern der Flamme platzen dann diese Wasserstrahlen 11 auf, dergestalt, dass sich das Wasser zwar verteilt, dies aber in einem sehr kleinen Bereich, genau dort, wo die potentielle Gefahr einer Bildung von NOx-Emissionen besteht. Damit wird vermieden, dass auf den ganzen Flammenkörper eingewirkt wird, was zu Instabilitäten, Flammenpulsationen und schlechtem Ausbrand führen würde, womit ein Emporschnellen des CO-Ausstosses die Folge wäre. Die Ausrichtung dieser Wasserstrahlen 11 aus der Düse 3 ist so vorzusehen, dass die Durchdringung der Flammenfront 7 erstens gewährleistet ist, und zweitens punktuell dann auf jene Zonen einwirkt, wo ein Entstehen der NOx-Emissionen potentiell gegeben ist. Bei der Gestaltung der Teilkegelkörper 1, 2 hinsichtlich Kegelwinkels und Breite der tangentialen Verbrennungsluft-Eintrittsschlitze 19, 20 sind enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft mit ihrer Rückströmzone 6 im Bereich der Brennermündung einstellt, und dort für die Flammenstabilisierung sorgt. Allgemein ist zu sagen, dass eine Verkleinerung der Verbrennungsluft-Eintrittsschlitze 19, 20 die Rückströmzone 6 weiter stromabwärts verschiebt, wodurch dann allerdings das Gemisch früher zur Zündung käme. Immerhin ist hier zu sagen, dass die einmal fixierte Rückströmzone 6 an sich positionsstabil ist, denn die Drallzahl nimmt in Strömungsrichtung im Bereich der Kegelform des Brenners A zu. Die Axialgeschwindigkeit lässt sich des weitern durch axiale Zuführung des bereits erwähnten Verbrennungsluftstromes 15a beeinflussen. Die Konstruktion des Brenners A eignet sich vorzüglich, bei vorgegebener Baulänge des Brenners A, die Grösse der tangentialen Verbrennungsluft-Eintrittsschlitze 19, 20 zu verändern, indem die Teilkegelkörper 1, 2 zu oder auseinder geschoben werden, wodurch sich der Abstand der beiden Mittelachsen 1b, 2b verkleinert resp. vergrössert, dementsprechend sich auch die Spaltgrösse der tangentialen Verbrennungsluft-Eintrittscshlitze 19, 20 verändert, wie dies aus Fig. 4-6 besonders gut hervorgeht. Selbstverständlich sind die Teilkegelkörper 1, 2 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben angesteuert werden kann. Ja es ist sogar möglich, die Teilkegelkörper 1, 2 durch eine gegenläufige drehende Bewegung spiralartig ineinander zu verschieben, oder die Teilkegelkörper 1, 2 durch eine axiale Bewegung gegeneinander zu verschieben. Somit hat man es in der Hand, die Form und die Grösse der tangentialen Verbrennungsluft-Eintrittsschlitze 19, 20 beliebig zu variieren, womit der Brenner A ohne Veränderung seiner Baulänge eine gewisse betriebliche Bandbreite abdeckt.
In order to better understand the structure of the burner A according to FIG. 1, it is advantageous if, at the same time, the individual cuts noted in this figure, which are found in FIGS. 2-4, are used for this figure. Furthermore, in order not to make FIG. 1 unnecessarily confusing, the guide plates 21a and 21b shown in FIGS. 2-4 have only been hinted at in it. In the following, reference is therefore made to the sectional figures 2-4 in the description of FIG. 1, as required.
The burner A according to FIG. 1 consists of two half hollow partial cone bodies 1, 2, which are radially offset with respect to one another with respect to their longitudinal axis of symmetry and stand on one another. The offset of the respective longitudinal axis of symmetry 1b, 2b to one another creates a tangential inlet slot 19, 20 on both sides of the partial cone body 1, 2 in the opposite inflow arrangement (see FIG. 2-4) through which a combustion air flow 15 into the interior of the burner A, that is, flows into a conical cavity 14 formed by both partial cone bodies 1, 2. The conical shape of the partial conical bodies 1, 2 shown in the direction of flow has a certain fixed angle. Of course, the partial cone bodies 1, 2 can be progressive in the direction of flow or have degressive cone angles. The two last-mentioned embodiments are not included in the drawing, since they can easily be reread. Which form will ultimately be used essentially depends on the parameters specified in the combustion environment. The two partial cone bodies 1, 2 each have a cylindrical initial part 1a, 2a, which, analogous to the partial cone bodies 1, 2, are offset from one another, so that the tangential air inlet slots 19, 20 are present continuously over the entire length of the burner A. A nozzle 3 is accommodated in this cylindrical starting part 1a, 2a, the injection 4 of a preferably liquid fuel 12 coinciding with the narrowest cross section of the conical cavity 14 formed by the two partial cone bodies 1, 2. Depending on the operational use of burner A, a gaseous fuel or a mixture of different fuels in different physical states can also be burned. This fuel injection 4 is preferably placed in the center of the nozzle. The nozzle 3 also has a number of further injections 18, via which water 24 is injected into the conical cavity 14. The number of these water jets 18 and their circumferential placement on the end face of the nozzle 3 essentially depends on the size of the burner A and on its combustion characteristics. The water jets 18 are preferably to be provided in such a way that they form a ring with respect to the fuel injection 4. wherein the distance to the center of the nozzle 3 is discussed in more detail below. Of course, the burner A can be provided in a purely conical manner, that is to say without cylindrical starting parts 1a, 2a. Both partial cone bodies 1, 2 each have a fuel line 8, 9 provided with openings 17, through which a gaseous fuel 13 is fed, which in turn admixes the combustion air 15 flowing into the conical cavity 14 through the tangential air inlet slots 19, 20 becomes. The fuel lines 8, 9 are preferably to be provided at the end of the tangential inflow, immediately before entering the conical cavity 14, in order to achieve an optimal speed-related admixture 16 between the fuel 13 and the inflowing combustion air 15. Of course, a mixed operation with both