EP1754002B1 - Staged premix burner with an injector for liquid fuel - Google Patents

Staged premix burner with an injector for liquid fuel Download PDF

Info

Publication number
EP1754002B1
EP1754002B1 EP05749973.3A EP05749973A EP1754002B1 EP 1754002 B1 EP1754002 B1 EP 1754002B1 EP 05749973 A EP05749973 A EP 05749973A EP 1754002 B1 EP1754002 B1 EP 1754002B1
Authority
EP
European Patent Office
Prior art keywords
swirl
fuel
injector
premix burner
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05749973.3A
Other languages
German (de)
French (fr)
Other versions
EP1754002A2 (en
Inventor
Stefano Bernero
Christian Jörg Motz
Tom Strebel
Martin Zajadatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1754002A2 publication Critical patent/EP1754002A2/en
Application granted granted Critical
Publication of EP1754002B1 publication Critical patent/EP1754002B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/106Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet
    • F23D11/107Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet at least one of both being subjected to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/16Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour in which an emulsion of water and fuel is sprayed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • F23D11/383Nozzles; Cleaning devices therefor with swirl means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07021Details of lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00015Pilot burners specially adapted for low load or transient conditions, e.g. for increasing stability

Definitions

  • the invention relates to a stepped premix burner, in particular for a combustion chamber of a gas turbine, with a swirl generator for a combustion air flow, fuel outlet openings for the stepped introduction of gaseous fuel into the combustion air stream and a central support, the injector with a swirl nozzle for the injection of liquid fuel and a Umbrella air channel has.
  • premix burners are frequently used, in which inflowing combustion air is impinged by a swirl and mixed with the fuel by injecting fuel into a premixing region.
  • the premix burners When used in gas turbines, the premix burners must cover the entire operating range with sufficient safety. This operating range includes, for example, the startup of the gas turbine, in which when igniting the burner, a fuel / air mixture at combustion pressures and preheating temperatures must be burned near the ambient conditions.
  • the burner is in This operating area is usually operated with a pilot stage. For reasons of symmetry, this pilot stage is arranged centrally in the burner flow field, for example in the form of a fuel lance.
  • the fuel is thereby added to the combustion air axially in the flow direction at the tip of the fuel lance via an injector so that fuel-rich zones in the flow field of the burner and thus a stable operation without extinguishing the flame is ensured even at low combustion pressures and temperatures.
  • the injection of fuel via the pilot stage for reducing pollutants is usually reduced and operated the burner in the advantageous premixing.
  • the burner should optionally be usable for gaseous and liquid fuels.
  • the fuel injector on the fuel lance has an annular gap from which a small proportion of air, based on the total burner air flow, flows out. This so-called shielding air shields the two fuel nozzles for liquid and gaseous fuel against undesired backflow.
  • FIG Fig. 1 An example of an embodiment of such a known premix burner is shown in FIG Fig. 1 in side view (left) and top view (right) shown very schematically.
  • the swirl generator 1 is formed in this example of two partial shells, which are assembled into a cone-shaped swirl body. Between the two subshells are air inlet slots 2 for the tangential entry of combustion air, which are indicated in the figure with the arrows recognizable at this point.
  • gaseous fuel is introduced into the combustion air along these air inlet slots via unrecognizable feeders and fuel outlet openings in order to mix with the combustion air within the volume predetermined by the swirl generator 1.
  • a fuel lance 3 can be seen centrally, at the end of which an injector 4 with nozzle openings for the injection of liquid fuel, of gaseous fuel and for the exit of umbrella air is mounted.
  • the nozzle opening 7 for the introduction of gaseous fuel 7a can be seen here in the right part of the figure in the center of the fuel lance 3. This nozzle opening 7 is surrounded by a gap 5 for the exit of shielding air 5a.
  • the annular nozzle opening 6 for the introduction of liquid fuel 6a in the present case forms the outer area of this injector 4.
  • this premix burner In the lower load range of the gas turbine this premix burner is operated exclusively with one of the two pilot stages, ie by the injection of liquid fuel 6a or gaseous fuel 7a via the injector 4 of the fuel lance 3.
  • the upper load range In the upper load range must be completely switched over to the premix stage in gaseous fuels due to the high pollutant emissions in pilot operation.
  • an emulsion of water and oil is burned as a liquid fuel in the upper load range.
  • the flame temperature By introducing the water, the flame temperature is lowered locally in the flow field. This leads to a reduction in pollutant emissions, in particular nitrogen oxide emissions.
  • combustion pulsations should also be avoided in the upper load range, which can lead to restrictions in the operating range.
  • swirl injectors also referred to as pressure swirl injectors.
  • swirl injectors due to the high throughput and the limited space available at the tip of the fuel lance, such swirl injectors cause a high pressure drop on the fuel side.
  • An injector for injecting a liquid fuel into a combustion chamber of a gas turbine engine which on the one hand ensures a uniform distribution of the fuel, but at the same time should reduce the risk of deposits of fuel residues, is from the document US 3972182 known.
  • a spin is imposed on the liquid fuel in a swirling device. After leaving the flow channel of the expanding fuel vortex bounces while being acted upon by a first combustion air flow against the inner wall of another flow body with extended flow cross-section.
  • a part of the fuel atomized in the first combustion air flow while the other part forms a fuel film on the inner wall, which enters after flowing over a downstream tear-off in another swirl-shaped combustion air flow and there is finely distributed.
  • EP 1 292 795 describes a stepped premix burner with a liquid fuel injector.
  • the object of the present invention is to provide a premix burner with a liquid fuel injector which achieves a good atomization quality with a low pre-charge of the liquid fuel.
  • premix burner according to independent claim 1.
  • Advantageous embodiments of the premix burner are the subject of the dependent claims or can be found in the following description and the embodiments.
  • the proposed stepped premix burner has a liquid fuel injector at the tip of a central carrier for a pilot stage.
  • This central support can be designed, for example, in the form of a fuel lance.
  • the premix burner is structurally designed so that the largest possible injector, ie an injector with a possible large widened cross-section of the nozzle-internal swirl generator, can be used. Due to the graded fuel injection can be dispensed with an injection of gaseous fuel at the tip of the carrier as a pilot stage. Rather, such piloting with gaseous fuel is achieved by the staged fuel injection.
  • the premix burner has at least two different groups of fuel outlet openings with separate feeds for the stepped introduction of the gaseous fuel into the combustion air stream. In one embodiment of the premix burner, one of these groups of fuel outlet openings may be formed in a part of the carrier located upstream of the injector. This group of fuel outlets then forms the gaseous fuel pilot stage.
  • the different groups of fuel outlet openings for the stepped supply of gaseous fuel can also be arranged elsewhere.
  • the swirl generator is formed by a plurality of subshells, which surround a pre-mixing chamber in the shape of a cone shell and between which air inlet slots are formed. All or at least part of the fuel outlet openings for the stepped supply of gaseous fuel is formed in the region of the air inlet openings.
  • the liquid fuel injector includes a swirl nozzle for injecting the liquid fuel as well an umbrella air duct surrounding the swirl nozzle.
  • a swirl nozzle for injecting the liquid fuel as well an umbrella air duct surrounding the swirl nozzle.
