EP1336800A1 - Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method - Google Patents

Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method Download PDF

Info

Publication number
EP1336800A1
EP1336800A1 EP03405031A EP03405031A EP1336800A1 EP 1336800 A1 EP1336800 A1 EP 1336800A1 EP 03405031 A EP03405031 A EP 03405031A EP 03405031 A EP03405031 A EP 03405031A EP 1336800 A1 EP1336800 A1 EP 1336800A1
Authority
EP
European Patent Office
Prior art keywords
burner
lance
fuel
flow
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03405031A
Other languages
German (de)
French (fr)
Other versions
EP1336800B1 (en
Inventor
Ephraim Gutmark
Christian Oliver Paschereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG, Alstom Schweiz AG filed Critical Alstom Technology AG
Publication of EP1336800A1 publication Critical patent/EP1336800A1/en
Application granted granted Critical
Publication of EP1336800B1 publication Critical patent/EP1336800B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a method for reducing combustion-driven Vibrations in combustion systems, especially those with low acoustic damping, as used in combustion chambers of turbo engines are often found, as well as a premix burner for performing the process.
  • thermoacoustic vibrations often occur in the combustion chambers, which arise at the burner as fluid-mechanical instability waves and lead to flow vortices that strongly influence the entire combustion process and lead to undesired periodic heat releases within the combustion chamber. This results in pressure fluctuations of high amplitude, which can lead to undesired effects, such as a high mechanical load on the combustion chamber housing, an increased NO x emission due to inhomogeneous combustion or even an extinguishing of the flame within the combustion chamber.
  • Thermoacoustic vibrations are based, at least in part, on flow instabilities the burner flow, which is expressed in coherent flow structures, and that affect the mixing processes between air and fuel.
  • thermoacoustic vibrations to counteract, for example with the help of a cooling air film that over the combustion chamber walls is passed, or by an acoustic coupling so-called Helmholtz dampers in the area of the combustion chamber or in the area of the cooling air supply.
  • thermoacoustic vibration amplitudes is associated with the disadvantage that the injection of fuel at the head stage is accompanied by an increase in the emission of NO x .
  • thermoacoustic vibrations have shown that flow instabilities often lead to these instabilities.
  • Shear layers that initiate waves perpendicular to the direction of flow Kervin-Helmholtz-waves.
  • These instabilities on shear layers in combination with the ongoing combustion process are primarily responsible for those of reaction rate fluctuations triggered thermoacoustic oscillations.
  • This largely coherent waves lead to a burner of the aforementioned type typical operating conditions to vibrate with frequencies in the area around 100 Hz. Since this frequency with typical fundamental eigenmodes of many Ring burners in gas turbine systems collapse, constitute the thermoacoustic Oscillations are a problem.
  • Premixed flames need low speed zones to stabilize to become.
  • Backflow zones which either serve to stabilize the flame by the trail behind sturgeon bodies or by aerodynamic methods (vortex breakdown).
  • the stability of the backflow zone is another criterion for the stability of the combustion and the avoidance of thermoacoustic Instabilities.
  • the invention has for its object a method for reducing combustion-driven thermoacoustic vibrations in combustion systems, in particular to provide those with low acoustic attenuation, the formation of coherent flow instabilities at the burner outlet largely prevented, as well as a premix burner to carry out the process create, which can be created with little equipment.
  • the object is achieved by a method and a premix burner of the type mentioned in the independent claims.
  • the flow-technical stabilization of the backflow zone takes place according to the invention by providing the central fuel nozzle in the form of a burner lance, such as it is usually used for pilot gas supply, the burner lance one Length, which is at least one third of the side of the burner head axial burner length protrudes into the burner downstream.
  • the burner lance is 60 - 80% of the axial length of the burner and is arranged in the center of the burner axis.
  • the fuel is advantageously discharged through at least one at the end of the lance attached fuel nozzle opening such that the in the interior the fuel discharged from the burner is mixed with the supply air and is swirled at the same time. This is done in particular by the wake at the end of the lance further stabilization of the aerodynamically generated backflow zone.
  • Position inside and out of the burner periodically The flame forming within the backflow zone runs into the Burner prevented. Due to the proximity of the fuel discharge to itself within The backflow zone forming the combustion chamber can be the same vortex breakdown due to the swirling fuel / air mixture that spreads in the direction of flow are supported, creating the backflow zone and associated with it the flame can be stabilized decisively.
  • lance shapes can influence the formation of coherent structures.
  • a number of preferred lance configurations will be presented in the following. These configurations have in common that the development of coherent structures is additionally inhibited by fanning out the vortex movement.
  • the lance is equipped with means which allow two fluid media to be supplied independently of one another. Such a design allows additional air to be introduced into the interior of the burner in addition to fuel injection. The combustion chamber vibrations can thus also be counteracted by a known modulated supply of this additional air.
  • the measure according to the invention bears one arranged along the jacket partial fuel injection via the inserted into the interior central fuel lance to stabilize itself within the backflow zone forming flame.
  • a premix burner 1 is shown in longitudinal section in FIG. 1, as is shown in its basic structure, for example, from EP 0 321 809.
  • the premix burner 1 consists of two half-shell-shaped, conically widening partial bodies 1a and 1b which are arranged such that they are axially parallel and offset from one another in such a way that they form tangential gaps in two overlapping regions lying opposite one another in mirror image.
  • the gaps resulting from the displacement of the longitudinal axes of the partial bodies 1a and 1b serve as inlet channels through which the combustion air 7 flows tangentially into the burner interior 2 during burner operation.
  • Inlet channels there are injection openings through which a preferably gaseous fuel 8 is injected into the combustion air 7 flowing past.
  • this aforementioned type of burner in a central arrangement in the starting area of the burner interior 2 has a nozzle for introducing further, preferably liquid, fuel.
  • combustion air 7 and fuel 8 cross the burner interior 2 with intensive mixing.
  • the swirl flow 6 breaks down with the formation of a return flow zone 5 with a stabilizing effect with respect to the flame front acting there.
  • Further details of the structure and mode of operation of this burner 1 can be found in the aforementioned EP document and other information sources known to the person skilled in the art.
  • a burner lance 3 projects into the burner interior 2 parallel to the burner axis.
  • the lance 3, which has a length I, which is preferably in the range of approximately 2/3 of the axial extent of the burner 1, has a centrally arranged one Fuel channel 31, which ends downstream at the lance end in a fuel nozzle 32.
  • FIG. 2 shows a diagram that shows the effect of the invention trained burner lance 3 on the suppression of instabilities in The form of pressure oscillation in the 120 Hz range is illustrated.
  • the pulsations that come in Pressure values (Pa) along the ordinate in Figure 2 are a function the position of the lance end in the burner 1.
  • the ratio I / L is plotted, i.e. the ratio of the length of the burner lance 3 to total axial extension L of the burner.
  • the different functional curves shown in the diagram correspond to the following measurement conditions, as can be seen from the legend in FIG. 2:
  • the continuous, horizontally drawn line corresponds to the base line, according to which burner systems known per se oscillate under specified operating conditions without the provision of the lance designed according to the invention.
  • the functional sequence interspersed with squares reflects the vibration behavior of a burner in premix mode, in which only the central burner lance is provided, but through which no fuel is introduced into the burner.
  • the line interspersed with the filled diamonds represents the operation using a burner lance 3 designed according to the invention, in which 2 kg of fuel discharge per hour was selected as fuel addition by the burner lance 3.
  • the dotted line interspersed with triangles shows a case using the burner lance 3 designed according to the invention, as it were the line interspersed with the diamonds, but with a fuel addition of 5 kg per hour.
  • FIGS. 5-8 show different interfering body geometries according to which the lance end is to be designed. Depending on the interfering body geometries shown in these figures, the characteristic curves shown in FIG. 3 can be obtained to show the mode of action of the suppression of instabilities.
  • the diagram shown in FIG. 3 is comparable to that in FIG. 2.
  • the conical burner lance has been shown to be of all the fault geometries examined (Fig. 7) as particularly suitable for suppressing instabilities (see here the dashed line interspersed with upside down triangles in Fig. 3).
  • FIG. 4 shows the evaluation of the individual interference geometries in relation to the nitrogen oxide emission shown. This proves that with a variety of fuel outlet openings penetrated burner lance as particularly advantageous, which in FIG is shown.
  • the interference geometry shown in Figure 5 as well as that in the following figures The geometries shown can be used, for example, as screw attachments formed a thread that are screwed into the burner head and in particular can be easily replaced for test purposes.
  • the burner lance 3 shown in FIG. 5 is equipped with a large number of fuel outlet openings 9 passing laterally through the jacket. Axial fanning out of the fuel injection ensures homogeneous mixing of the fuel and combustion air.
  • the injection is preferably carried out in the region of the second lance half, as seen in the direction of flow.
  • FIG. 6 shows a star-shaped lance end geometry
  • FIG. 7 shows a conical lance end geometry, the fuel being discharged from the lance 3 through axially aligned outlet openings 12, 32, as it were the lance geometry in FIG. 8, which shows a burner lance to which a plate 13 is attached ,
  • the disturbance geometries as described above with reference to FIG. 3, are capable of the premix flow decisively influence.

