EP0321809A1 - Process for combustion of liquid fuel in a burner - Google Patents

Process for combustion of liquid fuel in a burner Download PDF

Info

Publication number
EP0321809A1
EP0321809A1 EP88120667A EP88120667A EP0321809A1 EP 0321809 A1 EP0321809 A1 EP 0321809A1 EP 88120667 A EP88120667 A EP 88120667A EP 88120667 A EP88120667 A EP 88120667A EP 0321809 A1 EP0321809 A1 EP 0321809A1
Authority
EP
European Patent Office
Prior art keywords
burner
partial cone
interior
liquid fuel
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88120667A
Other languages
German (de)
French (fr)
Other versions
EP0321809B1 (en
Inventor
Jakob Dr. Keller
Thomas Dr. Sattelmayer
Daniel Styner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT88120667T priority Critical patent/ATE63628T1/en
Publication of EP0321809A1 publication Critical patent/EP0321809A1/en
Application granted granted Critical
Publication of EP0321809B1 publication Critical patent/EP0321809B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a method for the premix-like combustion of liquid fuel in a burner without a premixing section and a burner for hot gas production, consisting of hollow partial cone bodies which complement one another, with tangential air inlet slots and feeds for gaseous and liquid fuels.
  • a burner is known from EP-A1-0 210 462, which is formed from at least two double-curved hollow partial cone bodies acted upon with tangential air entry. These bodies are folded in the direction of flow along diagonals that open outwards in the shape of a cone. One curved fold side forms an inner cone with an increasing cone inclination in the outflow direction, while the other curved fold side forms an outer cone with a decreasing cone inclination in the outflow direction.
  • the inner cones each carry a burner over their entire axial extent Material line for the supply of the gaseous fuel, which flows through several fuel nozzles into the interior of the burner in order to mix there with the tangentially flowing combustion air.
  • the burner also has a separate supply of a liquid fuel, which is a dual burner.
  • the injection of the liquid fuel is directed axially onto the outer cone in such a way that, depending on the strength of the injection, a different length of fuel film is formed.
  • weighty mixing is carried out by the tangentially introduced combustion air, which rolls up the fuel film in layers due to its swirling movement in the axial direction, making the generation of a strong mixture superfluous. Because the impulse of the injection of liquid fuel is adapted to the load of the machine, the mixture is never too lean or too rich.
  • this burner results in a vortex flow which is low in swirl in the center but has an excess of axial speed. Because the number of swirls increases strongly in the axial direction and reaches the breakdown value or the critical value at the end of the burner, this results in a positionally stable vortex backflow.
  • the oil injection is structurally relatively complex. But the design of the folded cone sections and their coordination with each other is also not easy to handle.
  • the object of the invention is to simplify the physical configuration of the burner in a method and a burner of the types mentioned at the beginning and at the same time to minimize the NO x emission values from the premixed combustion of liquid fuel, without changing the flow field in the burner with the stable vortex backflow zone.
  • Another advantage of the invention results from the possibility that the burner according to the invention can also be used in gas turbines whose pressure ratio - above about 12 - is so high that, due to the principle, no pre-evaporation of the liquid fuel is possible because the fuel has previously ignited would. Finally, the burner according to the invention can also be used in those cases in which no or only insufficient air preheating for evaporation can be achieved.
  • an essential advantage of the invention is that the burner according to the invention consists of a few components that are easy to manufacture and assemble.
  • FIG. 1 In order to better understand the structure of the burner, it is advantageous if the reader simultaneously uses the individual sections according to FIGS. 2-4 in FIG. 1. Furthermore, in order not to make FIG. 1 unnecessarily confusing, the guide plates 21a, 21b shown schematically according to FIGS. 2-4 are only hinted at in it. In the following, the description of FIG. 1 will optionally refer to the remaining FIGS. 2-4 as required.
  • the burner according to FIG. 1 consists of two half hollow tapered bodies 1, 2 which are offset from one another.
  • the offset of the respective central axis 1b, 2b of the partial cone bodies 1, 2 to each other creates a tangential air inlet slot 19, 20 on both sides in a mirror-image arrangement (FIGS. 2-4), through which the combustion air 15 enters the interior of the burner, ie flows into the cone cavity 14.
  • the two partial cone bodies 1, 2 each have a cylindrical initial part 1a, 2a, which likewise run offset to one another analogously to the partial cone bodies 1, 2, so that the tangential air inlet slots 19, 20 are present from the beginning.
  • a nozzle 3 is accommodated, the fuel injection 4 of which coincides with the narrowest cross section of the conical cavity 14 formed by the two partial cone bodies 1, 2.
  • the burner can be made purely conical, that is to say without cylindrical initial parts 1a, 2a.
  • Both partial cone bodies 1, 2 each have a fuel line 8, 9, which are provided with openings 17 through which the gaseous fuel 13, which is mixed with the combustion air 15 flowing through the tangential air inlet slots 19, 20. The position of these fuel lines 8, 9 is shown schematically in FIGS.
  • the fuel lines 8, 9 are attached to the end of the tangential air inlet slots 19, 20, so that the admixture 16 of the gaseous fuel 13 with the inflowing combustion air 15 also takes place there .
  • the burner On the combustion chamber side 22, the burner has a collar-shaped anchoring for the partial cone body 1, 2 serving end plate 10 with a number of holes 11 through which, if necessary, dilution air or cooling air 18 can be supplied to the front part of the combustion chamber 22 or its wall.
  • the liquid fuel 12 flowing through the nozzle 3 is injected into the cone cavity 14 at an acute angle, in such a way that a cone-shaped fuel spray which is as homogeneous as possible is obtained in the burner outlet plane, with strict care being taken to ensure that the inner walls of the partial cone bodies 1, 2 from injected liquid fuel 12 are not wetted.
  • the fuel injector 4 can be an air-assisted nozzle or a pressure atomizer.
  • the conical liquid fuel profile 5 is enclosed by a rotating combustion air stream 15 flowing in tangentially. In the axial direction, the concentration of the liquid fuel 12 is continuously reduced by the mixed-in combustion air 15. If gaseous fuel 13/16 is burned, the mixture is formed with the combustion air 15 directly at the end of the air inlet slots 19, 20.
  • the nitrogen oxide and carbon monoxide emissions are low if the excess air is at least 60%. In the case of complete evaporation before entering the combustion zone, the pollutant emission values are lowest. The same also applies to near-stoichiometric operation when the excess air is replaced by recirculating exhaust gas.
  • the partial cone bodies 1, 2 with regard to the taper inclination and the width of the tangential air inlet slots 19, 20, narrow limits must be observed so that the desired flow field of the air with its return flow zone 6 is established in the area of the burner mouth for flame stabilization.
  • the backflow zone 6 which is once geometrically fixed, is inherently position-stable, because the swirl number increases in the direction of flow in the region of the cone shape of the burner.
  • the design of the burner is particularly suitable for changing the size of the tangential air inlet slots 19, 20 for a given overall length of the burner, in that the partial cone bodies 1, 2 are fixed to the end plate 10 by means of a releasable connection.
  • the distance between the two central axes 1b, 2b decreases or increases as a result of radial displacement of the two partial cone bodies 1, 2 to and from one another, and the gap size of the tangential air inlet slots 19, 20 changes accordingly, as can be seen particularly well from FIGS. 2-4 emerges.
  • the partial cone bodies 1, 2 can also be displaced relative to one another in another plane, as a result of which even an overlap thereof can be controlled. Yes, it is even possible to spirally move the partial cone bodies 1, 2 with one another by means of a counter-rotating movement. It is therefore in your hand to vary the shape and size of the tangential air inlets 19, 20 as desired, so that the burner can be used universally without changing its overall length.
  • the position of the guide plates 21a, 21b also appears from FIGS. 2-4. They have flow introduction functions, whereby they, of different lengths, extend the respective end of the partial cone bodies 1 and 2 in the direction of flow of the combustion air 15.
  • the channeling of the combustion air into the cone cavity 14 can be optimized by opening or closing the guide plates 21a, 21b about the pivot point 23, in particular this is necessary if the original gap size of the tangential air inlet slots 19, 20 is changed.

Abstract

In the premix combustion of liquid fuel in a burner without premixing section, there is formed in the interior (14) of the burner a conical liquid fuel column (5) which widens in the direction of flow and which is surrounded by a rotating combustion air flow (15) which flows tangentially into the burner. Ignition of the mixture takes place at the outlet of the burner, a backflow zone (6) being formed in the region of the burner mouth. The burner itself consists of at least two hollow part cone members (1, 2) positioned on one another, which have a cone inclination which increases in the direction of flow. The part cone members (1, 2) are staggered in relation to one another, as a result of which tangential air inlet slots (19, 20) are formed. A nozzle (3) placed on the burner head ensures the injection of the liquid fuel (12) into the interior (14) of the burner. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Verfahren für die vor­mischartige Verbrennung von flüssigem Brennstoff in einem Brenner ohne Vormischstrecke sowie einen Brenner für die Heiss­gaserzeugung, bestehend aus hohlen, sich zu einem Körper er­gänzenden Teilkegelkörpern, mit tangentialen Lufteintritts­schlitzen und Zuführungen für gasförmige und flüssige Brenn­stoffe.The present invention relates to a method for the premix-like combustion of liquid fuel in a burner without a premixing section and a burner for hot gas production, consisting of hollow partial cone bodies which complement one another, with tangential air inlet slots and feeds for gaseous and liquid fuels.

STAND DER TECHNIKSTATE OF THE ART

Aus EP-A1-0 210 462 ist ein Brenner bekannt geworden, welcher aus mindestens zwei mit tangentialem Lufteintritt beaufschlagten doppelgekrümmten hohlen Teilkegelkörpern gebildet ist. Diese Körper sind in Strömungsrichtung entlang von kegelstrahlig nach aussen hin sich öffnenden Diagonalen gefalzt. Dabei bildet die eine gekrümmte Falzseite einen Innenkegel mit in Abströ­mungsrichtung zunehmender Kegelneigung, während die andere gekrümmte Falzseite einen Aussenkegel bildet, mit in Abströ­mungsrichtung abnehmender Kegelneigung. Die Innenkegel tragen endseitig, auf ihrer ganzen axialen Ausdehnung, je eine Brenn­ stoffleitung für die Zuführung des gasförmigen Brennstoffes, der durch mehrere Brennstoffdüsen in den Innenraum des Brenners strömt, um sich dort mit der tangential einströmenden Verbren­nungsluft zu vermischen. Der Brenner weist des weiteren eine separate Zuführung eines flüssigen Brennstoffes auf, womit man hier mit einem Dualbrenner zu tun. Die Eindüsung des flüs­sigen Brennstoffes ist axial auf die Aussenkegel gerichtet, dergestalt, dass sich dort, je nach Stärke der Eindüsung, einen verschieden langen Brennstoffilm bildet. Nebst der natür­lichen Verdampfung des flüssigen Brennstoffes durch die dort herrschende Strahlungswärme, wird eine gewichtige Vermischung durch die tangential herangeführte Verbrennungsluft übernommen, welche durch ihre Drallbewegung in axialer Richtung den Brenn­stoffilm schichtenweise aufrollt, wodurch die Erzeugung einer starken Vermischung überflüssig wird. Dadurch, dass der Impuls der Eindüsung von flüssigem Brennstoff der Last der Maschine angepasst wird, ist das Gemisch nie zu mager oder zu fett.A burner is known from EP-A1-0 210 462, which is formed from at least two double-curved hollow partial cone bodies acted upon with tangential air entry. These bodies are folded in the direction of flow along diagonals that open outwards in the shape of a cone. One curved fold side forms an inner cone with an increasing cone inclination in the outflow direction, while the other curved fold side forms an outer cone with a decreasing cone inclination in the outflow direction. At the end, the inner cones each carry a burner over their entire axial extent Material line for the supply of the gaseous fuel, which flows through several fuel nozzles into the interior of the burner in order to mix there with the tangentially flowing combustion air. The burner also has a separate supply of a liquid fuel, which is a dual burner. The injection of the liquid fuel is directed axially onto the outer cone in such a way that, depending on the strength of the injection, a different length of fuel film is formed. In addition to the natural evaporation of the liquid fuel due to the radiant heat prevailing there, weighty mixing is carried out by the tangentially introduced combustion air, which rolls up the fuel film in layers due to its swirling movement in the axial direction, making the generation of a strong mixture superfluous. Because the impulse of the injection of liquid fuel is adapted to the load of the machine, the mixture is never too lean or too rich.