  • liquid fuel is in this context not only pure fuel, such as oil, but also a mixture or emulsion of this fuel with other substances, in particular an oil / water emulsion to understand.
  • the swirl nozzle has an internal swirl generator for the liquid fuel flowing through it and widened in the area of the swirl generator to an enlarged flow cross-section, which again reduces towards the outlet opening of the swirl nozzle.
  • the gas-side stepped lance leaves more space for a larger nozzle than conventional injectors, which can reduce the pressure loss. This allows the operation of this low-pressure injector with still good atomization quality.
  • the nozzle-internal swirl generator is preferably designed as a swirl grid, which may extend, for example, around a central swirl body within the nozzle. Furthermore, it is advantageous to also arrange a swirl generator within the umbrella air duct surrounding the swirl nozzle.
  • the two swirl generators can produce both co-directional as well as opposite swirls.
  • the generation of a relative to the nozzle-internal swirler opposite direction swirl of the screen air can have a positive influence on the atomization quality of the exiting liquid fuel.
  • the strength and direction of the twist can be used to produce an optimum for the particular application of the injection of liquid fuel optimize over the geometric design of the swirl generator.
  • the exit area i. in particular, the boundary walls of the pressure swirl nozzle and the screen air duct at the injector outlet, designed so that the umbrella air and the liquid fuel exit under approximately parallel flow directions from the injector.
  • a further embodiment provides for the shielding air to emerge from the injector at an angle of attack to the direction of flow of the liquid fuel, so that shearing forces are exerted on the exiting liquid fuel by the shielding air.
  • This can be achieved by a suitable shaping of the outlet opening for the shielding air, in particular the outer sheath limiting the shielding air duct.
  • the shear rate generated thereby can be used to improve the atomization result when the liquid fuel emerges.
  • Particularly high shear rates between the shielding air and the liquid fuel can be achieved with almost perpendicular to the flow direction of the liquid fuel exiting screen air.
  • the swirl nozzle and the outer jacket surrounding it, which together with the swirl nozzle forms the umbrella air channel are arranged so as to be displaceable relative to one another in the axial direction, ie in the main flow direction of the liquid fuel.
  • This displacement preferably takes place as a function of the combustion air temperature and thus the load of the gas turbine.
  • the shield air velocity can be reduced by suitable displacement and thus the atomization, in particular the spray angle and the spray quality, can be changed.
  • the latter embodiments can be realized both with and without swirl generator in the shield air duct.
  • the swirl angle or the swirl direction can additionally exert an influence on the atomization quality of the liquid fuel.
  • the present premix burner due to the special injector, allows operation with reduced fuel side pressure loss on spray formation and, in some embodiments, additionally improved spray formation.
  • Fig. 2 now shows schematically an example of an embodiment of the present staged premix burner, in which a liquid fuel injector is used.
  • This premix burner has, in a known manner, a swirl generator 1 which is composed of two partial shells which enclose a pre-mixing chamber in the shape of a cone-shaped jacket. Between the two subshells air inlet slots 2 are formed, which are indicated in the right part of the figure in plan view (viewing direction opposite to the flow direction) on the premix burner. In the area of this Air inlet slots 2 are arranged fuel outlet openings 10 for gaseous fuel, which are acted upon by corresponding feeds with this fuel. By introducing the gaseous fuel into the combustion air stream entering tangentially through the air inlet slots 2, mixing of the gaseous fuel with the combustion air is facilitated by the swirl of the combustion air.
  • a group of fuel outlet openings 10 is formed for gaseous fuel in the combustion chamber near the half of the burner, which forms one of two burner stages in the present case.
  • a second group of gaseous fuel fuel discharge ports 9 is disposed in the central fuel lance 3 upstream of the tip of this lance 3.
  • This further stage for the supply of gaseous fuel can serve as a pilot stage during the start-up phase of the gas turbine, in whose combustion chamber this burner is used.
  • the first-mentioned burner stage can be arbitrarily divided into different stages, which are acted upon independently with gaseous fuel. Of course, these burner stages can also extend over the entire axial length of the swirl generator 1.
  • the present injector 4 is arranged, which in the right part of the FIG. 2 can be seen in plan view.
  • the figure shows the central outlet nozzle 6 for the Liquid fuel 6a and the annular outlet nozzle 5 surrounding it for the umbrella air 5a.
  • the stepped design of this premix burner avoids the installation of an additional nozzle for gaseous fuel at the lance tip, so that more space is available for the injector for liquid fuel. This very advantageously allows the use of the proposed injector with the broadened flow cross-section in the region of the nozzle-internal swirl generator.
  • the Fig. 3 to 5 show exemplary embodiments of injectors 4, as in a premix burner according to Fig. 2 can be used.
  • the geometric shape of the swirl nozzle 14 is clearly visible.
  • This swirl nozzle 14 is locally greatly enlarged in the flow cross-section in the region of the nozzle-internal swirl lattice 12.
  • the swirl lattice 12 is in this case formed around a central swirl body 15. Due to the more favorable compared to conventional injectors space in the lance tip a larger nozzle can be installed, whereby the pressure loss is significantly reduced, so that this injector can be operated with reduced form with high atomization performance.
  • the shielding air channel 11 surrounds the swirl nozzle 14.
  • the shielding air 5a emerges in this application example in the axial direction from the lance tip. This is achieved by the geometric design of the boundaries of the shield air duct 11 at the outlet end, which run parallel to the axial direction.
  • an additional swirl grille 13 can optionally be arranged with equal or opposite swirl relative to the nozzle-internal swirl grating 12. The adjustment of the helix angle can influence the atomization quality of the liquid fuel as it exits the injector.
  • Fig. 4 shows another example of the injector 4, in which this is similar to that of the Fig. 3 , The Indian Fig. 4 However, shown injector 4 has different exit directions for the shielding air 5a and the liquid fuel 6a. Due to the inwardly directed formation of the outlet of the umbrella air duct 11, a setting of the umbrella air flow with respect to the flow direction of the liquid fuel 6a is achieved upon exiting the injector.
  • a flow field of the shielding air is forced nearly perpendicular to the flow direction of the liquid fuel by the illustrated embodiment, so däss a high shear rate between the shielding air and the liquid fuel is generated. This high shear rate promotes the atomization effect.
  • a swirl grille 13 may be arranged in the shield air duct, which, in particular in the generation of an opposite twist, can further enhance the effect of atomization.
  • the shielding air channel 11 has a variable geometry, which is achieved by a mutual displaceability of the outer jacket 16 relative to the swirl nozzle 14 in the axial direction. This displacement is indicated in the figure by the double arrows. If the swirl nozzle 14 is displaced with respect to the outer jacket 16, the outlet gap for the umbrella air opens or closes.
  • the displacement is preferably a function of the combustion temperature and thus the load of the gas turbine.
  • the shield air velocity can be reduced and thus the spray angle and the spray quality can be changed.
  • the present configuration of the injector or premix burner permits low-emission and pulsation-free operation in the combustion of liquid fuels or fuel emulsions in a gas turbine combustion chamber. This is made possible above all by the combination of a gas-side gas-fueled gas turbine burner, which makes it possible to install the injector in the tip of the spear, which is larger by local broadening of the swirl nozzle. Due to the different configurations of the injector, the atomization or spray behavior can be influenced to optimize the respective applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Spray-Type Burners (AREA)