Abstract

An interference body (3) is centrally located in the region of the rotation axis for the swirl flow (6), resulting in a flow-mechanical stabilisation of the backflow zone (5). Fuel exits from this central body into the swirl flow. At least one flow of combustion air (7) is introduced to a region (2) inside the burner (1) at a tangent, where it is intensively mixed with a supply of gaseous and/or liquid fuel (8), creating a swirl flow coaxial to the burner axis. An area of the swirl flow cross-section at the burner exit induces a backflow zone that stabilises the flame front there. An Independent claim is also included for a premix burner.

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf ein Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen, insbesondere solchen mit geringer akustischer Dämpfung, wie sie in Brennkammern von Strömungskraftmaschinen häufig anzutreffen sind, sowie einen Vormischbrenner zur Durchführung des Verfahrens.The invention relates to a method for reducing combustion-driven Vibrations in combustion systems, especially those with low acoustic damping, as used in combustion chambers of turbo engines are often found, as well as a premix burner for performing the process.

Stand der TechnikState of the art

Beim Betrieb von Strömungskraftmaschinen, wie beispielsweise Gasturbinenanlagen, treten in den Brennkammern häufig verbrennungsgetriebene thermoakustische Schwingungen auf, die am Brenner als strömungsmechanische Instabilitätswellen entstehen und zu Strömungswirbeln führen, die den gesamten Verbrennungsvorgang stark beeinflussen und zu unerwünschten periodischen Wärmefreisetzungen innerhalb der Brennkammer führen. Daraus resultieren Druckschwankungen hoher Amplitude, die zu unerwünschten Effekten, wie zu einer hohen mechanischen Belastung des Brennkammergehäuses, einer erhöhten NOx-Emission durch eine inhomogene Verbrennung oder sogar zu einem Erlöschen der Flamme innerhalb der Brennkammer führen können. During the operation of turbo engines, such as gas turbine systems, combustion-driven thermoacoustic vibrations often occur in the combustion chambers, which arise at the burner as fluid-mechanical instability waves and lead to flow vortices that strongly influence the entire combustion process and lead to undesired periodic heat releases within the combustion chamber. This results in pressure fluctuations of high amplitude, which can lead to undesired effects, such as a high mechanical load on the combustion chamber housing, an increased NO x emission due to inhomogeneous combustion or even an extinguishing of the flame within the combustion chamber.

Thermoakustische Schwingungen beruhen zumindest teilweise auf Strömungsinstabilitäten der Brennerströmung, die sich in kohärenten Strömungsstrukturen äußern, und die die Mischungsvorgänge zwischen Luft und Brennstoff beeinflussen.Thermoacoustic vibrations are based, at least in part, on flow instabilities the burner flow, which is expressed in coherent flow structures, and that affect the mixing processes between air and fuel.

Es sind mittlerweile eine Reihe von Techniken bekannt thermoakustischen Schwingungen entgegenzutreten, bspw. mit Hilfe eines Kühlluftfilmes, der über die Brennkammerwände geleitet wird, oder durch eine akustische Ankopplung sogenannter Helmholtz-Dämpfer im Bereich der Brennkammer oder im Bereich der Kühlluftzufuhr.A number of techniques are now known for thermoacoustic vibrations to counteract, for example with the help of a cooling air film that over the combustion chamber walls is passed, or by an acoustic coupling so-called Helmholtz dampers in the area of the combustion chamber or in the area of the cooling air supply.

Ferner ist bekannt, dass den im Brenner auftretenden Verbrennungsinstabilitäten dadurch entgegengetreten werden kann, indem die Brennstoffflamme durch zusätzliche Eindüsung von Brennstoff stabilisiert wird. Eine derartige Eindüsung von zusätzlichem Brennstoff erfolgt über die Kopfstufe des Brenners, in der eine auf der Brennerachse liegende Düse für die Pilot-Brennstoffgaszuführung vorgesehen ist, was jedoch zu einer Anfettung der zentralen Flammstabilisierungszone führt. Diese Methode der Verminderung von thermoakustischen Schwingungsamplituden ist jedoch mit dem Nachteil verbunden, dass die Eindüsung von Brennstoff an der Kopfstufe mit einer Erhöhung der Emission von NOx einhergeht.It is also known that the combustion instabilities occurring in the burner can be countered by stabilizing the fuel flame by additional injection of fuel. Such injection of additional fuel takes place via the head stage of the burner, in which a nozzle on the burner axis is provided for the pilot fuel gas supply, but this leads to an enrichment of the central flame stabilization zone. However, this method of reducing thermoacoustic vibration amplitudes is associated with the disadvantage that the injection of fuel at the head stage is accompanied by an increase in the emission of NO x .

Untersuchungen zur Ausbildung thermoakustischer Schwingungen haben gezeigt, dass oftmals Strömungsinstabilitäten zu diesen Instabilitäten führen. Von besonderer Bedeutung sind hierbei die sich zwischen zwei mischenden Strömungen ausbildenden Scherschichten, die senkrecht zur Strömungsrichtung verlaufende Wellen initiieren (Kevin-Helmholtz-Wellen). Diese Instabilitäten auf Scherschichten in Kombination mit dem ablaufenden Verbrennungsprozess sind hauptverantwortlich für die von Reaktionsratenschwankungen ausgelösten thermoakustischen Oszillationen. Diese weitgehend kohärenten Wellen führen bei einem Brenner der vorgenannten Art unter typischen Betriebsbedingungen zu Schwingungen mit Frequenzen im Bereich um 100 Hz. Da diese Frequenz mit typischen fundamentalen Eigenmoden von vielen Ringbrennern in Gasturbinenanlagen zusammenfallen, stellen die thermoakusitschne Oszillationen ein Problem dar. Nähere Ausführungen hierzu sind folgenden Druckschriften zu entnehmen: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams", Journal of Fluid mechanics, Vol. 123, 91-130; Paschereit et al. 1995, "Experimental investigation of subharmonic resonance in an axisymmetric jet", Journal of Fluid Mechanics, Vol. 283, 365-407; Paschereit et al., 1998, "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner", Combustion, Science & Technology, Vol. 138, 213-232).Studies on the formation of thermoacoustic vibrations have shown that flow instabilities often lead to these instabilities. Of special What is important here are those that form between two mixing flows Shear layers that initiate waves perpendicular to the direction of flow (Kevin-Helmholtz-waves). These instabilities on shear layers in combination with the ongoing combustion process are primarily responsible for those of reaction rate fluctuations triggered thermoacoustic oscillations. This largely coherent waves lead to a burner of the aforementioned type typical operating conditions to vibrate with frequencies in the area around 100 Hz. Since this frequency with typical fundamental eigenmodes of many Ring burners in gas turbine systems collapse, constitute the thermoacoustic Oscillations are a problem. More detailed information on this is given in the following publications see: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams ", Journal of Fluid mechanics, vol. 123, 91-130; Paschereit et al. 1995, "Experimental investigation of subharmonic resonance in an axisymmetric jet", Journal of Fluid Mechanics, vol. 283, 365-407; Paschereit et al., 1998, "Structure and Control of Thermoacoustic Instabilities in a Gas Turbine Burner ", Combustion, Science & Technology, vol. 138, 213-232).