Zwei Ziele lassen sich damit unmittelbar erreichen:
- Die Vorzüge eines Vormishbrenners, nämlich wenig NOx und CO, stellen sich ein.
-Eine gute Flammenstabilität in einem weiteren Betriebsbereich ist gewährleistet.
Two goals can be achieved immediately:
- The advantages of a pre-mix burner, namely little NO x and CO, appear.
-A good flame stability is guaranteed in another operating area.

Des weiteren ergibt sich aus der konstruktiven Gestaltung dieses Brenners eine Wirbelströmung, welche im Zentrum drallarm ist, aber einen Axialgeschwindigkeitsüberschuss aufweist. Weil nun die Drallzahl in axialer Richtung stark zunimmt und am Ende des Brenners den Breakdown-Wert bzw. den kritischen Wert erreicht, ergibt dies eine positionsstabile Wirbelrückströ­mung.Furthermore, the structural design of this burner results in a vortex flow which is low in swirl in the center but has an excess of axial speed. Because the number of swirls increases strongly in the axial direction and reaches the breakdown value or the critical value at the end of the burner, this results in a positionally stable vortex backflow.

Obwohl die Vorteile des hier gewürdigten Brenners nicht wegzu­leugnen sind, hat es sich doch gezeigt, dass die NOx- und CO-Emissionswerte, obwohl sie durch seinen Einsatz bereits tiefer liegen gegenüber den gesetzlichen Grenzwerten, zukünftig substantiell vermindert werden müssen. Des weiteren hat es sich auch gezeigt, dass Verkokungsprobleme des Aussenkegels aus der Oelverbrennung nicht auszuschliessen sind, und die Brennstoffeindüsung nicht einfach zu handhaben ist.Although the advantages of the burner recognized here cannot be denied, it has been shown that the NO x and CO emission values, although they are already lower than the legal limit values due to its use, must be substantially reduced in the future. Furthermore it has It has also been shown that coking problems of the outer cone cannot be ruled out from the oil combustion and that the fuel injection is not easy to handle.

Des weiteren ist die Oeleindüsung konstruktiv relativ aufwendig gelöst. Aber auch die Gestaltung der gefalzten Kegelabschnitte und deren Abstimmung zueinander ist nicht einfach zu handhaben.Furthermore, the oil injection is structurally relatively complex. But the design of the folded cone sections and their coordination with each other is also not easy to handle.

AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Hier greift die Erfindung ein. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Verfahren sowie einem Brenner der eingangs genannten Arten die körperliche Ausgestaltung des Brenners zu vereinfachen und gleichzeitig die NOx-Emissionswerte aus der vormischartigen Verbrennung von flüssigem Brennstoff zu minimieren, ohne das Strömungsfeld im Brenner mit der stabilen Wirbelrückströmzone zu verändern.This is where the invention intervenes. The object of the invention, as characterized in the claims, is to simplify the physical configuration of the burner in a method and a burner of the types mentioned at the beginning and at the same time to minimize the NO x emission values from the premixed combustion of liquid fuel, without changing the flow field in the burner with the stable vortex backflow zone.

Die wesentlichen Vorteile der Erfindung hinsichtlich der Ausge­staltung sind darin zu sehen, dass im Fehlen der sonst üblichen Vormischzone keine Gefahr eines Rückzündens in den Brenner zu befürchten ist. Des weiteren entfallen die wohlbekannten Probleme bei der Einsetzung von Drallerzeugern im Gemischstrom, beispielsweise jene Unzulänglichkeiten, die durch Abbrennen von Belägen mit Zerstörung der Drallschaufeln entstehen.The essential advantages of the invention with regard to the configuration are to be seen in the fact that, in the absence of the otherwise usual premixing zone, there is no fear of reignition in the burner. Furthermore, the well-known problems associated with the use of swirl generators in the mixture flow, for example those shortcomings which arise from the burning off of deposits with destruction of the swirl vanes, are eliminated.

Der wesentliche Vorteil der Erfindung hinsichtlich der NOx- Emissionswerte ist darin zu sehen, dass diese schlagartig auf einen Bruchteil dessen sinken, was man bis heute als maximal erreichbar betrachtet hat. Die Verbesserung weist also nicht bloss ein paar Prozentpunkte auf, sondern man bewegt sich nun in der Grössenordnung von verschwindend kleinen 10 - 15 % der gesetzlichen Grenzwerte, womit eine ganz neue Qualitäts­stufe erreicht ist.The main advantage of the invention with regard to the NO x emission values can be seen in the fact that these suddenly drop to a fraction of what was considered to be attainable to date. So the improvement is not just a few percentage points, but you are now in the order of a tiny 10 - 15% of the legal limit values, which has reached a whole new level of quality.

Ein weiterer Vorteil der Erfindung ergibt sich aus der Möglich­keit heraus, dass der erfindungsgemässe Brenner auch in Gas­turbinen eingesetzt werden kann, deren Druckverhältnis - über etwa 12 - so hoch ist, dass prinzipbedingt keine Vorverdampfung des Flüssigbrennstoffes mehr möglich ist, weil zuvor Selbst­zündung des Brennstoffes einsetzen würde. Schliesslich ist der erfindungsgemässe Brenner auch noch in solchen Fällen einsetzbar, in denen keine oder nur eine für die Verdampfung unzureichende Luftvorerwärmung erreicht werden kann.Another advantage of the invention results from the possibility that the burner according to the invention can also be used in gas turbines whose pressure ratio - above about 12 - is so high that, due to the principle, no pre-evaporation of the liquid fuel is possible because the fuel has previously ignited would. Finally, the burner according to the invention can also be used in those cases in which no or only insufficient air preheating for evaporation can be achieved.

Nicht zuletzt ist ein wesentlicher Vorteil der Erfindung auch darin zu sehen, dass der erfindungsgemässe Brenner aus wenigen Bestandteilen besteht, die einfach herzustellen und zu montieren sind.Last but not least, an essential advantage of the invention is that the burner according to the invention consists of a few components that are easy to manufacture and assemble.

Vorteilhafte und zweckmässige Weiterbildungen der erfindungs­gemässen Aufgabenlösung sind in den abhängigen Ansprüchen gekennzeichnet.Advantageous and expedient developments of the task solution according to the invention are characterized in the dependent claims.

Im folgenden wird anhand der Zeichnung ein Ausführungsbeispiel der Erfindung erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Die Strömungsrichtungen der verschiedenen Medien sind mit Pfeilen angegeben. In den verschiedenen Figuren sind jeweils gleiche Elemente mit den gleichen Bezugszeichen versehen.In the following an embodiment of the invention will be explained with reference to the drawing. All elements not necessary for the immediate understanding of the invention have been omitted. The flow directions of the different media are indicated by arrows. In the various figures, the same elements are provided with the same reference symbols.

KURZE BESCHREIBUNG DER ERFINDUNGBRIEF DESCRIPTION OF THE INVENTION

Es zeigt:

  • Fig. 1 einen Brenner in perspektivischer Darstellung, entspre­chend aufgeschnitten und
  • Fig. 2, 3, 4 entsprechende Schnitte durch die Ebenen II-II (Fig. 2), III-III (Fig. 3) und IV-IV (Fig. 4), wobei diese Schnitte nur eine schematische, vereinfachte Darstellung des Brenners sind.
It shows:
  • Fig. 1 a burner in a perspective view, cut accordingly and
  • Fig. 2, 3, 4 corresponding sections through the planes II-II (Fig. 2), III-III (Fig. 3) and IV-IV (Fig. 4), these sections only a schematic, simplified representation of the burner are.

BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELEDESCRIPTION OF THE EMBODIMENTS

Um den Aufbau des Brenners besser zu verstehen, ist es von Vorteil, wenn der Leser gleichzeitig zu Fig. 1 die einzelnen Schnitte nach Fig. 2 -4 heranzieht. Des weiteren, um Fig. 1 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach Fig. 2 - 4 schematisch gezeigten Leitbleche 21a, 21b nur andeutungsweise aufgenommen worden. Im folgenden werden auch bei der Beschreibung von Fig. 1 wahlweise, nach Bedarf, auf die restlichen Fig. 2 - 4 hingewiesen.In order to better understand the structure of the burner, it is advantageous if the reader simultaneously uses the individual sections according to FIGS. 2-4 in FIG. 1. Furthermore, in order not to make FIG. 1 unnecessarily confusing, the guide plates 21a, 21b shown schematically according to FIGS. 2-4 are only hinted at in it. In the following, the description of FIG. 1 will optionally refer to the remaining FIGS. 2-4 as required.