resp. different fuels 12, 13 possible. On the combustion chamber side 22, the outlet opening of the burner A merges into a front wall 10, in which bores (not shown in the figure) can be provided, in order to be able to introduce dilution air or cooling air into the front part of the combustion chamber 22 if necessary. The liquid fuel 12 flowing through the nozzle 3, which can be an air-assisted nozzle or a nozzle that works on the principle of back-atomization, is injected into the conical cavity 14 at an acute angle, in such a way that the most conical spray pattern possible is in the burner outlet plane sets what is only possible and optimal if the inner walls of the partial cone bodies 1, 2 are not wetted by the fuel injection 4. For this purpose, the tapered liquid combustion profile 5 is enclosed by the combustion air 15 flowing in tangentially and a further combustion air flow 15a brought axially around the nozzle 3. In the axial direction, the concentration of the liquid fuel 12 is continuously reduced by the combustion air streams 15, 15a introduced. If gaseous fuel 13 is used via the fuel lines 8, 9, the mixture formation with the combustion air 15 takes place, as has already been briefly explained above, directly in the area of the air inlet slots 19, 20, at the entry into the conical hollow body 14 With the injection of the liquid fuel 12, the optimal homogeneous fuel concentration over the cross section is achieved in the area of the vortex burst, ie in the area of the backflow zone 6. Ignition takes place at the top of the backflow zone 6. First on a stable flame front 7 can arise at this point. A flashback of the flame into the interior of the burner A, as can always occur latently in known premixing sections, while remedial measures are sought there with complicated flame holders is not to be feared here. The combustion air 15 is preheated. this results in an accelerated, holistic evaporation of the liquid fuel 12 before the point at the outlet of the burner A is reached, at which the ignition of the mixture can take place. The degree of evaporation is of course dependent on the size of the burner A, on the size of the droplets of the fuel injected and on the temperature of the combustion air streams 15, 15a. Minimized pollutant values occur when first a complete evaporation of the fuel is ensured before entering the combustion zone. The same applies to near-stoichiometric operation when the excess air is replaced by recirculating exhaust gas, which means that the combustion air consists of a mixture of fresh air and exhaust gases, which can be easily enriched with a fuel. In this context, it should be noted that the maximum permissible NOx emissions are subject to an increasing reduction worldwide. It is known per se how simple measures can be used to combat impermissible NOx emissions: by injecting water into the flame when burning oil, gas and other high-calorific fuels, nitrogen emissions can be sustainably reduced. However, the water supplied often disturbs flame zones, which then generate less NOx, but are important for flame stability. The consequence of this is often instabilities, such as flame pulsations and / or poor burnout, which leads to a surge in CO emissions. The backflow zone 6 with the flame front 7 is penetrated with a number of compact full water jets 11, which without this sensitive stabilization zone disturb, namely where the freshly supplied fuel / air mixture is constantly re-ignited, develop. These water jets 11 then burst in the interior of the flame, in such a way that the water is distributed, but in a very small area, exactly where there is the potential risk of NOx emissions being formed. This prevents the entire flame body from being acted on, which would lead to instabilities, flame pulsations and poor burnout, which would result in a surge in CO emissions. The alignment of these water jets 11 from the nozzle 3 is to be provided in such a way that firstly penetration of the flame front 7 is ensured and secondly has a selective effect on those zones where there is a potential for NOx emissions to occur. When designing the partial cone bodies 1, 2 with regard to the cone angle and the width of the tangential combustion air inlet slots 19, 20, narrow limits must be observed so that the desired flow field of the combustion air with its return flow zone 6 is established in the area of the burner mouth, and provides flame stabilization there. In general, it can be said that a reduction in the size of the combustion air inlet slots 19, 20 shifts the backflow zone 6 further downstream, which would cause the mixture to ignite earlier, however. After all, it must be said here that the backflow zone 6, once fixed, is inherently position-stable, because the swirl number increases in the direction of flow in the region of the cone shape of the burner A. The axial speed can also be influenced by axially supplying the combustion air flow 15a already mentioned. The design of the burner A is particularly suitable, given the given overall length of the burner A, of changing the size of the tangential combustion air inlet slots 19, 20 by pushing the partial cone bodies 1, 2 towards or away from one another, as a result of which the distance between the two central axes 1b, 2b reduced or enlarges accordingly The gap size of the tangential combustion air inlet slots 19, 20 changed, as can be seen particularly well from FIGS. 4-6. Of course, the partial cone bodies 1, 2 can also be displaced relative to one another in another plane, as a result of which even an overlap thereof can be controlled. Yes, it is even possible to move the partial cone bodies 1, 2 spirally into one another by a counter-rotating movement, or to move the partial cone bodies 1, 2 against one another by an axial movement. It is therefore possible to vary the shape and size of the tangential combustion air inlet slots 19, 20 as desired, with which burner A covers a certain operating range without changing its overall length.