Wie aus den vorstehenden Veröffentlichungen zu entnehmen ist, ist es möglich, die sich innerhalb der Scherschichten ausbildenden kohärenten Strukturen durch gezieltes Einbringen einer akustischen Anregung derart zu beeinflussen, dass die Ausbildung solcher Wirbel weitgehend verhindert wird. Damit werden Schwankungen in der Wärmefreisetzung unterbunden und die Druckschwankungen reduziert.As can be seen from the above publications, it is possible to coherent structures forming within the shear layers through targeted Introduce an acoustic stimulus to influence the training such vortex is largely prevented. This eliminates fluctuations in prevents heat release and reduces pressure fluctuations.

Vorgemischte Flammen benötigen Zonen geringer Geschwindigkeit, um stabilisiert zu werden. Zur Stabilisierung der Flamme dienen Rückströmzonen, die entweder durch den Nachlauf hinter Störkörpern oder durch aerodynamische Methoden (vortex breakdown) erzeugt werden. Die Stabilität der Rückströmzone ist ein weiteres Kriterium für die Stabilität der Verbrennung und der Vermeidung von thermoakustischen Instabilitäten.Premixed flames need low speed zones to stabilize to become. Backflow zones, which either serve to stabilize the flame by the trail behind sturgeon bodies or by aerodynamic methods (vortex breakdown). The stability of the backflow zone is another criterion for the stability of the combustion and the avoidance of thermoacoustic Instabilities.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Verminderung verbrennungsgetriebener thermoakustischer Schwingungen in Verbrennungssystemen, insbesondere solchen mit einer geringen akustischen Dämpfung, bereitzustellen, das die Ausbildung kohärenter Strömungsinstabilitäten am Brenneraustritt weitgehend verhindert, sowie einen Vormischbrenner zur Durchführung des Verfahrens zu schaffen, welcher mit geringem apparativen Aufwand zu erstellen ist.The invention has for its object a method for reducing combustion-driven thermoacoustic vibrations in combustion systems, in particular to provide those with low acoustic attenuation, the the formation of coherent flow instabilities at the burner outlet largely prevented, as well as a premix burner to carry out the process create, which can be created with little equipment.

Erfindungsgemäss wird die Aufgabe durch ein Verfahren und einen Vormischbrenner der in den unabhängigen Ansprüchen genannten Art gelöst.
Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der abhängigen Ansprüche sowie der nachfolgenden Beschreibung.
According to the invention, the object is achieved by a method and a premix burner of the type mentioned in the independent claims.
Features which advantageously further develop the inventive concept are the subject of the dependent claims and the following description.

Ausgehend von einem Verbrennungssystem, das bspw. einen Vormischbrenner der gemäss EP 0 321 809 B1 geschützten Bauart umfasst, besteht der Grundgedanke der Erfindung darin, die sich innerhalb der stromab des Brenneraustritts ausbildende zentrale Rückströmzone, innerhalb der sich das Brennstoff-/Luftgemisch entzündet, zu stabilisieren. Durch die Stabilisierung der Rückströmzone sowie die Verminderung der Ausbildung kohärenter Wirbelstrukturen am Brenneraustritt werden die das Auftreten thermoakustischer Schwingungen verursachenden periodischen Wärmefreisetzungen innerhalb der Brennkammer weitgehend unterbunden.Starting from a combustion system, for example a premix burner The basic concept exists according to EP 0 321 809 B1 of the invention therein, which forms within the downstream of the burner outlet central backflow zone within which the fuel / air mixture ignites, to stabilize. By stabilizing the backflow zone and reducing it the formation of coherent vortex structures at the burner outlet becomes the occurrence Periodic heat releases causing thermoacoustic vibrations largely prevented within the combustion chamber.

Die strömungstechnische Stabilisierung der Rückströmzone erfolgt erfindungsgemäß durch das Vorsehen der zentralen Brennstoffdüse in Form einer Brennerlanze, wie sie üblicherweise zur Pilotgaszufuhr verwendet wird, wobei die Brennerlanze eine Länge aufweist, die von Seiten des Brennerkopfes wenigstens zu einem Drittel der axialen Brennerlänge in den Brenner stromab hineinragt. Vorzugsweise weist die Brennerlanze eine Länge von 60 - 80 % der axialen Erstreckung des Brenners auf und ist mittig zur Brennerachse angeordnet.The flow-technical stabilization of the backflow zone takes place according to the invention by providing the central fuel nozzle in the form of a burner lance, such as it is usually used for pilot gas supply, the burner lance one Length, which is at least one third of the side of the burner head axial burner length protrudes into the burner downstream. Preferably, the The burner lance is 60 - 80% of the axial length of the burner and is arranged in the center of the burner axis.

In vorteilhafter Weise erfolgt der Brennstoffaustrag durch wenigstens eine am Lanzenende angebrachte Brennstoffdüsenöffnung derart, dass sich der in dem Innenraum des Brenners ausgetragene Brennstoff feinstverteilt mit Zuluft mischt und zugleich verwirbelt wird. Insbesondere erfolgt durch den Nachlauf am Lanzenende eine weitere Stabilisierung der aerodynamisch erzeugten Rückströmzone. Insbesondere wird durch den erfindungsgemäßen Brennstoffeintrag in einer stromab verlagerten Position innerhalb des Brennerinnenraums ein periodisches Hinaus- und wieder Hineinlaufen der sich innerhalb der Rückströmzone ausbildenden Flamme in den Brenner verhindert. Durch die räumliche Nähe des Brennstoffaustrages zur sich innerhalb der Brennkammer ausbildenden Rückströmzone kann eben jener Wirbelzusammenbruch durch das sich in Strömungsrichtung ausbreitende, verwirbelte Brennstoff-/Luftgemisch unterstützt werden, wodurch die Rückströmzone und damit verbunden die Flamme entscheidend stabilisiert werden. The fuel is advantageously discharged through at least one at the end of the lance attached fuel nozzle opening such that the in the interior the fuel discharged from the burner is mixed with the supply air and is swirled at the same time. This is done in particular by the wake at the end of the lance further stabilization of the aerodynamically generated backflow zone. In particular is shifted downstream by the fuel input according to the invention Position inside and out of the burner periodically The flame forming within the backflow zone runs into the Burner prevented. Due to the proximity of the fuel discharge to itself within The backflow zone forming the combustion chamber can be the same vortex breakdown due to the swirling fuel / air mixture that spreads in the direction of flow are supported, creating the backflow zone and associated with it the flame can be stabilized decisively.