Der Brenner gemäss Fig. 1 besteht aus zwei halben hohlen Tei­kegelkörpern 1, 2, die versetzt zueinander aufeinander liegen. Die Versetzung der jeweiligen Mittelachse 1b, 2b der Teil­kegelkörper 1, 2 zueinander schafft auf beiden Seiten in spiegel­bildlicher Anordnung jeweils einen tangentialen Lufteintritts­schlitz 19, 20 frei, (Fig. 2 - 4), durch welche die Verbren­nungsluft 15 in den Innenraum des Brenners, d.h. in den Kegel­hohlraum 14 strömt. Die beiden Teilkegelkörper 1, 2 haben je einen zylindrischen Anfangsteil 1a, 2a, die ebenfalls analog den Teilkegelkörpern 1, 2 versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittsschlitze 19, 20 vom Anfang an vorhanden sind. In diesem zylindrischen Anfangsteil 1a, 2a ist eine Düse 3 untergebracht, deren Brennstoffeindüsung 4 mit dem engsten Querschnitt des durch die zwei Teilkegelkörper 1, 2 gebildeten kegeligen Hohlraumes 14 zusammenfällt. Sebst­verständlich kann der Brenner rein kegelig, also ohne zylindri­sche Anfangsteile 1a, 2a, ausgeführt sein. Beide Teilkegelkörper 1, 2 weisen je eine Brennstoffleitung 8, 9 auf, die mit Oeff­nungen 17 versehen sind, durch welche der gasförmige Brennstoff 13, der durch die tangentialen Lufteintrittsschlitze 19, 20 strömenden Verbrennungsluft 15 zugemischt wird. Die Lage dieser Brennstoffleitungen 8, 9 geht schematisch aus Fig. 2 - 4 hervor: Die Brennstoffleitungen 8, 9 sind am Ende der tangentialen Lufteintrittsschlitze 19, 20 angebracht, so dass dort auch die Zumischung 16 des gasförmigen Brennstoffes 13 mit der einströmenden Verbrennungsluft 15 stattfindet. Brennraumseitig 22 weist der Brenner eine kragenförmige als Verankerung für die Teilkegelkörper 1, 2 dienende Abschlussplatte 10 mit einer Anzahl Bohrungen 11 auf, durch welche nötigenfalls Verdünnungs­luft bzw. Kühlluft 18 dem vorderen Teil des Brennraumes 22 bzw. dessen Wand zugeführt werden kann. Der durch die Düse 3 strömende flüssige Brennstoff 12 wird in einem spitzen Winkel in den Kegelhohlraum 14 eingedüst, dergestalt, dass sich in der Brenneraustrittsebene ein möglichst homogener kegeliger Brennstoffspray einstellt, wobei streng darauf zu achten ist, dass die Innenwände der Teilkegelkörper 1, 2 vom eingedüsten flüssigen Brennstoff 12 nicht benetzt werden. Bei der Brenn­stoffeindüsung 4 kann es sich um eine luftunterstützte Düse oder um einen Druckzerstäuber handeln. Das kegelige Flüssig­brennstoffprofil 5 wird von einem tangential einströmenden rotierenden Verbrennungsluftstrom 15 umschlossen. In axialer Richtung wird die Konzentration des Flüssigbrennstoffes 12 fortlaufend durch die eingemischte Verbrennungsluft 15 abge­baut. Wird gasförmiger Brennstoff 13/16 verbrannt, geschieht die Gemischbildung mit der Verbrennungsluft 15 direkt am Ende der Lufteintrittsschlitze 19, 20. Bei der Eindüsung von flüssi­gem Brennstoff 12 wird im Bereich des Wirbelaufplatzens, also im Bereich der Rückströmzone 6, die optimale, homogene Brenn­stoffkonzentration über den Querschnitt erreicht. Die Zündung erfolgt an der Spitze der Rückströmzone 6. Erst an dieser Stelle kann eine stabile Flammenfront 7 entstehen. Ein Rück­schlag der Flamme ins Innere des Brenners, wie dies bei Vor­mischstrecken latent der Fall ist, wogegen dort mit kompli­zierten Flammenhaltern Abhilfe gesucht wird, ist hier nicht zu befürchten. Ist die Verbrennungsluft 15 vorgeheizt, so stellt sich eine natürliche Verdampfung des flüssigen Brenn­stoffes 12 ein, bevor der Punkt am Ausgang des Brenners erreicht ist, an dem die Zündung des Gemisches stattfinden kann. Der Grad der Verdampfung ist selbstverständlich von der Grösse des Brenners, der Tropfengrössenverteilung und der Temperatur der Verbrennungsluft 15 abhängig. Unabhängig aber davon, ob neben der homogenen Tropfenvormischung durch Verbrennungsluft 15 niedriger Temperatur oder zusätzlich nur eine partielle oder die vollständige Tropfenverdampfung durch vorgeheizte Verbrennungsluft 15 erreicht wird, fallen die Stickoxid- und Kohlenmonoxidemissionen niedrig aus, wenn der Luftüberschuss mindestens 60 % beträgt. Im Falle der vollständigen Verdampfung vor dem Eintritt in die Verbrennungszone sind die Schadstoff­emissionswerte am niedrigsten. Gleiches gilt auch für den nahstöchiometrischen Betrieb, wenn die Ueberschussluft durch rezirkulierendes Abgas ersetzt wird. Bei der Gestaltung der Teilkegelkörper 1, 2 hinsichtlich Kegelneigung und der Breite der tangentialen Lufteintrittsschlitze 19, 20 sind enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Luft mit ihrer Rückströmzone 6 im Bereich der Brennermündung zur Flammenstabilisierung einstellt. Allgemein ist zu sagen, dass eine Verkleinerung der Lufteintrittsschlitze 19, 20 die Rück­strömzone 6 weiter stromaufwärts verschiebt, wodurch dann allerdings das Gemisch früher zur Zündung käme. Immerhin ist hier zu sagen, dass die einmal geometrisch fixierte Rückström­zone 6 an sich positionsstabil ist, denn die Drallzahl nimmt in Strömungsrichtung im Bereich der Kegelform des Brenners zu. Die Konstruktion des Brenners eignet sich vorzüglich, bei vorgegebener Baulänge des Brenners, die Grösse der tangen­tialen Lufteintrittsschllitze 19, 20 zu verändern, indem die Teilkegelkörper 1, 2 anhand einer lösbaren Verbindung mit der Abschlussplatte 10 fixiert sind. Durch radiale Verschiebung der beiden Teilkegelkörper 1, 2 zu- oder auseinander verklei­nert bzw. vergrössert sich der Abstand der beiden Mittelachsen 1b, 2b, und dementsprechend verändert sich die Spaltgrösse der tangentialen Lufteintrittsschlitze 19, 20, wie dies aus Fig. 2 - 4 besonders gut hervorgeht. Selbstverständlich sind die Teilkegelkörper 1, 2 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben ange­steuert werden kann. Ja, es ist sogar möglich, die Teilkegel­körper 1, 2 durch eine gegenläufige drehende Bewegung spiral­artig eineinander zu verschieben. Somit hat man es in der Hand, die Form und die Grösse der tangentialen Lufteintritte 19, 20 beliebig zu variieren, womit der Brenner ohne Veränderung seiner Baulänge universell einsetzbar ist.The burner according to FIG. 1 consists of two half hollow tapered bodies 1, 2 which are offset from one another. The offset of the respective central axis 1b, 2b of the partial cone bodies 1, 2 to each other creates a tangential air inlet slot 19, 20 on both sides in a mirror-image arrangement (FIGS. 2-4), through which the combustion air 15 enters the interior of the burner, ie flows into the cone cavity 14. The two partial cone bodies 1, 2 each have a cylindrical initial part 1a, 2a, which likewise run offset to one another analogously to the partial cone bodies 1, 2, so that the tangential air inlet slots 19, 20 are present from the beginning. In this cylindrical initial part 1a, 2a, a nozzle 3 is accommodated, the fuel injection 4 of which coincides with the narrowest cross section of the conical cavity 14 formed by the two partial cone bodies 1, 2. Of course, the burner can be made purely conical, that is to say without cylindrical initial parts 1a, 2a. Both partial cone bodies 1, 2 each have a fuel line 8, 9, which are provided with openings 17 through which the gaseous fuel 13, which is mixed with the combustion air 15 flowing through the tangential air inlet slots 19, 20. The position of these fuel lines 8, 9 is shown schematically in FIGS. 2-4: the fuel lines 8, 9 are attached to the end of the tangential air inlet slots 19, 20, so that the admixture 16 of the gaseous fuel 13 with the inflowing combustion air 15 also takes place there . On the combustion chamber side 22, the burner has a collar-shaped anchoring for the partial cone body 1, 2 serving end plate 10 with a number of holes 11 through which, if necessary, dilution air or cooling air 18 can be supplied to the front part of the combustion chamber 22 or its wall. The liquid fuel 12 flowing through the nozzle 3 is injected into the cone cavity 14 at an acute angle, in such a way that a cone-shaped fuel spray which is as homogeneous as possible is obtained in the burner outlet plane, with strict care being taken to ensure that the inner walls of the partial cone bodies 1, 2 from injected liquid fuel 12 are not wetted. The fuel injector 4 can be an air-assisted nozzle or a pressure atomizer. The conical liquid fuel profile 5 is enclosed by a rotating combustion air stream 15 flowing in tangentially. In the axial direction, the concentration of the liquid fuel 12 is continuously reduced by the mixed-in combustion air 15. If gaseous fuel 13/16 is burned, the mixture is formed with the combustion air 15 directly at the end of the air inlet slots 19, 20. When liquid fuel 12 is injected, the optimal, homogeneous fuel concentration is in the area of the vortex bursting, ie in the area of the backflow zone 6 reached the cross section. The ignition takes place at the top of the return flow zone 6. Only at this point can a stable flame front 7 arise. A flashback of the flame into the interior of the burner, as is latently the case with premixing sections, while remedial measures are sought there with complicated flame holders is not to be feared here. If the combustion air 15 is preheated, natural evaporation of the liquid fuel 12 occurs before the point at the burner outlet at which the ignition of the mixture can take place is reached. The degree of evaporation is of course dependent on the size of the burner, the drop size distribution and the temperature of the combustion air 15. Regardless of whether, in addition to the homogeneous drop premixing by combustion air 15 at a low temperature or only a partial one or complete drop evaporation is achieved by preheated combustion air 15, the nitrogen oxide and carbon monoxide emissions are low if the excess air is at least 60%. In the case of complete evaporation before entering the combustion zone, the pollutant emission values are lowest. The same also applies to near-stoichiometric operation when the excess air is replaced by recirculating exhaust gas. When designing the partial cone bodies 1, 2 with regard to the taper inclination and the width of the tangential air inlet slots 19, 20, narrow limits must be observed so that the desired flow field of the air with its return flow zone 6 is established in the area of the burner mouth for flame stabilization. In general, it can be said that a reduction in the size of the air inlet slots 19, 20 shifts the backflow zone 6 further upstream, which would cause the mixture to ignite earlier, however. After all, it must be said here that the backflow zone 6, which is once geometrically fixed, is inherently position-stable, because the swirl number increases in the direction of flow in the region of the cone shape of the burner. The design of the burner is particularly suitable for changing the size of the tangential air inlet slots 19, 20 for a given overall length of the burner, in that the partial cone bodies 1, 2 are fixed to the end plate 10 by means of a releasable connection. The distance between the two central axes 1b, 2b decreases or increases as a result of radial displacement of the two partial cone bodies 1, 2 to and from one another, and the gap size of the tangential air inlet slots 19, 20 changes accordingly, as can be seen particularly well from FIGS. 2-4 emerges. Of course, the partial cone bodies 1, 2 can also be displaced relative to one another in another plane, as a result of which even an overlap thereof can be controlled. Yes, it is even possible to spirally move the partial cone bodies 1, 2 with one another by means of a counter-rotating movement. It is therefore in your hand to vary the shape and size of the tangential air inlets 19, 20 as desired, so that the burner can be used universally without changing its overall length.

Aus Fig. 2 - 4 geht auch die Lage der Leitbleche 21a, 21b hervor. Sie haben Strömungseinleitungsfunktionen, wobei sie, verschieden lang, das jeweilige Ende der Teilkegelkörper 1 und 2 in Anströmungsrichtung der Verbrennungsluft 15 verlängern. Die Kanalisierung der Verbrennungsluft in den Kegelhohlraum 14 kann durch Oeffnung bzw. Schliessung der Leitbleche 21a, 21b um den Drehpunkt 23 optimiert werden, insbesondere ist dies dann vonnöten, wenn die ursprüngliche Spaltgrösse der tangen­tialen Lufteintrittsschlitze 19, 20 verändert wird.The position of the guide plates 21a, 21b also appears from FIGS. 2-4. They have flow introduction functions, whereby they, of different lengths, extend the respective end of the partial cone bodies 1 and 2 in the direction of flow of the combustion air 15. The channeling of the combustion air into the cone cavity 14 can be optimized by opening or closing the guide plates 21a, 21b about the pivot point 23, in particular this is necessary if the original gap size of the tangential air inlet slots 19, 20 is changed.

Claims (7)

1. Verfahren für die vormischartige Verbrennung von flüssi­gem Brennstoff in einem Brenner ohne Vormischstrecke dadurch gekennzeichnet, dass im Innenraum (14) des Brenners eine in Strömungsrichtung sich ausbreitende, die Wände des Innen­raumes (14) nicht benetzende kegelförmige Flüssigbrennstoff­säule (5) gebildet wird, welche von einem tangential in den Brenner einströmenden rotierenden Verbrennungsluftstrom (15) umschlossen wird, wobei die Zündung des Gemisches ab Ausgang des Brenners stattfindet, und wobei im Bereich der Brennermündung durch eine Rückströmzone (6) eine Flammen­stabilisierung erstellt wird.1. A method for the premix-like combustion of liquid fuel in a burner without a premixing section, characterized in that a conical liquid fuel column (5) which spreads in the flow direction and does not wet the walls of the interior (14) is formed in the interior (14) of the burner, which is surrounded by a rotating combustion air flow (15) flowing tangentially into the burner, the ignition of the mixture taking place from the exit of the burner, and a flame stabilization being created in the area of the burner mouth by a backflow zone (6). 2. Brenner für die Heissgaserzeugung, bestehend aus hohlen, sich zu einem Körper ergänzenden Teilkegelkörpern, mit tangentialen Lufteintrittsschlitzen und Zuführungen für gasförmige und flüssige Brennstoffe, dadurch gekennzeichnet, dass der Brenner aus mindestens zwei aufeinander positionier­ten hohlen Teilkegelkörpern (1, 2) mit in Strömungsrichtung zunehmender Kegelneigung besteht, deren Mittelachsen (1b, 2b) in Längsrichtung der Teilkegelkörper (1, 2) zueinander versetzt verlaufen, wobei im Innenraum des von den Teilkegel­körpern (1, 2) gebildeten kegelhohlförmigen Innenraumes (14) am Brennerkopf eine Brennstoffdüse (3) plaziert ist, deren Brennstoffeindüsung (4) mittig der zueinander versetz­ten Mittelachsen (1b, 2b) der Teilkegelkörper (1, 2) liegt.2. Burner for the production of hot gas, consisting of hollow partial cone bodies which complement one another, with tangential air inlet slots and feeds for gaseous and liquid fuels, characterized in that the burner consists of at least two hollow partial cone bodies (1, 2) positioned one on top of the other with in the direction of flow There is an increasing taper inclination, the central axes (1b, 2b) of which are offset in the longitudinal direction of the partial cone bodies (1, 2), a fuel nozzle (3) being placed on the burner head in the interior of the conical hollow interior (14) formed by the partial cone bodies (1, 2) whose fuel injection (4) lies in the center of the mutually offset central axes (1b, 2b) of the partial cone body (1, 2). 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dem Verbrennungsluftstrom (15) vorgängig seiner Einströmung in den Innenraum (14) des Brenners gasförmiger Brennstoff (13/16) zugeführt wird.3. The method according to claim 1, characterized in that gaseous fuel (13/16) is supplied to the combustion air flow (15) in advance of its inflow into the interior (14) of the burner. 4. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass die Teilkegelkörper (1, 2) zu- oder voneinander verschiebbar sind.4. Burner according to claim 2, characterized in that the partial cone body (1, 2) can be moved towards or from each other. 5. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass die Brennstoffeindüsung (4) eine luftunterstützende Düse ist.5. Burner according to claim 2, characterized in that the fuel injection (4) is an air-supporting nozzle. 6. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass die Düse (3) ein Druckzerstäuber ist.6. Burner according to claim 2, characterized in that the nozzle (3) is a pressure atomizer. 7. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass die Teilkegelkörper (1, 2) anströmungsseitig mit beweglichen Leitblechen (21a, 21b) versehen sind.7. Burner according to claim 2, characterized in that the partial cone bodies (1, 2) are provided on the inflow side with movable guide plates (21a, 21b).
EP88120667A 1987-12-21 1988-12-10 Process for combustion of liquid fuel in a burner Expired - Lifetime EP0321809B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88120667T ATE63628T1 (en) 1987-12-21 1988-12-10 PROCESS FOR COMBUSTION OF LIQUID FUEL IN A BURNER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4980/87 1987-12-21
CH4980/87A CH674561A5 (en) 1987-12-21 1987-12-21