Description

Technisches AnwendungsgebietTechnical application

Die Erfindung betrifft einen gestuften Vormischbrenner, insbesondere für eine Brennkammer einer Gasturbine, mit einem Drallerzeuger für einen Verbrennungsluftstrom, Brennstoff-Austrittsöffnungen zum gestuften Einbringen von gasförmigem Brennstoff in den Verbrennungsluftstrom und einem zentralen Träger, der einen Injektor mit einer Dralldüse zur Eindüsung von Flüssigbrennstoff sowie einen Schirmluftkanal aufweist.The invention relates to a stepped premix burner, in particular for a combustion chamber of a gas turbine, with a swirl generator for a combustion air flow, fuel outlet openings for the stepped introduction of gaseous fuel into the combustion air stream and a central support, the injector with a swirl nozzle for the injection of liquid fuel and a Umbrella air channel has.

Stand der TechnikState of the art

In Gasturbinenanlagen kommen häufig Vormisch-brenner zum Einsatz, in denen einströmende Verbrennungsluft mit einem Drall beaufschlagt und durch Eindüsung von Brennstoff in einen Vormischbereich mit dem Brennstoff vermischt wird. Die Vormischbrenner müssen beim Einsatz in Gasturbinen den kompletten Betriebsbereich mit ausreichender Sicherheit abdecken. Dieser Betriebsbereich umfasst beispielsweise auch das Anfahren der Gasturbine, bei dem beim Zünden des Brenners ein Brennstoff/Luft-Gemisch bei Verbrennungsdrücken und Vorwärmtemperaturen nahe den Umgebungsbedingungen verbrannt werden muss. Zur Sicherstellung der Stabilität des Brennerbetriebes wird der Brenner in diesem Betriebsbereich in der Regel mit einer Pilotstufe betrieben. Diese Pilotstufe ist aus Gründen der Symmetrie zentral im Brennerströmungsfeld, beispielsweise in Form einer Brennstofflanze, angeordnet. Der Brennstoff wird der Verbrennungsluft dabei axial in Strömungsrichtung an der Spitze der Brennstofflanze über einen Injektor so zugegeben, dass brennstoffreiche Zonen im Strömungsfeld des Brenners vorliegen und somit ein stabiler Betrieb ohne Verlöschen der Flamme auch bei niedrigen Verbrennungsdrücken und -temperaturen gewährleistet ist. Bei höherer Betriebslast wird die Eindüsung von Brennstoff über die Pilotstufe zur Schadstoffreduzierung in der Regel verringert und der Brenner im vorteilhaften Vormischbetrieb betrieben.In gas turbine plants, premix burners are frequently used, in which inflowing combustion air is impinged by a swirl and mixed with the fuel by injecting fuel into a premixing region. When used in gas turbines, the premix burners must cover the entire operating range with sufficient safety. This operating range includes, for example, the startup of the gas turbine, in which when igniting the burner, a fuel / air mixture at combustion pressures and preheating temperatures must be burned near the ambient conditions. To ensure the stability of the burner operation, the burner is in This operating area is usually operated with a pilot stage. For reasons of symmetry, this pilot stage is arranged centrally in the burner flow field, for example in the form of a fuel lance. The fuel is thereby added to the combustion air axially in the flow direction at the tip of the fuel lance via an injector so that fuel-rich zones in the flow field of the burner and thus a stable operation without extinguishing the flame is ensured even at low combustion pressures and temperatures. At higher operating load, the injection of fuel via the pilot stage for reducing pollutants is usually reduced and operated the burner in the advantageous premixing.

Eine weitere Anforderung an Vormischbrenner sowie alle anderen modernen Gasturbinenbrenner besteht darin, dass der Brenner wahlweise für gasförmige und flüssige Brennstoffe verwendbar sein soll. Dies erfordert eine weitere Anordnung zur Brennstoffinjektion, die in der Regel ebenfalls an der Spitze der Brennstofflanze angebracht ist. Zur Vermeidung von brennstoffhaltigen gasförmigen Rückströmungen in die Brennstoffzuführungen zur Brennstofflanze weist der Brennstoffinjektor an der Brennstofflanze einen Ringspalt auf, aus dem ein, bezogen auf den Gesamtbrennerluftstrom, geringer Anteil an Luft ausströmt. Diese so genannte Schirmluft schirmt die beiden Brennstoffdüsen für flüssigen und gasförmigen Brennstoff gegen unerwünschte Rückströmungen ab.Another requirement of premix burners as well as all other modern gas turbine burners is that the burner should optionally be usable for gaseous and liquid fuels. This requires a further arrangement for fuel injection, which is usually also attached to the top of the fuel lance. To avoid fuel-containing gaseous backflows into the fuel feed lines to the fuel lance, the fuel injector on the fuel lance has an annular gap from which a small proportion of air, based on the total burner air flow, flows out. This so-called shielding air shields the two fuel nozzles for liquid and gaseous fuel against undesired backflow.

Ein Beispiel für eine Ausgestaltung eines derartigen bekannten Vormischbrenners ist in Fig. 1 in Seitenansicht (links) und Draufsicht (rechts) stark schematisiert dargestellt. Der Drallerzeuger 1 ist in diesem Beispiel aus zwei Teilschalen gebildet, die zu einem kegelmantelförmigen Drallkörper zusammengesetzt sind. Zwischen den beiden Teilschalen liegen Lufteintrittsschlitze 2 für den tangentialen Eintritt von Verbrennungsluft, die in der Figur mit den an dieser Stelle erkennbaren Pfeilen angedeutet sind. Im Vormischbetrieb wird entlang dieser Lufteintrittsschlitze über nicht erkennbare Zuführungen und Brennstoff-Austrittsöffnungen gasförmiger Brennstoff in die Verbrennungsluft eingebracht, um sich innerhalb des durch den Drallerzeuger 1 vorgegebenen Volumens mit der Verbrennungsluft zu vermischen. Innerhalb des Brenners ist zentral eine Brennstofflanze 3 zu erkennen, an deren Ende ein Injektor 4 mit Düsenöffnungen für die Eindüsung von flüssigem Brennstoff, von gasförmigem Brennstoff sowie für den Austritt von Schirmluft angebracht ist. Die Düsenöffnung 7 für die Einbringung von gasförmigem Brennstoff 7a ist hierbei im rechten Teil der Figur im Zentrum der Brennstofflanze 3 zu erkennen. Diese Düsenöffnung 7 ist von einem Spalt 5 für den Austritt von Schirmluft 5a umgeben. Die im vorliegenden Fall ringförmige Düsenöffnung 6 für die Einbringung von flüssigem Brennstoff 6a bildet den äußeren Bereich dieses Injektors 4.An example of an embodiment of such a known premix burner is shown in FIG Fig. 1 in side view (left) and top view (right) shown very schematically. The swirl generator 1 is formed in this example of two partial shells, which are assembled into a cone-shaped swirl body. Between the two subshells are air inlet slots 2 for the tangential entry of combustion air, which are indicated in the figure with the arrows recognizable at this point. In pre-mixing operation, gaseous fuel is introduced into the combustion air along these air inlet slots via unrecognizable feeders and fuel outlet openings in order to mix with the combustion air within the volume predetermined by the swirl generator 1. Within the burner, a fuel lance 3 can be seen centrally, at the end of which an injector 4 with nozzle openings for the injection of liquid fuel, of gaseous fuel and for the exit of umbrella air is mounted. The nozzle opening 7 for the introduction of gaseous fuel 7a can be seen here in the right part of the figure in the center of the fuel lance 3. This nozzle opening 7 is surrounded by a gap 5 for the exit of shielding air 5a. The annular nozzle opening 6 for the introduction of liquid fuel 6a in the present case forms the outer area of this injector 4.

Im unteren Lastbereich der Gasturbine wird dieser Vormischbrenner ausschließlich mit einer der beiden Pilotstufen betrieben, d. h. durch die Eindüsung von flüssigem Brennstoff 6a oder von gasförmigem Brennstoff 7a über den Injektor 4 der Brennstofflanze 3. Im oberen Lastbereich muss bei gasförmigen Brennstoffen aufgrund des hohen Schadstoffausstoßes im Pilotbetrieb vollständig auf die Vormischstufe umgeschaltet werden. Bei der Verbrennung flüssiger Brennstoffe in der Pilotstufe wird im oberen Lastbereich eine Emulsion aus Wasser und Öl als Flüssigbrennstoff verbrannt. Durch die Einbringung des Wassers wird lokal im Strömungsfeld die Flammentemperatur abgesenkt. Dies führt zur Senkung der Schadstoffemissionen, insbesondere der Stickoxidemissionen. Neben den Schadstoffemissionen sind im oberen Lastbereich auch Verbrennungspulsationen zu vermeiden, die zu Einschränkungen im Betriebsbereich führen können. Besonders stabil brennende Öl/Wasser-Emulsionsflammen werden hierbei mit Drallinjektoren, auch als Druckdrallinjektoren bezeichnet, erzeugt. Aufgrund des hohen Durchsatzes sowie des beschränkten Platzangebotes im Bereich der Spitze der Brennstofflanze rufen derartige Drallinjektoren jedoch einen hohen brennstoffseitigen Druckverlust hervor.In the lower load range of the gas turbine this premix burner is operated exclusively with one of the two pilot stages, ie by the injection of liquid fuel 6a or gaseous fuel 7a via the injector 4 of the fuel lance 3. In the upper load range must be completely switched over to the premix stage in gaseous fuels due to the high pollutant emissions in pilot operation. During the combustion of liquid fuels in the pilot stage, an emulsion of water and oil is burned as a liquid fuel in the upper load range. By introducing the water, the flame temperature is lowered locally in the flow field. This leads to a reduction in pollutant emissions, in particular nitrogen oxide emissions. In addition to the pollutant emissions, combustion pulsations should also be avoided in the upper load range, which can lead to restrictions in the operating range. Particularly stable burning oil / water emulsion flames are hereby produced with swirl injectors, also referred to as pressure swirl injectors. However, due to the high throughput and the limited space available at the tip of the fuel lance, such swirl injectors cause a high pressure drop on the fuel side.