Ferner ist erkannt worden, dass durch unterschiedliche Lanzenformen die Entstehung kohärenter Strukturen beeinflusst werden kann. In den nachfolgenden Ausführungen wird eine Reihe bevorzugter Lanzenkonfigurationen vorgestellt werden. Diesen Konfigurationen ist gemein, durch eine Auffächerung der Wirbelbewegung die Entstehung kohärenter Strukturen zusätzlich zu hemmen.
In einer weiteren Ausführungsform ist die Lanze mit Mitteln ausgerüstet, die eine voneinander unabhängige Zuführung zweier fluider Medien gestatten. Eine solche Gestaltung erlaubt es, neben einer Brennstoffeindüsung noch Zusatzluft in den Brennerinnenraum einzuführen. Durch eine an sich bekannte modulierte Zuführung dieser Zusatzluft kann den Brennkammerschwingungen damit zusätzlich entgegengewirkt werden.
It has also been recognized that different lance shapes can influence the formation of coherent structures. A number of preferred lance configurations will be presented in the following. These configurations have in common that the development of coherent structures is additionally inhibited by fanning out the vortex movement.
In a further embodiment, the lance is equipped with means which allow two fluid media to be supplied independently of one another. Such a design allows additional air to be introduced into the interior of the burner in addition to fuel injection. The combustion chamber vibrations can thus also be counteracted by a known modulated supply of this additional air.

Insbesondere bei einer Betriebsweise des Vormischbrenners mit Brennstoffzuführung in die tangential in den Brennerinnenraum eintretende Verbrennungsluft über längs des Mantels angeordnete Düsen, trägt die erfindungsgemäße Massnahme einer teilweisen Brennstoffeindüsung über die in den Innenraum hineingeschobene zentrale Brennstofflanze zur Stabilisierung der sich innerhalb der Rückströmzone ausbildenden Flamme bei.Particularly when the premix burner is operated with a fuel supply into the combustion air entering tangentially into the burner interior the measure according to the invention bears one arranged along the jacket partial fuel injection via the inserted into the interior central fuel lance to stabilize itself within the backflow zone forming flame.

Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

Die Erfindung sei nachfolgend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben.
Es zeigen:

Fig. 1
schematisierter Längsschnitt durch einen kegelförmig ausgebildeten Brenner mit verlängerter Brennerlanze,
Fig. 2
Diagrammdarstellung zur Abhängigkeit der Länge der Brennerlanze auf das akustische Dämpfungsverhalten,
Fig. 3
Diagrammdarstellung zur Abhängigkeit der Länge der Brennerlanze auf das akustische Dämpfungsverhalten im Hinblick auf unterschiedliche Lanzenkonfigurationen,
Fig. 4
Diagrammdarstellung der Abhängigkeit der Länge der Brennerlanze auf die NOx-Emissionen im Hinblick auf unterschiedliche Lanzenkonfigurationen,
Fig. 5-8
unterschiedliche Brennerlanzenkonfigurationen.
The invention is described below by way of example without limitation of the general inventive concept using exemplary embodiments with reference to the drawings.
Show it:
Fig. 1
schematic longitudinal section through a conical burner with an extended burner lance,
Fig. 2
Diagram showing the dependence of the length of the burner lance on the acoustic damping behavior,
Fig. 3
Diagram representation of the dependence of the length of the burner lance on the acoustic damping behavior with regard to different lance configurations,
Fig. 4
Diagram representation of the dependence of the length of the burner lance on the NO x emissions with regard to different lance configurations,
Fig. 5-8
different burner lance configurations.

In Figur 1 ist im Längsschnitt ein Vormischbrenner 1 dargestellt, wie er in seinem Grundaufbau beispielweise aus der EP 0 321 809 hervorgeht. Der Vormischbrenner 1 besteht aus zwei halbschalenförmigen, sich konisch erweiternden Teilkörpern 1a und 1b, die derart achsparallel und zueinander versetzt angeordnet sind, dass sie in zwei spiegelbildlich gegenüberliegenden Überlappungsbereichen tangentiale Spalte bilden. Die aus der Versetzung der Längsachsen der Teilkörper 1a und 1b resultierenden Spalte dienen als Eintrittskanäle, durch die im Brennerbetrieb die Verbrennungsluft 7 tangential in den Brennerinnenraum 2 einströmt. Entlang diesen Eintrittskanälen befinden sich Eindüsungsöffnungen, durch welche ein vorzugsweise gasförmiger Brennstoff 8 in die vorbeiströmende Verbrennungsluft 7 eingedüst wird. Neben dieser Brennstoffeindüsung 8 am Brennermantel besitzt diese vorgenannte Brennergattung in zentraler Anordnung im Anfangsbereich des Brennerinnenraums 2 eine Düse zur Einführung weiteren, vorzugsweise flüssigen Brennstoffs. Unter Ausbildung einer Drallströmung 6 durchqueren Verbrennungsluft 7 und Brennstoff 8 unter intensiver Durchmischung den Brennerinnenraum 2. Am Brenneraustritt bricht die Drallströmung 6 unter Ausbildung einer Rückstromzone 5 mit einem gegenüber der dort wirkenden Flammenfront stabilisierenden Effekt zusammen. Weitere Einzelheiten des Aufbaus und der Wirkungsweise dieses Brenners 1 sind der vorgenannten EP-Schrift und anderen dem Fachmann bekannten Informationsquellen zu entnehmen.
Erfindungsgemäss ragt in Verlängerung der erwähnten zentralen Brennstoffdüse eine Brennerlanze 3 parallel zur Brennerachse in den Brennerinnenraum 2. Die Lanze 3, die eine Länge I aufweist, die vorzugsweise im Bereich von etwa 2/3 der axialen Erstreckung des Brenners 1 liegt, weist einen mittig angeordneten Brennstoffkanal 31 auf, der stromab am Lanzenende in einer Brennstoffdüse 32 endet.
A premix burner 1 is shown in longitudinal section in FIG. 1, as is shown in its basic structure, for example, from EP 0 321 809. The premix burner 1 consists of two half-shell-shaped, conically widening partial bodies 1a and 1b which are arranged such that they are axially parallel and offset from one another in such a way that they form tangential gaps in two overlapping regions lying opposite one another in mirror image. The gaps resulting from the displacement of the longitudinal axes of the partial bodies 1a and 1b serve as inlet channels through which the combustion air 7 flows tangentially into the burner interior 2 during burner operation. Along these inlet channels there are injection openings through which a preferably gaseous fuel 8 is injected into the combustion air 7 flowing past. In addition to this fuel injection 8 on the burner jacket, this aforementioned type of burner in a central arrangement in the starting area of the burner interior 2 has a nozzle for introducing further, preferably liquid, fuel. With the formation of a swirl flow 6, combustion air 7 and fuel 8 cross the burner interior 2 with intensive mixing. At the burner outlet, the swirl flow 6 breaks down with the formation of a return flow zone 5 with a stabilizing effect with respect to the flame front acting there. Further details of the structure and mode of operation of this burner 1 can be found in the aforementioned EP document and other information sources known to the person skilled in the art.
According to the invention, in extension of the central fuel nozzle mentioned, a burner lance 3 projects into the burner interior 2 parallel to the burner axis. The lance 3, which has a length I, which is preferably in the range of approximately 2/3 of the axial extent of the burner 1, has a centrally arranged one Fuel channel 31, which ends downstream at the lance end in a fuel nozzle 32.