Publications (2)

Publication Number Publication Date
EP0321809A1 true EP0321809A1 (en) 1989-06-28
EP0321809B1 EP0321809B1 (en) 1991-05-15

Family

ID=4285866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120667A Expired - Lifetime EP0321809B1 (en) 1987-12-21 1988-12-10 Process for combustion of liquid fuel in a burner

Country Status (8)

Country Link
US (1) US4932861A (en)
EP (1) EP0321809B1 (en)
JP (1) JP2608320B2 (en)
KR (1) KR0129752B1 (en)
AT (1) ATE63628T1 (en)
CA (1) CA1312816C (en)
CH (1) CH674561A5 (en)
DE (1) DE3862854D1 (en)

Cited By (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113681A1 (en) * 1991-03-12 1992-09-17 Asea Brown Boveri BURNER FOR PRE-MIXING COMBUSTION OF A LIQUID AND / OR GASEOUS FUEL
DE4237187A1 (en) * 1992-11-04 1994-05-05 Raimund Prof Dr Ruderich Turbulence-generator for burner or mixer - has spiral surfaces for guidance of fuel and air
DE4306956A1 (en) * 1993-03-05 1994-09-08 Abb Management Ag Fuel feed for a gas turbine
EP0620362A1 (en) * 1993-04-08 1994-10-19 ABB Management AG Gasturbine
DE4316474A1 (en) * 1993-05-17 1994-11-24 Abb Management Ag Premix burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system
WO1995016881A1 (en) * 1993-12-17 1995-06-22 Abb Stal Ab Method and apparatus for atomizing liquid fuel
WO1995017628A1 (en) * 1993-12-21 1995-06-29 Abb Carbon Ab Method and device for after-burning of particulate fuel in a power plant
DE4409918A1 (en) * 1994-03-23 1995-09-28 Abb Management Ag Low calorific value fuel burner for combustion chamber
DE4411623A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
DE4411622A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
EP0687860A2 (en) 1994-05-19 1995-12-20 ABB Management AG Self igniting combustion chamber
DE4424639A1 (en) * 1994-07-13 1996-01-18 Abb Research Ltd Method and device for fuel distribution in a burner suitable for both liquid and gaseous fuels
DE4424599A1 (en) * 1994-07-13 1996-01-18 Abb Research Ltd Method and device for operating a combined burner for liquid and gaseous fuels
EP0694740A2 (en) 1994-07-25 1996-01-31 Abb Research Ltd. Combustion chamber
EP0694730A2 (en) 1994-07-25 1996-01-31 Abb Research Ltd. Burner
EP0704657A2 (en) 1994-10-01 1996-04-03 ABB Management AG Burner
EP0710797A2 (en) 1994-11-05 1996-05-08 Abb Research Ltd. Method and device for operating a premix burner
EP0718483A2 (en) 1994-12-24 1996-06-26 ABB Management AG Steam injection in gas turbine
EP0718470A2 (en) 1994-12-24 1996-06-26 ABB Management AG Method of operation of a gas turbine
EP0727611A1 (en) * 1995-02-20 1996-08-21 ABB Management AG Combustion chamber with two-stage combustion
EP0775869A2 (en) 1995-11-23 1997-05-28 Abb Research Ltd. Premix burner
EP0816759A2 (en) 1996-06-29 1998-01-07 Abb Research Ltd. Premix burner and method of operating the burner
EP0833105A2 (en) 1996-09-30 1998-04-01 Abb Research Ltd. Premix burner
EP0641971B1 (en) * 1993-09-06 1998-05-13 Abb Research Ltd. Method for operating a premix burner and premix burner for execution of the method
EP0783089A3 (en) * 1995-12-27 1998-11-11 Abb Research Ltd. Cone-shaped burner
EP0881432A2 (en) 1997-05-26 1998-12-02 Abb Research Ltd. Burner for operating a hot gas generating unit
EP0881431A2 (en) 1997-05-26 1998-12-02 Abb Research Ltd. Burner for operating a hot gas generating unit
EP0887539A2 (en) 1997-06-26 1998-12-30 Asea Brown Boveri AG Fan jet engine
EP0892212A2 (en) 1997-07-17 1999-01-20 Abb Research Ltd. Pressure spray nozzle
EP0899510A2 (en) 1997-08-30 1999-03-03 Asea Brown Boveri AG Plenum for a combustor
EP0899506A2 (en) 1997-08-30 1999-03-03 Abb Research Ltd. Combustion device
EP0778445A3 (en) * 1995-12-05 1999-04-28 Asea Brown Boveri Ag Premix burner
EP0911583A1 (en) 1997-10-27 1999-04-28 Asea Brown Boveri AG Method of operating a premix burner
EP0915232A1 (en) 1997-07-25 1999-05-12 Asea Brown Boveri AG Process for operating a power plant
EP0916894A1 (en) 1997-11-13 1999-05-19 Abb Research Ltd. Burner for operating a heat generator
EP0924458A1 (en) 1997-12-22 1999-06-23 Asea Brown Boveri AG Burner
EP0978635A1 (en) 1998-08-05 2000-02-09 Asea Brown Boveri AG Process for cooling the thermally stressed structures of a power plant
EP0981016A1 (en) 1998-08-19 2000-02-23 Asea Brown Boveri AG Burner and method for operating an internal combustion engine
EP0981019A1 (en) 1998-08-20 2000-02-23 Asea Brown Boveri AG Method and burner for combustion of liquid fuels
EP0987493A1 (en) 1998-09-16 2000-03-22 Abb Research Ltd. Burner for a heat generator
EP0995891A2 (en) 1998-10-20 2000-04-26 Asea Brown Boveri AG Turbomachine and method for its operation
EP1001214A1 (en) * 1998-11-09 2000-05-17 Asea Brown Boveri AG Process to prevent the formation of flow instabilities in a burner
EP1004823A2 (en) 1998-11-10 2000-05-31 Asea Brown Boveri AG Damping device for the reduction of the oscillation amplitude of acoustic waves for a burner
EP1065346A1 (en) 1999-07-02 2001-01-03 Asea Brown Boveri AG Gas-turbine engine combustor
EP1070915A1 (en) 1999-07-22 2001-01-24 Asea Brown Boveri AG Premix burner
EP1070917A1 (en) 1999-07-23 2001-01-24 ABB Alstom Power (Schweiz) AG Process for active suppression of fluidic instabilities in a combustion system as well as combustion system for carrying out the process
EP1070914A1 (en) 1999-07-22 2001-01-24 ABB Alstom Power (Schweiz) AG Premix burner
EP1085267A2 (en) 1999-09-20 2001-03-21 ABB (Schweiz) AG Control of primary measures for the reduction of NOx in gas turbines
EP1091096A1 (en) 1999-10-06 2001-04-11 RFT S.p.A. System for detecting the rotation speed of an internal combustion engine camshaft
DE19948956A1 (en) * 1999-10-11 2001-04-12 Asea Brown Boveri Mounting system for burner duct in gas turbine cylinder comprises internal groove in cylinder into which lugs on top and bottom retaining components fit, side pieces being fitted between retaining components and bolted into place
EP1182398A1 (en) 2000-08-21 2002-02-27 Alstom (Switzerland) Ltd Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process
WO2002029318A1 (en) * 2000-10-05 2002-04-11 Alstom (Switzerland) Ltd Method and device for supplying fuel to a premix burner
EP1279898A2 (en) 2001-07-26 2003-01-29 ALSTOM (Switzerland) Ltd Premix burner with high flame stability
WO2003038253A1 (en) * 2001-10-31 2003-05-08 Alstom Technology Ltd Sequentially-fired gas turbine unit
EP1336800A1 (en) 2002-02-13 2003-08-20 ALSTOM (Switzerland) Ltd Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method
EP1384950A2 (en) 2002-07-25 2004-01-28 ALSTOM (Switzerland) Ltd Annular combustion chamber for a gas turbine
DE19515082B4 (en) * 1995-04-25 2005-02-03 Alstom premix
DE4325802B4 (en) * 1993-07-31 2005-07-07 Alstom Method for operating a gas turbine plant with liquid or gaseous fuel
WO2005068913A1 (en) * 2004-01-20 2005-07-28 Alstom Technology Ltd Premixing burner arrangement for operating a combustion chamber in addition to a method for operating a combustion chamber
US7013648B2 (en) 2002-05-16 2006-03-21 Alstom Technology Ltd. Premix burner
US7065971B2 (en) 2003-03-05 2006-06-27 Alstom Technology Ltd. Device for efficient usage of cooling air for acoustic damping of combustion chamber pulsations
US7140183B2 (en) 2002-08-12 2006-11-28 Alstom Technology Ltd. Premixed exit ring pilot burner
US7189073B2 (en) 2000-10-16 2007-03-13 Alstom Technology Ltd. Burner with staged fuel injection
US7241138B2 (en) 2001-12-24 2007-07-10 Alstom Technology Ltd. Burner with stepped fuel injection
US7467942B2 (en) 2004-03-30 2008-12-23 Alstom Technology Ltd. Device and method for flame stabilization in a burner
WO2009019114A2 (en) * 2007-08-07 2009-02-12 Alstom Technology Ltd Burner for a combustion chamber of a turbine group
US7491056B2 (en) 2004-11-03 2009-02-17 Alstom Technology Ltd. Premix burner
DE19527453B4 (en) * 1995-07-27 2009-05-07 Alstom premix
WO2009019113A3 (en) * 2007-08-07 2009-06-11 Alstom Technology Ltd Burner for a combustion chamber of a turbo group
EP2090830A1 (en) 2008-02-13 2009-08-19 ALSTOM Technology Ltd Fuel supply arrangement
WO2009103671A1 (en) * 2008-02-20 2009-08-27 Alstom Technology Ltd Gas turbine having an improved cooling architecture
US7610761B2 (en) 2005-03-23 2009-11-03 Alstom Technology Ltd. Method and device for the combustion of hydrogen in a premix burner
US7632091B2 (en) 2005-03-09 2009-12-15 Alstom Technology Ltd. Premix burner for operating a combustion chamber
US7780437B2 (en) 2004-10-11 2010-08-24 Stefano Bernero Premix burner
WO2010115980A2 (en) 2009-04-11 2010-10-14 Alstom Technology Ltd. Combustion chamber having a helmholtz damper
US7871262B2 (en) 2004-11-30 2011-01-18 Alstom Technology Ltd. Method and device for burning hydrogen in a premix burner
WO2011026732A1 (en) 2009-09-03 2011-03-10 Alstom Technology Ltd. Gas turbine group
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
US7975486B2 (en) 2005-06-17 2011-07-12 Alstom Technology Ltd Burner for premix-type combustion
EP2354659A1 (en) 2010-01-28 2011-08-10 Alstom Technology Ltd Helmholtz damper for installing in the combustor of a gas turbine and also method for installing such a helmholtz damper
US8007273B2 (en) 2005-03-09 2011-08-30 Alstom Technology Ltd. Premixing burner for generating an ignitable fuel/air mixture
US8029273B2 (en) * 2004-03-31 2011-10-04 Alstom Technology Ltd Burner
US8033821B2 (en) 2007-11-27 2011-10-11 Alstom Technology Ltd. Premix burner for a gas turbine
US8057224B2 (en) 2004-12-23 2011-11-15 Alstom Technology Ltd. Premix burner with mixing section
US8066509B2 (en) 2007-11-27 2011-11-29 Alstom Technology Ltd. Method and device for combusting hydrogen in a premix burner
US8210797B2 (en) 2008-05-26 2012-07-03 Alstom Technology Ltd Gas turbine with a stator blade
US8272220B2 (en) 2008-02-20 2012-09-25 Alstom Technology Ltd Impingement cooling plate for a hot gas duct of a thermal machine
WO2012136787A1 (en) 2011-04-08 2012-10-11 Alstom Technology Ltd Gas turbine assembly and corresponding operating method
US8393159B2 (en) * 2003-06-19 2013-03-12 Hitachi, Ltd. Gas turbine combustor and fuel supply method for same
US8459985B2 (en) 2008-03-07 2013-06-11 Alstom Technology Ltd Method and burner arrangement for the production of hot gas, and use of said method
US8459934B2 (en) 2008-03-28 2013-06-11 Alstom Technology Ltd Varying cross-sectional area guide blade
US8468833B2 (en) 2008-03-07 2013-06-25 Alstom Technology Ltd Burner arrangement, and use of such a burner arrangement
WO2014001230A1 (en) 2012-06-29 2014-01-03 Alstom Technology Ltd Method for a part load co reduction operation for a sequential gas turbine
EP2685172A2 (en) 2012-07-09 2014-01-15 Alstom Technology Ltd Can-annular gas turbine combustion system with staged premix-combustion
EP2694790A1 (en) * 2011-04-06 2014-02-12 Selas Fluid Processing Corporation Burner assembly and method for reducing nox emissions
EP2700878A2 (en) 2012-08-24 2014-02-26 Alstom Technology Ltd Method for mixing a dilution air in a sequential combustion system of a gas turbine
EP2700879A2 (en) 2012-08-24 2014-02-26 Alstom Technology Ltd Method for mixing a dilution air in a sequential combustion system of a gas turbine
WO2014029512A2 (en) 2012-08-24 2014-02-27 Alstom Technology Ltd Sequential combustion with dilution gas mixer
EP2703721A1 (en) 2012-08-31 2014-03-05 Alstom Technology Ltd Premix burner
EP2725300A1 (en) 2012-10-24 2014-04-30 Alstom Technology Ltd Damper arrangement for reducing combustion-chamber pulsations
US8776524B2 (en) 2007-12-10 2014-07-15 Alstom Technology Ltd. Fuel distribution system for a gas turbine with multistage burner arrangement
US8783044B2 (en) 2007-12-29 2014-07-22 Alstom Technology Ltd Turbine stator nozzle cooling structure
US8801429B2 (en) 2006-03-30 2014-08-12 Alstom Technology Ltd Burner arrangement
US8801366B2 (en) 2008-03-28 2014-08-12 Alstom Technology Ltd. Stator blade for a gas turbine and gas turbine having same
EP2796789A1 (en) 2013-04-26 2014-10-29 Alstom Technology Ltd Can combustor for a can-annular combustor arrangement in a gas turbine
US8950192B2 (en) 2008-02-20 2015-02-10 Alstom Technology Ltd. Gas turbine
EP2837889A1 (en) 2013-08-15 2015-02-18 Alstom Technology Ltd Sequential combustion with dilution gas mixer
EP2837883A1 (en) 2013-08-16 2015-02-18 ALSTOM Technology Ltd Premixed second stage can annular combustor with mixing lobes for of a sequential gas turbine
EP2857658A1 (en) 2013-10-01 2015-04-08 Alstom Technology Ltd Gas turbine with sequential combustion arrangement
EP2863018A1 (en) 2013-10-17 2015-04-22 Alstom Technology Ltd Cooling structure for a transition piece of a gas turbine
EP2894405A1 (en) 2014-01-10 2015-07-15 Alstom Technology Ltd Sequential combustion arrangement with dilution gas
US9103547B2 (en) 2007-11-09 2015-08-11 Alstom Technology Ltd Method for operating a burner
EP2921779A1 (en) 2014-03-18 2015-09-23 Alstom Technology Ltd Combustion chamber with cooling sleeve
EP2960436A1 (en) 2014-06-27 2015-12-30 Alstom Technology Ltd Cooling structure for a transition piece of a gas turbine
EP2993315A1 (en) 2014-09-05 2016-03-09 Alstom Technology Ltd Apparatus for an assembly tool for mounting or dismantling, replacement and maintenance of a component of an engine
EP2993404A1 (en) 2014-09-08 2016-03-09 Alstom Technology Ltd Dilution gas or air mixer for a combustor of a gas turbine
EP2993314A1 (en) 2014-09-05 2016-03-09 Alstom Technology Ltd Device and method for mounting or dismantling, replacement and maintenance of a can-combustor
EP3015772A1 (en) 2014-10-31 2016-05-04 Alstom Technology Ltd Combustor arrangement for a gas turbine
EP3015771A1 (en) 2014-10-31 2016-05-04 Alstom Technology Ltd Combustor arrangement for a gas turbine
EP3026347A1 (en) 2014-11-25 2016-06-01 Alstom Technology Ltd Combustor with annular bluff body
EP3037725A1 (en) 2014-12-22 2016-06-29 Alstom Technology Ltd Mixer for admixing a dilution air to the hot gas flow
EP3037726A1 (en) 2014-12-22 2016-06-29 Alstom Technology Ltd Separate feedings of cooling and dilution air
EP3037728A1 (en) 2014-12-22 2016-06-29 Alstom Technology Ltd Axially staged mixer with dilution air injection
EP3067622A1 (en) 2015-03-12 2016-09-14 General Electric Technology GmbH Combustion chamber with double wall
EP3130848A1 (en) 2015-08-12 2017-02-15 General Electric Technology GmbH Sequential combustion arrangement with cooling gas for dilution
EP3133343A1 (en) 2015-08-18 2017-02-22 General Electric Technology GmbH Gas turbine with diluted liquid fuel
EP3135880A1 (en) 2015-08-25 2017-03-01 General Electric Technology GmbH Gas turbine with a sequential combustion arrangement and fuel composition control
EP3228937A1 (en) 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device
EP3228939A1 (en) 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion appliance
EP3306194A1 (en) 2016-10-06 2018-04-11 Ansaldo Energia IP UK Limited Combustor wall element and method for manufacturing the same
US10208958B2 (en) 2009-09-17 2019-02-19 Ansaldo Energia Switzerland AG Method and gas turbine combustion system for safely mixing H2-rich fuels with air
US10208960B2 (en) 2007-11-27 2019-02-19 Ansaldo Energia Switzerland AG Method for operating a gas turbine installation and equipment for carrying out the method
DE102005042889B4 (en) 2005-09-09 2019-05-09 Ansaldo Energia Switzerland AG Gas turbine group

