EP1336800A1 - Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens - Google Patents

Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP1336800A1
EP1336800A1 EP03405031A EP03405031A EP1336800A1 EP 1336800 A1 EP1336800 A1 EP 1336800A1 EP 03405031 A EP03405031 A EP 03405031A EP 03405031 A EP03405031 A EP 03405031A EP 1336800 A1 EP1336800 A1 EP 1336800A1
Authority
EP
European Patent Office
Prior art keywords
burner
lance
fuel
flow
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03405031A
Other languages
English (en)
French (fr)
Other versions
EP1336800B1 (de
Inventor
Ephraim Gutmark
Christian Oliver Paschereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG, Alstom Schweiz AG filed Critical Alstom Technology AG
Publication of EP1336800A1 publication Critical patent/EP1336800A1/de
Application granted granted Critical
Publication of EP1336800B1 publication Critical patent/EP1336800B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a method for reducing combustion-driven Vibrations in combustion systems, especially those with low acoustic damping, as used in combustion chambers of turbo engines are often found, as well as a premix burner for performing the process.
  • thermoacoustic vibrations often occur in the combustion chambers, which arise at the burner as fluid-mechanical instability waves and lead to flow vortices that strongly influence the entire combustion process and lead to undesired periodic heat releases within the combustion chamber. This results in pressure fluctuations of high amplitude, which can lead to undesired effects, such as a high mechanical load on the combustion chamber housing, an increased NO x emission due to inhomogeneous combustion or even an extinguishing of the flame within the combustion chamber.
  • Thermoacoustic vibrations are based, at least in part, on flow instabilities the burner flow, which is expressed in coherent flow structures, and that affect the mixing processes between air and fuel.
  • thermoacoustic vibrations to counteract, for example with the help of a cooling air film that over the combustion chamber walls is passed, or by an acoustic coupling so-called Helmholtz dampers in the area of the combustion chamber or in the area of the cooling air supply.
  • thermoacoustic vibration amplitudes is associated with the disadvantage that the injection of fuel at the head stage is accompanied by an increase in the emission of NO x .
  • thermoacoustic vibrations have shown that flow instabilities often lead to these instabilities.
  • Shear layers that initiate waves perpendicular to the direction of flow Kervin-Helmholtz-waves.
  • These instabilities on shear layers in combination with the ongoing combustion process are primarily responsible for those of reaction rate fluctuations triggered thermoacoustic oscillations.
  • This largely coherent waves lead to a burner of the aforementioned type typical operating conditions to vibrate with frequencies in the area around 100 Hz. Since this frequency with typical fundamental eigenmodes of many Ring burners in gas turbine systems collapse, constitute the thermoacoustic Oscillations are a problem.
  • Premixed flames need low speed zones to stabilize to become.
  • Backflow zones which either serve to stabilize the flame by the trail behind sturgeon bodies or by aerodynamic methods (vortex breakdown).
  • the stability of the backflow zone is another criterion for the stability of the combustion and the avoidance of thermoacoustic Instabilities.
  • the invention has for its object a method for reducing combustion-driven thermoacoustic vibrations in combustion systems, in particular to provide those with low acoustic attenuation, the formation of coherent flow instabilities at the burner outlet largely prevented, as well as a premix burner to carry out the process create, which can be created with little equipment.
  • the object is achieved by a method and a premix burner of the type mentioned in the independent claims.
  • the flow-technical stabilization of the backflow zone takes place according to the invention by providing the central fuel nozzle in the form of a burner lance, such as it is usually used for pilot gas supply, the burner lance one Length, which is at least one third of the side of the burner head axial burner length protrudes into the burner downstream.
  • the burner lance is 60 - 80% of the axial length of the burner and is arranged in the center of the burner axis.
  • the fuel is advantageously discharged through at least one at the end of the lance attached fuel nozzle opening such that the in the interior the fuel discharged from the burner is mixed with the supply air and is swirled at the same time. This is done in particular by the wake at the end of the lance further stabilization of the aerodynamically generated backflow zone.
  • Position inside and out of the burner periodically The flame forming within the backflow zone runs into the Burner prevented. Due to the proximity of the fuel discharge to itself within The backflow zone forming the combustion chamber can be the same vortex breakdown due to the swirling fuel / air mixture that spreads in the direction of flow are supported, creating the backflow zone and associated with it the flame can be stabilized decisively.
  • lance shapes can influence the formation of coherent structures.
  • a number of preferred lance configurations will be presented in the following. These configurations have in common that the development of coherent structures is additionally inhibited by fanning out the vortex movement.
  • the lance is equipped with means which allow two fluid media to be supplied independently of one another. Such a design allows additional air to be introduced into the interior of the burner in addition to fuel injection. The combustion chamber vibrations can thus also be counteracted by a known modulated supply of this additional air.
  • the measure according to the invention bears one arranged along the jacket partial fuel injection via the inserted into the interior central fuel lance to stabilize itself within the backflow zone forming flame.
  • a premix burner 1 is shown in longitudinal section in FIG. 1, as is shown in its basic structure, for example, from EP 0 321 809.
  • the premix burner 1 consists of two half-shell-shaped, conically widening partial bodies 1a and 1b which are arranged such that they are axially parallel and offset from one another in such a way that they form tangential gaps in two overlapping regions lying opposite one another in mirror image.
  • the gaps resulting from the displacement of the longitudinal axes of the partial bodies 1a and 1b serve as inlet channels through which the combustion air 7 flows tangentially into the burner interior 2 during burner operation.
  • Inlet channels there are injection openings through which a preferably gaseous fuel 8 is injected into the combustion air 7 flowing past.
  • this aforementioned type of burner in a central arrangement in the starting area of the burner interior 2 has a nozzle for introducing further, preferably liquid, fuel.
  • combustion air 7 and fuel 8 cross the burner interior 2 with intensive mixing.
  • the swirl flow 6 breaks down with the formation of a return flow zone 5 with a stabilizing effect with respect to the flame front acting there.
  • Further details of the structure and mode of operation of this burner 1 can be found in the aforementioned EP document and other information sources known to the person skilled in the art.
  • a burner lance 3 projects into the burner interior 2 parallel to the burner axis.
  • the lance 3, which has a length I, which is preferably in the range of approximately 2/3 of the axial extent of the burner 1, has a centrally arranged one Fuel channel 31, which ends downstream at the lance end in a fuel nozzle 32.
  • FIG. 2 shows a diagram that shows the effect of the invention trained burner lance 3 on the suppression of instabilities in The form of pressure oscillation in the 120 Hz range is illustrated.
  • the pulsations that come in Pressure values (Pa) along the ordinate in Figure 2 are a function the position of the lance end in the burner 1.
  • the ratio I / L is plotted, i.e. the ratio of the length of the burner lance 3 to total axial extension L of the burner.
  • the different functional curves shown in the diagram correspond to the following measurement conditions, as can be seen from the legend in FIG. 2:
  • the continuous, horizontally drawn line corresponds to the base line, according to which burner systems known per se oscillate under specified operating conditions without the provision of the lance designed according to the invention.
  • the functional sequence interspersed with squares reflects the vibration behavior of a burner in premix mode, in which only the central burner lance is provided, but through which no fuel is introduced into the burner.
  • the line interspersed with the filled diamonds represents the operation using a burner lance 3 designed according to the invention, in which 2 kg of fuel discharge per hour was selected as fuel addition by the burner lance 3.
  • the dotted line interspersed with triangles shows a case using the burner lance 3 designed according to the invention, as it were the line interspersed with the diamonds, but with a fuel addition of 5 kg per hour.
  • FIGS. 5-8 show different interfering body geometries according to which the lance end is to be designed. Depending on the interfering body geometries shown in these figures, the characteristic curves shown in FIG. 3 can be obtained to show the mode of action of the suppression of instabilities.
  • the diagram shown in FIG. 3 is comparable to that in FIG. 2.
  • the conical burner lance has been shown to be of all the fault geometries examined (Fig. 7) as particularly suitable for suppressing instabilities (see here the dashed line interspersed with upside down triangles in Fig. 3).
  • FIG. 4 shows the evaluation of the individual interference geometries in relation to the nitrogen oxide emission shown. This proves that with a variety of fuel outlet openings penetrated burner lance as particularly advantageous, which in FIG is shown.
  • the interference geometry shown in Figure 5 as well as that in the following figures The geometries shown can be used, for example, as screw attachments formed a thread that are screwed into the burner head and in particular can be easily replaced for test purposes.
  • the burner lance 3 shown in FIG. 5 is equipped with a large number of fuel outlet openings 9 passing laterally through the jacket. Axial fanning out of the fuel injection ensures homogeneous mixing of the fuel and combustion air.
  • the injection is preferably carried out in the region of the second lance half, as seen in the direction of flow.
  • FIG. 6 shows a star-shaped lance end geometry
  • FIG. 7 shows a conical lance end geometry, the fuel being discharged from the lance 3 through axially aligned outlet openings 12, 32, as it were the lance geometry in FIG. 8, which shows a burner lance to which a plate 13 is attached ,
  • the disturbance geometries as described above with reference to FIG. 3, are capable of the premix flow decisively influence.