Nach der in Fig.1 dargestellten Ausführungsvariante münden im Bereich des Lanzenendes darüber hinaus radial ausgerichtete Düsen 33, aus denen zur zusätzlichen Dämpfung sich im Verbrennungssystem ausbildender thermoakustischer Schwingungen Luft in den Brennerinnenraum 2 eingebracht wird. Diese Luft, wie auch der Brennstoff, können moduliert eingespeist werden. Das sich in einer Drallströmung 6 durch den Brennerinnenraum 2 in die Brennkammer 4 ausbreitende Brennstoff- /Luftgemisch vermag die sich innerhalb der Brennkammer 4 ausbildende Rückströmzone 5 zu stabilisieren, zumal die Wirbelstärke des Brennstoff-/Luftgemisches vor und während der Zündung den Wirbelzerfall innerhalb der Brennkammer 4 begünstigt, wodurch die Rückströmzone 5 stabilisiert wird. Hierdurch kann verhindert werden, daß die Rückströmzone 5 ihre Lage periodisch ändert, was letztlich Ursache der sich innerhalb des Verbrennungssytems ausbreitenden thermoakustischen Schwingungen ist.According to the embodiment shown in Figure 1 open in the area of the lance end in addition, radially aligned nozzles 33, from which for additional Damping thermoacoustic vibrations that develop in the combustion system Air is introduced into the burner interior 2. This air, like that Fuel can be fed in modulated. That is in a swirl flow 6 fuel spreading through the burner interior 2 into the combustion chamber 4 / Air mixture is capable of the return flow zone which forms within the combustion chamber 4 5 stabilize, especially since the vortex strength of the fuel / air mixture before and favors the decay of the vertebrae within the combustion chamber 4 during the ignition, whereby the backflow zone 5 is stabilized. This can prevent that the backflow zone 5 changes its position periodically, which ultimately causes the thermoacoustic vibrations propagating within the combustion system is.

In Figur 2 ist eine Diagrammdarstellung abgebildet, die die Wirkung der erfindungsgemäß ausgebildeten Brennerlanze 3 auf die Unterdrückung von Instabilitäten in Form von Druckschwingung im 120 Hz-Bereich verdeutlicht. Die Pulsationen, die in Druckwerten (Pa) entlang der Ordinate in Figur 2 aufgetragen sind, sind als Funktion der Position des Lanzenendes im Brenner 1 aufgetragen. Entlang der Abszisse ist das Verhältnis I/L aufgetragen, d.h. das Verhältnis der Länge der Brennerlanze 3 zur gesamtaxialen Erstreckung L des Brenners. Die Position I/L = 0 entspricht dabei der ursprünglichen Position der zentralen Brennstoffdüse wie vorstehend erwähnt.FIG. 2 shows a diagram that shows the effect of the invention trained burner lance 3 on the suppression of instabilities in The form of pressure oscillation in the 120 Hz range is illustrated. The pulsations that come in Pressure values (Pa) along the ordinate in Figure 2 are a function the position of the lance end in the burner 1. Along the abscissa is the ratio I / L is plotted, i.e. the ratio of the length of the burner lance 3 to total axial extension L of the burner. The position I / L = 0 corresponds to that original position of the central fuel nozzle as mentioned above.

Die unterschiedlichen im Diagramm dargestellten Funktionsverläufe entsprechen, folgenden Messbedingungen, wie sie im übrigen aus der Legende der Figur 2 entnehmbar sind:
Die durchgehend, horizontal eingetragene Linie entspricht der Basislinie, gemäß der an sich bekannte Brennersysteme ohne die Vorkehrung der erfindungsgemäß ausgebildeten Lanze bei vorgegebenen Betriebsbedingungen schwingen. Der mit Quadraten durchsetzte Funktionsverlauf gibt das Schwingungsverhalten eines Brenners im Premixbetrieb wieder, bei dem lediglich die zentrale Brennerlanze vorgesehen ist, durch die jedoch kein Brennstoffeintrag in den Brenner erfolgt. Die mit den ausgefüllten Rauten durchsetzte Linie gibt den Betrieb unter Verwendung einer erfindungsgemäß ausgebildeten Brennerlanze 3 wieder, bei der 2 kg Brennstoffaustrag pro Std. als Brennstoffzugabe durch die Brennerlanze 3 gewählt wurde. Schließlich zeigt die mit Dreiecken durchsetzte punktierte Linie einen Fall unter Verwendung der erfindungsgemäß ausgebildeten Brennerlanze 3, gleichsam jenem mit der Rauten durchsetzten Linie, jedoch mit einer Brennstoffzugabe von 5 kg pro Std..
The different functional curves shown in the diagram correspond to the following measurement conditions, as can be seen from the legend in FIG. 2:
The continuous, horizontally drawn line corresponds to the base line, according to which burner systems known per se oscillate under specified operating conditions without the provision of the lance designed according to the invention. The functional sequence interspersed with squares reflects the vibration behavior of a burner in premix mode, in which only the central burner lance is provided, but through which no fuel is introduced into the burner. The line interspersed with the filled diamonds represents the operation using a burner lance 3 designed according to the invention, in which 2 kg of fuel discharge per hour was selected as fuel addition by the burner lance 3. Finally, the dotted line interspersed with triangles shows a case using the burner lance 3 designed according to the invention, as it were the line interspersed with the diamonds, but with a fuel addition of 5 kg per hour.

Aus Figur 2 wird deutlich, dass die sich einstellenden Instabilitäten im Vormischbetrieb bei dem in Figur 1 dargestellten Brenner mit einer Lanzenposition von I/L = 0,6 - 0,8 am besten unterdrücken lassen. Die bevorzugte Lanzenposition liegt dabei bei I/L = 0,7.It is clear from FIG. 2 that the instabilities which arise in the premix mode best suppressed with the burner shown in Figure 1 with a lance position of I / L = 0.6 - 0.8. The preferred lance position is I / L = 0.7.

Die Unterdrückung der Instabilitäten im Brennerbetrieb, die im wesentlichen durch eine verbesserte Flammenstabilität und durch die Zerstörung kohärenter Strukturen gewährleistet werden kann, lässt sich verbessern, indem das Lanzenende als Störkörper 10, 11, 13 konfiguriert wird, um Wirbelstärke in Strömungsrichtung einzubringen. Aus den Figuren 5-8 gehen hierzu unterschiedliche Störkörpergeometrien hervor, gemäß denen das Lanzenende auszubilden ist. In Abhängigkeit der in diesen Figuren dargestellten Störkörpergeometrien können die in Figur 3 dargestellten Kennlinien zur Darstellung der Wirkungsweise der Unterdrückung von Instabilitäten gewonnen werden.
Die in Figur 3 dargestellte Diagrammdarstellung ist mit der in Figur 2 vergleichbar. Die Zugehörigkeit der einzelnen Funktionsverläufe zu den unterschiedlich ausgebildeten Störkörpergeometrien sind ebenfalls direkt aus der Legende der Figur zu entnehmen. Wieder ergibt sich der Sachverhalt, dass eine Unterdrückung von Instabilitäten mit einer Brennerlanzenlänge von I/L = 0,6 - 0,8 am deutlichsten ausgeprägt ist.
The suppression of instabilities in burner operation, which can essentially be ensured by improved flame stability and by the destruction of coherent structures, can be improved by configuring the lance end as a disturbing body 10, 11, 13 in order to introduce vortex strength in the direction of flow. For this purpose, FIGS. 5-8 show different interfering body geometries according to which the lance end is to be designed. Depending on the interfering body geometries shown in these figures, the characteristic curves shown in FIG. 3 can be obtained to show the mode of action of the suppression of instabilities.
The diagram shown in FIG. 3 is comparable to that in FIG. 2. The affiliation of the individual function profiles to the differently designed interfering body geometries can also be seen directly from the legend of the figure. Again, the fact arises that suppression of instabilities with a burner lance length of I / L = 0.6 - 0.8 is most pronounced.