Ein Injektor zum Eindüsen eines flüssigen Brennstoffs in eine Brennkammer eines Gasturbinentriebwerks, der zum einen eine gleichmässige Verteilung des Brennstoffs gewährleistet, gleichzeitig aber das Risiko von Ablagerungen von Brennstoffrückständen vermindern soll, ist aus der Druckschrift US 3972182 bekannt. In einem zylindrischen Strömungskanal wird dem flüssigen Brennstoffs in einer Dralleinrichtung ein Drall auferlegt. Nach Verlassen des Strömungskanals prallt der expandierende Brennstoffwirbel unter gleichzeitiger Beaufschlagung durch einen ersten Verbrennungsluftstrom gegen die Innenwand eines weiteren Strömungskörpers mit erweitertem Strömungsquerschnitt. Dabei zerstäubt ein Teil des Brennstoffs in dem ersten Verbrennungsluftstrom, während der andere Teil einen Brennstofffilm an der Innenwand bildet, welcher nach Überströmen einer stromabwärtigen Abreisskante in einen weiteren drallförmigen Verbrennungsluftstrom eintritt und sich dort fein verteilt.An injector for injecting a liquid fuel into a combustion chamber of a gas turbine engine, which on the one hand ensures a uniform distribution of the fuel, but at the same time should reduce the risk of deposits of fuel residues, is from the document US 3972182 known. In a cylindrical flow channel, a spin is imposed on the liquid fuel in a swirling device. After leaving the flow channel of the expanding fuel vortex bounces while being acted upon by a first combustion air flow against the inner wall of another flow body with extended flow cross-section. In this case, a part of the fuel atomized in the first combustion air flow, while the other part forms a fuel film on the inner wall, which enters after flowing over a downstream tear-off in another swirl-shaped combustion air flow and there is finely distributed.

EP 1 292 795 beschreibt einen gestuften Vormischbrenner mit einem Injektor für Flüssigbrennstoff. EP 1 292 795 describes a stepped premix burner with a liquid fuel injector.

Darstellung der ErfindungPresentation of the invention

Die Aufgabe der vorliegenden Erfindung besteht darin, einen Vormischbrenner mit einem Injektor für Flüssigbrennstoff anzugeben, der eine gute Zerstäubungsqualität bei niedrigem Vordruck des Flüssigbrennstoffes erzielt.The object of the present invention is to provide a premix burner with a liquid fuel injector which achieves a good atomization quality with a low pre-charge of the liquid fuel.

Die Aufgabe wird mit einem Vormischbrenner gemäß dem unabhängigen Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des Vormischbrenners sind Gegenstand der abhängigen Ansprüche oder lassen sich der nachfolgenden Beschreibung sowie den Ausführungsbeispielen entnehmen.The object is achieved with a premix burner according to independent claim 1. Advantageous embodiments of the premix burner are the subject of the dependent claims or can be found in the following description and the embodiments.

Der vorgeschlagene gestufte Vormischbrenner weist einen Injektor für Flüssigbrennstoff an der Spitze eines zentralen Trägers für eine Pilotstufe auf. Dieser zentrale Träger kann beispielsweise in Form einer Brennstofflanze ausgebildet sein. Der Vormischbrenner ist dabei konstruktiv so ausgelegt, dass ein möglichst großer Injektor, d.h. ein Injektor mit einem möglichst großen verbreiterten Querschnitt am düseninternen Drallerzeugers, eingesetzt werden kann. Durch die gestufte Brennstoffeindüsung kann auf eine Injektion von gasförmigem Brennstoff an der Spitze des Trägers als Pilotstufe verzichtet werden. Vielmehr wird eine derartige Pilotierung mit gasförmigem Brennstoff durch die gestufte Brennstoffeindüsung erreicht. Der Vormischbrenner weist hierzu zumindest zwei unterschiedliche Gruppen von Brennstoff-Austritts-öffnungen mit getrennten Zuführungen zum gestuften Einbringen des gasförmigen Brennstoffs in den Verbrennungsluftstrom auf. In einer Ausgestaltung des Vormischbrenners kann eine dieser Gruppen von Brennstoff-Austrittsöffnungen in einem stromauf des Injektors liegenden Teil des Trägers ausgebildet sein. Diese Gruppe von Brennstoff-Austrittsöffnungen bildet dann die Pilotstufe für gasförmigen Brennstoff.The proposed stepped premix burner has a liquid fuel injector at the tip of a central carrier for a pilot stage. This central support can be designed, for example, in the form of a fuel lance. The premix burner is structurally designed so that the largest possible injector, ie an injector with a possible large widened cross-section of the nozzle-internal swirl generator, can be used. Due to the graded fuel injection can be dispensed with an injection of gaseous fuel at the tip of the carrier as a pilot stage. Rather, such piloting with gaseous fuel is achieved by the staged fuel injection. For this purpose, the premix burner has at least two different groups of fuel outlet openings with separate feeds for the stepped introduction of the gaseous fuel into the combustion air stream. In one embodiment of the premix burner, one of these groups of fuel outlet openings may be formed in a part of the carrier located upstream of the injector. This group of fuel outlets then forms the gaseous fuel pilot stage.

Selbstverständlich lassen sich die unterschiedlichen Gruppen von Brennstoff-Austrittsöffnungen für die gestufte Zuführung von gasförmigem Brennstoff auch an anderer Stelle anordnen. Dies betrifft beispielsweise eine Ausgestaltung des Vormischbrenners, bei der der Drallerzeuger durch mehrere Teilschalen gebildet ist, die einen Vormischraum kegelmantelförmig umschließen und zwischen denen Lufteintrittsschlitze ausgebildet sind. Alle oder zumindest ein Teil der Brennstoff-Austrittsöffnungen für die gestufte Zuführung von gasförmigem Brennstoff ist dabei im Bereich der Lufteintrittsöffnungen ausgebildet.Of course, the different groups of fuel outlet openings for the stepped supply of gaseous fuel can also be arranged elsewhere. This applies, for example, to an embodiment of the premix burner, in which the swirl generator is formed by a plurality of subshells, which surround a pre-mixing chamber in the shape of a cone shell and between which air inlet slots are formed. All or at least part of the fuel outlet openings for the stepped supply of gaseous fuel is formed in the region of the air inlet openings.

Der Injektor für Flüssigbrennstoff umfasst eine Dralldüse zur Eindüsung des Flüssigbrennstoffs sowie einen die Dralldüse umgebenden Schirmluftkanal. Unter Flüssigbrennstoff ist in diesem Zusammenhang nicht nur reiner Brennstoff, wie beispielsweise Öl, sondern auch eine Mischung oder Emulsion dieses Brennstoffes mit anderen Stoffen, insbesondere eine Öl/Wasser-Emulsion, zu verstehen.The liquid fuel injector includes a swirl nozzle for injecting the liquid fuel as well an umbrella air duct surrounding the swirl nozzle. Under liquid fuel is in this context not only pure fuel, such as oil, but also a mixture or emulsion of this fuel with other substances, in particular an oil / water emulsion to understand.

Die Dralldüse weist einen internen Drallerzeuger für den durchströmenden Flüssigbrennstoff auf und verbreitert sich im Bereich des Drallerzeugers auf einen vergrößerten Strömungsquerschnitt, der sich zur Austrittsöffnung der Dralldüse hin wieder reduziert. Durch die gasseitig gestufte Lanze verbleibt gegenüber herkömmlichen Injektoren mehr Raum für eine grössere Düse, wodurch der Druckverlust reduziert werden kann. Dies ermöglicht den Betrieb dieses Injektors mit niedrigem Vordruck bei dennoch guter Zerstäubungsqualität.The swirl nozzle has an internal swirl generator for the liquid fuel flowing through it and widened in the area of the swirl generator to an enlarged flow cross-section, which again reduces towards the outlet opening of the swirl nozzle. The gas-side stepped lance leaves more space for a larger nozzle than conventional injectors, which can reduce the pressure loss. This allows the operation of this low-pressure injector with still good atomization quality.

