EP1048898B1 - Brenner - Google Patents

Brenner Download PDF

Info

Publication number
EP1048898B1
EP1048898B1 EP98811145A EP98811145A EP1048898B1 EP 1048898 B1 EP1048898 B1 EP 1048898B1 EP 98811145 A EP98811145 A EP 98811145A EP 98811145 A EP98811145 A EP 98811145A EP 1048898 B1 EP1048898 B1 EP 1048898B1
Authority
EP
European Patent Office
Prior art keywords
burner
built
components
flow
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811145A
Other languages
English (en)
French (fr)
Other versions
EP1048898A1 (de
Inventor
Ephraim Prof. Dr. Gutmark
Christian Oliver Dr. Paschereit
Wolfgang Weisenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP98811145A priority Critical patent/EP1048898B1/de
Priority to DE59810606T priority patent/DE59810606D1/de
Priority to US09/434,448 priority patent/US6196835B1/en
Priority to DE10022969A priority patent/DE10022969A1/de
Publication of EP1048898A1 publication Critical patent/EP1048898A1/de
Application granted granted Critical
Publication of EP1048898B1 publication Critical patent/EP1048898B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement

Definitions

  • the invention relates to a burner for operating a unit for generation a hot gas.
  • the cooling air flowing into the combustion chamber has a sound-absorbing effect and thus contributes to damping thermoacoustic vibrations.
  • an increasing proportion of the air is passed through the burners themselves in modern gas turbines and the cooling air flow is reduced.
  • the problems mentioned at the outset occur increasingly in modern combustion chambers.
  • One way of soundproofing is to connect Helmholtz dampers in the combustion chamber hood or in the area of the cooling air supply. Where space is limited, as is the case for modern, compact combustion chambers however, such dampers can be difficult to accommodate prepare and is associated with great design effort.
  • thermoacoustic Vibrations through active acoustic excitation.
  • the the shear layer forming in the area of the burner is acoustically excited. With a suitable phase position between the thermoacoustic vibrations and the excitation can thereby dampen the combustion chamber vibrations to reach.
  • such a solution requires the addition of additional ones Elements in the combustion chamber area.
  • US 5433596 describes a premix burner for stabilizing the lean Combustion, especially for the operation of a gas turbine with medium or low calorific fuels is suitable. For the purpose of improvement the mixing of the fuel with the combustion air and thus Avoiding local recirculation areas will create vortex elements in the entry gap the combustion air in the premix zone.
  • the invention as characterized in the claims, is the object to create a device that provides effective suppression enables thermoacoustic vibrations and with the least possible constructive Effort is connected.
  • This object is achieved according to the invention solved a burner of the type mentioned in the independent claim.
  • advantageous Execution types reflect the dependent claims.
  • the invention is based on the knowledge that the flow instabilities in the burner mostly have a dominant mode.
  • the damping of this dominant mode is a priority for the suppression of thermoacoustic vibrations.
  • the relevant frequencies are between a few 10 Hz and a few kHz.
  • the convection speed depends on the burner and is typically a few 10 m / s, for example 30 m / s.
  • a burner according to the invention for operating an aggregate for generation a hot gas consists essentially of at least two hollow, in Direction of the flow nested partial bodies, their central axes run offset from each other, such that adjacent walls the partial body at the burner slots tangential air inlet channels for the Influx of combustion air into one specified by the partial bodies Form interior.
  • the burner has a plurality of internals projecting into the flow, wherein According to the invention, the distances between adjacent installation elements are smaller or approximately equal to half the wavelength of a dominant mode of thermoacoustic Are vibrations.
  • the internals are at the burner outlet arranged. It has also proven to be particularly advantageous if the internals arranged both at the burner outlet and along the burner slots are.
  • any conceivable shape is possible for the internals. They can be both flat be, as well as have a distinctive three-dimensional structure. With advantage they become roughly in a sawtooth structure, sinusoidal or rectangular educated. It is particularly advantageous if the internals are in the form of vortex generators are designed. There is a device with "vortex generator” referred to, which introduces axial vortex strength into a flow without a recirculation zone to produce in a trailing area.