Von allen untersuchten Störgeometrien erweist sich die konisch ausgebildete Brennerlanze (Fig.7) als besonders geeignet, Instabilitäten zu unterdrücken (siehe hierzu die mit auf den Kopf gestellten Dreiecken durchsetzte gestrichelte Linie in Fig. 3).The conical burner lance has been shown to be of all the fault geometries examined (Fig. 7) as particularly suitable for suppressing instabilities (see here the dashed line interspersed with upside down triangles in Fig. 3).

In Figur 4 ist die Auswertung der einzelnen Störgeometrien in Bezug auf die Stickoxidemission dargestellt. Hierbei erweist sich die mit einer Vielzahl von Brennstoffaustrittsöffnungen durchsetzte Brennerlanze als besonders vorteilhaft, die in Figur 5 dargestellt ist. Die in Figur 5 abgebildete Störgeometrie sowie auch die in den Folgefiguren abgebildeten Geometrien können beispielsweise als Schraubaufsätze mit einem Gewinde ausgebildet, die in den Brennerkopf eingeschraubt werden und insbesondere zu Testzwecken leicht ausgetauscht werden können.FIG. 4 shows the evaluation of the individual interference geometries in relation to the nitrogen oxide emission shown. This proves that with a variety of fuel outlet openings penetrated burner lance as particularly advantageous, which in FIG is shown. The interference geometry shown in Figure 5 as well as that in the following figures The geometries shown can be used, for example, as screw attachments formed a thread that are screwed into the burner head and in particular can be easily replaced for test purposes.

Die in Figur 5 abgebildete Brennerlanze 3 ist mit einer Vielzahl den Mantel lateral durchsetzender Brennstoffaustrittsöffnungen 9 ausgerüstet. Durch eine axiale Auffächerung der Brennstoffeindüsung wird eine homogene Durchmischung von Brennstoff und Verbrennungsluft gewährleistet. Die Eindüsung erfolgt dabei vorzugsweise im Bereich der - in Strömungsrichtung gesehen - zweiten Lanzenhälfte.
Figur 6 zeigt eine sternförmig ausgebildete Lanzenendgeometrie, Figur 7 eine konisch ausgebildete Lanzenendgeometrie, wobei der Brennstoffaustrag aus der Lanze 3 durch axial ausgerichtete Austrittsöffnungen 12, 32 erfolgt, gleichsam der Lanzengeomtrie in Figur 8, die eine Brennerlanze zeigt, an der eine Platte 13 angebracht ist.
The burner lance 3 shown in FIG. 5 is equipped with a large number of fuel outlet openings 9 passing laterally through the jacket. Axial fanning out of the fuel injection ensures homogeneous mixing of the fuel and combustion air. The injection is preferably carried out in the region of the second lance half, as seen in the direction of flow.
FIG. 6 shows a star-shaped lance end geometry, FIG. 7 shows a conical lance end geometry, the fuel being discharged from the lance 3 through axially aligned outlet openings 12, 32, as it were the lance geometry in FIG. 8, which shows a burner lance to which a plate 13 is attached ,

Die Störgeometrien vermögen, wie oben anhand von Fig. 3 geschildert, die Premixströmung entscheidend beeinflussen. The disturbance geometries, as described above with reference to FIG. 3, are capable of the premix flow decisively influence.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Brennerburner
1a;1b1a; 1b
Halbschalenshells
22
BrennerinnenraumBurner interior
33
Brennerlanzeburnerlance
3131
Brennstoffleitungfuel line
3232
axiale Brennstoffaustrittsöffnung an der Lanze 3axial fuel outlet on lance 3
3333
radiale Lufteindüsungradial air injection
44
Brennkammercombustion chamber
55
Rückströmzonebackflow
66
Drallströmungswirl flow
77
Verbrennungsluftcombustion air
88th
Brennstofffuel
99
Brennstoffaustrittsöffnung an der Lanze 3Fuel outlet opening on lance 3
1010
sternförmige Lanzenendgeometriestar-shaped lance end geometry
1111
konische Lanzenendgeometrieconical lance end geometry
1212
Brennstoffaustrittsöffnung an der Lanze 3Fuel outlet opening on lance 3
1313
Platte am LanzenendePlate at the end of the lance
II
Länge der BrennerlanzeLength of the burner lance

Claims (17)

Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen, insbesondere in Brennkammern von Strömungskraftmaschinen, ausgerüstet mit wenigstens einem Brenner, in den mindestens ein Verbrennungsluftstrom tangential in einen Brennerinnenraum eingeleitet wird und sich unter Ausbildung einer koaxial zur Brennerachse orientierten Drallströmung mit einem eingedüsten gasförmigen und/oder flüssigen Brennstoff intensiv vermischt und diese Drallströmung an einem Querschnittssprung am Brenneraustritt eine die dort wirkende Flammenfront stabilisierende Rückströmzone induziert,
dadurch gekennzeichnet, dass zur strömungsmechanischen Stabilisierung der Rückströmzone in der Drehachse der Drallströmung (6) ein Störkörper (3) angeordnet ist, und aus diesem zentralen Störkörper (3) ein zusätzlicher Brennstoffaustrag in die Drallströmung (6) erfolgt.
Method for reducing combustion-driven vibrations in combustion systems, in particular in combustion chambers of flow engines, equipped with at least one burner, into which at least one combustion air flow is introduced tangentially into a burner interior and forms a swirl flow oriented coaxially to the burner axis with an injected gaseous and / or liquid fuel intensely mixed and this swirl flow at a cross-sectional jump at the burner outlet induces a backflow zone stabilizing the flame front acting there,
characterized in that a disturbing body (3) is arranged in the axis of rotation of the swirl flow (6) for the fluid mechanical stabilization of the backflow zone, and an additional fuel discharge into the swirl flow (6) takes place from this central disturbing body (3).
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass der Störkörper (3) einen Bereich von wenigstens 50%, vorzugsweise 60% bis 80%, der axialen Länge des Brennerinnenraums (2) einnimmt.
Method according to claim 1,
characterized in that the interference body (3) occupies a range of at least 50%, preferably 60% to 80%, of the axial length of the burner interior (2).
Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass der zusätzliche Brennstoffaustrag in die Drallströmung (6) zumindest überwiegend in einem Bereich von über 50% der axialen Länge des Brennerinnenraums erfolgt.
Method according to claim 2,
characterized in that the additional fuel discharge into the swirl flow (6) takes place at least predominantly in a range of over 50% of the axial length of the interior of the burner.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass der Brennstoffaustrag derart erfolgt, dass sich stromab ein homogen durchmischtes Brennstoff-/Luftgemisch ausbildet.
Method according to claim 1,
characterized in that the fuel is discharged in such a way that a homogeneously mixed fuel / air mixture is formed downstream.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass aus dem Störkörper Brennstoff und Verbrennungsluft in die Drallströmung eingedüst werden.
Method according to claim 1,
characterized in that fuel and combustion air are injected into the swirl flow from the interfering body.
Verfahren nach Anspruch 4 oder 5,
dadurch gekennzeichnet, dass der zentrale Störkörper in Strömungsrichtung einen zunehmenden Querschnitt aufweist.
Method according to claim 4 or 5,
characterized in that the central interfering body has an increasing cross section in the flow direction.
Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass als Strömungskraftmaschinen Gasturbinenanlagen verwendet werden.
Method according to one of claims 1 to 4,
characterized in that gas turbine systems are used as flow engines.
Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen innerhalb eines Verbrennungssystems, insbesondere einer Brennkammer () einer Strömungskraftmaschine, im wesentlichen umfassend einen Drallerzeuger aus zwei halbschalenförmigen, sich konisch erweiternden Teilkörpern (1a) und (1b), die derart achsparallel und zueinander versetzt angeordnet sind, dass sie in zwei spiegelbildlich gegenüberliegenden Überlappungsbereichen tangentiale Spalte bilden, die als Eintrittskanäle für die Verbrennungsluft (7) in den Brennerinnenraum (2) dienen, weiterhin umfassend wenigstens eine zentrale Brennstoffdüse innerhalb des von den Teilkörpern (1a) und (1b) umschlossenen Innenraums (2),
dadurch gekennzeichnet, dass die zentrale Brennstoffdüse in Form einer koaxial orientierten Brennerlanze (3) ausgebildet ist und in den Brennerinnenraum (2) bis zu wenigstens einem Drittel seiner axialen Länge hineinragt, und die Brennerlanze (3) zumindest in ihrem stromabwärtigen Endbereich mit Mitteln zum Austrag wenigstens eines Fluids in den Brennerinnenraum (2) ausgerüstet ist.
Premix burner for reducing combustion-driven vibrations within a combustion system, in particular a combustion chamber () of a fluid-flow engine, essentially comprising a swirl generator consisting of two half-shell-shaped, conically widening partial bodies (1a) and (1b), which are arranged so as to be axially parallel and offset from one another in such a way that they are arranged in form two mirror-image opposite overlap areas tangential gaps, which serve as entry channels for the combustion air (7) into the burner interior (2), further comprising at least one central fuel nozzle within the interior (2) enclosed by the partial bodies (1a) and (1b),
characterized in that the central fuel nozzle is designed in the form of a coaxially oriented burner lance (3) and projects into the burner interior (2) by at least one third of its axial length, and the burner lance (3) at least in its downstream end region with means for discharging at least one fluid in the burner interior (2) is equipped.
Vormischbrenner nach Anspruch 8,
dadurch gekennzeichnet, dass die Brennerlanze (3) in einem Bereich zwischen 60% und 80% der axialen Länge des Brennerinnenraums (2) endet.
Premix burner according to claim 8,
characterized in that the burner lance (3) ends in a range between 60% and 80% of the axial length of the burner interior (2).
Vormischbrenner nach Anspruch 8,
dadurch gekennzeichnet, dass die Lanze (3) im wesentlichen zylindrisch ausgebildet ist.
Premix burner according to claim 8,
characterized in that the lance (3) is substantially cylindrical.
Vormischbrenner nach Anspruch 8,
dadurch gekennzeichnet, dass die Lanze (3) zumindest in ihrem stromabwärtigen Endbereich einen sich erweiternden Querschnitt aufweist.
Premix burner according to claim 8,
characterized in that the lance (3) has an expanding cross section at least in its downstream end region.
Vormischbrenner nach Anspruch 11,
dadurch gekennzeichnet, dass die Lanze (3) einen in Strömungsrichtung sich konisch erweiternden Endbereich aufweist.
Premix burner according to claim 11,
characterized in that the lance (3) has an end region which widens conically in the direction of flow.
Vormischbrenner nach Anspruch 11,
dadurch gekennzeichnet, dass die Lanze (3) einen in Strömungsrichtung sich sternförmig erweiternden Endbereich aufweist.
Premix burner according to claim 11,
characterized in that the lance (3) has an end region which widens in a star shape in the direction of flow.
Vormischbrenner nach Anspruch 11,
dadurch gekennzeichnet, dass die Lanze (3) in ihrem Endbereich eine senkrecht zur Strömungsrichtung orientierte Platte (13) aufweist.
Premix burner according to claim 11,
characterized in that the lance (3) has a plate (13) oriented perpendicular to the direction of flow in its end region.
Vormischbrenner nach Anspruch 8,
dadurch gekennzeichnet, dass der Endbereich der Brennerlanze (3) mit Brennstoffaustrittsöffnungen (32) ausgerüstet ist.
Premix burner according to claim 8,
characterized in that the end region of the burner lance (3) is equipped with fuel outlet openings (32).
Vormischbrenner nach Anspruch 8,
dadurch gekennzeichnet, dass der Endbereich der Brennerlanze (3) mit Austrittsöffnungen (32) und (33) für Brennstoff und Verbrennungsluft ausgerüstet ist.
Premix burner according to claim 8,
characterized in that the end region of the burner lance (3) is equipped with outlet openings (32) and (33) for fuel and combustion air.
Vormischbrenner nach Anspruch 8,
dadurch gekennzeichnet, dass der Mantel der Brennerlanze (3) mit Austrittsöffnungen (9) für Brennstoff ausgerüstet ist.
Premix burner according to claim 8,
characterized in that the jacket of the burner lance (3) is equipped with outlet openings (9) for fuel.
EP03405031.0A 2002-02-13 2003-01-24 Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method Expired - Lifetime EP1336800B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10205839 2002-02-13
DE10205839A DE10205839B4 (en) 2002-02-13 2002-02-13 Premix burner for reducing combustion-driven vibrations in combustion systems

Publications (2)

Publication Number Publication Date
EP1336800A1 true EP1336800A1 (en) 2003-08-20
EP1336800B1 EP1336800B1 (en) 2013-11-27

Family

ID=27588564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03405031.0A Expired - Lifetime EP1336800B1 (en) 2002-02-13 2003-01-24 Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method

Country Status (4)

Country Link
US (1) US6918256B2 (en)
EP (1) EP1336800B1 (en)
JP (1) JP2003240242A (en)
DE (1) DE10205839B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645802A2 (en) * 2004-10-11 2006-04-12 ALSTOM Technology Ltd Premix Burner
CN108019776A (en) * 2016-11-04 2018-05-11 通用电气公司 Centerbody injector micro-mixer fuel nozzle assembly

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510755B1 (en) * 2003-09-01 2016-09-28 General Electric Technology GmbH Burner with lance and staged fuel supply.
US20050106520A1 (en) * 2003-09-05 2005-05-19 Michael Cornwell Device for stabilizing combustion in gas turbine engines
EP1802915B1 (en) * 2004-10-18 2016-11-30 General Electric Technology GmbH Gas turbine burner
US20060084019A1 (en) * 2004-10-19 2006-04-20 Certain Teed Corporation Oil burner nozzle
WO2006048405A1 (en) * 2004-11-03 2006-05-11 Alstom Technology Ltd Premix burner
DE102005015152A1 (en) * 2005-03-31 2006-10-05 Alstom Technology Ltd. Premix burner for a gas turbine combustor
WO2007113130A1 (en) * 2006-03-30 2007-10-11 Alstom Technology Ltd Burner arrangement, preferably in a combustion chamber for a gas turbine
AU2007233890B2 (en) * 2006-03-30 2010-07-01 Ansaldo Energia Ip Uk Limited Burner arrangement
WO2009019113A2 (en) * 2007-08-07 2009-02-12 Alstom Technology Ltd Burner for a combustion chamber of a turbo group
EP2085695A1 (en) * 2008-01-29 2009-08-05 Siemens Aktiengesellschaft Fuel nozzle with swirl duct and method for manufacturing a fuel nozzle
EP2282115A1 (en) * 2009-07-30 2011-02-09 Alstom Technology Ltd Burner of a gas turbine
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
EP2423598A1 (en) 2010-08-25 2012-02-29 Alstom Technology Ltd Combustion Device
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
WO2014055199A1 (en) 2012-10-03 2014-04-10 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
RU2627759C2 (en) * 2012-10-24 2017-08-11 Ансалдо Энерджиа Свитзерлэнд Аг Consequent burning with the dilution gas mixer
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US11142476B2 (en) 2013-05-22 2021-10-12 Johns Manville Burner for submerged combustion melting
US10654740B2 (en) 2013-05-22 2020-05-19 Johns Manville Submerged combustion burners, melters, and methods of use
WO2014189499A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
WO2014189506A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
WO2014193388A1 (en) 2013-05-30 2014-12-04 Johns Manville Submerged combustion glass melting systems and methods of use
WO2014193390A1 (en) 2013-05-30 2014-12-04 Johns Manville Submerged combustion burners with mixing improving means for glass melters
WO2015009300A1 (en) 2013-07-18 2015-01-22 Johns Manville Fluid cooled combustion burner and method of making said burner
KR102083928B1 (en) * 2014-01-24 2020-03-03 한화에어로스페이스 주식회사 Combutor
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US11598527B2 (en) * 2016-06-09 2023-03-07 Raytheon Technologies Corporation Reducing noise from a combustor of a gas turbine engine
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
CN109237470B (en) * 2018-08-20 2024-02-06 华南理工大学 Cylindrical porous jet type miniature liquid burner and combustion method thereof
US11692711B2 (en) * 2021-08-13 2023-07-04 General Electric Company Pilot burner for combustor
CN115325564B (en) * 2022-07-21 2023-06-30 北京航空航天大学 Method and device for suppressing combustion oscillation by combining pneumatic diversion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809A1 (en) 1987-12-21 1989-06-28 BBC Brown Boveri AG Process for combustion of liquid fuel in a burner
US5487274A (en) 1993-05-03 1996-01-30 General Electric Company Screech suppressor for advanced low emissions gas turbine combustor
DE19545309A1 (en) 1995-12-05 1997-06-12 Asea Brown Boveri Premix burner
WO2001096785A1 (en) 2000-06-15 2001-12-20 Alstom (Switzerland) Ltd Method for operating a burner and burner with stepped premix gas injection