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816525A (en) 1987-07-06 1989-03-28 University Of Waterloo Polymer hydrogenation process
US5193995A (en) * 1987-12-21 1993-03-16 Asea Brown Boveri Ltd. Apparatus for premixing-type combustion of liquid fuel
CH678757A5 (en) * 1989-03-15 1991-10-31 Asea Brown Boveri
CH678568A5 (en) * 1989-03-15 1991-09-30 Asea Brown Boveri
CH679692A5 (en) * 1989-04-24 1992-03-31 Asea Brown Boveri
CH680816A5 (en) * 1989-04-27 1992-11-13 Asea Brown Boveri
CH680084A5 (en) * 1989-06-06 1992-06-15 Asea Brown Boveri
CH680157A5 (en) * 1989-12-01 1992-06-30 Asea Brown Boveri
CH680946A5 (en) * 1989-12-19 1992-12-15 Asea Brown Boveri
CH680467A5 (en) * 1989-12-22 1992-08-31 Asea Brown Boveri
CH681480A5 (en) * 1990-06-07 1993-03-31 Asea Brown Boveri
CH682009A5 (en) * 1990-11-02 1993-06-30 Asea Brown Boveri
ATE144316T1 (en) * 1990-12-19 1996-11-15 Asea Brown Boveri BURNER HEAD FOR THE PREMIXED COMBUSTION OF A LIQUID FUEL IN AN ATMOSPHERIC FIREPLACE
US5165241A (en) * 1991-02-22 1992-11-24 General Electric Company Air fuel mixer for gas turbine combustor
EP0518072A1 (en) * 1991-06-14 1992-12-16 Asea Brown Boveri Ag Burner for an internal combustion engine, a combustion chamber of a gas turbine plant or a furnace
CH684962A5 (en) * 1991-07-03 1995-02-15 Asea Brown Boveri Burner for operating an internal combustion engine, a combustor of a gas turbine group or a firing.
WO1993009384A1 (en) * 1991-10-28 1993-05-13 Irvin Glassman Asymmetric whirl combustion
DE59104727D1 (en) * 1991-12-23 1995-03-30 Asea Brown Boveri Device for mixing two gaseous components and burner in which this device is used.
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
EP0561011A1 (en) * 1992-03-16 1993-09-22 Asea Brown Boveri Ag Intercooled compressor
DE4223828A1 (en) * 1992-05-27 1993-12-02 Asea Brown Boveri Method for operating a combustion chamber of a gas turbine
EP0576697B1 (en) * 1992-06-29 1997-08-27 Abb Research Ltd. Combustor chamber for a gas turbine
US5251447A (en) * 1992-10-01 1993-10-12 General Electric Company Air fuel mixer for gas turbine combustor
DE59209209D1 (en) * 1992-10-16 1998-04-02 Asea Brown Boveri Gas powered premix burner
EP0593816B1 (en) * 1992-10-23 1997-04-16 Asea Brown Boveri Ag Burner with electric ignition device
DE4304213A1 (en) * 1993-02-12 1994-08-18 Abb Research Ltd Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system
CH687831A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Premix burner.
US5623826A (en) * 1993-07-30 1997-04-29 Hitachi, Ltd. Combustor having a premix chamber with a blade-like structural member and method of operating the combustor
US5444982A (en) * 1994-01-12 1995-08-29 General Electric Company Cyclonic prechamber with a centerbody
US5461865A (en) * 1994-02-24 1995-10-31 United Technologies Corporation Tangential entry fuel nozzle
DE4408256A1 (en) * 1994-03-11 1995-09-14 Abb Management Ag Method and device for flame stabilization of premix burners
DE4412315B4 (en) * 1994-04-11 2005-12-15 Alstom Method and device for operating the combustion chamber of a gas turbine
DE4416650A1 (en) * 1994-05-11 1995-11-16 Abb Management Ag Combustion process for atmospheric combustion plants
DE4417536A1 (en) * 1994-05-19 1995-11-23 Abb Management Ag Process for operating a combustion chamber
CH688899A5 (en) * 1994-05-26 1998-05-15 Asea Brown Boveri A method for controlling a gas turbine group.
DE4429539C2 (en) * 1994-08-19 2002-10-24 Alstom Process for speed control of a gas turbine when shedding loads
DE4440558A1 (en) * 1994-11-12 1996-05-15 Abb Research Ltd Premix burner
DE4441235A1 (en) 1994-11-19 1996-05-23 Abb Management Ag Combustion chamber with multi-stage combustion
DE4441641A1 (en) * 1994-11-23 1996-05-30 Abb Management Ag Combustion chamber with premix burners
DE4446842B4 (en) * 1994-12-27 2006-08-10 Alstom Method and device for feeding a gaseous fuel into a premix burner
DE4446945B4 (en) * 1994-12-28 2005-03-17 Alstom Gas powered premix burner
DE19502796B4 (en) * 1995-01-30 2004-10-28 Alstom burner
US5687571A (en) * 1995-02-20 1997-11-18 Asea Brown Boveri Ag Combustion chamber with two-stage combustion
DE19507088B4 (en) * 1995-03-01 2005-01-27 Alstom premix
DE19508018A1 (en) * 1995-03-07 1996-09-12 Abb Management Ag Process for operating a power plant
DE19510744A1 (en) * 1995-03-24 1996-09-26 Abb Management Ag Combustion chamber with two-stage combustion
DE19514991A1 (en) * 1995-04-24 1996-10-31 Abb Management Ag Method for operating a sequentially fired gas turbine group
DE19516798A1 (en) * 1995-05-08 1996-11-14 Abb Management Ag Premix burner with axial or radial air flow
DE19524213A1 (en) * 1995-07-03 1997-01-09 Abb Management Ag Fuel supply for gas turbines with an annular combustion chamber
DE19536672A1 (en) * 1995-09-30 1997-04-03 Abb Research Ltd Method for burning fuel in main stream of combustion air
DE19536839A1 (en) * 1995-10-02 1997-04-30 Abb Management Ag Process for operating a power plant
DE19537637A1 (en) * 1995-10-10 1997-04-17 Asea Brown Boveri Process for operating a power plant
DE19542644B4 (en) * 1995-11-17 2008-12-11 Alstom premixed
DE19545310B4 (en) * 1995-12-05 2008-06-26 Alstom premix
DE19547913A1 (en) * 1995-12-21 1997-06-26 Abb Research Ltd Burners for a heat generator
DE19547914A1 (en) * 1995-12-21 1997-06-26 Abb Research Ltd Premix burner for a heat generator
DE19547912A1 (en) 1995-12-21 1997-06-26 Abb Research Ltd Burners for a heat generator
DE19608349A1 (en) * 1996-03-05 1997-09-11 Abb Research Ltd Pressure atomizer nozzle
DE19614001A1 (en) * 1996-04-09 1997-10-16 Abb Research Ltd Combustion chamber
DE19615911A1 (en) * 1996-04-22 1997-10-23 Asea Brown Boveri Method for operating a combination system
DE19615910B4 (en) * 1996-04-22 2006-09-14 Alstom burner arrangement
DE19618856B4 (en) * 1996-05-10 2006-04-13 Alstom Device for operating an annular combustion chamber equipped with combined burners for liquid and gaseous fuels
DE19619873A1 (en) * 1996-05-17 1997-11-20 Abb Research Ltd burner
US5772422A (en) * 1996-08-27 1998-06-30 Pvi Industries, Inc. Burner array for water heating apparatus
DE19649486A1 (en) * 1996-11-29 1998-06-04 Abb Research Ltd Combustion chamber
DE19654009B4 (en) * 1996-12-21 2006-05-18 Alstom Premix burner for operating a combustion chamber with a liquid and / or gaseous fuel
DE19654008B4 (en) * 1996-12-21 2006-08-10 Alstom burner
DE19654116A1 (en) * 1996-12-23 1998-06-25 Abb Research Ltd Burner for operating a combustion chamber with a liquid and / or gaseous fuel
DE19654741A1 (en) 1996-12-30 1998-07-02 Abb Research Ltd Boiler plant for heat generation
ATE198788T1 (en) * 1997-03-18 2001-02-15 Alstom Power Schweiz Ag METHOD FOR OPERATING A SWIRL-STABILIZED BURNER AND BURNER FOR IMPLEMENTING THE METHOD
DE59710046D1 (en) 1997-03-20 2003-06-12 Alstom Switzerland Ltd Gas turbine with a toroidal combustion chamber
DE19719197A1 (en) 1997-05-09 1998-11-12 Abb Research Ltd Method and device for operating the combustion chamber of a gas turbine system with liquid fuel
DE19736902A1 (en) * 1997-08-25 1999-03-04 Abb Research Ltd Burners for a heat generator
DE59709510D1 (en) 1997-09-15 2003-04-17 Alstom Switzerland Ltd Combined pressure atomizer nozzle
DE59711110D1 (en) * 1997-10-27 2004-01-22 Alstom Switzerland Ltd Method of operating a premix burner and premix burner
DE59709446D1 (en) * 1997-10-31 2003-04-10 Alstom Switzerland Ltd Burner for operating a heat generator
ATE232282T1 (en) 1997-11-25 2003-02-15 Alstom BURNER FOR OPERATING A HEAT GENERATOR
US6176087B1 (en) * 1997-12-15 2001-01-23 United Technologies Corporation Bluff body premixing fuel injector and method for premixing fuel and air
DE19757189B4 (en) * 1997-12-22 2008-05-08 Alstom Method for operating a burner of a heat generator
DE19821889B4 (en) 1998-05-15 2008-03-27 Alstom Method and device for carrying out repair and / or maintenance work in the inner housing of a multi-shell turbomachine
US6141954A (en) * 1998-05-18 2000-11-07 United Technologies Corporation Premixing fuel injector with improved flame disgorgement capacity
DE59812944D1 (en) 1998-09-16 2005-08-25 Alstom Technology Ltd Baden Method for preventing flow instabilities in a burner
EP0995910A1 (en) 1998-10-20 2000-04-26 Abb Research Ltd. Vortex valve
DE19854382B4 (en) * 1998-11-25 2009-01-02 Alstom Method and device for atomizing liquid fuel for a firing plant
EP1010939B1 (en) 1998-12-15 2004-02-11 ALSTOM (Switzerland) Ltd Combustion chamber with acoustic damped fuel supply system
DE19859829A1 (en) 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Burner for operating a heat generator
DE19905995A1 (en) * 1999-02-15 2000-08-17 Asea Brown Boveri Injection lance or nozzle for liquid and gaseous fuel in combustion chamber is part of secondary or tertiary burner around which flows hot gas jet in main flow direction
DE19914666B4 (en) * 1999-03-31 2009-08-20 Alstom Burner for a heat generator
DE19942387A1 (en) * 1999-07-14 2001-01-18 Abb Alstom Power Ch Ag Method for burning a liquid fuel in a combustion system and combustion system for carrying out the method
DE19948674B4 (en) * 1999-10-08 2012-04-12 Alstom Combustion device, in particular for the drive of gas turbines
DE19948673B4 (en) * 1999-10-08 2009-02-26 Alstom Method for producing hot gases in a combustion device and combustion device for carrying out the method
US6769903B2 (en) * 2000-06-15 2004-08-03 Alstom Technology Ltd Method for operating a burner and burner with stepped premix gas injection
US6474071B1 (en) * 2000-09-29 2002-11-05 General Electric Company Multiple injector combustor
DE10049204A1 (en) * 2000-10-05 2002-04-11 Alstom Switzerland Ltd Device and method for the electrostatic atomization of a liquid medium
DE10050248A1 (en) 2000-10-11 2002-04-18 Alstom Switzerland Ltd Pre-mixing burner comprises swirl burner with inner chamber, with widening passage, injector with adjustable elements.
US6360776B1 (en) 2000-11-01 2002-03-26 Rolls-Royce Corporation Apparatus for premixing in a gas turbine engine
DE10055408A1 (en) 2000-11-09 2002-05-23 Alstom Switzerland Ltd Process for fuel injection into a burner
DE10056124A1 (en) 2000-11-13 2002-05-23 Alstom Switzerland Ltd Burner system with staged fuel injection and method of operation
DE50112904D1 (en) 2000-12-16 2007-10-04 Alstom Technology Ltd Method for operating a premix burner
DE10064259B4 (en) 2000-12-22 2012-02-02 Alstom Technology Ltd. Burner with high flame stability
EP1262714A1 (en) 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Burner with exhausts recirculation
EP1436546B1 (en) 2001-10-19 2016-09-14 General Electric Technology GmbH Burner for synthesis gas
JP4246067B2 (en) * 2001-12-20 2009-04-02 アルストム テクノロジー リミテッド Fuel lance
EP1528316B1 (en) * 2002-08-09 2017-10-04 JFE Steel Corporation Combustion controller for tubular flame burner and method for controlling combustion
KR20040015644A (en) * 2002-08-13 2004-02-19 주식회사 제이에이치에너지 Sprayer and mixer of oxygen, hydrogen and liquid fuel for burner
DE10247955A1 (en) 2002-10-12 2004-05-13 Alstom (Switzerland) Ltd. Burner for gas turbine has at least one resonance tube with one end open and other closed
DE102004005477A1 (en) 2003-02-11 2004-08-19 Alstom Technology Ltd Gas turbine group operation method in which a catalytic combustion stage is operated at rotational speeds below a defined limit that is less than the turbine group nominal operating speed
WO2004079264A1 (en) 2003-03-07 2004-09-16 Alstom Technology Ltd Premixing burner
EP1510755B1 (en) 2003-09-01 2016-09-28 General Electric Technology GmbH Burner with lance and staged fuel supply.
DE102004002631A1 (en) * 2004-01-19 2005-08-11 Alstom Technology Ltd A method of operating a gas turbine combustor
CN100590355C (en) 2004-02-12 2010-02-17 阿尔斯通技术有限公司 Premix burner with a swirl generator delimiting a conical swirl space and having sensor monitoring
DE102005011287B4 (en) 2004-03-31 2018-07-19 Ansaldo Energia Ip Uk Limited Method and an apparatus for operating at least one burner for firing the combustion chamber of a heat engine or gas turbine
ES2548236T3 (en) 2004-12-23 2015-10-15 Alstom Technology Ltd Procedure for the operation of a group of gas turbines
CN101365913A (en) * 2005-11-04 2009-02-11 阿尔斯托姆科技有限公司 Fuel lance
DE102006059532B4 (en) 2006-02-20 2020-07-09 Ansaldo Energia Ip Uk Limited Method for operating a gas turbine arrangement with sequential combustion
EP1843098A1 (en) * 2006-04-07 2007-10-10 Siemens Aktiengesellschaft Gas turbine combustor
US8124289B2 (en) * 2007-01-22 2012-02-28 Rolls-Royce Fuel Cell Systems (Us) Inc. Multistage combustor and method for starting a fuel cell system
MY158901A (en) * 2008-02-20 2016-11-30 General Electric Technology Gmbh Gas turbine having an annular combustion chamber
DE102008012794B3 (en) * 2008-03-05 2009-08-20 Auerhahn Bestecke Gmbh firing
JP5449205B2 (en) * 2008-03-07 2014-03-19 アルストム テクノロジー リミテッド Burner device and method of using such a burner device
WO2009118234A1 (en) * 2008-03-28 2009-10-01 Alstom Technology Ltd Blade for a rotating thermal engine
EP2257399A1 (en) * 2008-03-31 2010-12-08 ALSTOM Technology Ltd Blade for a gas turbine
JP5462527B2 (en) * 2009-05-19 2014-04-02 大阪瓦斯株式会社 Tubular flame burner
CH701905A1 (en) 2009-09-17 2011-03-31 Alstom Technology Ltd Method of burning hydrogen-rich, gaseous fuels in a burner and burner for carrying out the method.
WO2011054760A1 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd A cooling scheme for an increased gas turbine efficiency
WO2011054771A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Premixed burner for a gas turbine combustor
WO2011054766A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
EP2496882B1 (en) 2009-11-07 2018-03-28 Ansaldo Energia Switzerland AG Reheat burner injection system with fuel lances
WO2011054739A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
JP5448762B2 (en) * 2009-12-02 2014-03-19 三菱重工業株式会社 Combustion burner for gas turbine
CH703655A1 (en) * 2010-08-27 2012-02-29 Alstom Technology Ltd Premix FOR A GAS TURBINE.
EP2522912B1 (en) 2011-05-11 2019-03-27 Ansaldo Energia Switzerland AG Flow straightener and mixer
RU2550370C2 (en) 2011-05-11 2015-05-10 Альстом Текнолоджи Лтд Centrifugal nozzle with projecting parts
JP5203489B2 (en) * 2011-06-15 2013-06-05 中外炉工業株式会社 Combustion device
CA2830031C (en) 2012-10-23 2016-03-15 Alstom Technology Ltd. Burner for a can combustor
EP2725302A1 (en) 2012-10-25 2014-04-30 Alstom Technology Ltd Reheat burner arrangement
EP2796788A1 (en) 2013-04-24 2014-10-29 Alstom Technology Ltd Swirl generator
JP2013228207A (en) * 2013-08-15 2013-11-07 Osaka Gas Co Ltd Tubular flame burner
EP2848865A1 (en) 2013-09-12 2015-03-18 Alstom Technology Ltd Thermoacoustic stabilization method
EP2933559A1 (en) 2014-04-16 2015-10-21 Alstom Technology Ltd Fuel mixing arragement and combustor with such a fuel mixing arrangement
EP3023696B1 (en) 2014-11-20 2019-08-28 Ansaldo Energia Switzerland AG Lobe lance for a gas turbine combustor
EP3062019B1 (en) 2015-02-27 2018-11-21 Ansaldo Energia Switzerland AG Method and device for flame stabilization in a burner system of a stationary combustion engine
EP3354984B1 (en) 2017-01-31 2020-09-09 Ansaldo Energia Switzerland AG Lobed injector for a gas turbine combustor
KR102134354B1 (en) * 2020-04-16 2020-07-15 국방과학연구소 Device for preventing projection, device for flame protection, and guided weapons comprising thereof
CN114110582B (en) * 2022-01-25 2022-04-19 烟台市大昌燃气器具有限责任公司 Combustion-supporting combustor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210462A1 (en) * 1985-07-30 1987-02-04 BBC Brown Boveri AG Dual combustor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1910735A (en) * 1927-02-14 1933-05-23 Buttnerwerke A G Burner for coal dust firing
US2800093A (en) * 1951-06-13 1957-07-23 Pollopas Patents Ltd Apparatus for burning pulverized fuel
FR2316540A2 (en) * 1975-02-28 1977-01-28 Heurtey Efflutherm METHOD AND DEVICE FOR THE EVAPORATION AND THERMAL OXIDATION OF LIQUID EFFLUENTS AND SOLID WASTE IN PULVERULENT FORM
US4120640A (en) * 1977-02-18 1978-10-17 Infern-O-Therm Corporation Burner for liquid fuel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210462A1 (en) * 1985-07-30 1987-02-04 BBC Brown Boveri AG Dual combustor