Abstract

Beschrieben wird ein Verfahren sowie eine Vorrichtung zur kontrollierten Dämpfung verbrennungsgetriebener Schwingungen in einer Strömungskraftmaschinen mit einem Brennersystem, das wenigstens einen Brenner vorsieht, in den über wenigstens eine zentral im Brenner angeordnete Brennerdüse Brennstoff eingebracht wird, der mit in den Brenner einströmenden Verbrennungszuluft zu einem Brennstoff/Luftgemisch vermischt wird, das in einer, sich an das Brennersystem anschließenden Brennkammer zur Zündung gebracht wird.
Die Erfindung zeichnet sich dadurch aus, dass die Brennstoffdüse in Form einer Brennerlanze ausgebildet ist, an deren Lanzenende ein Brennstoffaustrag in den Brenner erfolgt, und dass die Brennerlanze wenigstens zu einem Drittel der axialen Brennerlänge in den Brenner hineinragt.

Description

Technisches Gebiet
Die Erfindung bezieht sich auf ein Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen, insbesondere solchen mit geringer akustischer Dämpfung, wie sie in Brennkammern von Strömungskraftmaschinen häufig anzutreffen sind, sowie einen Vormischbrenner zur Durchführung des Verfahrens.
Stand der Technik
Beim Betrieb von Strömungskraftmaschinen, wie beispielsweise Gasturbinenanlagen, treten in den Brennkammern häufig verbrennungsgetriebene thermoakustische Schwingungen auf, die am Brenner als strömungsmechanische Instabilitätswellen entstehen und zu Strömungswirbeln führen, die den gesamten Verbrennungsvorgang stark beeinflussen und zu unerwünschten periodischen Wärmefreisetzungen innerhalb der Brennkammer führen. Daraus resultieren Druckschwankungen hoher Amplitude, die zu unerwünschten Effekten, wie zu einer hohen mechanischen Belastung des Brennkammergehäuses, einer erhöhten NOx-Emission durch eine inhomogene Verbrennung oder sogar zu einem Erlöschen der Flamme innerhalb der Brennkammer führen können.
Thermoakustische Schwingungen beruhen zumindest teilweise auf Strömungsinstabilitäten der Brennerströmung, die sich in kohärenten Strömungsstrukturen äußern, und die die Mischungsvorgänge zwischen Luft und Brennstoff beeinflussen.
Es sind mittlerweile eine Reihe von Techniken bekannt thermoakustischen Schwingungen entgegenzutreten, bspw. mit Hilfe eines Kühlluftfilmes, der über die Brennkammerwände geleitet wird, oder durch eine akustische Ankopplung sogenannter Helmholtz-Dämpfer im Bereich der Brennkammer oder im Bereich der Kühlluftzufuhr.
Ferner ist bekannt, dass den im Brenner auftretenden Verbrennungsinstabilitäten dadurch entgegengetreten werden kann, indem die Brennstoffflamme durch zusätzliche Eindüsung von Brennstoff stabilisiert wird. Eine derartige Eindüsung von zusätzlichem Brennstoff erfolgt über die Kopfstufe des Brenners, in der eine auf der Brennerachse liegende Düse für die Pilot-Brennstoffgaszuführung vorgesehen ist, was jedoch zu einer Anfettung der zentralen Flammstabilisierungszone führt. Diese Methode der Verminderung von thermoakustischen Schwingungsamplituden ist jedoch mit dem Nachteil verbunden, dass die Eindüsung von Brennstoff an der Kopfstufe mit einer Erhöhung der Emission von NOx einhergeht.
Untersuchungen zur Ausbildung thermoakustischer Schwingungen haben gezeigt, dass oftmals Strömungsinstabilitäten zu diesen Instabilitäten führen. Von besonderer Bedeutung sind hierbei die sich zwischen zwei mischenden Strömungen ausbildenden Scherschichten, die senkrecht zur Strömungsrichtung verlaufende Wellen initiieren (Kevin-Helmholtz-Wellen). Diese Instabilitäten auf Scherschichten in Kombination mit dem ablaufenden Verbrennungsprozess sind hauptverantwortlich für die von Reaktionsratenschwankungen ausgelösten thermoakustischen Oszillationen. Diese weitgehend kohärenten Wellen führen bei einem Brenner der vorgenannten Art unter typischen Betriebsbedingungen zu Schwingungen mit Frequenzen im Bereich um 100 Hz. Da diese Frequenz mit typischen fundamentalen Eigenmoden von vielen Ringbrennern in Gasturbinenanlagen zusammenfallen, stellen die thermoakusitschne Oszillationen ein Problem dar. Nähere Ausführungen hierzu sind folgenden Druckschriften zu entnehmen: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams", Journal of Fluid mechanics, Vol. 123, 91-130; Paschereit et al. 1995, "Experimental investigation of subharmonic resonance in an axisymmetric jet", Journal of Fluid Mechanics, Vol. 283, 365-407; Paschereit et al., 1998, "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner", Combustion, Science & Technology, Vol. 138, 213-232).