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638974A (en) 1947-01-24 1953-05-19 Ralph C Brierly Fuel burner diffuser
EP0014221B1 (en) 1979-02-03 1983-04-13 G. Kromschröder Aktiengesellschaft Gas heated tunnel burner for raising the temperature in melting furnaces or crucibles
DD244613A1 (en) * 1985-12-19 1987-04-08 Oelfeuerungsbau Veb DEVICE FOR BURNING GENERATOR GAS OR HEATING OIL
DE3902601A1 (en) 1989-01-28 1990-08-09 Buderus Heiztechnik Gmbh Forced-draught gas burner
JP2713627B2 (en) * 1989-03-20 1998-02-16 株式会社日立製作所 Gas turbine combustor, gas turbine equipment including the same, and combustion method
CH680084A5 (en) * 1989-06-06 1992-06-15 Asea Brown Boveri
DE19545310B4 (en) 1995-12-05 2008-06-26 Alstom premix
US5984665A (en) * 1998-02-09 1999-11-16 Gas Research Institute Low emissions surface combustion pilot and flame holder
DE19917662C2 (en) 1999-04-19 2001-10-31 Elco Kloeckner Heiztech Gmbh Burners for liquid and / or gaseous fuel
US6485293B1 (en) * 2000-08-02 2002-11-26 Midco International, Inc. Burner assembly with enhanced BTU output and flame stability
DE10210034B4 (en) * 2002-03-07 2009-10-01 Webasto Ag Mobile heater with a fuel supply
TR200701880U (en) * 2007-03-23 2007-06-21 Özti̇ryaki̇ler Madeni̇ Eşya Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Electronic ignition liquid fuel burner.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809A1 (en) 1987-12-21 1989-06-28 BBC Brown Boveri AG Process for combustion of liquid fuel in a burner
EP0321809B1 (en) 1987-12-21 1991-05-15 BBC Brown Boveri AG Process for combustion of liquid fuel in a burner
US5487274A (en) 1993-05-03 1996-01-30 General Electric Company Screech suppressor for advanced low emissions gas turbine combustor
DE19545309A1 (en) 1995-12-05 1997-06-12 Asea Brown Boveri Premix burner
US5833451A (en) * 1995-12-05 1998-11-10 Asea Brown Boveri Ag Premix burner
WO2001096785A1 (en) 2000-06-15 2001-12-20 Alstom (Switzerland) Ltd Method for operating a burner and burner with stepped premix gas injection

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OSTER; WYGNANSKI: "The forced mixing layer between parallel streams", JOURNAL OF FLUID MECHANICS, vol. 123, 1982, pages 91 - 130
PASCHEREIT ET AL.: "Experimental investigation of subharmonic resonance in an axisymmetric jet", JOURNAL OF FLUID MECHANICS, vol. 283, 1995, pages 365 - 407
PASCHEREIT ET AL.: "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner", COMBUSTION, SCIENCE & TECHNOLOGY, vol. 138, 1998, pages 213 - 232

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645802A2 (en) * 2004-10-11 2006-04-12 ALSTOM Technology Ltd Premix Burner
EP1645802A3 (en) * 2004-10-11 2013-05-08 Alstom Technology Ltd Premix Burner
CN108019776A (en) * 2016-11-04 2018-05-11 通用电气公司 Centerbody injector micro-mixer fuel nozzle assembly
CN108019776B (en) * 2016-11-04 2020-05-19 通用电气公司 Centerbody injector micromixer fuel nozzle assembly
US11067280B2 (en) 2016-11-04 2021-07-20 General Electric Company Centerbody injector mini mixer fuel nozzle assembly

Also Published As

Publication number Publication date
US6918256B2 (en) 2005-07-19
DE10205839A1 (en) 2003-08-14
DE10205839B4 (en) 2011-08-11
US20030150217A1 (en) 2003-08-14
JP2003240242A (en) 2003-08-27
EP1336800B1 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
DE10205839B4 (en) Premix burner for reducing combustion-driven vibrations in combustion systems
DE60007946T2 (en) A combustion chamber
EP0985882B1 (en) Vibration damping in combustors
DE60128513T2 (en) Method and device for reducing emissions in a combustion chamber with a vortex mixing device
EP0687860B1 (en) Self igniting combustion chamber
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
EP1182398A1 (en) Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process
EP1828684A1 (en) Premix burner comprising a mixing section
DE10050248A1 (en) Pre-mixing burner comprises swirl burner with inner chamber, with widening passage, injector with adjustable elements.
CH701539A2 (en) Apparatus for fuel injection in a turbine.
DE19510744A1 (en) Combustion chamber with two-stage combustion
EP1048898B1 (en) Burner
EP0675322A2 (en) Premix burner
EP0576697A1 (en) Combustor chamber for a gas turbine
EP1279898A2 (en) Premix burner with high flame stability
EP2232147B1 (en) Burner and method for reducing self-induced flame oscillations
EP1235033B1 (en) Annular combustor and method of operating the same
EP0742411B1 (en) Air supply for a premix combustor
EP1002992B1 (en) Burner
EP0924459A1 (en) Method and apparatus for injecting a mixture of fuel end liquid into a combustor
DE19939235A1 (en) Combustor for gas turbine plant varies flame position along axis by varied burner design specifically premix or double-cone burners.
WO2007099046A1 (en) Gas turbine burner and method of operating a gas turbine burner
DE2606704A1 (en) COMBUSTION CHAMBER FOR GAS TURBINE ENGINES
EP0730121A2 (en) Premix burner
DE10040868A1 (en) Process for reducing thermoacoustic vibrations in fluid-flow machines with a burner system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20031218

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20090423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130625

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PASCHEREIT, CHRISTIAN OLIVER

Inventor name: GUTMARK, EPHRAIM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314949

Country of ref document: DE

Effective date: 20140116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314949

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314949

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170119

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50314949

Country of ref document: DE