  • Figure 1 shows a known premix burner, which consists of two half hollow Partial cone bodies 1, 2, which are arranged offset to one another.
  • the Offset of the respective central axis of the partial cone bodies 1, 2 to one another creates a tangential on both sides in a mirror-image arrangement Air inlet duct 5, 6 at the burner slots 5a, 6a through which the Combustion air 7 flows into the interior 8 of the burner.
  • the partial cone bodies 1, 2 have cylindrical starting parts 9, 10, which have a fuel nozzle 11 include through which liquid fuel 12 is injected.
  • the Partial cone body 1, 2 as required each have a fuel line 13, 14 with Openings 15 are provided, through which gaseous fuel 16 the combustion air 7 flowing through the tangential air inlet ducts 5, 6 is admixed.
  • the burner has a collar-shaped, as anchoring for the partial cone body 1, 2 serving front plate 18 with a number of holes 19, through which, if necessary, dilution air or cooling air 20 front part of the combustion chamber or its wall can be supplied.
  • the fuel injection can be an air-assisted nozzle or is a nozzle that works according to the pressure atomization principle.
  • the conical spray pattern is created by the tangentially flowing combustion air flows 7 enclosed.
  • the concentration of fuel injected 12 is continuously in the direction of flow 30 through the combustion air flows 7 dismantled.
  • a liquid Fuel 12 is in the area of vortex bursting, that is in the area of Backflow zone 24 at the end of the premix burner the optimal, homogeneous Fuel concentration reached across the cross section.
  • the ignition of the Fuel / combustion air mixture begins at the top of the backflow zone 24. Only at this point can a stable flame front 25 arise.
  • each partial cone body had 1.2 at the burner outlet ten triangular internals 32 attached, the total of a sawtooth structure formed (Fig. 2).
  • the dimensions of the structure depended on it according to the wavelength the dominant mode of the flow instability to be suppressed, whose frequency in the exemplary embodiment was in the kHz range.
  • the experimental determination of the pressure fluctuations of Fig. 5 shows that the amplitude of the thermoacoustic fluctuations due to the internals ("Sawtooth internals", open circles) compared to a conventional burner ("unchanged", full squares) reduced by one to two orders of magnitude become.
  • Figure 6 shows the results of an experimental Determination of pressure fluctuations in the 100 Hz range when in use of conventional burners ("unchanged”, full squares) and of Burners according to the previous embodiment of the invention ("sawtooth internals", open circles) as a function of the air ratio ⁇ .
  • the air number ⁇ is included a measure of the ratio of those introduced into the combustion chamber to that theoretically required amount of air for complete combustion.
  • Fig. 6 shows, by the present invention, the amplitude of the pressure vibrations in the particularly relevant range 1.8 ⁇ ⁇ ⁇ 2.2 also in the 100 Hz range still significantly reduced.
  • Vortex generators 34 instead of geometrically simple internals, Vortex generators 34 used as internals.
  • Figures 4a-b show two embodiments for vortex generators 34, each at the edge 36 of a partial cone body are attached.
  • the reference symbol 40 denotes the local flow direction of the working fluid.
  • the through the vortex generators 34 generated vortex structures 42 are each shown schematically.
  • the vortex generator of Fig. 4a generates a pair of vertebrae that face inwards rotates, similar to a delta wing.
  • the vortex generator shown in Fig. 4b creates an outward rotating pair of vertebrae.
  • each vortex generator 34 was used in the Burner installed. As in Fig. 2, ten of the vortex generators were at the burner outlet attached along the circumference of the partial cone body 1,2. Each five more vortex generators were shown along the burner slots as shown in FIG. 3 5a, 6a attached. 3 shows only one of the two burner slots.
  • FIG. 7 shows the results of an experimental determination of the pressure fluctuations in the 100 Hz range depending on the air ratio ⁇ when used a conventional burner ("unchanged”, full squares) and a burner with the described arrangement of vortex generators ("Vortex generators", open circles).
  • the pressure fluctuations are over one wide range ⁇ ⁇ 2.2 significantly reduced compared to an unchanged burner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Description