Cited By (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113681A1 (en) * 1991-03-12 1992-09-17 Asea Brown Boveri BURNER FOR PRE-MIXING COMBUSTION OF A LIQUID AND / OR GASEOUS FUEL
DE4237187A1 (en) * 1992-11-04 1994-05-05 Raimund Prof Dr Ruderich Turbulence-generator for burner or mixer - has spiral surfaces for guidance of fuel and air
DE4306956A1 (en) * 1993-03-05 1994-09-08 Abb Management Ag Fuel feed for a gas turbine
EP0620362A1 (en) * 1993-04-08 1994-10-19 ABB Management AG Gasturbine
CH687269A5 (en) * 1993-04-08 1996-10-31 Abb Management Ag Gas turbine group.
DE4316474A1 (en) * 1993-05-17 1994-11-24 Abb Management Ag Premix burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system
DE4325802B4 (en) * 1993-07-31 2005-07-07 Alstom Method for operating a gas turbine plant with liquid or gaseous fuel
EP0641971B1 (en) * 1993-09-06 1998-05-13 Abb Research Ltd. Method for operating a premix burner and premix burner for execution of the method
WO1995016881A1 (en) * 1993-12-17 1995-06-22 Abb Stal Ab Method and apparatus for atomizing liquid fuel
WO1995017628A1 (en) * 1993-12-21 1995-06-29 Abb Carbon Ab Method and device for after-burning of particulate fuel in a power plant
DE4409918A1 (en) * 1994-03-23 1995-09-28 Abb Management Ag Low calorific value fuel burner for combustion chamber
DE4411622A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
DE4411623A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
EP0675322A3 (en) * 1994-04-02 1996-05-15 Abb Management Ag Premix burner.
EP0687860A2 (en) 1994-05-19 1995-12-20 ABB Management AG Self igniting combustion chamber
DE4424639A1 (en) * 1994-07-13 1996-01-18 Abb Research Ltd Method and device for fuel distribution in a burner suitable for both liquid and gaseous fuels
DE4424599A1 (en) * 1994-07-13 1996-01-18 Abb Research Ltd Method and device for operating a combined burner for liquid and gaseous fuels
EP0692674A3 (en) * 1994-07-13 1997-07-23 Abb Research Ltd Method and device for fuel distribution in a burner suitable for liquid as well as gaseous fuels
EP0694730A2 (en) 1994-07-25 1996-01-31 Abb Research Ltd. Burner
EP0694740A2 (en) 1994-07-25 1996-01-31 Abb Research Ltd. Combustion chamber
EP0694730A3 (en) * 1994-07-25 1998-05-06 Abb Research Ltd. Burner
EP0704657A3 (en) * 1994-10-01 1997-07-30 Abb Management Ag Burner
DE4435266A1 (en) * 1994-10-01 1996-04-04 Abb Management Ag burner
EP0704657A2 (en) 1994-10-01 1996-04-03 ABB Management AG Burner
EP0710797A2 (en) 1994-11-05 1996-05-08 Abb Research Ltd. Method and device for operating a premix burner
EP0718470A2 (en) 1994-12-24 1996-06-26 ABB Management AG Method of operation of a gas turbine
EP0718483A2 (en) 1994-12-24 1996-06-26 ABB Management AG Steam injection in gas turbine
EP0727611A1 (en) * 1995-02-20 1996-08-21 ABB Management AG Combustion chamber with two-stage combustion
DE19515082B4 (en) * 1995-04-25 2005-02-03 Alstom premix
DE19527453B4 (en) * 1995-07-27 2009-05-07 Alstom premix
EP0775869A2 (en) 1995-11-23 1997-05-28 Abb Research Ltd. Premix burner
EP0778445A3 (en) * 1995-12-05 1999-04-28 Asea Brown Boveri Ag Premix burner
EP0783089A3 (en) * 1995-12-27 1998-11-11 Abb Research Ltd. Cone-shaped burner
EP0816759A2 (en) 1996-06-29 1998-01-07 Abb Research Ltd. Premix burner and method of operating the burner
EP0833105A2 (en) 1996-09-30 1998-04-01 Abb Research Ltd. Premix burner
EP0881432A2 (en) 1997-05-26 1998-12-02 Abb Research Ltd. Burner for operating a hot gas generating unit
EP0881431A2 (en) 1997-05-26 1998-12-02 Abb Research Ltd. Burner for operating a hot gas generating unit
EP0887539A2 (en) 1997-06-26 1998-12-30 Asea Brown Boveri AG Fan jet engine
EP0892212A2 (en) 1997-07-17 1999-01-20 Abb Research Ltd. Pressure spray nozzle
EP0915232A1 (en) 1997-07-25 1999-05-12 Asea Brown Boveri AG Process for operating a power plant
EP0899510A2 (en) 1997-08-30 1999-03-03 Asea Brown Boveri AG Plenum for a combustor
EP0899506A2 (en) 1997-08-30 1999-03-03 Abb Research Ltd. Combustion device
EP0911583A1 (en) 1997-10-27 1999-04-28 Asea Brown Boveri AG Method of operating a premix burner
EP0916894A1 (en) 1997-11-13 1999-05-19 Abb Research Ltd. Burner for operating a heat generator
EP0924458A1 (en) 1997-12-22 1999-06-23 Asea Brown Boveri AG Burner
EP0978635A1 (en) 1998-08-05 2000-02-09 Asea Brown Boveri AG Process for cooling the thermally stressed structures of a power plant
EP0981016A1 (en) 1998-08-19 2000-02-23 Asea Brown Boveri AG Burner and method for operating an internal combustion engine
EP0981019A1 (en) 1998-08-20 2000-02-23 Asea Brown Boveri AG Method and burner for combustion of liquid fuels
EP0987493A1 (en) 1998-09-16 2000-03-22 Abb Research Ltd. Burner for a heat generator
EP0995891A2 (en) 1998-10-20 2000-04-26 Asea Brown Boveri AG Turbomachine and method for its operation
EP1001214A1 (en) * 1998-11-09 2000-05-17 Asea Brown Boveri AG Process to prevent the formation of flow instabilities in a burner
EP1004823A2 (en) 1998-11-10 2000-05-31 Asea Brown Boveri AG Damping device for the reduction of the oscillation amplitude of acoustic waves for a burner
EP1065346A1 (en) 1999-07-02 2001-01-03 Asea Brown Boveri AG Gas-turbine engine combustor
EP1070915A1 (en) 1999-07-22 2001-01-24 Asea Brown Boveri AG Premix burner
EP1070915B1 (en) * 1999-07-22 2004-05-19 ALSTOM Technology Ltd Premix burner
EP1070914A1 (en) 1999-07-22 2001-01-24 ABB Alstom Power (Schweiz) AG Premix burner
EP1070917A1 (en) 1999-07-23 2001-01-24 ABB Alstom Power (Schweiz) AG Process for active suppression of fluidic instabilities in a combustion system as well as combustion system for carrying out the process
EP1085267A2 (en) 1999-09-20 2001-03-21 ABB (Schweiz) AG Control of primary measures for the reduction of NOx in gas turbines
EP1091096A1 (en) 1999-10-06 2001-04-11 RFT S.p.A. System for detecting the rotation speed of an internal combustion engine camshaft
DE19948956A1 (en) * 1999-10-11 2001-04-12 Asea Brown Boveri Mounting system for burner duct in gas turbine cylinder comprises internal groove in cylinder into which lugs on top and bottom retaining components fit, side pieces being fitted between retaining components and bolted into place
EP1182398A1 (en) 2000-08-21 2002-02-27 Alstom (Switzerland) Ltd Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process
US7003960B2 (en) 2000-10-05 2006-02-28 Alstom Technology Ltd Method and appliance for supplying fuel to a premixing burner
EP1855054A3 (en) * 2000-10-05 2008-04-09 ALSTOM Technology Ltd Method for supplying fuel to a premix burner
WO2002029318A1 (en) * 2000-10-05 2002-04-11 Alstom (Switzerland) Ltd Method and device for supplying fuel to a premix burner
EP1855054A2 (en) * 2000-10-05 2007-11-14 ALSTOM Technology Ltd Method for supplying fuel to a premix burner
US7189073B2 (en) 2000-10-16 2007-03-13 Alstom Technology Ltd. Burner with staged fuel injection
EP1279898A2 (en) 2001-07-26 2003-01-29 ALSTOM (Switzerland) Ltd Premix burner with high flame stability
WO2003038253A1 (en) * 2001-10-31 2003-05-08 Alstom Technology Ltd Sequentially-fired gas turbine unit
US7241138B2 (en) 2001-12-24 2007-07-10 Alstom Technology Ltd. Burner with stepped fuel injection
EP1336800A1 (en) 2002-02-13 2003-08-20 ALSTOM (Switzerland) Ltd Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method
US7013648B2 (en) 2002-05-16 2006-03-21 Alstom Technology Ltd. Premix burner
EP1384950A2 (en) 2002-07-25 2004-01-28 ALSTOM (Switzerland) Ltd Annular combustion chamber for a gas turbine
US7140183B2 (en) 2002-08-12 2006-11-28 Alstom Technology Ltd. Premixed exit ring pilot burner
US7065971B2 (en) 2003-03-05 2006-06-27 Alstom Technology Ltd. Device for efficient usage of cooling air for acoustic damping of combustion chamber pulsations
US8393159B2 (en) * 2003-06-19 2013-03-12 Hitachi, Ltd. Gas turbine combustor and fuel supply method for same
US7896646B2 (en) 2004-01-20 2011-03-01 Alstom Technology Ltd Premixing burner arrangement for operating a combustion chamber in addition to a method for operating a combustion chamber
WO2005068913A1 (en) * 2004-01-20 2005-07-28 Alstom Technology Ltd Premixing burner arrangement for operating a combustion chamber in addition to a method for operating a combustion chamber
US7467942B2 (en) 2004-03-30 2008-12-23 Alstom Technology Ltd. Device and method for flame stabilization in a burner
US8029273B2 (en) * 2004-03-31 2011-10-04 Alstom Technology Ltd Burner
US7780437B2 (en) 2004-10-11 2010-08-24 Stefano Bernero Premix burner
US7491056B2 (en) 2004-11-03 2009-02-17 Alstom Technology Ltd. Premix burner
US7871262B2 (en) 2004-11-30 2011-01-18 Alstom Technology Ltd. Method and device for burning hydrogen in a premix burner
US8057224B2 (en) 2004-12-23 2011-11-15 Alstom Technology Ltd. Premix burner with mixing section
US8007273B2 (en) 2005-03-09 2011-08-30 Alstom Technology Ltd. Premixing burner for generating an ignitable fuel/air mixture
US7632091B2 (en) 2005-03-09 2009-12-15 Alstom Technology Ltd. Premix burner for operating a combustion chamber
US7610761B2 (en) 2005-03-23 2009-11-03 Alstom Technology Ltd. Method and device for the combustion of hydrogen in a premix burner
US7975486B2 (en) 2005-06-17 2011-07-12 Alstom Technology Ltd Burner for premix-type combustion
DE102005042889B4 (en) 2005-09-09 2019-05-09 Ansaldo Energia Switzerland AG Gas turbine group
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
US8801429B2 (en) 2006-03-30 2014-08-12 Alstom Technology Ltd Burner arrangement
WO2009019113A3 (en) * 2007-08-07 2009-06-11 Alstom Technology Ltd Burner for a combustion chamber of a turbo group
WO2009019114A3 (en) * 2007-08-07 2009-06-11 Alstom Technology Ltd Burner for a combustion chamber of a turbine group
US8069671B2 (en) 2007-08-07 2011-12-06 Alstom Technology Ltd. Burner fuel lance configuration and method of use
WO2009019114A2 (en) * 2007-08-07 2009-02-12 Alstom Technology Ltd Burner for a combustion chamber of a turbine group
US9103547B2 (en) 2007-11-09 2015-08-11 Alstom Technology Ltd Method for operating a burner