Wie aus den vorstehenden Veröffentlichungen zu entnehmen ist, ist es möglich, die sich innerhalb der Scherschichten ausbildenden kohärenten Strukturen durch gezieltes Einbringen einer akustischen Anregung derart zu beeinflussen, dass die Ausbildung solcher Wirbel weitgehend verhindert wird. Damit werden Schwankungen in der Wärmefreisetzung unterbunden und die Druckschwankungen reduziert.
Vorgemischte Flammen benötigen Zonen geringer Geschwindigkeit, um stabilisiert zu werden. Zur Stabilisierung der Flamme dienen Rückströmzonen, die entweder durch den Nachlauf hinter Störkörpern oder durch aerodynamische Methoden (vortex breakdown) erzeugt werden. Die Stabilität der Rückströmzone ist ein weiteres Kriterium für die Stabilität der Verbrennung und der Vermeidung von thermoakustischen Instabilitäten.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Verminderung verbrennungsgetriebener thermoakustischer Schwingungen in Verbrennungssystemen, insbesondere solchen mit einer geringen akustischen Dämpfung, bereitzustellen, das die Ausbildung kohärenter Strömungsinstabilitäten am Brenneraustritt weitgehend verhindert, sowie einen Vormischbrenner zur Durchführung des Verfahrens zu schaffen, welcher mit geringem apparativen Aufwand zu erstellen ist.
Erfindungsgemäss wird die Aufgabe durch ein Verfahren und einen Vormischbrenner der in den unabhängigen Ansprüchen genannten Art gelöst.
Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der abhängigen Ansprüche sowie der nachfolgenden Beschreibung.
Ausgehend von einem Verbrennungssystem, das bspw. einen Vormischbrenner der gemäss EP 0 321 809 B1 geschützten Bauart umfasst, besteht der Grundgedanke der Erfindung darin, die sich innerhalb der stromab des Brenneraustritts ausbildende zentrale Rückströmzone, innerhalb der sich das Brennstoff-/Luftgemisch entzündet, zu stabilisieren. Durch die Stabilisierung der Rückströmzone sowie die Verminderung der Ausbildung kohärenter Wirbelstrukturen am Brenneraustritt werden die das Auftreten thermoakustischer Schwingungen verursachenden periodischen Wärmefreisetzungen innerhalb der Brennkammer weitgehend unterbunden.
Die strömungstechnische Stabilisierung der Rückströmzone erfolgt erfindungsgemäß durch das Vorsehen der zentralen Brennstoffdüse in Form einer Brennerlanze, wie sie üblicherweise zur Pilotgaszufuhr verwendet wird, wobei die Brennerlanze eine Länge aufweist, die von Seiten des Brennerkopfes wenigstens zu einem Drittel der axialen Brennerlänge in den Brenner stromab hineinragt. Vorzugsweise weist die Brennerlanze eine Länge von 60 - 80 % der axialen Erstreckung des Brenners auf und ist mittig zur Brennerachse angeordnet.
In vorteilhafter Weise erfolgt der Brennstoffaustrag durch wenigstens eine am Lanzenende angebrachte Brennstoffdüsenöffnung derart, dass sich der in dem Innenraum des Brenners ausgetragene Brennstoff feinstverteilt mit Zuluft mischt und zugleich verwirbelt wird. Insbesondere erfolgt durch den Nachlauf am Lanzenende eine weitere Stabilisierung der aerodynamisch erzeugten Rückströmzone. Insbesondere wird durch den erfindungsgemäßen Brennstoffeintrag in einer stromab verlagerten Position innerhalb des Brennerinnenraums ein periodisches Hinaus- und wieder Hineinlaufen der sich innerhalb der Rückströmzone ausbildenden Flamme in den Brenner verhindert. Durch die räumliche Nähe des Brennstoffaustrages zur sich innerhalb der Brennkammer ausbildenden Rückströmzone kann eben jener Wirbelzusammenbruch durch das sich in Strömungsrichtung ausbreitende, verwirbelte Brennstoff-/Luftgemisch unterstützt werden, wodurch die Rückströmzone und damit verbunden die Flamme entscheidend stabilisiert werden.
Ferner ist erkannt worden, dass durch unterschiedliche Lanzenformen die Entstehung kohärenter Strukturen beeinflusst werden kann. In den nachfolgenden Ausführungen wird eine Reihe bevorzugter Lanzenkonfigurationen vorgestellt werden. Diesen Konfigurationen ist gemein, durch eine Auffächerung der Wirbelbewegung die Entstehung kohärenter Strukturen zusätzlich zu hemmen.
In einer weiteren Ausführungsform ist die Lanze mit Mitteln ausgerüstet, die eine voneinander unabhängige Zuführung zweier fluider Medien gestatten. Eine solche Gestaltung erlaubt es, neben einer Brennstoffeindüsung noch Zusatzluft in den Brennerinnenraum einzuführen. Durch eine an sich bekannte modulierte Zuführung dieser Zusatzluft kann den Brennkammerschwingungen damit zusätzlich entgegengewirkt werden.