Die Erfindung betrifft einen Brenner zum Betrieb eines Aggregats zur Erzeugung eines Heißgases.
Stand der Technik
Thermoakustische Schwingungen stellen eine Gefahr für jede Art von Verbrennungsanwendungen dar. Sie führen zu Druckschwankungen hoher Amplitude, zu einer Einschränkung des Betriebsbereiches und können die mit der Verbrennung verbundenen Emissionen erhöhen. Diese Probleme treten besonders in Verbrennungssystemen mit geringer akustischer Dämpfung, wie sie moderne Gasturbinen oft darstellen, auf.
In herkömmlichen Brennkammern wirkt die in die Brennkammer einströmende Kühlluft schalldämpfend und trägt damit zur Dämpfung von thermoakustischen Schwingungen bei. Um niedrige NOx-Emissionen zu erzielen, wird in modernen Gasturbinen ein zunehmender Anteil der Luft durch die Brenner selbst geleitet und der Kühlluftstrom reduziert. Durch die damit einhergehende geringere Schalldämpfung treten die eingangs angesprochenen Probleme in modernen Brennkammern demnach verstärkt auf.
Eine Möglichkeit der Schalldämpfung besteht im Ankoppeln von Helmholtz-Dämpfern in der Brennkammerhaube oder im Bereich der Kühlluftzuführung. Bei engen Platzverhältnissen, wie sie für moderne, kompakt gebaute Brennkammern typisch sind, kann die Unterbringung solcher Dämpfer jedoch Schwierigkeiten bereiten und ist mit großem konstruktiven Aufwand verbunden.
Nach einem alternativen Vorschlag zur Schallminderung in mager betriebenen Verbrennungssystemen gemäss US 5487274 führen voneinander beabstandete, sich radial über den gesamten Strömungsquerschnitt erstreckende Einbauten ausgangs der Vormischzone zu einer Störung der sich ausbildenden Wirbelstrukturen und in der Folge zu einer Verminderung der verbrennungsgetriebenen Druckoszillationen in der Brennkammer.
Eine weitere Möglichkeit der Schalldämpfung besteht in einer Kontrolle thermoakustischer Schwingungen durch aktive akustische Anregung. Dabei wird die sich im Bereich des Brenners ausbildende Scherschicht akustisch angeregt. Bei geeigneter Phasenlage zwischen den thermoakustischer Schwingungen und der Anregung läßt sich dadurch eine Dämpfung der Brennkammerschwingungen erreichen. Eine solche Lösung erfordert allerdings den Anbau zusätzlicher Elemente im Bereich der Brennkammer.
US 5433596 beschreibt einen Vormischbrenner zur Stabilisierung der mageren Verbrennung, der insbesondere für den Betrieb einer Gasturbine mit mitteloder niederkalorischen Brennstoffen geeignet ist. Zum Zwecke der Verbesserung der Durchmischung des Brennstoffs mit der Verbrennungsluft und damit der Vermeidung lokaler Rezirkulationsgebiete werden Wirbelelemente im Eintrittsspalt der Verbrennungsluft in die Vormischzone angeordnet.
Darstellung der Erfindung
Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, eine Vorrichtung zu schaffen, die eine wirkungsvolle Unterdrückung thermoakustischer Schwingungen ermöglicht und mit möglichst geringem konstruktiven Aufwand verbunden ist. Diese Aufgabe wird erfindungsgemäß durch einen Brenner der im unabhängigen Anspruch genannten Art gelöst. Vorteilhafte Ausführungsarten geben die abhängigen Ansprüche wieder.
Die Erfindung beruht auf der Erkenntnis, dass die Strömungsinstabilitäten im Brenner zumeist eine dominante Mode aufweisen. Die Dämpfung dieser dominanten Mode ist für die Unterdrückung thermoakustischer Schwingungen vordringlich. Die Wellenlänge λ der dominante Mode der Instabilität ergibt sich aus ihrer Frequenz f und der Konvektionsgeschwindigkeit uc über λ = uc / f. Die relevanten Frequenzen liegen zwischen einigen 10 Hz und einigen kHz. Die Konvektionsgeschwindigkeit hängt vom Brenner ab und beträgt typischerweise einige 10 m/s, beispielsweise 30 m/s.
Ein erfindungsgemäßer Brenner zum Betrieb eines Aggregats zur Erzeugung eines Heißgases, besteht im wesentlichen aus mindestens zwei hohlen, in Richtung der Strömung ineinandergeschachtelten Teilkörpern, deren Mittelachsen zueinander versetzt verlaufen, dergestalt, daß benachbarte Wandungen der Teilkörper an den Brennerschlitzen tangentiale Lufteintrittskanäle für die Einströmung von Verbrennungsluft in einen von den Teilkörpern vorgegebenen Innenraum bilden. Zum Einbringen axialer Wirbelstärke in die Strömung weist der Brenner eine Mehrzahl von in die Strömung ragender Einbauten auf, wobei erfindungsgemäß die Abstände benachbarter Einbauelemente kleiner oder etwa gleich der halben Wellenlänge einer dominanten Mode der thermoakustischen Schwingungen sind.