US10208960B2 (en) 2007-11-27 2019-02-19 Ansaldo Energia Switzerland AG Method for operating a gas turbine installation and equipment for carrying out the method
US8033821B2 (en) 2007-11-27 2011-10-11 Alstom Technology Ltd. Premix burner for a gas turbine
US8066509B2 (en) 2007-11-27 2011-11-29 Alstom Technology Ltd. Method and device for combusting hydrogen in a premix burner
US8776524B2 (en) 2007-12-10 2014-07-15 Alstom Technology Ltd. Fuel distribution system for a gas turbine with multistage burner arrangement
US8783044B2 (en) 2007-12-29 2014-07-22 Alstom Technology Ltd Turbine stator nozzle cooling structure
US8196409B2 (en) 2008-02-13 2012-06-12 Alstom Technology Ltd Gas turbine engine fuel supply arrangement using plural distinct fuels
EP2090830A1 (en) 2008-02-13 2009-08-19 ALSTOM Technology Ltd Fuel supply arrangement
US8950192B2 (en) 2008-02-20 2015-02-10 Alstom Technology Ltd. Gas turbine
US8272220B2 (en) 2008-02-20 2012-09-25 Alstom Technology Ltd Impingement cooling plate for a hot gas duct of a thermal machine
US8413449B2 (en) 2008-02-20 2013-04-09 Alstom Technology Ltd Gas turbine having an improved cooling architecture
WO2009103671A1 (en) * 2008-02-20 2009-08-27 Alstom Technology Ltd Gas turbine having an improved cooling architecture
US8459985B2 (en) 2008-03-07 2013-06-11 Alstom Technology Ltd Method and burner arrangement for the production of hot gas, and use of said method
US8468833B2 (en) 2008-03-07 2013-06-25 Alstom Technology Ltd Burner arrangement, and use of such a burner arrangement
US8459934B2 (en) 2008-03-28 2013-06-11 Alstom Technology Ltd Varying cross-sectional area guide blade
US8801366B2 (en) 2008-03-28 2014-08-12 Alstom Technology Ltd. Stator blade for a gas turbine and gas turbine having same
US8210797B2 (en) 2008-05-26 2012-07-03 Alstom Technology Ltd Gas turbine with a stator blade
WO2010115980A2 (en) 2009-04-11 2010-10-14 Alstom Technology Ltd. Combustion chamber having a helmholtz damper
US8875483B2 (en) 2009-09-03 2014-11-04 Alstom Technology Ltd Gas turbine generator set
WO2011026732A1 (en) 2009-09-03 2011-03-10 Alstom Technology Ltd. Gas turbine group
US10208958B2 (en) 2009-09-17 2019-02-19 Ansaldo Energia Switzerland AG Method and gas turbine combustion system for safely mixing H2-rich fuels with air
US8943825B2 (en) 2010-01-28 2015-02-03 Alstom Technology Ltd. Helmholtz damper for a combustor of a gas turbine and a method for installing the helmholtz damper
EP2354659A1 (en) 2010-01-28 2011-08-10 Alstom Technology Ltd Helmholtz damper for installing in the combustor of a gas turbine and also method for installing such a helmholtz damper
EP2694790A4 (en) * 2011-04-06 2014-09-17 Selas Fluid Proc Corp Burner assembly and method for reducing nox emissions
EP2694790A1 (en) * 2011-04-06 2014-02-12 Selas Fluid Processing Corporation Burner assembly and method for reducing nox emissions
US10774740B2 (en) 2011-04-08 2020-09-15 Ansaldo Energia Switzerland AG Gas turbine assembly and corresponding operating method
WO2012136787A1 (en) 2011-04-08 2012-10-11 Alstom Technology Ltd Gas turbine assembly and corresponding operating method
US10907549B2 (en) 2012-06-29 2021-02-02 Ansaldo Energia Switzerland AG Method for a part load CO reduction operation for a sequential gas turbine
WO2014001230A1 (en) 2012-06-29 2014-01-03 Alstom Technology Ltd Method for a part load co reduction operation for a sequential gas turbine
US9810152B2 (en) 2012-07-09 2017-11-07 Ansaldo Energia Switzerland AG Gas turbine combustion system
EP2685172A2 (en) 2012-07-09 2014-01-15 Alstom Technology Ltd Can-annular gas turbine combustion system with staged premix-combustion
RU2561956C2 (en) * 2012-07-09 2015-09-10 Альстом Текнолоджи Лтд Gas-turbine combustion system
RU2570480C2 (en) * 2012-08-24 2015-12-10 Альстом Текнолоджи Лтд Mixing of diluting air in gas turbine sequential combustion system
EP2700878A2 (en) 2012-08-24 2014-02-26 Alstom Technology Ltd Method for mixing a dilution air in a sequential combustion system of a gas turbine
US9890955B2 (en) 2012-08-24 2018-02-13 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
WO2014029512A2 (en) 2012-08-24 2014-02-27 Alstom Technology Ltd Sequential combustion with dilution gas mixer
US9551491B2 (en) 2012-08-24 2017-01-24 General Electric Technology Gmbh Method for mixing a dilution air in a sequential combustion system of a gas turbine
RU2562132C2 (en) * 2012-08-24 2015-09-10 Альстом Текнолоджи Лтд Mixing method of dilution air in subsequent combustion system of gas turbine
US10634357B2 (en) 2012-08-24 2020-04-28 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
EP2700879A2 (en) 2012-08-24 2014-02-26 Alstom Technology Ltd Method for mixing a dilution air in a sequential combustion system of a gas turbine
EP2703721A1 (en) 2012-08-31 2014-03-05 Alstom Technology Ltd Premix burner
US9400105B2 (en) 2012-08-31 2016-07-26 General Electric Technology Gmbh Premix burner
US10718520B2 (en) 2012-10-24 2020-07-21 Ansaldo Energia Switzerland AG Damper arrangement for reducing combustion-chamber pulsation
EP2725300A1 (en) 2012-10-24 2014-04-30 Alstom Technology Ltd Damper arrangement for reducing combustion-chamber pulsations
US10422535B2 (en) 2013-04-26 2019-09-24 Ansaldo Energia Switzerland AG Can combustor for a can-annular combustor arrangement in a gas turbine
EP2796789A1 (en) 2013-04-26 2014-10-29 Alstom Technology Ltd Can combustor for a can-annular combustor arrangement in a gas turbine
EP2837888A1 (en) 2013-08-15 2015-02-18 Alstom Technology Ltd Sequential combustion with dilution gas mixer
EP2837889A1 (en) 2013-08-15 2015-02-18 Alstom Technology Ltd Sequential combustion with dilution gas mixer
US9885481B2 (en) 2013-08-15 2018-02-06 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
EP2837883A1 (en) 2013-08-16 2015-02-18 ALSTOM Technology Ltd Premixed second stage can annular combustor with mixing lobes for of a sequential gas turbine
US9708983B2 (en) 2013-10-01 2017-07-18 Ansaldo Energia Switzerland AG Gas turbine with sequential combustion arrangement
EP2857658A1 (en) 2013-10-01 2015-04-08 Alstom Technology Ltd Gas turbine with sequential combustion arrangement
EP2863018A1 (en) 2013-10-17 2015-04-22 Alstom Technology Ltd Cooling structure for a transition piece of a gas turbine
US10443500B2 (en) 2013-10-17 2019-10-15 Ansaldo Energia Switzerland AG Combustor cooling structure
EP2894405A1 (en) 2014-01-10 2015-07-15 Alstom Technology Ltd Sequential combustion arrangement with dilution gas
US10151487B2 (en) 2014-01-10 2018-12-11 Ansaldo Energia Switzerland AG Sequential combustion arrangement with dilution gas
EP2921779A1 (en) 2014-03-18 2015-09-23 Alstom Technology Ltd Combustion chamber with cooling sleeve
EP2960436A1 (en) 2014-06-27 2015-12-30 Alstom Technology Ltd Cooling structure for a transition piece of a gas turbine
US9879605B2 (en) 2014-06-27 2018-01-30 Ansaldo Energia Switzerland AG Combustor cooling structure
CN105397463A (en) * 2014-09-05 2016-03-16 阿尔斯通技术有限公司 Apparatus for an assembly tool for mounting or dismantling, replacement and maintenance of a component of an engine
EP2993315A1 (en) 2014-09-05 2016-03-09 Alstom Technology Ltd Apparatus for an assembly tool for mounting or dismantling, replacement and maintenance of a component of an engine
US10174637B2 (en) 2014-09-05 2019-01-08 Ansaldo Energia Switzerland AG Device and method for mounting or dismantling, replacement and maintenance of a can-combustor
EP2993314A1 (en) 2014-09-05 2016-03-09 Alstom Technology Ltd Device and method for mounting or dismantling, replacement and maintenance of a can-combustor
EP2993404A1 (en) 2014-09-08 2016-03-09 Alstom Technology Ltd Dilution gas or air mixer for a combustor of a gas turbine
US10443847B2 (en) 2014-09-08 2019-10-15 Ansaldo Energia Switzerland AG Dilution gas or air mixer for a combustor of a gas turbine
US10267525B2 (en) 2014-10-31 2019-04-23 Ansaldo Energia Switzerland AG Combustor arrangement for a gas turbine
US10352568B2 (en) 2014-10-31 2019-07-16 Ansaldo Energia Switzerland AG Combustor arrangement for a gas turbine
EP3015772A1 (en) 2014-10-31 2016-05-04 Alstom Technology Ltd Combustor arrangement for a gas turbine
EP3015771A1 (en) 2014-10-31 2016-05-04 Alstom Technology Ltd Combustor arrangement for a gas turbine
EP3026347A1 (en) 2014-11-25 2016-06-01 Alstom Technology Ltd Combustor with annular bluff body
US10247420B2 (en) 2014-12-22 2019-04-02 Ansaldo Energia Switzerland AG Axially staged mixer with dilution air injection
EP3037725A1 (en) 2014-12-22 2016-06-29 Alstom Technology Ltd Mixer for admixing a dilution air to the hot gas flow
US10443849B2 (en) 2014-12-22 2019-10-15 Ansaldo Energia Switzerland AG Separate feedings of cooling and dilution air
US10323574B2 (en) 2014-12-22 2019-06-18 Ansaldo Energia Switzerland AG Mixer for admixing a dilution air to the hot gas flow
EP3037726A1 (en) 2014-12-22 2016-06-29 Alstom Technology Ltd Separate feedings of cooling and dilution air
EP3037728A1 (en) 2014-12-22 2016-06-29 Alstom Technology Ltd Axially staged mixer with dilution air injection
EP3067622A1 (en) 2015-03-12 2016-09-14 General Electric Technology GmbH Combustion chamber with double wall
EP3130848A1 (en) 2015-08-12 2017-02-15 General Electric Technology GmbH Sequential combustion arrangement with cooling gas for dilution
US10677453B2 (en) 2015-08-12 2020-06-09 Ansaldo Energia Switzerland AG Sequential combustion arrangement with cooling gas for dilution
EP3133343A1 (en) 2015-08-18 2017-02-22 General Electric Technology GmbH Gas turbine with diluted liquid fuel
EP3135880A1 (en) 2015-08-25 2017-03-01 General Electric Technology GmbH Gas turbine with a sequential combustion arrangement and fuel composition control
US10539322B2 (en) 2016-04-08 2020-01-21 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device
EP3228937A1 (en) 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device
EP3228939A1 (en) 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion appliance
EP3306194A1 (en) 2016-10-06 2018-04-11 Ansaldo Energia IP UK Limited Combustor wall element and method for manufacturing the same