Insbesondere bei einer Betriebsweise des Vormischbrenners mit Brennstoffzuführung in die tangential in den Brennerinnenraum eintretende Verbrennungsluft über längs des Mantels angeordnete Düsen, trägt die erfindungsgemäße Massnahme einer teilweisen Brennstoffeindüsung über die in den Innenraum hineingeschobene zentrale Brennstofflanze zur Stabilisierung der sich innerhalb der Rückströmzone ausbildenden Flamme bei.
Wege zur Ausführung der Erfindung
Die Erfindung sei nachfolgend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben.
Es zeigen:
Fig. 1
schematisierter Längsschnitt durch einen kegelförmig ausgebildeten Brenner mit verlängerter Brennerlanze,
Fig. 2
Diagrammdarstellung zur Abhängigkeit der Länge der Brennerlanze auf das akustische Dämpfungsverhalten,
Fig. 3
Diagrammdarstellung zur Abhängigkeit der Länge der Brennerlanze auf das akustische Dämpfungsverhalten im Hinblick auf unterschiedliche Lanzenkonfigurationen,
Fig. 4
Diagrammdarstellung der Abhängigkeit der Länge der Brennerlanze auf die NOx-Emissionen im Hinblick auf unterschiedliche Lanzenkonfigurationen,
Fig. 5-8
unterschiedliche Brennerlanzenkonfigurationen.
In Figur 1 ist im Längsschnitt ein Vormischbrenner 1 dargestellt, wie er in seinem Grundaufbau beispielweise aus der EP 0 321 809 hervorgeht. Der Vormischbrenner 1 besteht aus zwei halbschalenförmigen, sich konisch erweiternden Teilkörpern 1a und 1b, die derart achsparallel und zueinander versetzt angeordnet sind, dass sie in zwei spiegelbildlich gegenüberliegenden Überlappungsbereichen tangentiale Spalte bilden. Die aus der Versetzung der Längsachsen der Teilkörper 1a und 1b resultierenden Spalte dienen als Eintrittskanäle, durch die im Brennerbetrieb die Verbrennungsluft 7 tangential in den Brennerinnenraum 2 einströmt. Entlang diesen Eintrittskanälen befinden sich Eindüsungsöffnungen, durch welche ein vorzugsweise gasförmiger Brennstoff 8 in die vorbeiströmende Verbrennungsluft 7 eingedüst wird. Neben dieser Brennstoffeindüsung 8 am Brennermantel besitzt diese vorgenannte Brennergattung in zentraler Anordnung im Anfangsbereich des Brennerinnenraums 2 eine Düse zur Einführung weiteren, vorzugsweise flüssigen Brennstoffs. Unter Ausbildung einer Drallströmung 6 durchqueren Verbrennungsluft 7 und Brennstoff 8 unter intensiver Durchmischung den Brennerinnenraum 2. Am Brenneraustritt bricht die Drallströmung 6 unter Ausbildung einer Rückstromzone 5 mit einem gegenüber der dort wirkenden Flammenfront stabilisierenden Effekt zusammen. Weitere Einzelheiten des Aufbaus und der Wirkungsweise dieses Brenners 1 sind der vorgenannten EP-Schrift und anderen dem Fachmann bekannten Informationsquellen zu entnehmen.
Erfindungsgemäss ragt in Verlängerung der erwähnten zentralen Brennstoffdüse eine Brennerlanze 3 parallel zur Brennerachse in den Brennerinnenraum 2. Die Lanze 3, die eine Länge I aufweist, die vorzugsweise im Bereich von etwa 2/3 der axialen Erstreckung des Brenners 1 liegt, weist einen mittig angeordneten Brennstoffkanal 31 auf, der stromab am Lanzenende in einer Brennstoffdüse 32 endet.
Nach der in Fig.1 dargestellten Ausführungsvariante münden im Bereich des Lanzenendes darüber hinaus radial ausgerichtete Düsen 33, aus denen zur zusätzlichen Dämpfung sich im Verbrennungssystem ausbildender thermoakustischer Schwingungen Luft in den Brennerinnenraum 2 eingebracht wird. Diese Luft, wie auch der Brennstoff, können moduliert eingespeist werden. Das sich in einer Drallströmung 6 durch den Brennerinnenraum 2 in die Brennkammer 4 ausbreitende Brennstoff- /Luftgemisch vermag die sich innerhalb der Brennkammer 4 ausbildende Rückströmzone 5 zu stabilisieren, zumal die Wirbelstärke des Brennstoff-/Luftgemisches vor und während der Zündung den Wirbelzerfall innerhalb der Brennkammer 4 begünstigt, wodurch die Rückströmzone 5 stabilisiert wird. Hierdurch kann verhindert werden, daß die Rückströmzone 5 ihre Lage periodisch ändert, was letztlich Ursache der sich innerhalb des Verbrennungssytems ausbreitenden thermoakustischen Schwingungen ist.
In Figur 2 ist eine Diagrammdarstellung abgebildet, die die Wirkung der erfindungsgemäß ausgebildeten Brennerlanze 3 auf die Unterdrückung von Instabilitäten in Form von Druckschwingung im 120 Hz-Bereich verdeutlicht. Die Pulsationen, die in Druckwerten (Pa) entlang der Ordinate in Figur 2 aufgetragen sind, sind als Funktion der Position des Lanzenendes im Brenner 1 aufgetragen. Entlang der Abszisse ist das Verhältnis I/L aufgetragen, d.h. das Verhältnis der Länge der Brennerlanze 3 zur gesamtaxialen Erstreckung L des Brenners. Die Position I/L = 0 entspricht dabei der ursprünglichen Position der zentralen Brennstoffdüse wie vorstehend erwähnt.
