EP1336800B1 - Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method - Google Patents

Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method Download PDF

Info

Publication number
EP1336800B1
EP1336800B1 EP03405031.0A EP03405031A EP1336800B1 EP 1336800 B1 EP1336800 B1 EP 1336800B1 EP 03405031 A EP03405031 A EP 03405031A EP 1336800 B1 EP1336800 B1 EP 1336800B1
Authority
EP
European Patent Office
Prior art keywords
burner
lance
combustion
fuel
end region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03405031.0A
Other languages
German (de)
French (fr)
Other versions
EP1336800A1 (en
Inventor
Ephraim Gutmark
Christian Oliver Paschereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1336800A1 publication Critical patent/EP1336800A1/en
Application granted granted Critical
Publication of EP1336800B1 publication Critical patent/EP1336800B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a premix burner for reducing combustion-driven vibrations within a combustion system, in particular one with low acoustic damping, as is frequently encountered in combustion chambers of flow engines.
  • turbomachinery such as gas turbine plants
  • combustion-driven thermoacoustic oscillations arise at the burner as fluid mechanical Instabilticianswellen and lead to eddies that greatly affect the entire combustion process and lead to unwanted periodic heat releases within the combustion chamber.
  • pressure fluctuations of high amplitude can lead to undesirable effects, such as a high mechanical load of the combustion chamber, increased NO x emissions by inhomogeneous combustion or even to extinguishment of the flame within the combustion chamber.
  • Thermoacoustic oscillations are based, at least in part, on flow instabilities of the burner flow, which manifest themselves in coherent flow structures, and which influence the mixing processes between combustion air and fuel.
  • thermoacoustic oscillations for example.
  • a cooling air film which is passed over the combustion chamber walls or by an acoustic coupling of so-called Helmholtz damper in the combustion chamber or in the region of the cooling air.
  • thermoacoustic vibration amplitudes involves the disadvantage that the injection of fuel at the head stage is accompanied by an increase in the emission of NO x .
  • thermoacoustic vibrations have shown that often flow instabilities lead to these instabilities.
  • shear layers forming between two mixing flows which initiate waves perpendicular to the direction of flow (Kevin Helmholtz waves).
  • These instabilities on shear layers in combination with the ongoing combustion process are mainly responsible for the thermoacoustic oscillations caused by reaction rate fluctuations.
  • These largely coherent waves result in a burner of the aforementioned type under typical operating conditions to vibrations at frequencies in the range of 100 Hz.
  • thermoacoustic oscillations pose a problem following publications: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams", Journal of Fluid Mechanics, Vol. 123, 91-130 ; Paschereit et al. 1995, “Experimental investigation of subharmonic resonance in an axisymmetric jet", Journal of Fluid Mechanics, Vol. 283, 365-407 ; Paschereit et al., 1998, "Structure and Control of Thermoacoustic Instabilities in a Gas Turbine Burner, Combustion, Science & Technology, Vol. 138, 213-232 ).
  • Premixed flames require low velocity zones to be stabilized.
  • To stabilize the flame backflow zones which are generated either by the lag behind sturgeons, so-called flame holders, or by aerodynamic methods (vortex breakdown).
  • the stability of the backflow zone is another criterion for the stability of the combustion and the avoidance of thermoacoustic instabilities.
  • US 5325660 describes embodiments of burners of the former category.
  • a flow-influencing body is arranged downstream of the premixing zone of the burner such that a backflow zone forms downstream.
  • the flame sits directly behind the flame holder.
  • Such designed burners are not well suited for operation in connection with fluid power engines, such as gas turbines.
  • the flame holders are subject to high wear due to their exposed position and the enormous thermal and chemical stresses. Waste parts would have devastating effects on the downstream turbine. In modern gas turbine plants such burners are therefore no alternative.
  • EP 321 809 B1 discloses a premix burner with a return flow zone forming downstream of the burner exit which stabilizes the flame without the need for a mechanical flame holder.
  • This burner consists of at least two hollow, nested Operakegel Sciencesn whose longitudinal axes are offset from each other such that tangential slots for supplying the combustion air form, which flows like a spiral through an enclosed by the part cone bodies, conically expanding premixing zone to the burner outlet.
  • Centrally arranged in the premixing lance for fuel injection is arranged.
  • WO 01/96785 discloses a generic same premix burner, which is characterized by a stable operation in the partial load range and thermoacoustic instabilities, which can lead to a complete extinction of the flame, especially in the part-load range, reduced. This is accomplished by a locally variable fuel injection into the premix zone via at least a first group and at least a second group of fuel supply means.
  • the burner lance should preferably be equipped with more than one group of fuel supply and extend relatively far into the premixing zone.
  • a number of premix zones for supplying a fuel-air mixture are coupled to the combustion chamber.
  • the premix zones each consist of a cylindrical jacket tube with an inner cylindrical central body, so they have an annular cross-section.
  • the central body ends shortly before the outlet of the premixing zone in the combustion chamber.
  • At the entrance of the premixing zone are vortex elements for the combustion air and from the central body radially outgoing, projecting into the combustion air flow lances for injecting fuel into the flowing combustion air.
  • the premixing zone Starting from the jacket pipe or the central body protrude at the combustion chamber side outlet the premixing zone includes a plurality of, approximately two to six, flow elements radially into the annular premixing zone which interfere with the formed flow patterns and thus inhibit the formation of coherent structures.
  • the invention has for its object to provide a premix burner for reducing combustion-driven thermoacoustic oscillations within a combustion system, in particular one with a low acoustic damping, which further reduces the formation of coherent flow instabilities at the burner outlet and which is to create with little equipment.
  • the object is achieved by a premix burner of the type mentioned in the independent claim.
  • the basic idea of the invention is to further stabilize the central backflow zone forming downstream of the burner outlet, within which the fuel / air mixture ignites. Due to the stabilization of the backflow zone and the reduction of the formation of coherent vortex structures at the burner outlet, the periodic heat releases within the combustion chamber which cause the occurrence of thermoacoustic oscillations are largely prevented.
  • the fluidic stabilization of the remindströmzone according to the invention is carried out by providing the central fuel nozzle in the form of a burner lance, as is commonly used for pilot gas supply, wherein the burner lance has a length downstream of the burner head in a length of 60 to 80% in the burner protrudes, is arranged centrally to the burner axis and in her
  • the fuel discharge takes place by at least one fuel nozzle opening attached to the end of the lance in such a way that the fuel discharged into the interior of the burner mixes finely distributed with incoming air and is at the same time swirled.
  • the wake at the end of the lance provides further stabilization of the aerodynamically generated return flow zone.
  • the lance is equipped in a manner known per se with means which allow an independent supply of two fluid media.
  • Such a design makes it possible to introduce additional fuel air into the burner interior in addition to a fuel injection. By a known modulated supply of this additional air combustion chamber vibrations thus can be additionally counteracted.
  • the measure according to the invention carries a partial fuel injection via the central fuel lance pushed into the interior space and having an expanding cross section in the end region to stabilize the flame forming within the backflow zone.
  • FIG. 1 is shown in longitudinal section a premix burner 1, as in its basic structure, for example, from the EP 0 321 809 evident.
  • the premix burner 1 consists of two half-shell-shaped, conically widening partial bodies 1 a and 1 b, which are arranged axially parallel and offset from one another such that they form tangential gaps in two overlapping areas lying opposite each other in mirror image.
  • the resulting from the displacement of the longitudinal axes of the body part 1 a and 1 b column serve as inlet channels through which the combustion air 7 flows tangentially into the burner interior 2 in the burner operation.
  • injection openings through which a preferably gaseous Fuel 8 is injected into the passing combustion air 7.
  • this abovementioned type of burner has in a central arrangement in the starting region of the burner interior 2 a nozzle for introducing further, preferably liquid fuel.
  • a nozzle for introducing further, preferably liquid fuel.
  • combustion air 7 and fuel 8 pass through the burner interior 2 with intensive mixing.
  • the swirl flow 6 breaks down to form a backflow zone 5 with an effect stabilizing the flame front acting there. Further details of the structure and operation of this burner 1 are shown in the aforementioned EP document and other sources of information known to those skilled in the art.
  • a burner lance 3 protrudes parallel to the burner axis into the burner interior 2 as an extension of the mentioned central fuel nozzle.
  • thermoacoustic oscillations open out in the region of the end of the lance.
  • This air, as well as the fuel can be fed modulated.
  • the in a swirl flow 6 through the burner interior 2 in the combustion chamber 4 propagating fuel / air mixture is able to stabilize within the combustion chamber 4 forming remindströmzone 5, especially since the vortex of the fuel / air mixture before and during ignition the vortex decay within the combustion chamber. 4 favors, whereby the remindströmzone 5 is stabilized. This can prevent the remindströmzone 5 changes its position periodically, which is ultimately the cause of propagating within the combustion system thermoacoustic oscillations.
  • FIG. 2 is a diagram representation illustrating the effect of inventively designed burner lance 3 on the suppression of instabilities in the form of pressure oscillations in the 120 Hz range.
  • the pulsations measured in pressure values (Pa) along the ordinate in FIG. 2 are plotted as a function of the position of the lance end in the burner 1.
  • the ratio I / L is plotted, ie the ratio of the length of the burner lance 3 to the total axial extent L of the burner.
  • FIG. 3 Diagram representation shown is with the in FIG. 2 comparable.
  • FIG. 4 the evaluation of the individual interfering geometries with regard to the nitrogen oxide emission is shown.
  • the burner lance interspersed with a multiplicity of fuel outlets proves to be particularly advantageous FIG. 5 is shown.
  • FIG. 5 The illustrated interference geometry as well as the geometries shown in the following figures can be formed, for example, as threaded screw tops, which are screwed into the burner head and in particular can be easily exchanged for test purposes.
  • burner lance 3 is equipped with a plurality of the shell laterally penetrating fuel outlet openings 9.
  • the injection takes place preferably in the region of the second lance half, as viewed in the direction of flow.
  • FIG. 6 shows a star-shaped Lanzenendgeometrie
  • FIG. 7 a conically shaped Lanzenendgeometrie, wherein the fuel discharge from the lance 3 by axially aligned outlet openings 12, 32 takes place, as it were the lance geometry in FIG. 8 showing a burner lance to which a plate 13 is attached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Gas Burners (AREA)

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf einen Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen innerhalb eines Verbrennungssystems, insbesondere eines solchen mit geringer akustischer Dämpfung, wie es in Brennkammern von Strömungskraftmaschinen häufig anzutreffen ist.The invention relates to a premix burner for reducing combustion-driven vibrations within a combustion system, in particular one with low acoustic damping, as is frequently encountered in combustion chambers of flow engines.

Stand der TechnikState of the art

Beim Betrieb von Strömungskraftmaschinen, wie beispielsweise Gasturbinenanlagen, treten in den Brennkammern häufig verbrennungsgetriebene thermoakustische Schwingungen auf, die am Brenner als strömungsmechanische Instabilitätswellen entstehen und zu Strömungswirbeln führen, die den gesamten Verbrennungsvorgang stark beeinflussen und zu unerwünschten periodischen Wärmefreisetzungen innerhalb der Brennkammer führen. Daraus resultieren Druckschwankungen hoher Amplitude, die zu unerwünschten Effekten, wie zu einer hohen mechanischen Belastung des Brennkammergehäuses, einer erhöhten NOx-Emission durch eine inhomogene Verbrennung oder sogar zu einem Erlöschen der Flamme innerhalb der Brennkammer führen können.In the operation of turbomachinery, such as gas turbine plants, occur in the combustion chambers often combustion-driven thermoacoustic oscillations, which arise at the burner as fluid mechanical Instabilitätswellen and lead to eddies that greatly affect the entire combustion process and lead to unwanted periodic heat releases within the combustion chamber. This results in pressure fluctuations of high amplitude, which can lead to undesirable effects, such as a high mechanical load of the combustion chamber, increased NO x emissions by inhomogeneous combustion or even to extinguishment of the flame within the combustion chamber.

Thermoakustische Schwingungen beruhen zumindest teilweise auf Strömungsinstabilitäten der Brennerströmung, die sich in kohärenten Strömungsstrukturen äußern, und die die Mischungsvorgänge zwischen Verbrennungsluft und Brennstoff beeinflussen.Thermoacoustic oscillations are based, at least in part, on flow instabilities of the burner flow, which manifest themselves in coherent flow structures, and which influence the mixing processes between combustion air and fuel.

Es ist mittlerweile eine Reihe von Techniken bekannt, thermoakustischen Schwingungen entgegenzutreten, bspw. mit Hilfe eines Kühlluftfilmes, der über die Brennkammerwände geleitet wird oder durch eine akustische Ankopplung sogenannter Helmholtz-Dämpfer im Bereich der Brennkammer oder im Bereich der Kühlluftzufuhr.There is now known a number of techniques to counteract thermoacoustic oscillations, for example. With the aid of a cooling air film which is passed over the combustion chamber walls or by an acoustic coupling of so-called Helmholtz damper in the combustion chamber or in the region of the cooling air.

Ferner ist bekannt, dass den im Brenner auftretenden Verbrennungsinstabilitäten dadurch entgegengetreten werden kann, indem die Brennstoffflamme durch zusätzliche Eindüsung von Brennstoff stabilisiert wird. Eine derartige Eindüsung von zusätzlichem Brennstoff erfolgt über die Kopfstufe des Brenners, in der eine auf der Brennerachse liegende Düse für die Pilot-Brennstoffgaszuführung vorgesehen ist, was zu einer Anfettung der zentralen Flammstabilisierungszone führt. Diese Methode der Verminderung von thermoakustischen Schwingungsamplituden ist jedoch mit dem Nachteil verbunden, dass die Eindüsung von Brennstoff an der Kopfstufe mit einer Erhöhung der Emission von NOx einhergeht.Furthermore, it is known that the combustion instabilities occurring in the burner can be counteracted by stabilizing the fuel flame by additional injection of fuel. Such injection of additional fuel takes place via the head of the burner, in which a nozzle for the pilot fuel gas supply lying on the burner axis is provided, which leads to an enrichment of the central flame stabilization zone. However, this method of reducing thermoacoustic vibration amplitudes involves the disadvantage that the injection of fuel at the head stage is accompanied by an increase in the emission of NO x .

Untersuchungen zur Ausbildung thermoakustischer Schwingungen haben gezeigt, dass oftmals Strömungsinstabilitäten zu diesen Instabilitäten führen. Von besonderer Bedeutung sind hierbei die sich zwischen zwei mischenden Strömungen ausbildenden Scherschichten, die senkrecht zur Strömungsrichtung verlaufende Wellen initiieren (Kevin-Helmholtz-Wellen). Diese Instabilitäten auf Scherschichten in Kombination mit dem ablaufenden Verbrennungsprozess sind hauptverantwortlich für die von Reaktionsratenschwankungen ausgelösten thermoakustischen Oszillationen. Diese weitgehend kohärenten Wellen führen bei einem Brenner der vorgenannten Art unter typischen Betriebsbedingungen zu Schwingungen mit Frequenzen im Bereich um 100 Hz. Da diese Frequenz mit typischen fundamentalen Eigenmoden von vielen Ringbrennern in Gasturbinenanlagen zusammenfällt, stellen die thermoakustischen Oszillationen ein Problem dar. Nähere Ausführungen hierzu sind folgenden Druckschriften zu entnehmen: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams", Journal of Fluid mechanics, Vol. 123, 91-130 ; Paschereit et al. 1995, "Experimental investigation of subharmonic resonance in an axisymmetric jet", Journal of Fluid Mechanics, Vol. 283, 365-407 ; Paschereit et al., 1998, "Structure and Control of Thermoacoustic Instabilities in a Gas-turbine Burner", Combustion, Science & Technology, Vol. 138, 213-232 ).Studies on the formation of thermoacoustic vibrations have shown that often flow instabilities lead to these instabilities. Of particular importance here are the shear layers forming between two mixing flows which initiate waves perpendicular to the direction of flow (Kevin Helmholtz waves). These instabilities on shear layers in combination with the ongoing combustion process are mainly responsible for the thermoacoustic oscillations caused by reaction rate fluctuations. These largely coherent waves result in a burner of the aforementioned type under typical operating conditions to vibrations at frequencies in the range of 100 Hz. Since this frequency coincides with typical fundamental eigenmodes of many ring burners in gas turbine plants, the thermoacoustic oscillations pose a problem following publications: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams", Journal of Fluid Mechanics, Vol. 123, 91-130 ; Paschereit et al. 1995, "Experimental investigation of subharmonic resonance in an axisymmetric jet", Journal of Fluid Mechanics, Vol. 283, 365-407 ; Paschereit et al., 1998, "Structure and Control of Thermoacoustic Instabilities in a Gas Turbine Burner, Combustion, Science & Technology, Vol. 138, 213-232 ).

Wie aus den vorstehenden Veröffentlichungen zu entnehmen ist, ist es möglich, die sich innerhalb der Scherschichten ausbildenden kohärenten Strukturen durch gezieltes Einbringen einer akustischen Anregung derart zu beeinflussen, dass die Ausbildung solcher Wirbel weitgehend verhindert wird. Damit werden Schwankungen in der Wärmefreisetzung unterbunden und die Druckschwankungen reduziert.As can be seen from the above publications, it is possible to influence the forming within the shear layers coherent structures by deliberately introducing an acoustic excitation in such a way that the formation of such vortex is largely prevented. This prevents fluctuations in heat release and reduces pressure fluctuations.

Vorgemischte Flammen benötigen Zonen geringer Geschwindigkeit, um stabilisiert zu werden. Zur Stabilisierung der Flamme dienen Rückströmzonen, die entweder durch den Nachlauf hinter Störkörpern, so genannten Flammenhaltern, oder durch aerodynamische Methoden (vortex breakdown) erzeugt werden. Die Stabilität der Rückströmzone ist ein weiteres Kriterium für die Stabilität der Verbrennung und die Vermeidung von thermoakustischen Instabilitäten.Premixed flames require low velocity zones to be stabilized. To stabilize the flame backflow zones, which are generated either by the lag behind sturgeons, so-called flame holders, or by aerodynamic methods (vortex breakdown). The stability of the backflow zone is another criterion for the stability of the combustion and the avoidance of thermoacoustic instabilities.

US 5325660 beschreibt Ausführungsarten von Brennern der erstgenannten Kategorie. Zur Stabilisierung der Flamme ist stromab der Vormischzone des Brenners ein strömungsbeeinflussender Körper derart angeordnet, dass sich stromab eine Rückströmzone ausbildet. Im Brennerbetrieb sitzt die Flamme unmittelbar hinter dem Flammenhalter. Dergestalt konzipierte Brenner sind für einen Betrieb im Zusammenhang mit Strömungskraftmaschinen, wie Gasturbinen, wenig geeignet. Die Flammenhalter unterliegen aufgrund ihrer exponierten Lage und der enormen thermischen und chemischen Beanspruchungen einem hohen Verschleiss. Abfallende Teile hätten verheerende Auswirkungen auf die nachgeordnete Turbine. In modernen Gasturbinenanlagen stellen solche Brenner daher keine Alternative dar. US 5325660 describes embodiments of burners of the former category. To stabilize the flame, a flow-influencing body is arranged downstream of the premixing zone of the burner such that a backflow zone forms downstream. In burner mode, the flame sits directly behind the flame holder. Such designed burners are not well suited for operation in connection with fluid power engines, such as gas turbines. The flame holders are subject to high wear due to their exposed position and the enormous thermal and chemical stresses. Waste parts would have devastating effects on the downstream turbine. In modern gas turbine plants such burners are therefore no alternative.

EP 321 809 B1 offenbart einen Vormischbrenner mit einer stromab des Brenneraustritts sich ausbildenden Rückströmzone, die die Flamme stabilisiert, ohne einen mechanischen Flammenhalter zu benötigen. Dieser Brenner besteht aus wenigstens zwei hohlen, ineinandergeschachtelten Teilkegelkörpern, deren Längsachsen derart zueinander versetzt sind, dass sich tangentiale Schlitze zur Zuführung der Verbrennungsluft ausbilden, welche drallförmig durch eine von den Teilkegelkörpern umschlossene, sich konisch erweiternde Vormischzone zum Brenneraustritt hin strömt. Zentral ist eine in die Vormischzone hineinragende Lanze zur Brennstoffeindüsung angeordnet. EP 321 809 B1 discloses a premix burner with a return flow zone forming downstream of the burner exit which stabilizes the flame without the need for a mechanical flame holder. This burner consists of at least two hollow, nested Teilkegelkörpern whose longitudinal axes are offset from each other such that tangential slots for supplying the combustion air form, which flows like a spiral through an enclosed by the part cone bodies, conically expanding premixing zone to the burner outlet. Centrally arranged in the premixing lance for fuel injection is arranged.

Nach der in DE 195 45 309 mitgeteilten Lehre werden bei einem Brenner gemäss EP 321 809 die NOx-Emissionen dadurch vermindert und die Rückströmzone dadurch stabilisiert, indem sich die Brennstofflanze mindestens bis in das untere Drittel der Vormischzone erstreckt und an ihrem stromabwärtigen Ende mit einer Brennstoffdüse ausgestattet ist. Durch diese Massnahme einer Verkürzung der Distanz zwischen Brennstoffdüse und Rückströmzone werden nicht nur Pulsationen vermindert, sondern zudem reduziert sich der Brennstoffbedarf zur Stabilisierung der Flamme.After the in DE 195 45 309 notified teaching are in a burner according to EP 321 809 thereby reducing NO x emissions and stabilizing the backflow zone by extending the fuel lance to at least the lower third of the premix zone and having a fuel nozzle at its downstream end. This measure of shortening the distance between the fuel nozzle and Rückströmzone not only pulsations are reduced, but also reduces the fuel requirements to stabilize the flame.

WO 01/96785 offenbart einen gattungsgleichen Vormischbrenner, der sich durch eine stabile Fahrweise im Teillastbereich auszeichnet und thermoakustische Instabilitäten, die zu einem vollständigen Verlöschen der Flamme, insbesondere im Teillastbereich, führen können, vermindert. Dies wird durch eine örtlich variable Brennstoffeindüsung in die Vormischzone über mindestens eine erste Gruppe und mindestens eine zweite Gruppe von Brennstoffzuführeinrichtungen erreicht. Dabei soll auch die Brennerlanze vorzugsweise mit mehr als einer Gruppe von Brennstoffzuführeinrichtung ausgerüstet sein und sich relativ weit in die Vormischzone hinein erstrecken. WO 01/96785 discloses a generic same premix burner, which is characterized by a stable operation in the partial load range and thermoacoustic instabilities, which can lead to a complete extinction of the flame, especially in the part-load range, reduced. This is accomplished by a locally variable fuel injection into the premix zone via at least a first group and at least a second group of fuel supply means. In this case, the burner lance should preferably be equipped with more than one group of fuel supply and extend relatively far into the premixing zone.

Gegenstand der US 5487274 ist eine Gasturbinenbrennkammer mit schadstoffarmer Verbrennung. An die Brennkammer ist eine Anzahl von Vormischzonen zur Zuführung eines Brennstoff-Luft-Gemischs angekoppelt. Die Vormischzonen bestehen jeweils aus einem zylindrischen Mantelrohr mit einem innenliegenden zylindrischen Zentralkörper, besitzen also einen ringförmigen Querschnitt. Der Zentralkörper endet kurz vor dem Austritt der Vormischzone in die Brennkammer. Eingangs der Vormischzone befinden sich Wirbelelemente für die Verbrennungsluft und von dem Zentralkörper radial ausgehende, in die Verbrennungsluftströmung hineinragende Lanzen zur Eindüsung von Brennstoff in die strömende Verbrennungsluft. Ausgehend vom Mantelrohr oder vom Zentralkörper ragen am brennkammerseitigen Austritt der Vormischzone mehrere, etwa zwei bis sechs, Strömungselemente radial in die ringförmige Vormischzone, welche die ausgebildeten Strömungsmuster stören und damit die Ausbildung kohärenter Strukturen hemmen.Subject of the US 5487274 is a gas turbine combustion chamber with low-emission combustion. A number of premix zones for supplying a fuel-air mixture are coupled to the combustion chamber. The premix zones each consist of a cylindrical jacket tube with an inner cylindrical central body, so they have an annular cross-section. The central body ends shortly before the outlet of the premixing zone in the combustion chamber. At the entrance of the premixing zone are vortex elements for the combustion air and from the central body radially outgoing, projecting into the combustion air flow lances for injecting fuel into the flowing combustion air. Starting from the jacket pipe or the central body protrude at the combustion chamber side outlet the premixing zone includes a plurality of, approximately two to six, flow elements radially into the annular premixing zone which interfere with the formed flow patterns and thus inhibit the formation of coherent structures.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, einen Vormischbrenner zur Verminderung verbrennungsgetriebener thermoakustischer Schwingungen innerhalb eines Verbrennungssystems, insbesondere eines solchen mit einer geringen akustischen Dämpfung, bereitzustellen, der die Ausbildung kohärenter Strömungsinstabilitäten am Brenneraustritt weiter vermindert und welcher mit geringem apparativen Aufwand zu erstellen ist.The invention has for its object to provide a premix burner for reducing combustion-driven thermoacoustic oscillations within a combustion system, in particular one with a low acoustic damping, which further reduces the formation of coherent flow instabilities at the burner outlet and which is to create with little equipment.

Erfindungsgemäss wird die Aufgabe durch einen Vormischbrenner der in dem unabhängigen Anspruch genannten Art gelöst.According to the invention, the object is achieved by a premix burner of the type mentioned in the independent claim.

Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der abhängigen Ansprüche sowie der nachfolgenden Beschreibung.The concept of the invention advantageously further features are the subject of the dependent claims and the following description.

Ausgehend von einem Verbrennungssystem, das einen Vormischbrenner der gemäss EP 0 321 809 B1 geschützten Bauart umfasst, besteht der Grundgedanke der Erfindung darin, die sich stromab des Brenneraustritts ausbildende zentrale Rückströmzone, innerhalb der sich das Brennstoff-/Luftgemisch entzündet, weiter zu stabilisieren. Durch die Stabilisierung der Rückströmzone sowie die Verminderung der Ausbildung kohärenter Wirbelstrukturen am Brenneraustritt werden die das Auftreten thermoakustischer Schwingungen verursachenden periodischen Wärmefreisetzungen innerhalb der Brennkammer weitgehend unterbunden.Starting from a combustion system comprising a premix burner according to EP 0 321 809 B1 protected design, the basic idea of the invention is to further stabilize the central backflow zone forming downstream of the burner outlet, within which the fuel / air mixture ignites. Due to the stabilization of the backflow zone and the reduction of the formation of coherent vortex structures at the burner outlet, the periodic heat releases within the combustion chamber which cause the occurrence of thermoacoustic oscillations are largely prevented.

Die strömungstechnische Stabilisierung der Rückströmzone erfolgt erfindungsgemäß durch das Vorsehen der zentralen Brennstoffdüse in Form einer Brennerlanze, wie sie üblicherweise zur Pilotgaszufuhr verwendet wird, wobei die Brennerlanze eine Länge aufweist, die von Seiten des Brennerkopfes in einer Länge von 60 bis 80% in den Brenner stromab hineinragt, mittig zur Brennerachse angeordnet ist und in ihrem stromabwärtigen Endbereich einen sich erweiternden Querschnitt aufweist.Der Brennstoffaustrag erfolgt durch wenigstens eine am Lanzenende angebrachte Brennstoffdüsenöffnung derart, dass sich der in den Innenraum des Brenners ausgetragene Brennstoff feinstverteilt mit Zuluft mischt und zugleich verwirbelt wird. Insbesondere erfolgt durch den Nachlauf am Lanzenende eine weitere Stabilisierung der aerodynamisch erzeugten Rückströmzone. Insbesondere wird durch den erfindungsgemäßen Brennstoffeintrag in einer stromab verlagerten Position innerhalb des Brennerinnenraums ein periodisches Hinaus- und wieder Hineinlaufen der sich innerhalb der Rückströmzone ausbildenden Flamme in den Brenner verhindert. Durch die räumliche Nähe des Brennstoffaustrages zur sich innerhalb der Brennkammer ausbildenden Rückströmzone kann eben jener Wirbelzusammenbruch durch das sich in Strömungsrichtung ausbreitende, verwirbelte Brennstoff-/Luftgemisch unterstützt werden, wodurch die Rückströmzone und damit verbunden die Flamme entscheidend stabilisiert werden.The fluidic stabilization of the Rückströmzone according to the invention is carried out by providing the central fuel nozzle in the form of a burner lance, as is commonly used for pilot gas supply, wherein the burner lance has a length downstream of the burner head in a length of 60 to 80% in the burner protrudes, is arranged centrally to the burner axis and in her The fuel discharge takes place by at least one fuel nozzle opening attached to the end of the lance in such a way that the fuel discharged into the interior of the burner mixes finely distributed with incoming air and is at the same time swirled. In particular, the wake at the end of the lance provides further stabilization of the aerodynamically generated return flow zone. In particular, the fuel input according to the invention in a downstream displaced position within the burner interior prevents a periodic outflow and re-entry of the flame forming within the return flow zone into the burner. Due to the spatial proximity of the fuel discharge to form within the combustion chamber Rückströmzone just that vortex breakdown can be supported by the propagating in the flow direction, turbulent fuel / air mixture, whereby the Rückströmzone and associated flame are significantly stabilized.

Es ist erkannt worden, dass durch unterschiedliche Lanzenformen die Entstehung kohärenter Strukturen beeinflusst werden kann. In den nachfolgenden Ausführungen wird eine Reihe bevorzugter Lanzenkonfigurationen vorgestellt werden. Diesen Konfigurationen ist gemein, durch eine Auffächerung der Wirbelbewegung die Entstehung kohärenter Strukturen zusätzlich zu hemmen.It has been recognized that different forms of lances can influence the formation of coherent structures. In the following, a number of preferred lance configurations will be presented. These configurations have in common, by a diversification of the vortex movement, the formation of coherent structures in addition to inhibit.

In einer weiteren Ausführungsform ist die Lanze in an sich bekannter Weise mit Mitteln ausgerüstet, die eine voneinander unabhängige Zuführung zweier fluider Medien gestatten. Eine solche Gestaltung erlaubt es, neben einer Brennstoffeindüsung noch Zusatzluft in den Brennerinnenraum einzuführen. Durch eine an sich bekannte modulierte Zuführung dieser Zusatzluft kann den Brennkammerschwingungen damit zusätzlich entgegengewirkt werden.In a further embodiment, the lance is equipped in a manner known per se with means which allow an independent supply of two fluid media. Such a design makes it possible to introduce additional fuel air into the burner interior in addition to a fuel injection. By a known modulated supply of this additional air combustion chamber vibrations thus can be additionally counteracted.

Insbesondere bei einer Betriebsweise des Vormischbrenners mit Brennstoffzuführung in die tangential in den Brennerinnenraum eintretende Verbrennungsluft über längs des Mantels angeordnete Düsen, trägt die erfindungsgemäße Massnahme einer teilweisen Brennstoffeindüsung über die in den Innenraum hineingeschobene, im Endbereich einen sich erweiternden Querschnitt aufweisende zentrale Brennstofflanze zur Stabilisierung der sich innerhalb der Rückströmzone ausbildenden Flamme bei.In particular, in an operating mode of the premix burner with fuel supply into the combustion air entering tangentially into the burner interior via nozzles arranged along the jacket, the measure according to the invention carries a partial fuel injection via the central fuel lance pushed into the interior space and having an expanding cross section in the end region to stabilize the flame forming within the backflow zone.

Wege zur Ausführung der ErfindungWays to carry out the invention

Die Erfindung sei nachfolgend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben.The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the drawings.

Es zeigen:

Fig. 1
schematisierten Längsschnitt durch einen kegelförmig ausgebildeten Brenner mit verlängerter Brennerlanze,
Fig. 2
Diagrammdarstellung zur Abhängigkeit der Länge der Brennerlanze auf das akustische Dämpfungsverhalten,
Fig. 3
Diagrammdarstellung zur Abhängigkeit der Länge der Brennerlanze auf das akustische Dämpfungsverhalten im Hinblick auf unterschiedliche Lanzenkonfigurationen,
Fig. 4
Diagrammdarstellung der Abhängigkeit der Länge der Brennerlanze auf die NOx-Emissionen im Hinblick auf unterschiedliche Lanzenkonfigurationen,
Fig. 5-8
unterschiedliche Brennerlanzenkonfigurationen.
Show it:
Fig. 1
schematized longitudinal section through a conical burner with extended burner lance,
Fig. 2
Diagram showing the dependence of the length of the burner lance on the acoustic damping behavior,
Fig. 3
Diagram showing the dependence of the length of the burner lance on the acoustic damping behavior with regard to different lance configurations,
Fig. 4
Diagram depicting the dependence of the length of the burner lance on the NO x emissions with regard to different lance configurations,
Fig. 5-8
different burner lance configurations.

In Figur 1 ist im Längsschnitt ein Vormischbrenner 1 dargestellt, wie er in seinem Grundaufbau beispielweise aus der EP 0 321 809 hervorgeht. Der Vormischbrenner 1 besteht aus zwei halbschalenförmigen, sich konisch erweiternden Teilkörpern 1a und 1 b, die derart achsparallel und zueinander versetzt angeordnet sind, dass sie in zwei spiegelbildlich gegenüberliegenden Überlappungsbereichen tangentiale Spalte bilden. Die aus der Versetzung der Längsachsen der Teilkörper 1 a und 1 b resultierenden Spalte dienen als Eintrittskanäle, durch die im Brennerbetrieb die Verbrennungsluft 7 tangential in den Brennerinnenraum 2 einströmt. Entlang diesen Eintrittskanälen befinden sich Eindüsungsöffnungen, durch welche ein vorzugsweise gasförmiger Brennstoff 8 in die vorbeiströmende Verbrennungsluft 7 eingedüst wird. Neben dieser Brennstoffeindüsung 8 am Brennermantel besitzt diese vorgenannte Brennergattung in zentraler Anordnung im Anfangsbereich des Brennerinnenraums 2 eine Düse zur Einführung weiteren, vorzugsweise flüssigen Brennstoffs. Unter Ausbildung einer Drallströmung 6 durchqueren Verbrennungsluft 7 und Brennstoff 8 unter intensiver Durchmischung den Brennerinnenraum 2. Am Brenneraustritt bricht die Drallströmung 6 unter Ausbildung einer Rückstromzone 5 mit einem gegenüber der dort wirkenden Flammenfront stabilisierenden Effekt zusammen. Weitere Einzelheiten des Aufbaus und der Wirkungsweise dieses Brenners 1 sind der vorgenannten EP-Schrift und anderen dem Fachmann bekannten Informationsquellen zu entnehmen.In FIG. 1 is shown in longitudinal section a premix burner 1, as in its basic structure, for example, from the EP 0 321 809 evident. The premix burner 1 consists of two half-shell-shaped, conically widening partial bodies 1 a and 1 b, which are arranged axially parallel and offset from one another such that they form tangential gaps in two overlapping areas lying opposite each other in mirror image. The resulting from the displacement of the longitudinal axes of the body part 1 a and 1 b column serve as inlet channels through which the combustion air 7 flows tangentially into the burner interior 2 in the burner operation. Along these inlet channels are injection openings, through which a preferably gaseous Fuel 8 is injected into the passing combustion air 7. In addition to this fuel injection 8 on the burner jacket, this abovementioned type of burner has in a central arrangement in the starting region of the burner interior 2 a nozzle for introducing further, preferably liquid fuel. With the formation of a swirl flow 6, combustion air 7 and fuel 8 pass through the burner interior 2 with intensive mixing. At the burner outlet, the swirl flow 6 breaks down to form a backflow zone 5 with an effect stabilizing the flame front acting there. Further details of the structure and operation of this burner 1 are shown in the aforementioned EP document and other sources of information known to those skilled in the art.

Erfindungsgemäss ragt in Verlängerung der erwähnten zentralen Brennstoffdüse eine Brennerlanze 3 parallel zur Brennerachse in den Brennerinnenraum 2. Die Lanze 3, die eine Länge I aufweist, die vorzugsweise im Bereich von etwa 2/3 der axialen Erstreckung des Brenners 1 liegt, weist einen mittig angeordneten Brennstoffkanal 31 auf, der stromab am Lanzenende in einer Brennstoffdüse 32 endet.According to the invention, a burner lance 3 protrudes parallel to the burner axis into the burner interior 2 as an extension of the mentioned central fuel nozzle. The lance 3, which has a length I which is preferably in the region of approximately 2/3 of the axial extent of the burner 1, has a centrally arranged lance Fuel channel 31, which ends downstream of the end of the lance in a fuel nozzle 32.

Nach der in Fig.1 dargestellten Ausführungsvariante münden im Bereich des Lanzenendes darüber hinaus radial ausgerichtete Düsen 33, aus denen zur zusätzlichen Dämpfung sich im Verbrennungssystem ausbildender thermoakustischer Schwingungen Luft in den Brennerinnenraum 2 eingebracht wird. Diese Luft, wie auch der Brennstoff, können moduliert eingespeist werden. Das sich in einer Drallströmung 6 durch den Brennerinnenraum 2 in die Brennkammer 4 ausbreitende Brennstoff/Luftgemisch vermag die sich innerhalb der Brennkammer 4 ausbildende Rückströmzone 5 zu stabilisieren, zumal die Wirbelstärke des Brennstoff-/Luftgemisches vor und während der Zündung den Wirbelzerfall innerhalb der Brennkammer 4 begünstigt, wodurch die Rückströmzone 5 stabilisiert wird. Hierdurch kann verhindert werden, daß die Rückströmzone 5 ihre Lage periodisch ändert, was letztlich Ursache der sich innerhalb des Verbrennungssystems ausbreitenden thermoakustischen Schwingungen ist.After the in Fig.1 In addition, radially oriented nozzles 33, from which air is introduced into the burner interior 2 for additional damping in the combustion system forming thermoacoustic oscillations, open out in the region of the end of the lance. This air, as well as the fuel, can be fed modulated. The in a swirl flow 6 through the burner interior 2 in the combustion chamber 4 propagating fuel / air mixture is able to stabilize within the combustion chamber 4 forming Rückströmzone 5, especially since the vortex of the fuel / air mixture before and during ignition the vortex decay within the combustion chamber. 4 favors, whereby the Rückströmzone 5 is stabilized. This can prevent the Rückströmzone 5 changes its position periodically, which is ultimately the cause of propagating within the combustion system thermoacoustic oscillations.

In Figur 2 ist eine Diagrammdarstellung abgebildet, die die Wirkung der erfindungsgemäß ausgebildeten Brennerlanze 3 auf die Unterdrückung von Instabilitäten in Form von Druckschwingungen im 120 Hz-Bereich verdeutlicht. Die Pulsationen, die in Druckwerten (Pa) entlang der Ordinate in Figur 2 aufgetragen sind, sind als Funktion der Position des Lanzenendes im Brenner 1 aufgetragen. Entlang der Abszisse ist das Verhältnis I/L aufgetragen, d.h. das Verhältnis der Länge der Brennerlanze 3 zur gesamtaxialen Erstreckung L des Brenners. Die Position I/L = 0 entspricht dabei der ursprünglichen Position der zentralen Brennstoffdüse, wie vorstehend erwähnt.In FIG. 2 is a diagram representation illustrating the effect of inventively designed burner lance 3 on the suppression of instabilities in the form of pressure oscillations in the 120 Hz range. The pulsations measured in pressure values (Pa) along the ordinate in FIG. 2 are plotted as a function of the position of the lance end in the burner 1. Along the abscissa, the ratio I / L is plotted, ie the ratio of the length of the burner lance 3 to the total axial extent L of the burner. The position I / L = 0 corresponds to the original position of the central fuel nozzle, as mentioned above.

Die unterschiedlichen im Diagramm dargestellten Funktionsverläufe entsprechen, folgenden Messbedingungen, wie sie im übrigen aus der Legende der Figur 2 entnehmbar sind:

  • Die durchgehend, horizontal eingetragene Linie entspricht der Basislinie, gemäß der an sich bekannte Brennersysteme ohne die Vorkehrung der erfindungsgemäß ausgebildeten Lanze bei vorgegebenen Betriebsbedingungen schwingen. Der mit Quadraten durchsetzte Funktionsverlauf gibt das Schwingungsverhalten eines Brenners im Premixbetrieb wieder, bei dem lediglich die zentrale Brennerlanze vorgesehen ist, durch die jedoch kein Brennstoffeintrag in den Brenner erfolgt. Die mit den ausgefüllten Rauten durchsetzte Linie gibt den Betrieb unter Verwendung einer erfindungsgemäß ausgebildeten Brennerlanze 3 wieder, bei der 2 kg Brennstoffaustrag pro Std. als Brennstoffzugabe durch die Brennerlanze 3 gewählt wurde. Schließlich zeigt die mit Dreiecken durchsetzte punktierte Linie einen Fall unter Verwendung der erfindungsgemäß ausgebildeten Brennerlanze 3, gleichsam jenem mit der Rauten durchsetzten Linie, jedoch mit einer Brennstoffzugabe von 5 kg pro Std.
The different functional curves shown in the diagram correspond to the following measuring conditions, as they are known from the legend of the FIG. 2 can be removed:
  • The continuous, horizontal registered line corresponds to the baseline, according to the known burner systems oscillate without the provision of inventively designed lance at predetermined operating conditions. The interspersed with squares function curve shows the vibration behavior of a burner in the premix mode again, in which only the central burner lance is provided by which, however, no fuel enters the burner. The interspersed with the solid diamonds line shows the operation using a burner lance formed according to the invention 3 again, in which 2 kg fuel discharge per hour was selected as fuel addition by the burner lance 3. Finally, the dotted line interspersed with triangles shows a case using the burner lance 3 constructed according to the invention, as it were the line interspersed with the diamonds, but with a fuel addition of 5 kg per hour.

Aus Figur 2 wird deutlich, dass die sich einstellenden Instabilitäten im Vormischbetrieb bei dem in Figur 1 dargestellten Brenner mit einer Lanzenposition von I/L = 0,6 - 0,8 am besten unterdrücken lassen. Die bevorzugte Lanzenposition liegt dabei bei I/L = 0,7.Out FIG. 2 It becomes clear that the resulting instabilities in the premix operation at the FIG. 1 The best way is to suppress the burner shown with a lance position of I / L = 0.6 - 0.8. The preferred lance position is I / L = 0.7.

Die Unterdrückung der Instabilitäten im Brennerbetrieb, die im wesentlichen durch eine verbesserte Flammenstabilität und durch die Zerstörung kohärenter Strukturen gewährleistet werden kann, lässt sich verbessern, indem das Lanzenende als Störkörper 10, 11, 13 konfiguriert wird, um Wirbelstärke in Strömungsrichtung einzubringen. Aus den Figuren 6-8 gehen hierzu unterschiedliche Störkörpergeometrien hervor, gemäß denen das Lanzenende auszubilden ist. In Abhängigkeit der in diesen Figuren dargestellten Störkörpergeometrien können die in Figur 3 dargestellten Kennlinien zur Darstellung der Wirkungsweise der Unterdrückung von Instabilitäten gewonnen werden.The suppression of instabilities in the burner operation, which essentially by improved flame stability and by the destruction of coherent structures can be ensured can be improved by the lance end is configured as a bluff body 10, 11, 13, to introduce vorticity in the flow direction. From the Figures 6-8 Go to different Störkörpergeometrien show, according to which the end of the lance is to be formed. Depending on the geometry of the faulty bodies shown in these figures, the in FIG. 3 shown characteristics are shown for illustrating the operation of the suppression of instabilities.

Die in Figur 3 dargestellte Diagrammdarstellung ist mit der in Figur 2 vergleichbar. Die Zugehörigkeit der einzelnen Funktionsverläufe zu den unterschiedlich ausgebildeten Störkörpergeometrien ist ebenfalls direkt aus der Legende der Figur zu entnehmen. Wieder ergibt sich der Sachverhalt, dass eine Unterdrückung von Instabilitäten mit einer Brennerlanzenlänge von I/L = 0,6 - 0,8 am deutlichsten ausgeprägt ist.In the FIG. 3 Diagram representation shown is with the in FIG. 2 comparable. The affiliation of the individual function curves to the differently shaped disturbance body geometries can also be taken directly from the legend of the figure. Again, the fact is that suppression of instabilities with a burner lance length of I / L = 0.6 - 0.8 is most pronounced.

Von allen untersuchten Störgeometrien erweist sich die konisch ausgebildete Brennerlanze (Fig.7) als besonders geeignet, Instabilitäten zu unterdrücken (siehe hierzu die mit auf den Kopf gestellten Dreiecken durchsetzte gestrichelte Linie in Fig. 3).Of all investigated Störgeometrien proves the conical burner lance ( Figure 7 ) is particularly suitable for suppressing instabilities (see the dashed line in. with inverted triangles in Fig. 3 ).

In Figur 4 ist die Auswertung der einzelnen Störgeometrien in Bezug auf die Stickoxidemission dargestellt. Hierbei erweist sich die mit einer Vielzahl von Brennstoffaustrittsöffnungen durchsetzte Brennerlanze als besonders vorteilhaft, die in Figur 5 dargestellt ist. Die in Figur 5 abgebildete Störgeometrie sowie auch die in den Folgefiguren abgebildeten Geometrien können beispielsweise als Schraubaufsätze mit einem Gewinde ausgebildet, die in den Brennerkopf eingeschraubt werden und insbesondere zu Testzwecken leicht ausgetauscht werden können.In FIG. 4 the evaluation of the individual interfering geometries with regard to the nitrogen oxide emission is shown. In this case, the burner lance interspersed with a multiplicity of fuel outlets proves to be particularly advantageous FIG. 5 is shown. In the FIG. 5 The illustrated interference geometry as well as the geometries shown in the following figures can be formed, for example, as threaded screw tops, which are screwed into the burner head and in particular can be easily exchanged for test purposes.

Die in Figur 5 abgebildete Brennerlanze 3 ist mit einer Vielzahl den Mantel lateral durchsetzender Brennstoffaustrittsöffnungen 9 ausgerüstet. Durch eine axiale Auffächerung der Brennstoffeindüsung wird eine homogene Durchmischung von Brennstoff und Verbrennungsluft gewährleistet. Die Eindüsung erfolgt dabei vorzugsweise im Bereich der - in Strömungsrichtung gesehen - zweiten Lanzenhälfte.In the FIG. 5 illustrated burner lance 3 is equipped with a plurality of the shell laterally penetrating fuel outlet openings 9. By an axial fanning of the fuel injection, a homogeneous mixing of fuel and combustion air is ensured. The injection takes place preferably in the region of the second lance half, as viewed in the direction of flow.

Figur 6 zeigt eine sternförmig ausgebildete Lanzenendgeometrie, Figur 7 eine konisch ausgebildete Lanzenendgeometrie, wobei der Brennstoffaustrag aus der Lanze 3 durch axial ausgerichtete Austrittsöffnungen 12, 32 erfolgt, gleichsam der Lanzengeometrie in Figur 8, die eine Brennerlanze zeigt, an der eine Platte 13 angebracht ist. FIG. 6 shows a star-shaped Lanzenendgeometrie, FIG. 7 a conically shaped Lanzenendgeometrie, wherein the fuel discharge from the lance 3 by axially aligned outlet openings 12, 32 takes place, as it were the lance geometry in FIG. 8 showing a burner lance to which a plate 13 is attached.

Die Störgeometrien vermögen, wie oben anhand von Fig. 3 geschildert, die Premixströmung entscheidend zu beeinflussen.The Störgeometrien assets, as above based on Fig. 3 described to decisively influence the premix flow.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Brennerburner
1a;1b1a; 1b
Halbschalenshells
22
BrennerinnenraumBurner interior
33
Brennerlanzeburnerlance
3131
Brennstoffleitungfuel line
3232
axiale Brennstoffaustrittsöffnung an der Lanze 3axial fuel outlet opening on the lance. 3
3333
radiale Lufteindüsungradial air injection
44
Brennkammercombustion chamber
55
Rückströmzonebackflow
66
Drallströmungswirl flow
77
Verbrennungsluftcombustion air
88th
Brennstofffuel
99
Brennstoffaustrittsöffnung an der Lanze 3Fuel outlet on the lance 3
1010
sternförmige Lanzenendgeometriestar-shaped Lanzenendgeometrie
1111
konische Lanzenendgeometrieconical lance end geometry
1212
Brennstoffaustrittsöffnung an der Lanze 3Fuel outlet on the lance 3
1313
Platte am LanzenendePlate at the end of the lance
II
Länge der BrennerlanzeLength of the burner lance

Claims (6)

  1. Premixing burner for the reduction of combustion-driven oscillations within a combustion system, in particular a combustion chamber (4) of a turbomachine, essentially comprising a swirl generator consisting of two semimonocoque conically widening part bodies (1a) and (1b) which are arranged axially parallel, and offset to one another, in such a way that they form tangential gaps in two overlap regions located mirror-symmetrically opposite one another, said gaps serving as inlet ducts for the combustion air (7) into the burner interior (2), furthermore comprising at least one central fuel nozzle within the interior (2) enclosed by the part bodies (1a) and (1b), wherein the central fuel nozzle is designed in the form of a coaxially oriented burner lance (3) which projects into the burner interior (2) and terminates in a range of between 60% and 80% of the axial length of the burner interior (2), and the burner lance (3) is equipped, at least in its downstream end region, with means for the discharge of at least one fluid into the burner interior (2), characterized in that the lance (3) has a widening cross section at least in its downstream end region.
  2. Premixing burner according to Claim 1, characterized in that the lance (3) has an end region widening conically in the flow direction.
  3. Premixing burner according to Claim 1, characterized in that the lance (3) has an end region widening in a star-shaped manner in the flow direction.
  4. Premixing burner according to Claim 1, characterized in that the lance (3) has in its end region a plate (13) oriented perpendicularly to the flow direction.
  5. Premixing burner according to Claim 1, characterized in that the end region of the burner lance (3) is equipped with outlet orifices (32) and (33) for fuel and combustion air.
  6. Premixing burner according to Claim 1, characterized in that the casing of the burner lance (3) is equipped with outlet orifices (9) for fuel.
EP03405031.0A 2002-02-13 2003-01-24 Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method Expired - Lifetime EP1336800B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10205839 2002-02-13
DE10205839A DE10205839B4 (en) 2002-02-13 2002-02-13 Premix burner for reducing combustion-driven vibrations in combustion systems

Publications (2)

Publication Number Publication Date
EP1336800A1 EP1336800A1 (en) 2003-08-20
EP1336800B1 true EP1336800B1 (en) 2013-11-27

Family

ID=27588564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03405031.0A Expired - Lifetime EP1336800B1 (en) 2002-02-13 2003-01-24 Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method

Country Status (4)

Country Link
US (1) US6918256B2 (en)
EP (1) EP1336800B1 (en)
JP (1) JP2003240242A (en)
DE (1) DE10205839B4 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510755B1 (en) * 2003-09-01 2016-09-28 General Electric Technology GmbH Burner with lance and staged fuel supply.
CN1878986B (en) * 2003-09-05 2010-04-28 德拉文公司 Device for stabilizing combustion in gas turbine engines
DE102004049491A1 (en) * 2004-10-11 2006-04-20 Alstom Technology Ltd premix
MX2007004119A (en) * 2004-10-18 2007-06-20 Alstom Technology Ltd Gas turbine burner.
US20060084019A1 (en) * 2004-10-19 2006-04-20 Certain Teed Corporation Oil burner nozzle
WO2006048405A1 (en) * 2004-11-03 2006-05-11 Alstom Technology Ltd Premix burner
DE102005015152A1 (en) * 2005-03-31 2006-10-05 Alstom Technology Ltd. Premix burner for a gas turbine combustor
WO2007113130A1 (en) * 2006-03-30 2007-10-11 Alstom Technology Ltd Burner arrangement, preferably in a combustion chamber for a gas turbine
WO2007113054A1 (en) * 2006-03-30 2007-10-11 Alstom Technology Ltd Burner arrangement
WO2009019113A2 (en) * 2007-08-07 2009-02-12 Alstom Technology Ltd Burner for a combustion chamber of a turbo group
EP2085695A1 (en) * 2008-01-29 2009-08-05 Siemens Aktiengesellschaft Fuel nozzle with swirl duct and method for manufacturing a fuel nozzle
EP2282115A1 (en) * 2009-07-30 2011-02-09 Alstom Technology Ltd Burner of a gas turbine
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
EP2423598A1 (en) 2010-08-25 2012-02-29 Alstom Technology Ltd Combustion Device
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
WO2014055199A1 (en) 2012-10-03 2014-04-10 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
KR20150074155A (en) 2012-10-24 2015-07-01 알스톰 테크놀러지 리미티드 Sequential combustion with dilution gas mixer
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
WO2014189506A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
SI2999923T1 (en) 2013-05-22 2018-11-30 Johns Manville Submerged combustion melter with improved burner and corresponding method
WO2014189504A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners
US10654740B2 (en) 2013-05-22 2020-05-19 Johns Manville Submerged combustion burners, melters, and methods of use
WO2014189499A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
EP3003996B1 (en) 2013-05-30 2020-07-08 Johns Manville Submerged combustion glass melting systems and methods of use
WO2015009300A1 (en) 2013-07-18 2015-01-22 Johns Manville Fluid cooled combustion burner and method of making said burner
KR102083928B1 (en) * 2014-01-24 2020-03-03 한화에어로스페이스 주식회사 Combutor
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US11598527B2 (en) 2016-06-09 2023-03-07 Raytheon Technologies Corporation Reducing noise from a combustor of a gas turbine engine
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
US10295190B2 (en) * 2016-11-04 2019-05-21 General Electric Company Centerbody injector mini mixer fuel nozzle assembly
CN109237470B (en) * 2018-08-20 2024-02-06 华南理工大学 Cylindrical porous jet type miniature liquid burner and combustion method thereof
US11692711B2 (en) * 2021-08-13 2023-07-04 General Electric Company Pilot burner for combustor
CN115325564B (en) * 2022-07-21 2023-06-30 北京航空航天大学 Method and device for suppressing combustion oscillation by combining pneumatic diversion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325660A (en) * 1989-03-20 1994-07-05 Hitachi, Ltd. Method of burning a premixed gas in a combustor cap
US5984665A (en) * 1998-02-09 1999-11-16 Gas Research Institute Low emissions surface combustion pilot and flame holder
US20020090588A1 (en) * 2000-08-02 2002-07-11 Midco International, Inc. Burner assembly with enhanced BTU output and flame stability

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638974A (en) 1947-01-24 1953-05-19 Ralph C Brierly Fuel burner diffuser
EP0014221B1 (en) 1979-02-03 1983-04-13 G. Kromschröder Aktiengesellschaft Gas heated tunnel burner for raising the temperature in melting furnaces or crucibles
DD244613A1 (en) * 1985-12-19 1987-04-08 Oelfeuerungsbau Veb DEVICE FOR BURNING GENERATOR GAS OR HEATING OIL
CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
DE3902601A1 (en) 1989-01-28 1990-08-09 Buderus Heiztechnik Gmbh Forced-draught gas burner
CH680084A5 (en) * 1989-06-06 1992-06-15 Asea Brown Boveri
US5487274A (en) 1993-05-03 1996-01-30 General Electric Company Screech suppressor for advanced low emissions gas turbine combustor
DE19545310B4 (en) 1995-12-05 2008-06-26 Alstom premix
DE19545309A1 (en) * 1995-12-05 1997-06-12 Asea Brown Boveri Premix burner
DE19917662C2 (en) 1999-04-19 2001-10-31 Elco Kloeckner Heiztech Gmbh Burners for liquid and / or gaseous fuel
US6769903B2 (en) * 2000-06-15 2004-08-03 Alstom Technology Ltd Method for operating a burner and burner with stepped premix gas injection
DE10210034B4 (en) * 2002-03-07 2009-10-01 Webasto Ag Mobile heater with a fuel supply
TR200701880U (en) * 2007-03-23 2007-06-21 Özti̇ryaki̇ler Madeni̇ Eşya Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Electronic ignition liquid fuel burner.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325660A (en) * 1989-03-20 1994-07-05 Hitachi, Ltd. Method of burning a premixed gas in a combustor cap
US5984665A (en) * 1998-02-09 1999-11-16 Gas Research Institute Low emissions surface combustion pilot and flame holder
US20020090588A1 (en) * 2000-08-02 2002-07-11 Midco International, Inc. Burner assembly with enhanced BTU output and flame stability

Also Published As

Publication number Publication date
US6918256B2 (en) 2005-07-19
US20030150217A1 (en) 2003-08-14
EP1336800A1 (en) 2003-08-20
DE10205839B4 (en) 2011-08-11
JP2003240242A (en) 2003-08-27
DE10205839A1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
EP1336800B1 (en) Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method
DE60007946T2 (en) A combustion chamber
EP0902233B1 (en) Combined pressurised atomising nozzle
EP2116766B1 (en) Burner with fuel lance
EP1182398B1 (en) Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
EP0576697B1 (en) Combustor chamber for a gas turbine
DE69633535T2 (en) Combustion chamber and method for operating a gaseous or liquid fuel gas turbine
EP1864056B1 (en) Premix burner for a gas turbine combustion chamber
EP1828684A1 (en) Premix burner comprising a mixing section
DE19510744A1 (en) Combustion chamber with two-stage combustion
EP0687860A2 (en) Self igniting combustion chamber
DE4411624A1 (en) Combustion chamber with premix burners
EP1504222B1 (en) Premix burner
EP0638769A2 (en) Fuel injector for liquid and/or gaseous fuels and method for its operation
EP0675322A2 (en) Premix burner
EP1463911B1 (en) Burner with sequential fuel injection
EP1235033B1 (en) Annular combustor and method of operating the same
EP0987493A1 (en) Burner for a heat generator
EP1062461B1 (en) Combustion chamber and method for operating a combustion chamber
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
EP1002992B1 (en) Burner
EP1510755A1 (en) Burner with lance and staged fuel supply.
EP1205713B1 (en) Method of fuel injection in a burner
DE2548790A1 (en) Universal type burner for town gas - has gas meeting air supply between pair of perforated plates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20031218

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20090423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130625

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PASCHEREIT, CHRISTIAN OLIVER

Inventor name: GUTMARK, EPHRAIM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314949

Country of ref document: DE

Effective date: 20140116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314949

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314949

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170119

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314949

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50314949

Country of ref document: DE