Dies gilt für den Abstand entlang des Brenneraustritts angebrachter Einbauten, wie für den Abstand entlang der Brennerschlitze angeordneter Elemente.
In einer bevorzugten Ausführungsform sind die Einbauten am Brenneraustritt angeordnet. Als besonders vorteilhaft hat es sich auch erwiesen, wenn die Einbauten sowohl am Brenneraustritt, als auch entlang der Brennerschlitze angeordnet sind.
Für die Einbauten ist jede denkbare Form möglich. Sie können sowohl flach sein, als auch eine ausgeprägte dreidimensionale Struktur aufweisen. Mit Vorteil werden sie etwa in einer Sägezahnstruktur, sinusförmig oder rechteckig ausgebildet. Besonders vorteilhaft ist es, wenn die Einbauten in Form von Wirbelgeneratoren gestaltet sind. Dabei ist mit "Wirbelgenerator" ein Vorrichtung bezeichnet, die axiale Wirbelstärke in eine Strömung einbringt, ohne eine Rezirkulationszone in einem Nachlaufgebiet zu erzeugen.
Das erfindungsgemäße Einbringen von Wirbelstärke in axialer Richtung zur Störung kohärenter Wirbelstrukturen durch in die Strömung ragende Einbauten läßt sich nicht nur bei dem hier beschriebenen Doppelkegelbrenner, sondern ebenso bei anderen Brennertypen anwenden.
Weitere vorteilhafte Ausgestaltungen, Merkmale und Details der Erfindung ergeben sich aus den abhängigen Ansprüchen, der Beschreibung der Ausführungsbeispiele und der Zechnungen. Die Erfindung soll nachfolgend anhand eines Ausführungsbeispiels im Zusammenhang mit den Zeichnungen näher erläutert werden. Es sind jeweils nur die für das Verständnis der Erfindung wesentlichen Elemente dargestellt. Dabei zeigen
Fig. 1
einen Brenner nach dem Stand der Technik in perspektivischer Darstellung entsprechend aufgeschnitten;
Fig. 2
eine Vorderansicht eines Ausführungsbeispiels eines erfindungsgemäßen Brenners;
Fig. 3
eine schematische Seitenansicht eines erfindungsgemäßen Brenners;
Fig. 4a-b
Ausführungsbeispiele für Wirbelgeneratoren zum Einsatz in einem erfindungsgemäßen Brenner;
Fig. 5
eine logarithmische Auftragung der relativen Druckamplitude im kHz-Bereich gegen die Brennerleistung für einen unveränderten Brenner nach dem Stand der Technik und für einen erfindungsgemäßen Brenner mit sägezahnförmigen Einbauten;
Fig. 6
eine Auftragung der relativen Druckamplitude im 100 Hz-Bereich gegen die Luftzahl λ für einen unveränderten Brenner nach dem Stand der Technik und für einen erfindungsgemäßen Brenner mit sägezahnförmigen Einbauten;
Fig. 7
eine Auftragung der relativen Druckamplitude im 100 Hz-Bereich gegen die Luftzahl λ für einen unveränderten Brenner nach dem Stand der Technik und für einen erfindungsgemäßen Brenner mit Wirbelgeneratoren;
Wege zur Ausführung der Erfindung
Figur 1 zeigt einen bekannten Vormischbrenner, der aus zwei halben hohlen Teilkegelkörpern 1, 2, besteht, die versetzt zueinander angeordnet sind. Die Versetzung der jeweiligen Mittelachse der Teilkegelkörper 1, 2 zueinander schafft auf beiden Seiten in spiegelbildlicher Anordnung jeweils einen tangentialen Lufteintrittskanal 5, 6 an den Brennerschlitzen 5a, 6a, durch welchen die Verbrennungsluft 7 in den Innenraum 8 des Brenners strömt. Die Teilkegelkörper 1, 2 weisen zylindrische Anfangsteile 9, 10 auf, die eine Brennstoffdüse 11 beinhalten durch die flüssiger Brennstoff 12 eingedüst wird. Weiter weisen die Teilkegelkörper 1, 2 nach Bedarf je eine Brennstoffleitung 13, 14 auf, die mit Öffnungen 15 versehen sind, durch welche gasförmiger Brennstoff 16 der durch die tangentialen Lufteintrittskanäle 5, 6 strömenden Verbrennungsluft 7 zugemischt wird.
Brennraumseitig 17 weist der Brenner eine kragenförmige, als Verankerung für die Teilkegelkörper 1, 2 dienende Frontplatte 18 mit einer Anzahl von Bohrungen 19 auf, durch welche bei Bedarf Verdünnungsluft oder Kühlluft 20 dem vorderen Teil des Brennraumes bzw. dessen Wand zugeführt werden kann.