Die unterschiedlichen im Diagramm dargestellten Funktionsverläufe entsprechen, folgenden Messbedingungen, wie sie im übrigen aus der Legende der Figur 2 entnehmbar sind:
Die durchgehend, horizontal eingetragene Linie entspricht der Basislinie, gemäß der an sich bekannte Brennersysteme ohne die Vorkehrung der erfindungsgemäß ausgebildeten Lanze bei vorgegebenen Betriebsbedingungen schwingen. Der mit Quadraten durchsetzte Funktionsverlauf gibt das Schwingungsverhalten eines Brenners im Premixbetrieb wieder, bei dem lediglich die zentrale Brennerlanze vorgesehen ist, durch die jedoch kein Brennstoffeintrag in den Brenner erfolgt. Die mit den ausgefüllten Rauten durchsetzte Linie gibt den Betrieb unter Verwendung einer erfindungsgemäß ausgebildeten Brennerlanze 3 wieder, bei der 2 kg Brennstoffaustrag pro Std. als Brennstoffzugabe durch die Brennerlanze 3 gewählt wurde. Schließlich zeigt die mit Dreiecken durchsetzte punktierte Linie einen Fall unter Verwendung der erfindungsgemäß ausgebildeten Brennerlanze 3, gleichsam jenem mit der Rauten durchsetzten Linie, jedoch mit einer Brennstoffzugabe von 5 kg pro Std..
Aus Figur 2 wird deutlich, dass die sich einstellenden Instabilitäten im Vormischbetrieb bei dem in Figur 1 dargestellten Brenner mit einer Lanzenposition von I/L = 0,6 - 0,8 am besten unterdrücken lassen. Die bevorzugte Lanzenposition liegt dabei bei I/L = 0,7.
Die Unterdrückung der Instabilitäten im Brennerbetrieb, die im wesentlichen durch eine verbesserte Flammenstabilität und durch die Zerstörung kohärenter Strukturen gewährleistet werden kann, lässt sich verbessern, indem das Lanzenende als Störkörper 10, 11, 13 konfiguriert wird, um Wirbelstärke in Strömungsrichtung einzubringen. Aus den Figuren 5-8 gehen hierzu unterschiedliche Störkörpergeometrien hervor, gemäß denen das Lanzenende auszubilden ist. In Abhängigkeit der in diesen Figuren dargestellten Störkörpergeometrien können die in Figur 3 dargestellten Kennlinien zur Darstellung der Wirkungsweise der Unterdrückung von Instabilitäten gewonnen werden.
Die in Figur 3 dargestellte Diagrammdarstellung ist mit der in Figur 2 vergleichbar. Die Zugehörigkeit der einzelnen Funktionsverläufe zu den unterschiedlich ausgebildeten Störkörpergeometrien sind ebenfalls direkt aus der Legende der Figur zu entnehmen. Wieder ergibt sich der Sachverhalt, dass eine Unterdrückung von Instabilitäten mit einer Brennerlanzenlänge von I/L = 0,6 - 0,8 am deutlichsten ausgeprägt ist.
Von allen untersuchten Störgeometrien erweist sich die konisch ausgebildete Brennerlanze (Fig.7) als besonders geeignet, Instabilitäten zu unterdrücken (siehe hierzu die mit auf den Kopf gestellten Dreiecken durchsetzte gestrichelte Linie in Fig. 3).
In Figur 4 ist die Auswertung der einzelnen Störgeometrien in Bezug auf die Stickoxidemission dargestellt. Hierbei erweist sich die mit einer Vielzahl von Brennstoffaustrittsöffnungen durchsetzte Brennerlanze als besonders vorteilhaft, die in Figur 5 dargestellt ist. Die in Figur 5 abgebildete Störgeometrie sowie auch die in den Folgefiguren abgebildeten Geometrien können beispielsweise als Schraubaufsätze mit einem Gewinde ausgebildet, die in den Brennerkopf eingeschraubt werden und insbesondere zu Testzwecken leicht ausgetauscht werden können.
Die in Figur 5 abgebildete Brennerlanze 3 ist mit einer Vielzahl den Mantel lateral durchsetzender Brennstoffaustrittsöffnungen 9 ausgerüstet. Durch eine axiale Auffächerung der Brennstoffeindüsung wird eine homogene Durchmischung von Brennstoff und Verbrennungsluft gewährleistet. Die Eindüsung erfolgt dabei vorzugsweise im Bereich der - in Strömungsrichtung gesehen - zweiten Lanzenhälfte.
Figur 6 zeigt eine sternförmig ausgebildete Lanzenendgeometrie, Figur 7 eine konisch ausgebildete Lanzenendgeometrie, wobei der Brennstoffaustrag aus der Lanze 3 durch axial ausgerichtete Austrittsöffnungen 12, 32 erfolgt, gleichsam der Lanzengeomtrie in Figur 8, die eine Brennerlanze zeigt, an der eine Platte 13 angebracht ist.
Die Störgeometrien vermögen, wie oben anhand von Fig. 3 geschildert, die Premixströmung entscheidend beeinflussen.
Bezugszeichenliste
1
Brenner
1a;1b
Halbschalen
2
Brennerinnenraum
3
Brennerlanze
31
Brennstoffleitung
32
axiale Brennstoffaustrittsöffnung an der Lanze 3
33
radiale Lufteindüsung
4
Brennkammer
5
Rückströmzone
6
Drallströmung
7
Verbrennungsluft
8
Brennstoff
9
Brennstoffaustrittsöffnung an der Lanze 3
10
sternförmige Lanzenendgeometrie
11
konische Lanzenendgeometrie
12
Brennstoffaustrittsöffnung an der Lanze 3
13
Platte am Lanzenende
I
Länge der Brennerlanze