Also Published As

Publication number Publication date
DE3862854D1 (en) 1991-06-20
EP0321809B1 (en) 1991-05-15
CA1312816C (en) 1993-01-19
US4932861A (en) 1990-06-12
ATE63628T1 (en) 1991-06-15
KR890010487A (en) 1989-08-09
JP2608320B2 (en) 1997-05-07
JPH01203809A (en) 1989-08-16
KR0129752B1 (en) 1998-04-09
CH674561A5 (en) 1990-06-15

Similar Documents

Publication Publication Date Title
EP0321809B1 (en) Process for combustion of liquid fuel in a burner
EP0387532B1 (en) Gas turbine combustion chamber
EP0436113B1 (en) Method for operating a combustion plant
EP0704657B1 (en) Burner
EP0833105B1 (en) Premix burner
EP0918191B1 (en) Burner for the operation of a heat generator
EP0777081B1 (en) Premix burner
EP0401529B1 (en) Gas turbine combustion chamber
EP0481111B1 (en) Gas-turbine combustion chamber
EP0641971B1 (en) Method for operating a premix burner and premix burner for execution of the method
DE19547913A1 (en) Burners for a heat generator
CH680467A5 (en)
EP0394800B1 (en) Premix burner for generating a hot gas
DE19547912A1 (en) Burners for a heat generator
EP0816759B1 (en) Premix burner and method of operating the burner
EP0994300A1 (en) Burner for operating a heat generator
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
DE19537636B4 (en) Power plant
DE4412315A1 (en) Method of operating gas turbine combustion chamber
EP0807787B1 (en) Burner
DE4242003A1 (en) Process heat generator
EP0740108A2 (en) Burner
EP0780628A2 (en) Premix burner for a heat generator
DE19505614A1 (en) Operating method for pre-mixing burner
EP0786626A1 (en) Premixing burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19891211

17Q First examination report despatched

Effective date: 19900319

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 63628

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3862854

Country of ref document: DE

Date of ref document: 19910620

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88120667.6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BBC BROWN BOVERI AG TRANSFER- ABB ALSTOM POWER (SC

NLS Nl: assignments of ep-patents

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: ABB ALSTOM POWER (SCHWEIZ) AG TRANSFER- ALSTOM (SWITZERLAND) LTD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ALSTOM POWER (SCHWEIZ) AG

Owner name: ALSTOM (SWITZERLAND) LTD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071217

Year of fee payment: 20

Ref country code: AT

Payment date: 20071221

Year of fee payment: 20

Ref country code: IT

Payment date: 20071222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071217

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081210

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081209