Bei der Brennstoffeindüsung kann es sich um eine luftunterstüzte Düse oder um eine nach dem Druckzerstäubungsprinzip arbeitende Düse handeln. Das kegelige Spraybild wird von den tangential einströmenden Verbrennungsluftströmen 7 umschlossen. Die Konzentration des eingedüsten Brennstoffs 12 wird in Richtung der Strömung 30 fortlaufend durch die Verbrennungsluftströme 7 abgebaut. Wird ein gasförmiger Brennstoff 16 im Bereich der tangentialen Lufteintrittskanäle 5, 6 eingebracht, beginnt die Gemischbildung mit der Verbrennungsluft 7 bereits in diesem Bereich. Beim Einsatz eines flüssigen Brennstoffs 12 wird im Bereich des Wirbelaufplatzens, also im Bereich der Rückströmzone 24 am Ende des Vormischbrenners die optimale, homogene Brennstoffkonzentration über den Querschnitt erreicht. Die Zündung des Brennstoff/Verbrennungsluft-Gemisches beginnt an der Spitze der Rückströmzone 24. Erst an dieser Stelle kann eine stabile Flammenfront 25 entstehen.
In einem Ausführungsbeispiel wurden an jedem Teilkegelkörper 1,2 am Brenneraustritt zehn dreieckige Einbauten 32 befestigt, die insgesamt eine Sägezahnstruktur bildeten (Fig. 2). Die Abmessungen der Struktur richtete sich dabei nach der Wellenlänge der dominante Mode der zu unterdrückenden Strömungsinstabilität, deren Frequenz im Ausführungsbeispiel im kHz-Bereich lag. Die experimentelle Bestimmung der Druckschwankungen von Fig. 5 zeigt, daß die Amplitude der thermoakustischen Schwankungen durch die Einbauten ("Sägezahneinbauten", offene Kreise) gegenüber einem konventionellen Brenner ("unverändert", volle Quadrate) um ein bis zwei Größenordnungen reduziert werden.
Obwohl die Abmessungen der Einbauten auf Schwingungen im kHz-Bereich ausgelegt waren, erstreckte sich die dämpfende Wirkung der Einbauten auf einen weiten Frequenzbereich. Figur 6 zeigt die Ergebnisse einer experimentellen Bestimmung der Druckschwankungen im 100 Hz-Bereich bei Verwendung von konventionellen Brennern ("unverändert", volle Quadrate) und von Brennern gemäß dem vorigen Auführungsbeispiels der Erfindung ("Sägezahneinbauten", offene Kreise) als Funktion der Luftzahl λ. Die Luftzahl λ ist dabei ein Maß für das Verhältnis der in den Verbrennungsraum eingeführten zu der zur vollständigen Verbrennung theoretisch benötigten Luftmenge. Wie Fig. 6 zeigt, wird durch die vorliegende Erfindung die Amplitude der Druckschwingungen im besonders relevanten Bereich 1,8 ≤ λ ≤ 2,2 auch im 100 Hz-Bereich noch deutlich reduziert.
In weiteren Ausführungsbeispielen wurden statt geometrisch einfacher Einbauten Wirbelgeneratoren 34 als Einbauten verwendet. Figuren 4a-b zeigen zwei Ausführungsformen für Wirbelgeneratoren 34, die jeweils am Rand 36 eines Teilkegelkörpers angebracht sind. Das Bezugszeichen 40 kennzeichnet die lokale Strömungsrichtung des Arbeitsmittels. Die durch die Wirbelgeneratoren 34 erzeugten Wirbelstrukturen 42 sind jeweils schematisch eingezeichnet. Der Wirbelgenerator von Fig. 4a erzeugt dabei ein Wirbelpaar, das nach innen rotiert, ähnlich wie bei einem Deltaflügel. Der in Fig. 4b gezeigte Wirbelgenerator erzeugt dagegen ein nach außen drehendes Wirbelpaar.
In einem Ausführungsbeispiel wurden zwanzig Wirbelgeneratoren 34 in den Brenner eingebaut. Zehn der Wirbelgeneratoren wurden wie in Fig. 2 am Brenneraustritt entlang des Umfangs der Teilkegelkörper 1,2 angebracht. Jeweils fünf weitere Wirbelgeneratoren wurden wie in Fig. 3 gezeigt entlang der Brennerschlitze 5a, 6a befestigt. Dabei zeigt der Schnitt von Fig. 3 lediglich einen der beiden Brennerschlitze.
Figur 7 zeigt die Ergebnisse einer experimentellen Bestimmung der Druckschwankungen im 100 Hz-Bereich in Abhängigkeit von der Luftzahl λ bei Verwendung eines konventionellen Brenners ("unverändert", volle Quadrate) und eines Brenners mit der beschriebenen Anordnung von Wirbelgeneratoren ("Wirbelgeneratoren", offene Kreise). Die Druckschwankungen sind über einen weiten Bereich λ <2,2 gegenüber einem unveränderten Brenner deutlich reduziert.
Bezugszeichenliste
1,2
Teilkegelkörper
5,6
Lufteintrittskanal
5a,6a
Brennerschlitze
7
Verbrennungsluft
8
Innenraum
9,10
zylindrische Anfangsteile
11
Brennstoffdüse
12
flüssiger Brennstoff
13,14
Brennstoffleitung
15
Öffnungen
16
gasförmiger Brennstoff
17
Brennraum
18
Frontplatte
19
Bohrungen
20
Kühlluft
24
Rückströmzone
25
Flammenfront
30
Richtung der Strömung des Brennstoff/Luft-Gemischs
32
Einbauten
34
Wirbelgenerator
36
Kegelköperrand
40
lokale Strömungsrichtung
42
Wirbelstruktur