Aus den Figuren 2-4 geht die geometrische Konfiguration der Leitbleche 21a, 21b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese Leitbleche, entsprechend ihrer Länge, das jeweilige Ende der Teilkegelkörper 1, 2 in Anströmungsrichtung der Verbrennungsluft 15 verlängern. Die Kanalisierung der Verbrennungsluft 15 in den kegeligen Hohlraum 14 kann durch ein Oeffnen bzw. Schliessen der Leitbleche 21a, 21b um einen im Bereich des Eintrittes zum Hohlraum 14 plazierten Drehpunkt 23 optimiert werden; insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Verbrennungsluft-Eintrittsschlitze 19, 20 verändert wird. Selbstverständlich kann der Brenner A auch ohne Leitbleche 21a, 21b betrieben werden, oder es können andere Hilfsmittel hierfür vorgesehen werden.2-4 show the geometric configuration of the guide plates 21a, 21b. They have a flow introduction function, these guide plates, depending on their length, extending the respective end of the partial cone bodies 1, 2 in the direction of flow of the combustion air 15. The channeling of the combustion air 15 into the conical cavity 14 can be optimized by opening or closing the guide plates 21a, 21b about a pivot point 23 located in the area of the entrance to the cavity 14; this is particularly necessary if the original gap size of the tangential combustion air inlet slots 19, 20 is changed. Of course, the burner A can also be operated without baffles 21a, 21b, or other aids can be provided for this.