Der düseninterne Drallerzeuger ist vorzugsweise als Drallgitter ausgebildet, das sich beispielsweise um einen zentralen Drallkörper innerhalb der Düse erstrecken kann. Weiterhin ist es von Vorteil, innerhalb des die Dralldüse umgebenden Schirmluftkanals ebenfalls einen Drallerzeuger anzuordnen. Die beiden Drallerzeuger können hierbei sowohl gleichsinnigen als auch gegensinnigen Drall erzeugen. Die Erzeugung eines gegenüber dem düseninternen Drallerzeuger gegensinnigen Dralls der Schirmluft kann einen positiven Einfluss auf die Zerstäubungsqualität des austretenden Flüssigbrennstoffes haben. Die Stärke und Richtung des Dralls lässt sich zur Erzeugung einer für die jeweilige Anwendung optimalen Eindüsung des Flüssigbrennstoffs über die geometrische Ausgestaltung des Drallerzeugers optimieren.The nozzle-internal swirl generator is preferably designed as a swirl grid, which may extend, for example, around a central swirl body within the nozzle. Furthermore, it is advantageous to also arrange a swirl generator within the umbrella air duct surrounding the swirl nozzle. The two swirl generators can produce both co-directional as well as opposite swirls. The generation of a relative to the nozzle-internal swirler opposite direction swirl of the screen air can have a positive influence on the atomization quality of the exiting liquid fuel. The strength and direction of the twist can be used to produce an optimum for the particular application of the injection of liquid fuel optimize over the geometric design of the swirl generator.

In einer Ausgestaltung des Injektors ist der Austrittsbereich, d.h. insbesondere die Begrenzungswände der Druckdralldüse und des Schirmluftkanals am Injektoraustritt, so ausgebildet, dass die Schirmluft und der Flüssigbrennstoff unter annähernd parallelen Strömungsrichtungen aus dem Injektor austreten.In one embodiment of the injector, the exit area, i. in particular, the boundary walls of the pressure swirl nozzle and the screen air duct at the injector outlet, designed so that the umbrella air and the liquid fuel exit under approximately parallel flow directions from the injector.

Eine weitere Ausgestaltung sieht vor, die Schirmluft unter einem Anstellwinkel zur Strömungsrichtung des Flüssigbrennstoffs aus dem Injektor austreten zu lassen, so dass durch die Schirmluft Scherkräfte auf den austretenden Flüssigbrennstoff ausgeübt werden. Dies lässt sich durch eine geeignete Ausformung der Austrittsöffnung für die Schirmluft, insbesondere der den Schirmluftkanal begrenzenden äußeren Ummantelung erreichen. Durch die dadurch erzeugte Scherrate lässt sich das Zerstäubungsergebnis beim Austritt des Flüssigbrennstoffs verbessern. Besonders hohe Scherraten zwischen der Schirmluft und dem Flüssigbrennstoff lassen sich mit nahezu senkrecht zur Strömungsrichtung des Flüssigbrennstoffes austretender Schirmluft erreichen.A further embodiment provides for the shielding air to emerge from the injector at an angle of attack to the direction of flow of the liquid fuel, so that shearing forces are exerted on the exiting liquid fuel by the shielding air. This can be achieved by a suitable shaping of the outlet opening for the shielding air, in particular the outer sheath limiting the shielding air duct. The shear rate generated thereby can be used to improve the atomization result when the liquid fuel emerges. Particularly high shear rates between the shielding air and the liquid fuel can be achieved with almost perpendicular to the flow direction of the liquid fuel exiting screen air.

In einer weiteren vorteilhaften Ausgestaltung des Injektors sind die Dralldüse und die diese umgebende äußere Ummantelung, die zusammen mit der Dralldüse den Schirmluftkanal bildet, in axialer Richtung, d.h. in Hauptströmungsrichtung des Flüssigbrennstoffs, gegeneinander verschiebbar angeordnet. Dies ermöglicht die Variation der geometrischen Form der Austrittsöffnung der Schirmluft durch die gegenseitige Verschiebung.
Beim Einsatz in einem Vormischbrenner einer Gasturbinenbrennkammer erfolgt diese Verschiebung vorzugsweise in Abhängigkeit von der Verbrennungslufttemperatur und damit der Last der Gasturbine. Im oberen Lastbereich können durch geeignete Verschiebung die Schirmluftgeschwindigkeit reduziert und somit die Zerstäubung, vor allem der Spraywinkel und die Sprayqualität, geändert werden.
In a further advantageous embodiment of the injector, the swirl nozzle and the outer jacket surrounding it, which together with the swirl nozzle forms the umbrella air channel, are arranged so as to be displaceable relative to one another in the axial direction, ie in the main flow direction of the liquid fuel. This allows the variation of the geometric shape of the outlet opening of the shielding air by the mutual displacement.
When used in a premix burner of a gas turbine combustor, this displacement preferably takes place as a function of the combustion air temperature and thus the load of the gas turbine. In the upper load range, the shield air velocity can be reduced by suitable displacement and thus the atomization, in particular the spray angle and the spray quality, can be changed.

Selbstverständlich lassen sich die letztgenannten Ausführungsformen sowohl mit als auch ohne Drallerzeuger im Schirmluftkanal realisieren. Bei Einsatz eines Drallerzeugers im Schirmluftkanal kann auch hier über den Drallwinkel bzw. die Drallrichtung zusätzlich Einfluss auf die Zerstäubungsqualität des Flüssigbrennstoffes ausgeübt werden.Of course, the latter embodiments can be realized both with and without swirl generator in the shield air duct. When using a swirl generator in the shielding air duct, the swirl angle or the swirl direction can additionally exert an influence on the atomization quality of the liquid fuel.

Der vorliegende Vormischbrenner ermöglicht aufgrund des speziellen Injektors einen Betrieb mit einem verringerten brennstoffseitigen Druckverlust bei der Spraybildung sowie bei einigen Ausgestaltungen eine zusätzlich verbesserte Spraybildung.The present premix burner, due to the special injector, allows operation with reduced fuel side pressure loss on spray formation and, in some embodiments, additionally improved spray formation.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Der erfindungsgemässe Vormischbrenner mit einem Injektor für Flüssigbrennstoff wird nachfolgend anhand von Ausführungsbeispielen in Verbindung mit den Zeichnungen nochmals näher erläutert. Hierbei zeigen:

Fig .1
schematisch ein Beispiel für einen Vormischbrenner gemäß dem Stand der Technik;
Fig. 2
schematisch ein Beispiel für eine Ausgestaltung eines Vormischbrenners mit einem Injektor für Flüssigbrennstoff;
Fig. 3
ein erstes Beispiel für eine Ausgestaltung des Injektors;
Fig. 4
ein zweites Beispiel für eine Ausgestaltung des Injektors; und
Fig. 5
ein drittes Beispiel für eine Ausgestaltung des Injektors.
The premix burner according to the invention with an injector for liquid fuel will be explained in more detail below on the basis of exemplary embodiments in conjunction with the drawings. Hereby show:
Fig .1
schematically an example of a premix burner according to the prior art;
Fig. 2
schematically an example of an embodiment of a premix burner with a liquid fuel injector;
Fig. 3
a first example of an embodiment of the injector;
Fig. 4
a second example of an embodiment of the injector; and
Fig. 5
a third example of an embodiment of the injector.

Wege zur Ausführung der ErfindungWays to carry out the invention

Der Aufbau eines Vormischbrenners gemäß dem Stand der Technik, wie er in der Fig. 1 schematisch dargestellt ist, wurde bereits in der Beschreibungseinleitung eingehend erläutert.The construction of a premix burner according to the prior art, as shown in the Fig. 1 has been shown schematically, has already been explained in detail in the introduction.

Fig. 2 zeigt nun schematisch ein Beispiel für eine Ausgestaltung des vorliegenden gestuften Vormischbrenners, bei dem ein Injektor für Flüssigbrennstoff zum Einsatz kommt. Dieser Vormischbrenner weist in bekannter Weise einen Drallerzeuger 1 auf, der aus zwei Teilschalen zusammengesetzt ist, die kegelmantelförmig einen Vormischraum umschließen. Zwischen den beiden Teilschalen sind Lufteintrittsschlitze 2 ausgebildet, die im rechten Teil der Figur in Draufsicht (Blickrichtung entgegen der Strömungsrichtung) auf den Vormischbrenner angedeutet sind. Im Bereich dieser Lufteintrittsschlitze 2 sind Brennstoff-Austrittsöffnungen 10 für gasförmigen Brennstoff angeordnet, die über entsprechende Zuführungen mit diesem Brennstoff beaufschlagt werden. Durch das Einbringen des gasförmigen Brennstoffes in den tangential durch die Lufteintrittsschlitze 2 eintretenden Verbrennungsluftstrom erfolgt eine durch den Drall der Verbrennungsluft geförderte Vermischung des gasförmigen Brennstoffes mit der Verbrennungsluft. Fig. 2 now shows schematically an example of an embodiment of the present staged premix burner, in which a liquid fuel injector is used. This premix burner has, in a known manner, a swirl generator 1 which is composed of two partial shells which enclose a pre-mixing chamber in the shape of a cone-shaped jacket. Between the two subshells air inlet slots 2 are formed, which are indicated in the right part of the figure in plan view (viewing direction opposite to the flow direction) on the premix burner. In the area of this Air inlet slots 2 are arranged fuel outlet openings 10 for gaseous fuel, which are acted upon by corresponding feeds with this fuel. By introducing the gaseous fuel into the combustion air stream entering tangentially through the air inlet slots 2, mixing of the gaseous fuel with the combustion air is facilitated by the swirl of the combustion air.