Claims (17)

  1. Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen, insbesondere in Brennkammern von Strömungskraftmaschinen, ausgerüstet mit wenigstens einem Brenner, in den mindestens ein Verbrennungsluftstrom tangential in einen Brennerinnenraum eingeleitet wird und sich unter Ausbildung einer koaxial zur Brennerachse orientierten Drallströmung mit einem eingedüsten gasförmigen und/oder flüssigen Brennstoff intensiv vermischt und diese Drallströmung an einem Querschnittssprung am Brenneraustritt eine die dort wirkende Flammenfront stabilisierende Rückströmzone induziert,
    dadurch gekennzeichnet, dass zur strömungsmechanischen Stabilisierung der Rückströmzone in der Drehachse der Drallströmung (6) ein Störkörper (3) angeordnet ist, und aus diesem zentralen Störkörper (3) ein zusätzlicher Brennstoffaustrag in die Drallströmung (6) erfolgt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass der Störkörper (3) einen Bereich von wenigstens 50%, vorzugsweise 60% bis 80%, der axialen Länge des Brennerinnenraums (2) einnimmt.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass der zusätzliche Brennstoffaustrag in die Drallströmung (6) zumindest überwiegend in einem Bereich von über 50% der axialen Länge des Brennerinnenraums erfolgt.
  4. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass der Brennstoffaustrag derart erfolgt, dass sich stromab ein homogen durchmischtes Brennstoff-/Luftgemisch ausbildet.
  5. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass aus dem Störkörper Brennstoff und Verbrennungsluft in die Drallströmung eingedüst werden.
  6. Verfahren nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, dass der zentrale Störkörper in Strömungsrichtung einen zunehmenden Querschnitt aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass als Strömungskraftmaschinen Gasturbinenanlagen verwendet werden.
  8. Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen innerhalb eines Verbrennungssystems, insbesondere einer Brennkammer () einer Strömungskraftmaschine, im wesentlichen umfassend einen Drallerzeuger aus zwei halbschalenförmigen, sich konisch erweiternden Teilkörpern (1a) und (1b), die derart achsparallel und zueinander versetzt angeordnet sind, dass sie in zwei spiegelbildlich gegenüberliegenden Überlappungsbereichen tangentiale Spalte bilden, die als Eintrittskanäle für die Verbrennungsluft (7) in den Brennerinnenraum (2) dienen, weiterhin umfassend wenigstens eine zentrale Brennstoffdüse innerhalb des von den Teilkörpern (1a) und (1b) umschlossenen Innenraums (2),
    dadurch gekennzeichnet, dass die zentrale Brennstoffdüse in Form einer koaxial orientierten Brennerlanze (3) ausgebildet ist und in den Brennerinnenraum (2) bis zu wenigstens einem Drittel seiner axialen Länge hineinragt, und die Brennerlanze (3) zumindest in ihrem stromabwärtigen Endbereich mit Mitteln zum Austrag wenigstens eines Fluids in den Brennerinnenraum (2) ausgerüstet ist.
  9. Vormischbrenner nach Anspruch 8,
    dadurch gekennzeichnet, dass die Brennerlanze (3) in einem Bereich zwischen 60% und 80% der axialen Länge des Brennerinnenraums (2) endet.
  10. Vormischbrenner nach Anspruch 8,
    dadurch gekennzeichnet, dass die Lanze (3) im wesentlichen zylindrisch ausgebildet ist.
  11. Vormischbrenner nach Anspruch 8,
    dadurch gekennzeichnet, dass die Lanze (3) zumindest in ihrem stromabwärtigen Endbereich einen sich erweiternden Querschnitt aufweist.
  12. Vormischbrenner nach Anspruch 11,
    dadurch gekennzeichnet, dass die Lanze (3) einen in Strömungsrichtung sich konisch erweiternden Endbereich aufweist.
  13. Vormischbrenner nach Anspruch 11,
    dadurch gekennzeichnet, dass die Lanze (3) einen in Strömungsrichtung sich sternförmig erweiternden Endbereich aufweist.
  14. Vormischbrenner nach Anspruch 11,
    dadurch gekennzeichnet, dass die Lanze (3) in ihrem Endbereich eine senkrecht zur Strömungsrichtung orientierte Platte (13) aufweist.
  15. Vormischbrenner nach Anspruch 8,
    dadurch gekennzeichnet, dass der Endbereich der Brennerlanze (3) mit Brennstoffaustrittsöffnungen (32) ausgerüstet ist.
  16. Vormischbrenner nach Anspruch 8,
    dadurch gekennzeichnet, dass der Endbereich der Brennerlanze (3) mit Austrittsöffnungen (32) und (33) für Brennstoff und Verbrennungsluft ausgerüstet ist.
  17. Vormischbrenner nach Anspruch 8,
    dadurch gekennzeichnet, dass der Mantel der Brennerlanze (3) mit Austrittsöffnungen (9) für Brennstoff ausgerüstet ist.
EP03405031.0A 2002-02-13 2003-01-24 Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens Expired - Lifetime EP1336800B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10205839 2002-02-13
DE10205839A DE10205839B4 (de) 2002-02-13 2002-02-13 Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen

Publications (2)

Publication Number Publication Date
EP1336800A1 true EP1336800A1 (de) 2003-08-20
EP1336800B1 EP1336800B1 (de) 2013-11-27

Family

ID=27588564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03405031.0A Expired - Lifetime EP1336800B1 (de) 2002-02-13 2003-01-24 Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens

Country Status (4)

Country Link
US (1) US6918256B2 (de)
EP (1) EP1336800B1 (de)
JP (1) JP2003240242A (de)
DE (1) DE10205839B4 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645802A2 (de) * 2004-10-11 2006-04-12 ALSTOM Technology Ltd Vormischbrenner
CN108019776A (zh) * 2016-11-04 2018-05-11 通用电气公司 中心体喷射器微型混合器燃料喷嘴组件

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510755B1 (de) * 2003-09-01 2016-09-28 General Electric Technology GmbH Brenner mit Brennerlanze und gestufter Brennstoffeindüsung
CN1878986B (zh) * 2003-09-05 2010-04-28 德拉文公司 燃气轮机引擎的稳定燃烧装置
EP1802915B1 (de) * 2004-10-18 2016-11-30 General Electric Technology GmbH Brenner für gasturbine
US20060084019A1 (en) * 2004-10-19 2006-04-20 Certain Teed Corporation Oil burner nozzle
CN101095012B (zh) * 2004-11-03 2010-11-10 阿尔斯托姆科技有限公司 预混合式烧嘴
DE102005015152A1 (de) * 2005-03-31 2006-10-05 Alstom Technology Ltd. Vormischbrenner für eine Gasturbinenbrennkammer
JP2009531641A (ja) * 2006-03-30 2009-09-03 アルストム テクノロジー リミテッド バーナ装置
WO2007113130A1 (de) * 2006-03-30 2007-10-11 Alstom Technology Ltd Brenneranordnung, vorzugsweise in einer brennkammer für eine gasturbine
EP2179222B2 (de) * 2007-08-07 2021-12-01 Ansaldo Energia IP UK Limited Brenner für eine brennkammer einer turbogruppe
EP2085695A1 (de) * 2008-01-29 2009-08-05 Siemens Aktiengesellschaft Brennstoffdüse mit Drallkanal und Verfahren zur Herstellung einer Brennstoffdüse
EP2282115A1 (de) * 2009-07-30 2011-02-09 Alstom Technology Ltd Brenner einer Gasturbine
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
EP2423598A1 (de) 2010-08-25 2012-02-29 Alstom Technology Ltd Verbrennungsvorrichtung
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
EP2903941A4 (de) 2012-10-03 2016-06-08 Johns Manville Verfahren und systeme zur destabilisierung von schaumstoffen in einer einem unterwasserverbrennungsschmelzofen nachgeschalteten vorrichtung
EP2912381B1 (de) 2012-10-24 2018-06-13 Ansaldo Energia Switzerland AG Sequenzielle verbrennung mit verdünnungsgasmischer
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
WO2014189499A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
WO2014189501A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners, melters, and methods of use
WO2014189504A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners
WO2014189506A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
WO2014189502A1 (en) 2013-05-22 2014-11-27 Johns Manville Improved burner for submerged combustion melting
PL3003996T3 (pl) 2013-05-30 2020-12-28 Johns Manville Układy do topienia szkła ze spalaniem zanurzeniowym i sposoby ich zastosowania
SI3003997T1 (sl) 2013-05-30 2021-08-31 Johns Manville Potopni zgorevalni gorilniki s sredstvi za izboljšanje mešanja za talilne peči za steklo in uporaba
US10858278B2 (en) 2013-07-18 2020-12-08 Johns Manville Combustion burner
KR102083928B1 (ko) * 2014-01-24 2020-03-03 한화에어로스페이스 주식회사 연소기
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US11598527B2 (en) * 2016-06-09 2023-03-07 Raytheon Technologies Corporation Reducing noise from a combustor of a gas turbine engine
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
CN109237470B (zh) * 2018-08-20 2024-02-06 华南理工大学 一种柱面多孔喷射式的微型液体燃烧器及其燃烧方法
US11692711B2 (en) * 2021-08-13 2023-07-04 General Electric Company Pilot burner for combustor
CN115325564B (zh) * 2022-07-21 2023-06-30 北京航空航天大学 一种结合气动导流燃烧振荡抑制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809A1 (de) 1987-12-21 1989-06-28 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
US5487274A (en) 1993-05-03 1996-01-30 General Electric Company Screech suppressor for advanced low emissions gas turbine combustor
DE19545309A1 (de) 1995-12-05 1997-06-12 Asea Brown Boveri Vormischbrenner
WO2001096785A1 (de) 2000-06-15 2001-12-20 Alstom (Switzerland) Ltd Verfahren zum betrieb eines brenners sowie brenner mit gestufter vormischgas-eindüsung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638974A (en) 1947-01-24 1953-05-19 Ralph C Brierly Fuel burner diffuser
DE2965172D1 (en) 1979-02-03 1983-05-19 Kromschroeder Ag G Gas heated tunnel burner for raising the temperature in melting furnaces or crucibles
DD244613A1 (de) * 1985-12-19 1987-04-08 Oelfeuerungsbau Veb Einrichtung zum verbrennen von generatorgas oder heizoel
DE3902601A1 (de) 1989-01-28 1990-08-09 Buderus Heiztechnik Gmbh Gasgeblaesebrenner
JP2713627B2 (ja) * 1989-03-20 1998-02-16 株式会社日立製作所 ガスタービン燃焼器、これを備えているガスタービン設備、及びこの燃焼方法
CH680084A5 (de) * 1989-06-06 1992-06-15 Asea Brown Boveri
DE19545310B4 (de) 1995-12-05 2008-06-26 Alstom Vormischbrenner
US5984665A (en) * 1998-02-09 1999-11-16 Gas Research Institute Low emissions surface combustion pilot and flame holder
DE19917662C2 (de) 1999-04-19 2001-10-31 Elco Kloeckner Heiztech Gmbh Brenner für flüssigen und/oder gasförmigen Brennstoff
US6485293B1 (en) * 2000-08-02 2002-11-26 Midco International, Inc. Burner assembly with enhanced BTU output and flame stability
DE10210034B4 (de) * 2002-03-07 2009-10-01 Webasto Ag Mobiles Heizgerät mit einer Brennstoffversorgung
TR200701880U (tr) * 2007-03-23 2007-06-21 Özti̇ryaki̇ler Madeni̇ Eşya Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Elektronik ateşlemeli sıvı yakıt brülörü.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809A1 (de) 1987-12-21 1989-06-28 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
EP0321809B1 (de) 1987-12-21 1991-05-15 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
US5487274A (en) 1993-05-03 1996-01-30 General Electric Company Screech suppressor for advanced low emissions gas turbine combustor
DE19545309A1 (de) 1995-12-05 1997-06-12 Asea Brown Boveri Vormischbrenner
US5833451A (en) * 1995-12-05 1998-11-10 Asea Brown Boveri Ag Premix burner
WO2001096785A1 (de) 2000-06-15 2001-12-20 Alstom (Switzerland) Ltd Verfahren zum betrieb eines brenners sowie brenner mit gestufter vormischgas-eindüsung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OSTER; WYGNANSKI: "The forced mixing layer between parallel streams", JOURNAL OF FLUID MECHANICS, vol. 123, 1982, pages 91 - 130
PASCHEREIT ET AL.: "Experimental investigation of subharmonic resonance in an axisymmetric jet", JOURNAL OF FLUID MECHANICS, vol. 283, 1995, pages 365 - 407
PASCHEREIT ET AL.: "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner", COMBUSTION, SCIENCE & TECHNOLOGY, vol. 138, 1998, pages 213 - 232

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1645802A2 (de) * 2004-10-11 2006-04-12 ALSTOM Technology Ltd Vormischbrenner
EP1645802A3 (de) * 2004-10-11 2013-05-08 Alstom Technology Ltd Vormischbrenner
CN108019776A (zh) * 2016-11-04 2018-05-11 通用电气公司 中心体喷射器微型混合器燃料喷嘴组件
CN108019776B (zh) * 2016-11-04 2020-05-19 通用电气公司 中心体喷射器微型混合器燃料喷嘴组件
US11067280B2 (en) 2016-11-04 2021-07-20 General Electric Company Centerbody injector mini mixer fuel nozzle assembly

Also Published As

Publication number Publication date
DE10205839B4 (de) 2011-08-11
EP1336800B1 (de) 2013-11-27
US6918256B2 (en) 2005-07-19
DE10205839A1 (de) 2003-08-14
US20030150217A1 (en) 2003-08-14
JP2003240242A (ja) 2003-08-27

Similar Documents

Publication Publication Date Title
DE10205839B4 (de) Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen
DE60007946T2 (de) Eine Brennkammer
EP0985882B1 (de) Schwingungsdämpfung in Brennkammern
DE60128513T2 (de) Verfahren und Vorrichtung zur Verminderung der Emissionen in einer Brennkammer mit einer Wirbelmischvorrichtung
EP0687860B1 (de) Brennkammer mit Selbstzündung
EP0576697B1 (de) Brennkammer einer Gasturbine
EP1754002B1 (de) Gestufter vormischbrenner mit einem injektor für flüssigbrennstoff
EP1182398A1 (de) Verfahren zur Erhöhung der strömungsmechanischen Stabilität eines Vormischbrenners sowie Vormischbrenner zur Durchführung des Verfahrens
EP1828684A1 (de) Vormischbrenner mit mischstrecke
DE10050248A1 (de) Brenner
CH701539A2 (de) Vorrichtung zur Brennstoffeinspritzung bei einer Turbine.
DE19510744A1 (de) Brennkammer mit Zweistufenverbrennung
EP0675322A2 (de) Vormischbrenner
EP1048898B1 (de) Brenner
EP1279898A2 (de) Vormischbrenner mit hoher Flammenstabilität
EP2232147B1 (de) Brenner und verfahren zur verringerung von selbstinduzierten flammenschwingungen
EP1235033B1 (de) Verfahren zum Betrieb einer Ringbrennkammer sowie eine Ringbrennkammer
EP0742411B1 (de) Luftzuströmung zu einer Vormischbrennkammer
EP1002992B1 (de) Brenner
EP0924459A1 (de) Verfahren und Vorrichtung zum Eindüsen eines Brennstoff-Flüssigkeitsgemisches in die Brennkammer eines Brenners
DE19939235A1 (de) Verfahren zum Erzeugen von heissen Gasen in einer Verbrennungseinrichtung sowie Verbrennungseinrichtung zur Durchführung des Verfahrens
EP1989486A1 (de) Gasturbinenbrenner und verfahren zum betreiben eines gasturbinenbrenners
DE2606704A1 (de) Brennkammer fuer gasturbinentriebwerke
EP0730121A2 (de) Vormischbrenner
DE10040868A1 (de) Verfahren zur Reduzierung thermoakustischer Schwingungen in Strömungskraftmaschinen mit einem Brennersystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20031218

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20090423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130625

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PASCHEREIT, CHRISTIAN OLIVER

Inventor name: GUTMARK, EPHRAIM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314949

Country of ref document: DE

Effective date: 20140116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314949

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314949

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170119

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50314949

Country of ref document: DE