Claims (5)

  1. Brenner zum Betrieb eines Aggregats zur Erzeugung eines Heißgases unter verminderten thermoakustischen Schwingungen, wobei der Brenner im wesentlichen aus mindestens zwei hohlen, in Richtung der Strömung (30) eines Brennstoff/Luftgemischs ineinandergeschachtelten Teilkörpern (1, 2) besteht, deren Mittelachsen zueinander versetzt verlaufen, dergestalt, daß benachbarte Wandungen der Teilkörper (1, 2) an den Brennerschlitzen (5a, 6a) tangentiale Lufteintrittskanäle (5, 6) für die Einströmung von Verbrennungsluft (7) in einen von den Teilkörpern (1, 2) vorgegebenen Innenraum (8) bilden, und wobei der Brenner zum Einbringen axialer Wirbelstärke in die Strömung (30) eine Mehrzahl von in die Strömung (30) ragender Einbauten (32) aufweist, dadurch gekennzeichnet, dass die Abstände benachbarter Einbauelemente (32) kleiner oder etwa gleich der halben Wellenlänge einer dominanten Mode der thermoakustischen Schwingungen sind.
  2. Brenner nach Anspruch 1,
    bei dem die Einbauten (32) am Brenneraustritt angeordnet sind.
  3. Brenner nach Anspruch 1,
    bei dem die Einbauten (32) am Brenneraustritt und entlang der Brennerschlitze (5a,6a) angeordnet sind.
  4. Brenner nach einem der vorigen Ansprüche,
    bei dem die Einbauten (32) in einer Sägezahnstruktur ausgebildet sind.
  5. Brenner nach einem der vorigen Ansprüche,
    bei dem die Einbauten (32) Wirbelgeneratoren (34) sind.
EP98811145A 1998-11-18 1998-11-18 Brenner Expired - Lifetime EP1048898B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98811145A EP1048898B1 (de) 1998-11-18 1998-11-18 Brenner
DE59810606T DE59810606D1 (de) 1998-11-18 1998-11-18 Brenner
US09/434,448 US6196835B1 (en) 1998-11-18 1999-11-05 Burner
DE10022969A DE10022969A1 (de) 1998-11-18 2000-05-14 Brenner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP98811145A EP1048898B1 (de) 1998-11-18 1998-11-18 Brenner
DE10022969A DE10022969A1 (de) 1998-11-18 2000-05-14 Brenner