Im vorliegenden Beispiel ist eine Gruppe von Brennstoff-Austrittsöffnungen 10 für gasförmigen Brennstoff in der brennraumnahen Hälfte des Brenners ausgebildet, die eine von im vorliegenden Fall zwei Brennerstufen bildet. Eine zweite Gruppe von Brennstoff-Austrittsöffnungen 9 für gasförmigen Brennstoff ist in der zentralen Brennstofflanze 3 stromauf der Spitze dieser Lanze 3 angeordnet. Diese weitere Stufe für die Zuführung gasförmigen Brennstoffs kann während der Anfahrphase der Gasturbine, in deren Brennkammer dieser Brenner eingesetzt wird, als Pilotstufe dienen. Selbstverständlich kann auch die erstgenannte Brennerstufe beliebig in unterschiedliche Stufen aufgeteilt werden, die unabhängig voneinander mit gasförmigem Brennstoff beaufschlagbar sind. Diese Brennerstufen können sich selbstverständlich auch über die gesamte axiale Länge des Drallerzeugers 1 erstrecken.In the present example, a group of fuel outlet openings 10 is formed for gaseous fuel in the combustion chamber near the half of the burner, which forms one of two burner stages in the present case. A second group of gaseous fuel fuel discharge ports 9 is disposed in the central fuel lance 3 upstream of the tip of this lance 3. This further stage for the supply of gaseous fuel can serve as a pilot stage during the start-up phase of the gas turbine, in whose combustion chamber this burner is used. Of course, the first-mentioned burner stage can be arbitrarily divided into different stages, which are acted upon independently with gaseous fuel. Of course, these burner stages can also extend over the entire axial length of the swirl generator 1.

An der Spitze der Brennstofflanze 3 ist der vorliegende Injektor 4 angeordnet, der im rechten Teil der Figur 2 in Draufsicht zu erkennen ist. Die Figur zeigt hierbei die zentrale Austrittsdüse 6 für den Flüssigbrennstoff 6a sowie die diesen umgebende ringförmige Austrittsdüse 5 für die Schirmluft 5a. Durch die gestufte Ausbildung dieses Vormischbrenners wird die Anbringung einer zusätzlichen Düse für gasförmigen Brennstoff an der Lanzenspitze vermieden, so dass mehr Platz für den Injektor für Flüssigbrennstoff zur Verfügung steht. Dies ermöglicht sehr vorteilhaft den Einsatz des vorgeschlagenen Injektors mit dem verbreiterten Strömungsquerschnitt im Bereich des düseninternen Drallerzeugers.At the top of the fuel lance 3, the present injector 4 is arranged, which in the right part of the FIG. 2 can be seen in plan view. The figure shows the central outlet nozzle 6 for the Liquid fuel 6a and the annular outlet nozzle 5 surrounding it for the umbrella air 5a. The stepped design of this premix burner avoids the installation of an additional nozzle for gaseous fuel at the lance tip, so that more space is available for the injector for liquid fuel. This very advantageously allows the use of the proposed injector with the broadened flow cross-section in the region of the nozzle-internal swirl generator.

Im Anfahrbetrieb der Gasturbine wird ein Großteil des Brennstoffes über die Brennstofflanze 3 zugegeben. Erst bei höherer Last wird der Brenner mit niedrigeren Brennstoffanteilen über die Lanzenstufe betrieben, die eine Optimierung des Pulsations- und Schadstoffemissionsverhaltens ermöglichen.In the starting operation of the gas turbine, a large part of the fuel is added via the fuel lance 3. Only at higher load, the burner is operated with lower fuel levels over the lance stage, which allow optimization of the pulsation and pollutant emission behavior.

Die Fig. 3 bis 5 zeigen beispielhafte Ausgestaltungen von Injektoren 4, wie sie bei einem Vormischbrenner gemäß Fig. 2 eingesetzt werden können. Bei der Ausgestaltung gemäss Fig. 3 ist die geometrische Form der Dralldüse 14 gut zu erkennen. Diese Dralldüse 14 ist im Bereich des düseninternen Drallgitters 12 im Strömungsquerschnitt lokal stark vergrößert. Das Drallgitter 12 ist hierbei um einen zentralen Drallkörper 15 ausgebildet. Aufgrund der gegenüber herkömmlichen Injektoren günstigeren Platzverhältnisse in der Lanzenspitze kann eine grössere Düse eingebaut werden, wodurch sich der Druckverlust deutlich vermindert, so dass dieser Injektor mit verringertem Vordruck bei hoher Zerstäubungsleistung betrieben werden kann.The Fig. 3 to 5 show exemplary embodiments of injectors 4, as in a premix burner according to Fig. 2 can be used. In the embodiment according to Fig. 3 the geometric shape of the swirl nozzle 14 is clearly visible. This swirl nozzle 14 is locally greatly enlarged in the flow cross-section in the region of the nozzle-internal swirl lattice 12. The swirl lattice 12 is in this case formed around a central swirl body 15. Due to the more favorable compared to conventional injectors space in the lance tip a larger nozzle can be installed, whereby the pressure loss is significantly reduced, so that this injector can be operated with reduced form with high atomization performance.

Der Schirmluftkanal 11 umgibt die Dralldüse 14. Die Schirmluft 5a tritt in diesem Anwendungsbeispiel in axialer Richtung aus der Lanzenspitze aus. Dies wird durch die geometrische Ausbildung der Begrenzungen des Schirmluftkanals 11 am Austrittsende erreicht, die parallel zur axialen Richtung verlaufen. Im Schirmluftkanal 11 kann wahlweise ein zusätzliches Drallgitter 13 mit im Verhältnis zum düseninternen Drallgitter 12 gleich- oder gegensinnigem Drall angeordnet sein. Über die Einstellung des Drallwinkels kann die Zerstäubungsqualität des Flüssigbrennstoffes beim Austritt aus dem Injektor beeinflusst werden.The shielding air channel 11 surrounds the swirl nozzle 14. The shielding air 5a emerges in this application example in the axial direction from the lance tip. This is achieved by the geometric design of the boundaries of the shield air duct 11 at the outlet end, which run parallel to the axial direction. In the shield air duct 11, an additional swirl grille 13 can optionally be arranged with equal or opposite swirl relative to the nozzle-internal swirl grating 12. The adjustment of the helix angle can influence the atomization quality of the liquid fuel as it exits the injector.

Fig. 4 zeigt ein weiteres Beispiel für den Injektor 4, bei dem dieser ähnlich aufgebaut ist wie der der Fig. 3. Der in der Fig. 4 dargestellte Injektor 4 weist jedoch unterschiedliche Austrittsrichtungen für die Schirmluft 5a und den Flüssigbrennstoff 6a auf. Durch die nach innen gerichtete Ausbildung des Austritts des Schirmluftkanals 11 wird eine Anstellung der Schirmluftströmung gegenüber der Strömungsrichtung des Flüssigbrennstoffes 6a beim Austritt aus dem Injektor erreicht. Im vorliegenden Beispiel wird durch die dargestellte Ausgestaltung ein Strömungsfeld der Schirmluft nahezu senkrecht zur Strömungsrichtung des Flüssigbrennstoffes erzwungen, so däss eine hohe Scherrate zwischen der Schirmluft und dem Flüssigbrennstoff erzeugt wird. Diese hohe Scherrate fördert den Zerstäubungseffekt. Auch hier kann ein Drallgitter 13 im Schirmluftkanal angeordnet sein, das, insbesondere bei der Erzeugung eines gegensinnigen Dralls, den Effekt der Zerstäubung noch verstärken kann. Fig. 4 shows another example of the injector 4, in which this is similar to that of the Fig. 3 , The Indian Fig. 4 However, shown injector 4 has different exit directions for the shielding air 5a and the liquid fuel 6a. Due to the inwardly directed formation of the outlet of the umbrella air duct 11, a setting of the umbrella air flow with respect to the flow direction of the liquid fuel 6a is achieved upon exiting the injector. In the present example, a flow field of the shielding air is forced nearly perpendicular to the flow direction of the liquid fuel by the illustrated embodiment, so däss a high shear rate between the shielding air and the liquid fuel is generated. This high shear rate promotes the atomization effect. Again, a swirl grille 13 may be arranged in the shield air duct, which, in particular in the generation of an opposite twist, can further enhance the effect of atomization.