BezeichnungslisteLabel list

AA
Brennerburner
1, 21, 2
TeilkegelkörperPartial cone body
1b, 2b1b, 2b
LängssymmetrieachsenLongitudinal symmetry axes
33rd
Düsejet
44th
BrennstoffeindüsungFuel injection
55
FlüssigbrennprofilLiquid firing profile
66
RückströmzoneBackflow zone
77
FlammenfrontFlame front
8, 98, 9
BrennstoffleitungenFuel lines
1010th
FrontwandFront wall
1111
WasserstrahlWater jet
12, 1312, 13
Brennstofffuel
1414
Hohlraumcavity
15, 15a15, 15a
VerbrennungsluftströmeCombustion air flows
1616
ZumischungAdmixture
1717th
OeffnungenOpenings
1818th
EindüsungenInjections
19, 2019, 20
LufteintrittsschlitzeAir inlet slots
21a, 21b21a, 21b
LeitblecheBaffles
2222
BrennraumCombustion chamber
2323
Drehpunktpivot point
2424th
Wasserwater

Claims (6)

  1. Burner for operating a heat-generating apparatus, the burner comprising, in the direction of flow, at least two hollow conical part-bodies (1, 2) which are placed upon one another and whose longitudinal symmetry axes (1b, 2b) create tangential inlet slots (19, 20), with flow in opposite directions, for introducing a combustion air stream (15) into a cavity (14) formed by the part-bodies (1, 2), at least one nozzle (3) for fuel injection (4) being placed in the cavity (14), and an ignition zone being provided in the region of the outlet of the burner, characterized in that the nozzle (3) has at least one further injector opening (18) for a compact water jet (11), in that the nozzle (3) is placed in the middle between the longitudinal symmetry axes (1b, 2b), extending with a mutual offset, with the result that the direction of this water jet (11) is directed parallel or quasi-parallel to the longitudinal axis of the burner onto the ignition zone.
  2. Burner according to Claim 1, characterized in that, in the case of a plurality of water jets (11), their injector openings (18) are arranged as a ring on the nozzle (3).
  3. Burner according to Claim 1, characterized in that further nozzles (17) for injecting a further fuel (13) are arranged in the region of the tangential inlet slots (19, 20).
  4. Burner according to Claim 1, characterized in that the part-bodies (1, 2) form a regular conical shape in the direction of flow.
  5. Burner according to Claim 1, characterized in that the part-bodies (1, 2) have an increasing flow cross-section in the direction of flow.
  6. Burner according to Claim 1, characterized in that the part-bodies (1, 2) have a decreasing flow cross-section in the direction of flow.
EP91117113A 1990-11-02 1991-10-08 Method for minimising the NOx emissions from a combustion Expired - Lifetime EP0483554B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3487/90A CH682009A5 (en) 1990-11-02 1990-11-02
CH3487/90 1990-11-02

Publications (2)

Publication Number Publication Date
EP0483554A1 EP0483554A1 (en) 1992-05-06
EP0483554B1 true EP0483554B1 (en) 1995-12-20

Family

ID=4257057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91117113A Expired - Lifetime EP0483554B1 (en) 1990-11-02 1991-10-08 Method for minimising the NOx emissions from a combustion

Country Status (7)