Publications (2)

Publication Number Publication Date
EP1048898A1 EP1048898A1 (de) 2000-11-02
EP1048898B1 true EP1048898B1 (de) 2004-01-14

Family

ID=26005629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811145A Expired - Lifetime EP1048898B1 (de) 1998-11-18 1998-11-18 Brenner

Country Status (3)

Country Link
US (1) US6196835B1 (de)
EP (1) EP1048898B1 (de)
DE (1) DE10022969A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19851636A1 (de) * 1998-11-10 2000-05-11 Asea Brown Boveri Dämpfungsvorrichtung zur Reduzierung der Schwingungsamplitude akustischer Wellen für einen Brenner
US6672862B2 (en) 2000-03-24 2004-01-06 North American Manufacturing Company Premix burner with integral mixers and supplementary burner system
EP1217295B1 (de) 2000-12-23 2006-08-23 ALSTOM Technology Ltd Brenner zur Erzeugung eines Heissgases
GB2375601A (en) * 2001-05-18 2002-11-20 Siemens Ag Burner apparatus for reducing combustion vibrations
EP1262714A1 (de) * 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Brenner mit Abgasrückführung
JP4508474B2 (ja) * 2001-06-07 2010-07-21 三菱重工業株式会社 燃焼器
US6889686B2 (en) 2001-12-05 2005-05-10 Thomas & Betts International, Inc. One shot heat exchanger burner
DE10205428A1 (de) * 2002-02-09 2003-09-11 Alstom Switzerland Ltd Vormischbrenner mit erhöhter Flammenstabilität
US7494337B2 (en) 2004-04-22 2009-02-24 Thomas & Betts International, Inc. Apparatus and method for providing multiple stages of fuel
US7097448B2 (en) * 2004-05-07 2006-08-29 Peter Chesney Vortex type gas lamp
US7726386B2 (en) * 2005-01-14 2010-06-01 Thomas & Betts International, Inc. Burner port shield
CA2497378A1 (en) * 2005-02-16 2006-08-16 Alberta Welltest Incinerators Ltd. Gas phase thermal unit
US7789659B2 (en) * 2006-02-24 2010-09-07 9131-9277 Quebec Inc. Fuel injector, burner and method of injecting fuel
EP1975506A1 (de) * 2007-03-30 2008-10-01 Siemens Aktiengesellschaft Vorverbrennungskammer
US20090084292A1 (en) * 2007-09-27 2009-04-02 International Environmental Solutions Corporation Thermal Oxidizer With Enhanced Gas Mixing
WO2011085105A2 (en) 2010-01-06 2011-07-14 The Outdoor Greatroom Company Llp Fire container assembly
DE102014205198A1 (de) 2014-03-20 2015-09-24 Kba-Metalprint Gmbh Brenner und Vorrichtung zur thermischen Nachverbrennung von Abluft
DE102014205203B3 (de) * 2014-03-20 2015-05-21 Kba-Metalprint Gmbh Vorrichtung zur thermischen Nachverbrennung von Abluft
DE102014205200B3 (de) 2014-03-20 2015-06-11 Kba-Metalprint Gmbh Vorrichtung zur thermischen Nachverbrennung von Abluft
DE102014205201A1 (de) * 2014-03-20 2015-09-24 Kba-Metalprint Gmbh Vorrichtung zur thermischen Nachverbrennung von Abluft
CN115704563A (zh) * 2021-08-13 2023-02-17 北京航空航天大学 燃烧室和燃烧器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2262256A1 (en) * 1974-02-27 1975-09-19 Morin Bernard Oil burner silencer and economiser - fits over burner tip by pressing or screwing and has bell mouth
IL93630A0 (en) * 1989-03-27 1990-12-23 Gen Electric Flameholder for gas turbine engine afterburner
DE59402803D1 (de) * 1993-04-08 1997-06-26 Asea Brown Boveri Brennkammer
CH687831A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Vormischbrenner.
US5487274A (en) * 1993-05-03 1996-01-30 General Electric Company Screech suppressor for advanced low emissions gas turbine combustor
US5676538A (en) * 1993-06-28 1997-10-14 General Electric Company Fuel nozzle for low-NOx combustor burners
DE19542918A1 (de) * 1995-11-17 1997-05-22 Asea Brown Boveri Vorrichtung zur Dämpfung thermoakustischer Druckschwingungen
JP4130475B2 (ja) * 1996-09-09 2008-08-06 シーメンス アクチエンゲゼルシヤフト 空気内で燃料を燃焼する装置とその方法

Also Published As

Publication number Publication date
US6196835B1 (en) 2001-03-06
DE10022969A1 (de) 2001-11-15
EP1048898A1 (de) 2000-11-02

Similar Documents

Publication Publication Date Title
EP1048898B1 (de) Brenner
DE60007946T2 (de) Eine Brennkammer
DE19615910B4 (de) Brenneranordnung
EP1336800B1 (de) Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens
EP0675322B1 (de) Vormischbrenner
EP2588805B1 (de) Brenneranordnung
EP0985882B1 (de) Schwingungsdämpfung in Brennkammern
DE69917655T2 (de) System zur dämpfung akustischer schwingungen in einer brennkammer
EP0918191B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
DE60224141T2 (de) Gasturbine und Brennkammer dafür
EP1800062B1 (de) Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners
EP1730447A1 (de) Brenner
EP1182398A1 (de) Verfahren zur Erhöhung der strömungsmechanischen Stabilität eines Vormischbrenners sowie Vormischbrenner zur Durchführung des Verfahrens
DE102009003639A1 (de) Verfahren und Systeme zur Verminderung von Verbrennungsdynamik
EP2232147B1 (de) Brenner und verfahren zur verringerung von selbstinduzierten flammenschwingungen
EP0851172B1 (de) Brenner und Verfahren zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP1002992B1 (de) Brenner
DE19516798A1 (de) Vormischbrenner mit axialer oder radialer Luftzuströmung
DE19537636B4 (de) Kraftwerksanlage
DE10355930A1 (de) Brenner
DE2606704A1 (de) Brennkammer fuer gasturbinentriebwerke
DE10205428A1 (de) Vormischbrenner mit erhöhter Flammenstabilität
DE102015106675A1 (de) System und Verfahren zur Steuerung der Verbrennungsdynamik in einem Verbrennungssystem
DE102015107767A1 (de) Systeme und Verfahren zur Kohärenzreduktion in einem Verbrennungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010402

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20021028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59810606

Country of ref document: DE

Date of ref document: 20040219

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041015

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081117

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091118