Fig. 5 zeigt schließlich ein weiteres Beispiel eines Injektors 4, der vergleichbar dem Injektor der Fig. 4 ausgebildet ist. Der Schirmluftkanal 11 weist in diesem Beispiel allerdings eine variable Geometrie auf, die durch eine gegenseitige Verschiebbarkeit der äußeren Ummantelung 16 gegenüber der Dralldüse 14 in axialer Richtung erreicht wird. Diese Verschiebbarkeit ist in der Figur durch die Doppelpfeile angedeutet. Wird die Dralldüse 14 gegenüber der äußeren Ummantelung 16 verschoben, so öffnet oder schließt sich der Austrittsspalt für die Schirmluft. Die Verschiebung wird vorzugsweise in Abhängigkeit von der Verbrennungstemperatur und damit der Last der Gasturbine vorgekommen. So können beispielsweise im oberen Lastbereich mit Hilfe dieses Injektors durch Vergrößerung des Schirmluftspaltes die Schirmluftgeschwindigkeit reduziert und somit der Spraywinkel und die Sprayqualität geändert werden. Fig. 5 Finally, another example of an injector 4 comparable to the injector of FIG Fig. 4 is trained. However, in this example, the shielding air channel 11 has a variable geometry, which is achieved by a mutual displaceability of the outer jacket 16 relative to the swirl nozzle 14 in the axial direction. This displacement is indicated in the figure by the double arrows. If the swirl nozzle 14 is displaced with respect to the outer jacket 16, the outlet gap for the umbrella air opens or closes. The displacement is preferably a function of the combustion temperature and thus the load of the gas turbine. Thus, for example, in the upper load range with the help of this injector by increasing the shield air gap, the shield air velocity can be reduced and thus the spray angle and the spray quality can be changed.

Durch die vorliegende Ausgestaltung des Injektors bzw. Vormischbrenners ist ein schadstoffarmer und pulsationsfreier Betrieb bei der Verbrennung flüssiger Brennstoffe oder Brennstoffemulsionen in einer Gasturbinenbrennkammer möglich. Dies wird vor allem durch die Kombination eines gasseitig brennstoffgestuften Gasturbinenbrenners ermöglicht, der den Einbau des durch lokale Verbreiterung der Dralldüse größeren Injektors in der Lanzenspitze ermöglicht. Durch die unterschiedlichen Ausgestaltungen des Injektors lässt sich das Zerstäubungs- bzw. Sprayverhalten zur Optimierung der jeweiligen Anwendungen beeinflussen. BEZUGSZEICHENLISTE 1 Drallerzeuger 2 Lufteintrittsschlitze 2a 3 Brennstofflanze 4 Injektor für Flüssigbrennstoff 5 Austrittsdüse für Schirmluft 5a Schirmluft 6 Austrittsdüse für Flüssigbrennstoff 6a Flüssigbrennstoff 7 Austrittsdüse für gasförmigen Brennstoff 7a Gasförmiger Brennstoff 8 Strömungsrichtung bzw. axiale Richtung 9 Austrittsöffnungen für gasförmigen Brennstoff 10 Austrittsöffnungen für gasförmigen Brennstoff 11 Schirmluftkanal 12 Düseninternes Drallgitter 13 Drallgitter im Schirmluftkanal 14 Dralldüse 15 Düseninterner Drallkörper 16 Äußere Ummantelung The present configuration of the injector or premix burner permits low-emission and pulsation-free operation in the combustion of liquid fuels or fuel emulsions in a gas turbine combustion chamber. This is made possible above all by the combination of a gas-side gas-fueled gas turbine burner, which makes it possible to install the injector in the tip of the spear, which is larger by local broadening of the swirl nozzle. Due to the different configurations of the injector, the atomization or spray behavior can be influenced to optimize the respective applications. <B> LIST OF REFERENCES </ b> 1 swirl generator 2 Air inlet slots 2a 3 fuel lance 4 Injector for liquid fuel 5 Outlet nozzle for screen air 5a shielding air 6 Outlet nozzle for liquid fuel 6a liquid fuel 7 Outlet nozzle for gaseous fuel 7a Gaseous fuel 8th Flow direction or axial direction 9 Outlets for gaseous fuel 10 Outlets for gaseous fuel 11 Screen air duct 12 In-nozzle swirl grid 13 Swirl lattice in the shield air duct 14 swirl nozzle 15 Internal nozzle swirl body 16 Outer sheath

Claims (12)

  1. Staged premix burner, in particular for a combustion chamber of a gas turbine, having a swirl generator (1) for a combustion air stream, fuel exit openings (9, 10) with feeds for the staged introduction of gaseous fuel into the combustion air stream, and a central carrier (3), which has an injector (4) with a swirl nozzle (14) for the injection of liquid fuel (6a) and a shielding-air passage (11) for shielding air (5a), the swirl nozzle (14) being surrounded by the shielding-air passage (11) and having an enlarged cross section of flow in the region of a nozzle-internal swirl generator (12) for the liquid fuel (6a), and this enlarged cross section of flow is reduced again toward an exit opening of the swirl nozzle (14).
  2. Premix burner according to Claim 1, characterized in that some of the fuel exit openings (9) for introducing gaseous fuel into the combustion air stream are formed in a part of the carrier (3) which is located upstream of the injector (4).
  3. Premix burner according to Claim 1, characterized in that the swirl generator (1) is formed by a plurality of part-shells, which surround a premix space in the shape of a cone envelope and between which air entry slots (2) are formed.
  4. Premix burner according to Claim 3, characterized in that at least some of the fuel exit openings (10) for introducing gaseous fuel into the combustion air stream are arranged in the region of the air entry slots (2) at the swirl generator (1).
  5. Premix burner according to Claim 1, characterized in that the nozzle-internal swirl generator (12) of the injector (4) is designed as a swirl grate.
  6. Premix burner according to Claim 5, characterized in that the swirl grate extends around a central swirl body (15).
  7. Premix burner according to one of Claims 1 to 6, characterized in that a passage-internal swirl generator (13) is arranged in the shielding-air passage (11) of the injector (4).
  8. Premix burner according to Claim 7, characterized in that the passage-internal swirl generator (13) in the shielding-air passage (11) and the nozzle-internal swirl generator (12) are designed in such a way that they generate oppositely directed swirls.
  9. Premix burner according to one of Claims 1 to 8, characterized in that the injector (4) is designed in such a way that the liquid fuel (6a) and the shielding air (5a) emerge from the injector (4) with approximately parallel directions of flow in the axial direction of the carrier (3).
  10. Premix burner according to Claim 9, characterized in that boundary walls of the swirl nozzle (14) and of the shielding-air passage (11) run approximately coaxially at an exit of the injector (4).
  11. Premix burner according to one of Claims 1 to 8, characterized in that the shielding-air passage (11) is designed in such a way, at an exit of the injector (4), that the shielding air (5a) emerges at an angle with respect to the direction in which the liquid fuel (6a) emerges, in order to exert shearing forces on the liquid fuel (6a).
  12. Premix burner according to one of Claims 1 to 11, characterized in that the swirl nozzle (14) and an outer casing (16), which in combination with the swirl nozzle (14) forms the shielding-air passage (11), are arranged so as to be displaceable with respect to one another in the axial direction of the carrier (3).
EP05749973.3A 2004-06-07 2005-06-03 Staged premix burner with an injector for liquid fuel Not-in-force EP1754002B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027702A DE102004027702A1 (en) 2004-06-07 2004-06-07 Injector for liquid fuel and stepped premix burner with this injector
PCT/EP2005/052563 WO2005121649A2 (en) 2004-06-07 2005-06-03 Injector for liquid fuels and sequential premix burner comprising said injector

Publications (2)

Publication Number Publication Date
EP1754002A2 EP1754002A2 (en) 2007-02-21
EP1754002B1 true EP1754002B1 (en) 2016-03-16

Family

ID=34969534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05749973.3A Not-in-force EP1754002B1 (en) 2004-06-07 2005-06-03 Staged premix burner with an injector for liquid fuel

Country Status (5)

Country Link
US (1) US20070231762A1 (en)
EP (1) EP1754002B1 (en)
CN (1) CN1957208B (en)
DE (1) DE102004027702A1 (en)
WO (1) WO2005121649A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645805A1 (en) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft burner for fluidic fuels and method for operating such a burner
DE102005036889A1 (en) * 2005-08-05 2007-02-15 Gerhard Wohlfarth Liquid/gaseous material/material mixture reactions assisting and accelerating method for oil firing plant, involves mixing fuel and air based on selective twist type turbulence and introducing reaction water in combustion process
WO2008125907A2 (en) * 2006-10-26 2008-10-23 Rolls-Royce Power Engineering Plc Method and apparatus for isolating inactive fuel passages
EP2208927B1 (en) * 2009-01-15 2016-03-23 Alstom Technology Ltd Burner of a gas turbine
EP2348256A1 (en) 2010-01-26 2011-07-27 Alstom Technology Ltd Method for operating a gas turbine and gas turbine
US8893500B2 (en) 2011-05-18 2014-11-25 Solar Turbines Inc. Lean direct fuel injector
US8919132B2 (en) 2011-05-18 2014-12-30 Solar Turbines Inc. Method of operating a gas turbine engine
WO2013085411A1 (en) 2011-12-05 2013-06-13 General Electric Company Multi-zone combustor
US9182124B2 (en) 2011-12-15 2015-11-10 Solar Turbines Incorporated Gas turbine and fuel injector for the same
EP3088802A1 (en) * 2015-04-29 2016-11-02 General Electric Technology GmbH Nozzle for a gas turbine combustor
CN106247408B (en) * 2016-07-27 2019-01-18 中国科学院工程热物理研究所 A kind of nozzle, nozzle array and burner for widening tempering nargin
EP3361159B1 (en) 2017-02-13 2019-09-18 Ansaldo Energia Switzerland AG Method for manufacturing a burner assembly for a gas turbine combustor and burner assembly for a gas turbine combustor
EP3361161B1 (en) 2017-02-13 2023-06-07 Ansaldo Energia Switzerland AG Burner assembly for a combustor of a gas turbine power plant and combustor comprising said burner assembly
US10907832B2 (en) * 2018-06-08 2021-02-02 General Electric Company Pilot nozzle tips for extended lance of combustor burner
CN114962100B (en) * 2022-06-07 2023-04-25 一汽解放汽车有限公司 Biphase premixing injector
CN115388427A (en) * 2022-09-01 2022-11-25 国家电投集团北京重型燃气轮机技术研究有限公司 On-duty fuel nozzle tip, on-duty nozzle, and gas turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474569B1 (en) * 1997-12-18 2002-11-05 Quinetiq Limited Fuel injector

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE962391C (en) * 1953-12-08 1957-04-18 Daimler Benz Ag Device for atomizing and mixing fuel with compressed air in combustion chambers, especially for internal combustion turbines
DE2109136A1 (en) * 1971-02-26 1972-09-07 Messer Griesheim Gmbh Oil burner
US3946552A (en) * 1973-09-10 1976-03-30 General Electric Company Fuel injection apparatus
US3972182A (en) * 1973-09-10 1976-08-03 General Electric Company Fuel injection apparatus
DE2729321C2 (en) * 1977-06-29 1983-10-20 Smit Ovens Nijmegen B.V., Nijmegen Process for the combustion of liquid fuel and burner device for carrying out the process
CA1185850A (en) * 1982-01-11 1985-04-23 Essex Group, Inc. Electromagnetic fuel injector with improved discharge structure
DE3206074A1 (en) * 1982-02-17 1983-08-18 Körting Hannover AG, 3000 Hannover BURNERS FOR DUST-MADE, GASEOUS AND / OR LIQUID FUELS
US5224333A (en) * 1990-03-13 1993-07-06 Delavan Inc Simplex airblast fuel injection
DE4326802A1 (en) * 1993-08-10 1995-02-16 Abb Management Ag Fuel lance for liquid and / or gaseous fuels and process for their operation
DE4424599A1 (en) * 1994-07-13 1996-01-18 Abb Research Ltd Method and device for operating a combined burner for liquid and gaseous fuels
DE19539246A1 (en) * 1995-10-21 1997-04-24 Asea Brown Boveri Airblast atomizer nozzle
DE19545309A1 (en) * 1995-12-05 1997-06-12 Asea Brown Boveri Premix burner
US6082113A (en) * 1998-05-22 2000-07-04 Pratt & Whitney Canada Corp. Gas turbine fuel injector
AU2001272682A1 (en) * 2000-06-15 2001-12-24 Alstom Power N.V. Method for operating a burner and burner with stepped premix gas injection
US6405523B1 (en) * 2000-09-29 2002-06-18 General Electric Company Method and apparatus for decreasing combustor emissions
DE10050248A1 (en) * 2000-10-11 2002-04-18 Alstom Switzerland Ltd Pre-mixing burner comprises swirl burner with inner chamber, with widening passage, injector with adjustable elements.
DE10051221A1 (en) * 2000-10-16 2002-07-11 Alstom Switzerland Ltd Burner with staged fuel injection
ITMI20012784A1 (en) * 2001-12-21 2003-06-21 Nuovo Pignone Spa IMPROVED LIQUID FUEL INJECTOR FOR GAS TURBINE BURNERS
DE10334228A1 (en) * 2002-08-19 2004-03-04 Alstom (Switzerland) Ltd. Operating premix burner involves selecting second, third further fuel nozzle opening groups, applying fuel to them independently of each other so second, third groups form premixing, diffusion stages

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474569B1 (en) * 1997-12-18 2002-11-05 Quinetiq Limited Fuel injector

Also Published As

Publication number Publication date
EP1754002A2 (en) 2007-02-21
DE102004027702A1 (en) 2006-01-05
CN1957208A (en) 2007-05-02
US20070231762A1 (en) 2007-10-04
WO2005121649A2 (en) 2005-12-22
CN1957208B (en) 2010-12-15
WO2005121649A3 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
EP2116766B1 (en) Burner with fuel lance
EP1802915B1 (en) Gas turbine burner
DE60007946T2 (en) A combustion chamber
EP1812756B1 (en) Burner starting method
EP0687860B1 (en) Self igniting combustion chamber
EP2225488B1 (en) Premix burner for a gas turbine
EP1864056B1 (en) Premix burner for a gas turbine combustion chamber
EP1436546B1 (en) Burner for synthesis gas
DE4446842B4 (en) Method and device for feeding a gaseous fuel into a premix burner
DE102014117621A1 (en) Fuel injector with premix pilot nozzle
EP1292795A1 (en) Method for operating a burner and burner with stepped premix gas injection
EP1734306B1 (en) Burner for premix-type combustion
WO2005078348A1 (en) Premixing burner arrangement for operating a burner chamber and method for operating a burner chamber
EP1344002B1 (en) Burner with progressive fuel injection
EP1999410B1 (en) Burner for the operation of a heat generator
CH701773B1 (en) Burner with a Einlassleitschaufelsystem.
WO2011023648A2 (en) Swirl blade, burner and gas turbine
WO2011072665A1 (en) Burner for a turbine
EP1855054B1 (en) Method for supplying fuel to a premix burner
EP1510755B1 (en) Burner with lance and staged fuel supply.
EP2037173B1 (en) Burner head and method for one-step combustion of fuel in a combustion zone separated from the burner head
EP2442030A1 (en) Axial stage for a burner with a stabilised jet
EP2422136B1 (en) Pre-mix burner
WO2023180320A1 (en) Nozzle assembly with a central fuel pipe that is sealed against an in-flow of air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061010

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071106

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015152

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015152

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 781571

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015152

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160316

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160716

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015152

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20161219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015152

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015152

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005015152

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170620

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 781571

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005015152

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015152

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050603

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160603

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220627

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015152

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230603