Country Link
US (1) US5284437A (en)
EP (1) EP0483554B1 (en)
JP (1) JP2999311B2 (en)
CA (1) CA2054043A1 (en)
CH (1) CH682009A5 (en)
DE (1) DE59107119D1 (en)
PL (1) PL292124A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2126881T3 (en) * 1994-01-24 1999-04-01 Siemens Ag COMBUSTION CHAMBER FOR A GAS TURBINE.
DE19520292A1 (en) * 1995-06-02 1996-12-05 Abb Management Ag Method of operating combustion chamber of power generation station gas turbo group contg. compressor unit, generator, at least one combustion chamber and turbine
ATE170968T1 (en) * 1995-07-20 1998-09-15 Dvgw Ev METHOD AND DEVICE FOR SUPPRESSING FLAME/PRESSURE VIBRATIONS DURING A FIRING
US5707596A (en) * 1995-11-08 1998-01-13 Process Combustion Corporation Method to minimize chemically bound nox in a combustion process
ATE216052T1 (en) * 1996-02-07 2002-04-15 Dvgw Deutscher Ver Des Gas Und METHOD AND DEVICE FOR SUPPRESSING FLAME/PRESSURE VIBRATIONS DURING A FIRING
EP0911582B1 (en) * 1997-10-27 2003-12-10 ALSTOM (Switzerland) Ltd Method for operating a premix burner and premix burner
ATE244380T1 (en) * 1997-11-21 2003-07-15 Alstom BURNER FOR OPERATION OF A HEAT GENERATOR
DE10049203A1 (en) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Process for introducing fuel into a premix burner
CA2824124C (en) * 2012-08-24 2016-10-04 Alstom Technology Ltd. Method for mixing a dilution air in a sequential combustion system of a gas turbine
MX370842B (en) * 2013-06-17 2020-01-08 Schlumberger Technology Bv Burner assembly for flaring low calorific gases.
US10227932B2 (en) * 2016-11-30 2019-03-12 General Electric Company Emissions modeling for gas turbine engines for selecting an actual fuel split
CN107906514B (en) * 2017-12-04 2024-04-09 安德森热能科技(苏州)有限责任公司 Flat flame low-nitrogen burner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021673A (en) * 1957-01-10 1962-02-20 Bendix Corp Water injection system for gas turbine engines
FR2154901A5 (en) * 1971-09-29 1973-05-18 Flopetrol
US3748080A (en) * 1971-12-27 1973-07-24 Peabody Engineering Corp Combustion control apparatus using a liquid spray
US3797992A (en) * 1972-12-15 1974-03-19 Combustion Unltd Inc Crude oil burner
US3861857A (en) * 1974-01-14 1975-01-21 John F Straitz Flammable liquid waste burner
FR2289849A1 (en) * 1974-11-04 1976-05-28 Rothlisberger Henri Device to increase power of liq. fuel boiler burners - injects fine water sprays into hottest parts of flames
JPS5461328A (en) * 1977-10-22 1979-05-17 Kubota Ltd Burner equipment
US4257763A (en) * 1978-06-19 1981-03-24 John Zink Company Low NOx burner
JPS5596809A (en) * 1979-01-19 1980-07-23 Toshiba Corp Combustor
GB2050592B (en) * 1979-06-06 1983-03-16 Rolls Royce Gas turbine
CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
CH678568A5 (en) * 1989-03-15 1991-09-30 Asea Brown Boveri

Also Published As

Publication number Publication date
PL292124A1 (en) 1992-05-04
JP2999311B2 (en) 2000-01-17
EP0483554A1 (en) 1992-05-06
US5284437A (en) 1994-02-08
CA2054043A1 (en) 1992-05-03
CH682009A5 (en) 1993-06-30
JPH06341611A (en) 1994-12-13
DE59107119D1 (en) 1996-02-01

Similar Documents

Publication Publication Date Title
DE4426351B4 (en) Combustion chamber for a gas turbine
EP0387532B1 (en) Gas turbine combustion chamber
EP0503319B1 (en) Burner for a premixing combustion of a liquid and/or a gaseous fuel
DE60007946T2 (en) A combustion chamber
EP0902233B1 (en) Combined pressurised atomising nozzle
EP0401529B1 (en) Gas turbine combustion chamber
EP0777081B1 (en) Premix burner
EP0321809A1 (en) Process for combustion of liquid fuel in a burner
EP0481111B1 (en) Gas-turbine combustion chamber
EP0433790A1 (en) Burner
EP0521325B1 (en) Combustion chamber
EP0718561A2 (en) Combustor
DE4320212A1 (en) Combustion plant
EP0851172B1 (en) Burner and method for operating a combustion chamber with a liquid and/or gaseous fuel
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
EP0641971A2 (en) Method for operating a premix burner
EP0433789A1 (en) Method for a premix burning of a liquid fuel
EP0394800B1 (en) Premix burner for generating a hot gas
DE19516798A1 (en) Premix burner with axial or radial air flow
DE4412315A1 (en) Method of operating gas turbine combustion chamber
DE19507088B4 (en) premix
DE4242003A1 (en) Process heat generator
EP0807787B1 (en) Burner
EP0518072A1 (en) Burner for an internal combustion engine, a combustion chamber of a gas turbine plant or a furnace
EP0866269B1 (en) Boiler for heat generation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19921019

17Q First examination report despatched

Effective date: 19930625

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19951220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19951220

REF Corresponds to:

Ref document number: 59107119

Country of ref document: DE

Date of ref document: 19960201

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960227

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010914

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011005

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011011

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST