EP1463911B1 - Burner with sequential fuel injection - Google Patents
Burner with sequential fuel injection Download PDFInfo
- Publication number
- EP1463911B1 EP1463911B1 EP02782625.4A EP02782625A EP1463911B1 EP 1463911 B1 EP1463911 B1 EP 1463911B1 EP 02782625 A EP02782625 A EP 02782625A EP 1463911 B1 EP1463911 B1 EP 1463911B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner
- fuel
- injection holes
- fuel injection
- inner space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims description 137
- 238000002347 injection Methods 0.000 title claims description 51
- 239000007924 injection Substances 0.000 title claims description 51
- 238000002485 combustion reaction Methods 0.000 claims description 46
- 238000009826 distribution Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 9
- 230000010355 oscillation Effects 0.000 description 8
- 241001156002 Anthonomus pomorum Species 0.000 description 6
- 239000007788 liquid Substances 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241001015093 Stomina Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07002—Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the present invention relates to a burner, e.g. a double-cone burner, with special injection of fuel into the combustion air stream, in which the formation of thermoacoustic vibrations is largely avoided. Furthermore, the present invention relates to a fuel lance for such a burner and a method for operating a premix burner, which reduces the formation of thermoacoustic vibrations.
- thermoacoustic fluctuations In burners, which supply liquid or gaseous fuel to a combustion chamber where the fuel burns at a flame front, so-called thermoacoustic fluctuations often occur. This is especially true if the burners are operated with high air numbers. So also, for example, but not exclusively, in the very successfully used so-called double-cone burner, as in the EP 0 321 809 is described. Also, such thermoacoustic vibrations occur Premix burners with downstream mixing section, as for example in the EP 0 704 657 be described on. In addition to the fluidic stability, mixture rupture fluctuations are a major reason for the occurrence of such thermoacoustic instabilities.
- Fluid-mechanical instability waves which arise at the burner, lead to the formation of vortices (coherent structures), which influence the combustion and can lead to periodic heat release with the associated pressure fluctuations.
- the fluctuating air column in the burner leads to fluctuations in the mixing fraction with the associated fluctuations in the heat release. Such fluctuations can also be caused by alternating flame front positions.
- thermoacoustic oscillations Another excitation mechanism for thermoacoustic oscillations is given if, with proper phase position (the so-called Rayleigh criterion must be met, see below), local variations in heat release are coupled with variations in the mixture fraction across the fluctuating air column in the burner.
- thermoacoustic vibrations pose a threat to any type of combustion application. They result in high amplitude pressure oscillations, a limitation of the operating range, and can increase pollutant emissions. This is especially true for combustion systems with low acoustic attenuation, such.
- Coherent structures play a crucial role in mixing processes between air and fuel.
- the dynamics of these structures consequently influence the combustion and thus the heat release.
- a control of the combustion instabilities is possible (eg. Paschereit et al., 1998, "Structure and Control of Thermoacoustic Instabilities in a Gas Turbine Burner", Combustion, Science & Technology, Vol. 138, 213-232 ).
- One possibility is the acoustic stimulation ( EP 0 918 152 A1 ).
- the flame position can be influenced and thus the influence of flow instabilities as well as time lag effects reduced (eg in the EP 0 999 367 A1 described).
- Another method with multiple fuel holes describes the WO0196785A1 , at least one first fuel supply having a first group of fuel outlets for a first amount of premix fuel, wherein the first group of fuel outlets is arranged substantially in the direction of a burner axis, and at least one second fuel supply with a second group of fuel Outlets for a second quantity of premix fuel, wherein the second group of fuel discharge openings is arranged substantially in the direction of the burner axis.
- thermoacoustic oscillations Another mechanism that can lead to thermoacoustic oscillations are fluctuations in the mixture break between fuel and air.
- the invention is therefore an object of the invention to provide a burner, means for injecting fuel into a burner, and a method for operating a burner, in which the occurrence of such thermoacoustic vibrations is reduced or even avoided.
- thermoacoustic oscillations are reduced or even completely avoided by means projecting from the burner base in the direction of the combustion chamber into the interior, which means injecting fuel over at least two fuel injection holes distributed over the length of the means allow the combustion air flow, so that the delay time between injection of the fuel and its combustion at the flame front corresponds to a, in particular systematically varying, distribution, which avoids combustion-driven vibrations in premixing.
- the injected fuel may be liquid or gaseous fuel.
- the delay time ⁇ between injection location and effective combustion at the flame front is essentially the same for all fuel nozzles distributed over the burner length.
- the essence of the invention is thus to inject the fuel into the combustion air flow via means arranged in the interior in such a way that the same delay time ⁇ between injection location and effective combustion at the flame front does not occur for all fuel nozzles distributed essentially over the burner length
- Delay takes a particular on the burner length systematically varying distribution.
- a first preferred embodiment of the burner is characterized in that the means is a fuel lance which is arranged substantially on the axis of the burner and which has fuel injection holes in particular along its surface.
- the fuel lance has a substantially cylindrical cross-section, wherein the fuel injection holes are distributed on the fuel lance both with respect to the length of the fuel lance and with respect to its circumferential arrangement.
- the delay time dispersion can be set almost arbitrarily with a suitable choice of the injection location and the fuel penetration depth, so that different streamlines can be fed.
- the stepped injection can be made in a simple and efficient manner.
- pilot fuel gaseous or liquid
- a pilot nozzle is arranged at the top of the lance, and in the outermost space between the pipe with the largest diameter and the next inner tube of the fuel, which in premixing is to be injected through the fuel injection holes in the interior.
- the often existing pilot lance which is provided for the piloted operation of the burner, can be advantageously used as a fuel lance after slight modification for injecting fuel in a staged manner during premixing operation.
- the means protrude far into the mixing section of the burner.
- the length of the fuel lance is limited by the length of the lance base to the flame position in the combustion chamber in premix operation.
- the further the fuel lance protrudes into the interior of the burner the more distributions of the delay time can be achieved.
- the burner is a cone burner, in particular a double-cone burner, in which the burner is arranged offset from one another by at least two hollow partial cone bodies positioned one above the other in the flow direction, and which partial cone bodies are arranged offset from one another, so that the Combustion air flows through a gap between the part cone bodies in the interior, is formed.
- the inventive concept in burners as described for example in the EP-B1-0 321 809 , of the EP-A2-0 881 432 or in a very general form in the EP-A1-0 210 462 are described, find application.
- it is a four-slot burner, in other words, the inventive concept in a burner, as for example in the EP-A2-0 704 657 or in the EP-A2-0 780 629 is described, find application.
- Another embodiment of the burner is characterized in that the fuel injection holes are divided into groups each having a group of fuel injection holes is arranged such that all nozzles of the group feed a specific area of the flame front with different time delay.
- the fuel injection holes are divided into groups each having a group of fuel injection holes is arranged such that all nozzles of the group feed a specific area of the flame front with different time delay.
- the present invention also relates to a method for injecting fuel into a burner, according to claim 1.
- fuel is at least partially projecting from the burner base substantially in the direction of the combustion chamber into the interior means which injecting fuel over at least two of the Length of the means allow distributed fuel injection holes in the combustion air flow, injected, so that the delay time between injection of the fuel and its combustion at the flame front corresponds to a distribution which avoids combustion-driven vibrations in premixing operation.
- the fuel is injected in such a way that the time delay distribution over the burner length towards the burner end is designed to be substantially linearly decreasing from the maximum value ⁇ max by a maximum draft difference ⁇ to a minimum value at the burner end of ⁇ max - ⁇ .
- the delay time ⁇ which elapses between the injection at the fuel nozzles 6 to the ignition at the flame front 3, nearly constant for all positions of the fuel nozzles, as in Fig. 1b is shown schematically (the coordinate x extends from the output 10 of the burner 1 to its rear end, ie to the burner base 27, ie in the FIG. 1 a from right to left).
- the delay times ⁇ as a function of the fuel nozzle position along the burner 1 can be observed (eg shorter delay times for nozzles 6 near the burner exit 10), but rather a more or less random distribution which fluctuates only a little as a function of injection location x.
- Fig. 2 it is now proposed to set a distribution of the delay time over the burner length instead of the previously substantially constant time delay from the fuel injection 6 to the flame front 3.
- the distribution is set in a first choice so that the delay times ⁇ linearly varies by a delay time difference ⁇ , linearly increasing from a minimum ⁇ max - ⁇ to the maximum in the rear burner region of ⁇ max .
- Fig. 3 the burner stability as a function of the parameters ⁇ (x-axis) and ⁇ max (y-axis) for a delay time distribution as in Fig. 2 specified.
- ⁇ x-axis
- ⁇ max y-axis
- the stability of a burner which operates with its typical operating values mostly close to the island 13, can be stabilized both by an increase in the flow velocity according to arrow 15, and by an increase in the delay time difference ⁇ , ie by a shift in the Operating point in the graph according to arrow 14 to the right.
- ⁇ max can not always be shifted into the stable low range according to Fig. 15 (see below) is a shift by setting increased delay time differences ⁇ ie over more spread delay times, often an efficient and viable alternative.
- the operating point for operating a gas turbine at base load is at Fig.
- the delay times are usually in the range of 5 to 50 ms at flow velocities of 10 to 100 m / s.
- a double-cone burner serving as an exemplary embodiment, as already described in US Pat Fig. 1 represented by a fuel injection into the combustion air stream 23 by means of a fuel lance 24, as in Fig. 4 is shown.
- the fuel lance 24 protrudes from the burner base 27, starting in the interior 22 of the double-cone burner 1.
- the fuel lance is arranged substantially on the axis of the double-cone burner 1, has a cylindrical shape and distributed on its radial surface fuel injection holes 25.
- the fuel injection holes 25 are over the length of the fuel lance 24 distributed.
- the holes 25 are also distributed on the circumference, either in the form of rings, or, as in Fig. 4 shown in offset form.
- the delay time spread can be set almost as desired with an appropriate choice of the injection location and the fuel penetration depth. Also different streamlines 5 within the burner 1 can be spied.
- the maximum delay time ⁇ max occurring in such a burner 1 is, as in FIG Fig. 4 indicated by the ratio of the maximum distance L between fuel injection and flame front 3 given the flow velocity U in the burner.
- the maximum distance L is usually the distance between nearest to the burner base 27 arranged fuel nozzle 6 and the flame front 3.
- the ratio of fuel injected via fuel nozzles 6 at the air inlet slots 7 to fuel injected via the fuel injection holes 25 can be adjusted and regulated in situ. In any case, it is provided that the fuel injected via the fuel lance 24 at least partially replaces the fuel which is injected via the fuel nozzles 6.
- the maximum scattering ⁇ proves to be important with regard to the prevention of thermoacoustic oscillations, while the distribution function of ⁇ usually plays a rather minor role. Even a small proportion of in the range of 5 - 30% of the total fuel mass flow, which is injected via the lance, may be sufficient to stabilize the flame by the scattering.
- the maximum width over which a distribution 12 is adjustable is essentially predetermined by the length of the fuel lance 24. Satisfactory results with respect to the prevention of thermoacoustic vibrations can be achieved with fuel lances 24 which extend at least to half the conical section of the burner, but the lance 24 is preferably longer and extends over 3/4 of the length of the burner or even over the entire length of the burner. In principle, the lance can extend to the location at which the flame front 3 is located in the premixing mode.
- the fuel lance 24 is simultaneously used as a pilot lance, that is, the fuel lance 24 also has the ability to produce a diffusion flame as close as possible to the existing during premixing flame position for the piloted operation in the lower load range.
- a lance which is intended for the oil operation of the premix burner.
- Suitable is, for example, an extended pilot lance, as z. B. in the writings EP-A2-0 788 445 in the case of a double-cone burner, in WO 93/17279 in the case of an inverted double cone burner with a cylindrical outer shape and in EP-A2-0 833 105 in the case of an inverted double-cone burner with cylindrical outer shape and downstream mixing section is described.
- the fuel lance 24 is advantageously formed in the form of nested, concentric cylindrical tubes, wherein in the central tube with the smallest diameter of the pilot fuel (gaseous or liquid) respectively the oil fuel flows in the case of piloted operation respectively oil operation, while in the space between the outer tube and the next inner Pipe the fuel is supplied to the injection via the fuel injection holes 25. It is also possible to divide the individual fuel injection holes 25 into individually controllable groups in order, if appropriate, to be able to adjust or regulate the distribution 12 variably and the operating conditions of the premix burner.
- FIG. 5 Another embodiment is in Fig. 5 shown.
- This is a four-slot burner, ie a premix burner, which has four conical elements and thus four air inlet slots 7.
- the burner also has a downstream mixing section 26, which is cylindrical and also in Fig. 5 having not shown, extending in the flow direction transition channels.
- Such a burner is for example in the EP-A2-0 704 657 and in the EP-A2-0 780 629 shown. Even with such burners, a similar problem arises, namely that the delay time dispersion in the fuel injection via the fuel nozzles 6 is small in comparison to the maximum value ⁇ max .
- the fuel lance 24 protrudes in this case not only over the length of the conical section in the burner, but still far into the mixing channel 26 into it.
- the lance 24 should have a length which corresponds to at least half the length of conical portion + mixing distance 26. Due to the large length of the fuel lance 24, the delay time spread can be varied within a wide range, which allows a stable burner behavior over an extended operating range.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Description
Die vorliegende Erfindung betrifft einen Brenner, z.B. einen Doppelkegelbrenner, mit besonderer Einspritzung von Brennstoff in den Verbrennungsluftstrom, bei welcher die Ausbildung von thermoakustischen Schwingungen weitgehend vermieden wird. Ausserdem betrifft die vorliegende Erfindung eine Brennstofflanze für einen derartigen Brenner sowie ein Verfahren zum Betrieb eines Vormischbrenners, welches die Ausbildung von thermoakustischen Schwingungen vermindert.The present invention relates to a burner, e.g. a double-cone burner, with special injection of fuel into the combustion air stream, in which the formation of thermoacoustic vibrations is largely avoided. Furthermore, the present invention relates to a fuel lance for such a burner and a method for operating a premix burner, which reduces the formation of thermoacoustic vibrations.
Bei Brennern, welche flüssigen oder gasförmigen Brennstoff einem Brennraum zuführen, wo der Brennstoff an einer Flammfront verbrennt, treten häufig sogenannte thermoakustische Schwankungen auf. Dies insbesondere dann, wenn die Brenner mit hohen Luftzahlen betrieben werden. So auch z.B., aber nicht ausschliesslich, beim sehr erfolgreich eingesetzten sogenannten Doppelkegelbrenner, wie er in der
Ein weiterer Anregungsmechanismus für thermoakustische Schwingungen ist gegeben, wenn bei richtiger Phasenlage (das sogenannte Rayleigh Kriterium muss erfüllt sein, siehe unten) lokale Schwankungen in der Wärmefreisetzung mit Schwankungen im Mischungsbruch über die fluktuierende Luftsäule im Brenner gekoppelt sind.Another excitation mechanism for thermoacoustic oscillations is given if, with proper phase position (the so-called Rayleigh criterion must be met, see below), local variations in heat release are coupled with variations in the mixture fraction across the fluctuating air column in the burner.
Häufig sind in solchen Brennern mehrere Brennstoffeinspritzdüsen vorgesehen, die in Gruppen angeordnet sind, um so in verschiedenen Lastbereichen eine stabile Verbrennung zu gewährleisten, z. B. besondere Pilotierungsdüsen für den unteren Lastbereich. Dabei kann sich die Flammenlage je nach Art der Pilotierung deutlich verschieben, und in einem solchen Fall kann es in Übergangsbereichen zu thermoakustischen Schwankungen auch durch periodische Veränderung der Flammenfrontpositionen kommen.Frequently, in such burners several fuel injectors are provided which are arranged in groups, so as to ensure stable combustion in different load ranges, for. B. special pilot nozzles for the lower load range. In this case, the flame position can shift significantly depending on the type of piloting, and in such a case, it can also come in transition areas to thermoacoustic fluctuations by periodic change in the flame front positions.
Diese thermoakustischen Schwingungen stellen eine Gefahr für jede Art von Verbrennungsanwendung dar. Sie führen zu Druckschwingungen hoher Amplitude, zu einer Einschränkung des Betriebsbereiches und können die Schadstoffemissionen erhöhen. Dies trifft insbesondere für Verbrennungssysteme mit geringer akustischer Dämpfung zu, wie z. B. Ringbrennkammern mit schallharten Wänden. Um in Bezug auf Pulsationen und Emissionen eine hohe Leistungskonversion über einen weiten Betriebsbereich zu ermöglichen, kann eine aktive Kontrolle der Verbrennungsschwingungen notwendig sein.These thermoacoustic vibrations pose a threat to any type of combustion application. They result in high amplitude pressure oscillations, a limitation of the operating range, and can increase pollutant emissions. This is especially true for combustion systems with low acoustic attenuation, such. B. annular combustion chambers with reverberant walls. In order to allow high power conversion over a wide operating range in terms of pulsations and emissions, active control of combustion oscillations may be necessary.
Kohärente Strukturen spielen eine entscheidende Rolle bei Mischungsvorgängen zwischen Luft und Brennstoff. Die Dynamik dieser Strukturen beeinflusst demzufolge die Verbrennung und damit die Wärmefreisetzung. Durch Beeinflussung der Scherschicht zwischen dem Frischgasgemisch und dem rezirkulierten Abgas ist eine Kontrolle der Verbrennungsinstabilitäten möglich (z. B.
Durch Brennstoffstaging lässt sich die Flammenposition beeinflussen und damit der Einfluss von Strömungsinstabilitäten als auch Zeitverzugseffekten vermindern (z.B. in der
Ein weiterer Mechanismus, der zu thermoakustischen Schwingungen führen kann, sind Schwankungen im Mischungsbruch zwischen Brennstoff und Luft.Another mechanism that can lead to thermoacoustic oscillations are fluctuations in the mixture break between fuel and air.
Der Erfindung liegt demnach die Aufgabe zugrunde, einen Brenner, Mittel zur Eindüsung von Brennstoff in einen Brenner, sowie ein Verfahren zum Betrieb eines Brenners anzugeben, bei welchem das Auftreten derartiger thermoakustischer Schwingungen vermindert oder sogar vermieden wird.The invention is therefore an object of the invention to provide a burner, means for injecting fuel into a burner, and a method for operating a burner, in which the occurrence of such thermoacoustic vibrations is reduced or even avoided.
Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 und einen Brenner gemäß Anspruch 5 gelöst.This object is achieved by a method according to
Bei einem derartigen Brenner bzw. derartigen Verfahren werden thermoakustische Schwingungen erfindungsgemäss verringert oder sogar ganz vermieden, indem von der Brennerbasis in Richtung des Brennraums in den Innenraum ragende Mittel angeordnet sind, welche eine Eindüsung von Brennstoff über wenigstens zwei über die Länge der Mittel verteilte Brennstoffeindüsungslöcher in den Verbrennungsluftstrom erlauben, sodass die Verzugszeit zwischen Eindüsung des Brennstoffs und dessen Verbrennung an der Flammenfront einer, insbesondere systematisch variierenden, Verteilung entspricht, welche verbrennungsgetriebene Schwingungen im Vormischbetrieb vermeidet. Beim eingedüsten Brennstoff kann es sich dabei um flüssigen oder gasförmigen Brennstoff handeln.In such a burner or such method, according to the invention, thermoacoustic oscillations are reduced or even completely avoided by means projecting from the burner base in the direction of the combustion chamber into the interior, which means injecting fuel over at least two fuel injection holes distributed over the length of the means allow the combustion air flow, so that the delay time between injection of the fuel and its combustion at the flame front corresponds to a, in particular systematically varying, distribution, which avoids combustion-driven vibrations in premixing. The injected fuel may be liquid or gaseous fuel.
Bei einem konventionellen Brenner ist erfahrungsgemäss für alle der über die Brennerlänge verteilten Brennstoffdüsen die Verzugszeit τ zwischen Eindüsungsort und effektiver Verbrennung an der Flammfront im Wesentlichen gleich. Man findet eine von der Ein düsungsposition unsystematische leichte Variation um einen Mittelwert. Dies führt dazu, dass sich thermoakustische Schwingungen leicht aufbauen können. Der Kern der Erfindung besteht nun also darin, den Brennstoff derart über im Innenraum angeordnete Mittel in den Verbrennungsluftstrom einzudüsen, dass sich keine im wesentlichen für alle über die Brennerlänge verteilten Brennstoffdüsen gleiche Verzugszeit τ zwischen Eindüsungsort und effektiver Verbrennung an der Flammfront einstellt, sondern dass die Verzugszeit eine über die Brennerlänge insbesondere systematisch variierende Verteilung annimmt.In a conventional burner, experience has shown that the delay time τ between injection location and effective combustion at the flame front is essentially the same for all fuel nozzles distributed over the burner length. One finds one from the one unsystematic slight variation around a mean value. As a result, thermoacoustic vibrations can easily build up. The essence of the invention is thus to inject the fuel into the combustion air flow via means arranged in the interior in such a way that the same delay time τ between injection location and effective combustion at the flame front does not occur for all fuel nozzles distributed essentially over the burner length Delay takes a particular on the burner length systematically varying distribution.
Ein erste bevorzugte Ausführungsform des Brenners zeichnet sich dadurch aus, dass es sich bei den Mitteln um eine Brennstofflanze handelt, welche im wesentlichen auf der Achse des Brenners angeordnet ist, und welche insbesondere entlang ihrer Oberfläche Brennstoffeindüsungslöcher aufweist. Bevorzugt weist dabei die Brennstofflanze einen im wesentlichen zylindrischen Querschnitt auf, wobei die Brennstoffeindüsungslöcher sowohl in bezug auf die Länge der Brennstofflanze als auch in bezug auf deren umfangsmässige Anordnung auf der Brennstofflanze verteilt sind. In diesem Fall lässt sich bei entsprechender Wahl des Eindüsungsortes und der Brennstoffeindringtiefe die Verzugszeitsstreuung nahezu beliebig einstellen, so dass verschiedene Stromlinien gespiesen werden können. Über dieses zentrale, in den Innenraum ragende Rohr, welches z. B. aus koaxial ineinander verschachtelten Rohren, gebildet werden kann, kann in einfacher und effizienter Weise die gestufte Eindüsung vorgenommen werden. Wenn koaxial ineinander verschachtelte Rohre Anwendung finden, so kann z. B. im zentralen Rohr mit kleinstem Durchmesser der Pilotbrennstoff (gasförmig oder flüssig) zugeführt werden, da typischerweise eine Pilotdüse an der Spitze der Lanze angeordnet ist, und im äussersten Zwischenraum zwischen dem Rohr mit grössten Durchmesser und dem nächstinnenliegenden Rohr der Brennstoff, welcher im Vormischbetrieb durch die Brennstoffeindüsungslöcher in den Innenraum eingedüst werden soll. Mit anderen Worten kann vorteilhafterweise als Brennstofflanze die häufig bereits vorhandene Pilotlanze, welche für den pilotierten Betrieb des Brenners vorgesehen ist, nach leichter Modifikation zur Eindüsung von Brennstoff in gestufter Weise beim Vormischbetrieb verwendet werden. Dazu eignet sich insbesondere eine verlängerte Pilotlanze, wie sie beispielsweise in den Schriften
Gemäss der vorliegenden ragen die Mittel weit in die Mischstrecke des Brenners hinein. Im wesentlichen ist die Länge der Brennstofflanze durch die Länge von Lanzenbasis bis zur Flammenposition in der Brennkammer im Vormischbetrieb beschränkt. Je weiter die Brennstofflanze in den Innenraum des Brenners hineinragt, desto weitere Verteilungen der Verzugszeit können erzielt werden. Je mehr Brennstoff im Verhältnis zum beispielsweise an Lufteintrittsschlitzen eingedüsten Brennstoff in verteilter Weise über die Brennstofflanze in den Verbrennungsluftstrom eingebracht werden kann, desto effizienter lassen sich thermoakustische Schwingungen vermeiden.According to the present invention, the means protrude far into the mixing section of the burner. In essence, the length of the fuel lance is limited by the length of the lance base to the flame position in the combustion chamber in premix operation. The further the fuel lance protrudes into the interior of the burner, the more distributions of the delay time can be achieved. The more fuel that can be introduced in a distributed manner via the fuel lance into the combustion air flow in relation to the fuel injected, for example, at air inlet slots, the more efficiently thermoacoustic vibrations can be avoided.
Gemäss einer weiteren bevorzugten Ausführungsform handelt es sich beim Brenner um einen Kegelbrenner, insbesondere um einen Doppelkegelbrenner, bei welchem der Brenner aus mindestens zwei aufeinander positionierten hohlen Teilkegelkörpern, welche in Strömungsrichtung eine zunehmende Kegelneigung aufweisen, und welche Teilkegelkörper zueinander versetzt angeordnet sind, so dass die Verbrennungsluft durch einen Spalt zwischen den Teilkegelkörpern in den Innenraum strömt, gebildet wird. Mit anderen Worten kann das erfindungsgemässe Konzept bei Brennern, wie sie beispielsweise in der
Gemäss einer anderen bevorzugten Ausführungsform handelt es sich um einen Vierschlitzbrenner, Mit anderen Worten kann das erfindungsgemässe Konzept bei einem Brenner, wie er beispielsweise in der
Eine andere Ausführungsform des Brenners ist dadurch gekennzeichnet, dass die Brennstoffeindüsungslöcher in Gruppen aufgeteilt sind, wobei jeweils eine Gruppe von Brennstoffeindüsungslöchern derart angeordnet ist, dass alle Düsen der Gruppe einen bestimmten Bereich der Flammfront mit unterschiedlichem Zeitverzug speisen. Typischerweise ist es zum Beispiel möglich, an den Mitteln insgesamt 2n Brennstoffeindüsungslöcher vorzusehen, welche insbesondere in n Gruppen mit je 2 Düsen aufgeteilt sind und als Gruppen individuell angesteuert werden können.Another embodiment of the burner is characterized in that the fuel injection holes are divided into groups each having a group of fuel injection holes is arranged such that all nozzles of the group feed a specific area of the flame front with different time delay. Typically, it is possible, for example, to provide a total of 2n fuel injection holes on the means, which in particular are divided into n groups with 2 nozzles each and can be individually controlled as groups.
Weitere bevorzugte Ausführungsformen des erfindungsgemässen Brenners sind in den abhängigen Ansprüchen beschrieben.Further preferred embodiments of the burner according to the invention are described in the dependent claims.
Die vorliegende Erfindung betrifft ausserdem ein Verfahren zur Einspritzung von Brennstoff in einen Brenner, gemäß Anspruch 1. Dabei wird Brennstoff wenigstens teilweise mittels von der Brennerbasis im wesentlichen in Richtung des Brennraums in den Innenraum ragende Mittel, welche eine Eindüsung von Brennstoff über wenigstens zwei über die Länge der Mittel verteilte Brennstoffeindüsungslöcher in den Verbrennungsluftstrom erlauben, eingedüst, so dass die Verzugszeit zwischen Eindüsung des Brennstoffs und dessen Verbrennung an der Flammenfront einer Verteilung entspricht, welche verbrennungsgetriebene Schwingungen im Vormischbetrieb vermeidet. Typischerweise liegt dabei der maximale Zeitverzug (τmax) zwischen Eindüsungsort und Flammfront im Bereich von τmax = 5-50 ms, und bei einer Strömungsgeschwindigkeit des Brennstoff/Luft-Gemisches im Innenraum im Bereich von 20-50 m/s liegt der maximale Zeitverzug (τmax) im Bereich von τmax = 5 - 15 ms.The present invention also relates to a method for injecting fuel into a burner, according to
Im erfindungsgemässen Verfahren wird der Brennstoff derart eingedüst, dass die Zeitverzugsverteilung über die Brennerlänge zum Brennerende hin vom Maximalwert τmax um eine maximale Verzugsdifferenz Δτ im wesentlichen linear abnehmend zu einem Minimalwert beim Brennerende von τmax - Δτ gestaltet ist. Die liegt Verzugsdifferenz Δτ im Bereich von 10-90% des Maximalwerts τmax, insbesondere im Bereich von mehr als 50 % des Maximalwerts τmax.In the method according to the invention, the fuel is injected in such a way that the time delay distribution over the burner length towards the burner end is designed to be substantially linearly decreasing from the maximum value τ max by a maximum draft difference Δτ to a minimum value at the burner end of τ max -Δτ. This is delay difference Δτ in the range of 10-90% of the maximum value τ max , in particular in the range of more than 50% of the maximum value τ max .
Weitere bevorzugte Ausführungsformen des erfindungsgemässen Verfahrens sind in den abhängigen Ansprüchen beschrieben.Further preferred embodiments of the method according to the invention are described in the dependent claims.
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert werden. Es zeigen:
- Fig.1a
- einen konventionellen Doppelkegelbrenner mit typischer Brennstoffeindüsung;
- Fig. 1b
- die bei einem Brenner nach
Fig. 1a auftretende schematisierte Verzugszeitverteilung über die Brennerlänge; - Fig. 2
- eine lineare Verzugszeitverteilung;
- Fig. 3
- eine zweidimensionale Stabilitätsanalyse von Verzugszeitverteilungen;
- Fig. 4
- einen Doppelkegelbrenner mit im Innenraum des Brenners angeordneten Mitteln zur Eindüsung von Brennstoff;
- Fig. 5
- einen Vierschlitzbrenner mit nachgeschalteter Mischstrecke mit im Innenraum des Brenners angeordneten Mitteln zur Eindüsung von Brennstoff.
- Fig. 6
- eine erste Ausführungsform eines weiteren Brenners mit erfindungsgemässen zentralen Mitteln zur Eindüsung von Brennstoff und
- Fig. 7
- eine zweite Ausführungsform eines weiteren Brenners mit erfindungsgemässen zentralen Mitteln zur Eindüsung von Brennstoff.
- 1a
- a conventional double-cone burner with typical fuel injection;
- Fig. 1b
- after a burner
Fig. 1a occurring schematized delay time distribution over the burner length; - Fig. 2
- a linear delay time distribution;
- Fig. 3
- a two-dimensional stability analysis of delay time distributions;
- Fig. 4
- a double-cone burner with arranged in the interior of the burner means for injection of fuel;
- Fig. 5
- a four-slot burner with downstream mixing section with arranged in the interior of the burner means for the injection of fuel.
- Fig. 6
- a first embodiment of another burner with inventive means for injecting fuel and
- Fig. 7
- a second embodiment of another burner with inventive means for injecting fuel.
Es werden nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche Elemente werden in verschiedenen Figuren gleich bezeichnet.Only the elements essential to the invention are shown. Identical elements are denoted the same in different figures.
Beeinflusst man den Zeitverzug zwischen der Brennstoffeindüsung und der periodischen Wärmefreisetzung, d.h. der Flammfront, kann man die Verbrennungsinstabilitäten kontrollieren. Der Grundgedanke der Erfindung ist, den Zeitverzug τ zwischen der periodischen Wärmefreisetzung an der Flammfront und der Druckschwankung bei der Eindüsung zu stören, so dass das Rayleigh-Kriterium
Es zeigt sich nun, dass der Zeitverzug vom Eindüsungsort bei den Brennstoffdüsen bis zur Flammfront bei bestehenden Vormischbrennem über die gesamte Eindüsungslänge des Vormischgases in bestimmten Betriebspunkten konstant ist. So z.B. bei einem Doppelkegelbrenner nach dem Stand der Technik wie in
In diesem beispielhaft zu verstehenden Längsschnitt durch einen Doppelkegelbrenner 1, wie er z.B. aus der
Bei einem derartigen Doppelkegelbrenner ist die Verzugszeit τ, die zwischen der Eindüsung an den Brennstoffdüsen 6 bis zur Entzündung an der Flammfront 3 verstreicht, nahezu konstant für alle Positionen der Brennstoffdüsen, wie dies in
Wie in
In einer zweidimensionalen Darstellung ist in
Grundsätzlich ist erkennbar, dass sich die Stabilität eines Brenners, der mit seinen typischen Betriebswerten meist nahe der Insel 13 arbeitet, sowohl durch eine Erhöhung der Strömungsgeschwindigkeit gemäss Pfeil 15 stabilisiert werden kann, als auch durch eine Erhöhung der Verzugszeitendifferenz Δτ, d.h. durch eine Verschiebung des Betriebspunktes in der Graphik gemäss Pfeil 14 nach rechts. Da aus praktischen Gründen der Wert von τmax nicht einfach immer in den stabilen niedrigen Bereich gemäss 15 verschoben werden kann (vgl. unten), ist eine Verschiebung mittels Einstellung erhöhter Verzugszeitendifferenzen Δτ d.h. über stärker gespreizte Verzugszeiten, oftmals eine effiziente und realisierbare Alternative. Typischerweise liegt der Betriebspunkt für den Betrieb einer Gasturbine bei Grundlast beim in
Typischerweise liegen die Verzugszeiten bei Brennern im Bereich von τ = 5-50 ms, bei Doppelkegelbrennern normalerweise im Bereich von 5-15 ms bei Strömungsgeschwindigkeiten von 10-50 m/s. Bei Vierschlitzbrennern mit nachgeschalteter Mischstrecke liegen die Verzugszeiten normalerweise im Bereich von 5 - 50 ms bei Strömungsgeschwindigkeiten von 10-100 m/s. Δτ kann nun in einem weiten Bereich variiert werden, typischerweise erweisen sich Variationen von Δτ = 0.5 τmax oder darüber als besonders vorteilhaft, sowohl bei Doppelkegelbrennern als auch bei Vierschlitzbrennern mit nachgeschalteter Mischstrecke.Typically, the delay times for burners are in the range of τ = 5-50 ms, for double-cone burners normally in the range of 5-15 ms at flow rates of 10-50 m / s. In four-slot burners with a downstream mixing section, the delay times are usually in the range of 5 to 50 ms at flow velocities of 10 to 100 m / s. Δτ can now be varied within a wide range, typically variations of Δτ = 0.5 τ max or more prove to be particularly advantageous, both in double-cone burners and in four-slot burners with a downstream mixing section.
Technisch realisieren lässt sich eine derartige Verteilung an einem als Ausführungsbeispiel dienenden Doppelkegelbrenner wie bereits in
Als wichtig in bezug auf die Verhinderung von thermoakustischen Schwingungen erweist sich insbesondere die maximale Streuung Δτ, während die Verteilungsfunktion von τ in der Regel eher eine untergeordnete Rolle spielt. Bereits ein geringer Anteil von im Bereich von 5 - 30% des Gesamtbrennstoffmassenstromes, welcher über die Lanze eingedüst wird, kann genügen, um durch die Streuung die Flamme zu stabilisieren.In particular, the maximum scattering Δτ proves to be important with regard to the prevention of thermoacoustic oscillations, while the distribution function of τ usually plays a rather minor role. Even a small proportion of in the range of 5 - 30% of the total fuel mass flow, which is injected via the lance, may be sufficient to stabilize the flame by the scattering.
Die maximale Weite, über welche eine Verteilung 12 einstellbar ist, ist dabei im wesentlichen durch die Länge der Brennstofflanze 24 vorgegeben. Zufriedenstellende Ergebnisse in bezug auf die Vermeidung von thermoakustischen Schwingungen lassen sich mit Brennstofflanzen 24 erreichen, welche wenigstens bis in die Hälfte des kegelförmigen Abschnittes des Brenners reichen, die Lanze 24 ist aber vorzugsweise länger und erstreckt sich über 3/4 der Länge des Brenners oder sogar über die gesamte Länge des Brenners. Grundsätzlich kann sich die Lanze bis zu dem Ort erstrecken, an welchem im Vormischbetrieb die Flammenfront 3 lokalisiert ist.The maximum width over which a
Vorteilhafterweise wird die Brennstofflanze 24 gleichzeitig als Pilotlanze verwendet, das heisst die Brennstofflanze 24 weist ausserdem die Möglichkeit auf, für den pilotierten Betrieb im unteren Lastbereich eine Diffusionsflamme möglichst nahe an der beim Vormischbetrieb vorhandenen Flammenposition zu erzeugen. Oder es kann eine Lanze verwendet werden, welche für den Ölbetrieb des Vormischbrenners vorgesehen ist. Geeignet ist zum Beispiel eine verlängerte Pilotlanze, wie sie z. B. in den Schriften
Die Brennstofflanze 24 wird vorteilhafterweise in Form von ineinandergeschachtelten, konzentrischen zylindrischen Rohren ausgebildet, wobei im zentralen Rohr mit kleinsten Durchmesser der Pilotbrennstoff (gasförmig oder flüssig) respektive der Ölbrennstoff strömt im Falle von pilotiertem Betrieb respektive Ölbetrieb, während im Zwischenraum zwischen äusserstem Rohr und nächst innenliegendem Rohr der Brennstoff zu Eindüsung über die Brennstoffeindüsungslöcher 25 zugeführt wird. Es ist auch möglich, die einzelnen Brennstoffeindüsungslöcher 25 in individuell ansteuerbare Gruppen aufzuteilen, um gegebenenfalls die Verteilung 12 variabel und den Betriebsverhältnissen des Vormischbrenners einstellen respektive regeln zu können.The
Ein weiteres Ausführungsbeispiel ist in
- 11
- DoppelkegelbrennerDouble-cone burner
- 22
- Brennraumcombustion chamber
- 33
- Flammfrontflame front
- 44
- Wand des BrennraumsWall of the combustion chamber
- 55
- Stromlinien des Brennstoff/Luft GemischesStreamlines of the fuel / air mixture
- 66
- Brennstoffdüsenfuel nozzles
- 77
- Spalt zwischen den konischen BrennerschalenGap between the conical burner shells
- 88th
- Innere konische Brennerschale bei 7Inner conical burner bowl at 7
- 99
- Äussere konische Brennerschale bei 7Outer conical burner bowl at 7
- 1010
- Vorderes Ende des DoppelkegelbrennersFront end of the double cone burner
- 1111
- Konstanter ZeitverzugConstant time delay
- 1212
- ZeitverzugsverteilungDelay distribution
- 1313
- Unstabiler Bereich hoher VerzugszeitenUnstable range of high delay times
- 1414
- Stabilisierende Verschiebung nach grossen VerteilungsbreitenStabilizing shift after large distribution widths
- 1515
- Stabilisierende Verschiebung nach kurzen VerzugszeitenStabilizing shift after short delay times
- 1616
- Instabiler Bereich kurzer VerzugszeitenUnstable range of short delay times
- 1717
- Verhalten bei niedriger StrömungsgeschwindigkeitBehavior at low flow velocity
- 1818
- Verhalten bei mittlerer StrömungsgeschwindigkeitBehavior at medium flow rate
- 1919
- Verhalten bei hoher StrömungsgeschwindigkeitBehavior at high flow velocity
- 2121
- Einstellbarer ZeitverzugsbereichAdjustable time delay range
- 2222
- Innenrauminner space
- 2323
- VerbrennungsluftstromCombustion air flow
- 2424
- Pilotlanzepilot lance
- 2525
- Löcher in Pilotlanze, BrennstoffeindüsungslöcherHoles in pilot lance, fuel injection holes
- 2626
- nachgeschaltete Mischstreckedownstream mixing section
- 2727
- BrennerbasisBrenner base
Claims (13)
- A method for injecting fuel into a burner (1), which burner (1) comprises an inner space (22) enclosed by at least one shell (8, 9), in which fuel is injected through fuel nozzles (6) into a combustion air flow flowing in the inner space (22), the fuel/air mixture formed flows within a delay time (T) to a flame front (3) into a combustion chamber (2) and ignites there, wherein the fuel is injected, at least partially, through means (24) projecting from the burner base (27) essentially in the direction of the combustion chamber (2) into the inner space (22) via at least two fuel injection holes (25) distributed over the length of the means (24), wherein the burner (1) has a mixing section (26) arranged downstream of the inner space (22), wherein the delay time (T) between the injection of the fuel and its combustion on the flame front (3) varies to the extent that a partial delay distribution (12) takes place over the burner length (x) from the burner base (27) to the burner end (10), reducing from the maximum value Tmax by a maximum delay difference (ΔT) to a minimum value at the burner end (10) of Tmax - ΔT, and wherein the delay difference (ΔT) ranges from 10-90% of the maximum value (Tmax), characterised in that the means (24) project far into the mixing section (26).
- The method according to Claim 1, characterised in that fuel is injected into different flow lines (5) inside the burner (1) through different fuel injection holes (25).
- The method according to Claim 1, characterised in that the fuel is injected in such a manner that the partial delay distribution (12) takes place over the burner length (x) to the burner end (10) reducing essentially linearly by a maximum delay difference (ΔT) from the maximum value Tmax to a minimum value at the burner end (10) of Tmax - ΔT.
- The method according to Claim 1, characterised in that the delay difference (ΔT) lies within the range of over 50% of the maximum value (Tmax).
- A burner (1) for implementing the method according to any one of Claims 1 to 4, comprising an inner space (22) enclosed by at least one shell (8, 9), in which burner (1) fuel is injected through fuel nozzles (6) arranged on the burner shells (8, 9) into a combustion air flow (23) flowing in the inner space (22), the fuel/air mixture formed flows within a delay time (T) to a flame front (3) into a combustion chamber (2), and ignites there, and comprising means (24) with fuel injection holes (25) projecting from the burner base (27) essentially in the direction of the combustion chamber (2) into the inner space (22), wherein the means (24) have at least two fuel injection holes (25) distributed over the length of the means (24), through which fuel injection holes (25) a fuel can be injected into the combustion air flow (23) so that the delay time (T) between injection of the fuel and its combustion on the flame front (3) is different, and wherein the burner (1) has a mixing section (26) arranged downstream from the inner space (22), characterised in that the means (24) project far into the mixing section (26).
- The burner (1) according to Claim 5, characterised in that the means (24) consist of a fuel lance which is arranged essentially on the axis of the burner (1).
- The burner (1) according to Claim 6, characterised in that the fuel lance (24) has an essentially cylindrical cross-section, wherein the fuel injection holes (25) are distributed in relation to the length of the fuel lance (24) and in relation to its circumferential arrangement on the fuel lance (24).
- The burner (1) according to any one of Claims 5 to 7, characterised in that fuel can be injected through different fuel injection holes (25) into different flow lines (5) inside the burner (1).
- The burner (1) according to any one of Claims 5 to 8, characterised in that the means (24) comprise a pilot lance for the piloted operation of the burner.
- The burner (1) according to any one of Claims 5 to 9, characterised in that the burner (1) is a cone burner, in particular a double cone burner, in which the burner (1) is formed from at least two hollow partial cone bodies (8, 9) positioned one on top of the other, which partial cone bodies (8, 9) are arranged offset to each other so that the combustion air (23) flows through a gap (7) between the partial cone bodies (8, 9) into the inner space (22).
- The burner (1) according to Claim 10, characterised in that it is a four-slot burner.
- The burner (1) according to any one of Claims 5 to 11, characterised in that the fuel injection holes (25) are divided into groups, wherein each group of fuel injection holes (25) is arranged so that all the nozzles (25) of the group feed a certain area of the flame front (3) with a variable time delay (7).
- The burner (1) according to Claim 12, characterised in that the fuel injection holes (25) are individually controlled.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10164099 | 2001-12-24 | ||
DE10164099A DE10164099A1 (en) | 2001-12-24 | 2001-12-24 | Burner with staged fuel injection |
PCT/CH2002/000714 WO2003056241A1 (en) | 2001-12-24 | 2002-12-19 | Burner with sequential fuel injection |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1463911A1 EP1463911A1 (en) | 2004-10-06 |
EP1463911B1 true EP1463911B1 (en) | 2016-07-27 |
Family
ID=7710955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02782625.4A Expired - Lifetime EP1463911B1 (en) | 2001-12-24 | 2002-12-19 | Burner with sequential fuel injection |
Country Status (4)
Country | Link |
---|---|
US (1) | US7241138B2 (en) |
EP (1) | EP1463911B1 (en) |
DE (1) | DE10164099A1 (en) |
WO (1) | WO2003056241A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10164099A1 (en) | 2001-12-24 | 2003-07-03 | Alstom Switzerland Ltd | Burner with staged fuel injection |
EP1493972A1 (en) * | 2003-07-04 | 2005-01-05 | Siemens Aktiengesellschaft | Burner unit for a gas turbine and gas turbine |
CA2555481A1 (en) * | 2004-02-12 | 2005-08-25 | Alstom Technology Ltd | Premix burner arrangement for operating a combustion chamber and method for operating a combustion chamber |
DE102004049491A1 (en) * | 2004-10-11 | 2006-04-20 | Alstom Technology Ltd | premix |
EP1817526B1 (en) * | 2004-11-30 | 2019-03-20 | Ansaldo Energia Switzerland AG | Method and device for burning hydrogen in a premix burner |
DE102005015152A1 (en) * | 2005-03-31 | 2006-10-05 | Alstom Technology Ltd. | Premix burner for a gas turbine combustor |
RU2300702C1 (en) | 2006-04-04 | 2007-06-10 | Общество с ограниченной ответственностью "Научно-производственное предприятие "ЭСТ" | Fuel combustion method and device for realization of said method |
WO2009019113A2 (en) * | 2007-08-07 | 2009-02-12 | Alstom Technology Ltd | Burner for a combustion chamber of a turbo group |
EP2058590B1 (en) * | 2007-11-09 | 2016-03-23 | Alstom Technology Ltd | Method for operating a burner |
WO2009068425A1 (en) * | 2007-11-27 | 2009-06-04 | Alstom Technology Ltd | Premix burner for a gas turbine |
US8028512B2 (en) | 2007-11-28 | 2011-10-04 | Solar Turbines Inc. | Active combustion control for a turbine engine |
EP2090830B1 (en) * | 2008-02-13 | 2017-01-18 | General Electric Technology GmbH | Fuel supply arrangement |
EP2208927B1 (en) | 2009-01-15 | 2016-03-23 | Alstom Technology Ltd | Burner of a gas turbine |
US8863525B2 (en) | 2011-01-03 | 2014-10-21 | General Electric Company | Combustor with fuel staggering for flame holding mitigation |
ITMI20122154A1 (en) * | 2012-12-17 | 2014-06-18 | Ansaldo Energia Spa | BURNER UNIT, COMBUSTION CHAMBER INCLUDING THE BURNER UNIT AND METHOD FOR POWERING THE BURNER GROUP |
US11774093B2 (en) | 2020-04-08 | 2023-10-03 | General Electric Company | Burner cooling structures |
WO2022238011A1 (en) * | 2021-05-12 | 2022-11-17 | Nuovo Pignone Tecnologie - S.R.L. | Fuel injector and fuel nozzle for a gas turbine, and gas turbine engine including the nozzle |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0122526B1 (en) * | 1983-04-13 | 1987-05-20 | BBC Aktiengesellschaft Brown, Boveri & Cie. | Fuel injector for the combustion chamber of a gas turbine |
DE3662462D1 (en) | 1985-07-30 | 1989-04-20 | Bbc Brown Boveri & Cie | Dual combustor |
CH674561A5 (en) | 1987-12-21 | 1990-06-15 | Bbc Brown Boveri & Cie | |
US5307634A (en) | 1992-02-26 | 1994-05-03 | United Technologies Corporation | Premix gas nozzle |
EP0592717B1 (en) * | 1992-10-16 | 1998-02-25 | Asea Brown Boveri Ag | Gas-operated premix burner |
DE4304213A1 (en) * | 1993-02-12 | 1994-08-18 | Abb Research Ltd | Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system |
DE4435266A1 (en) | 1994-10-01 | 1996-04-04 | Abb Management Ag | burner |
US5943866A (en) * | 1994-10-03 | 1999-08-31 | General Electric Company | Dynamically uncoupled low NOx combustor having multiple premixers with axial staging |
DE4441235A1 (en) * | 1994-11-19 | 1996-05-23 | Abb Management Ag | Combustion chamber with multi-stage combustion |
DE19545309A1 (en) | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Premix burner |
DE19545310B4 (en) * | 1995-12-05 | 2008-06-26 | Alstom | premix |
DE19547913A1 (en) | 1995-12-21 | 1997-06-26 | Abb Research Ltd | Burners for a heat generator |
WO1998012478A1 (en) * | 1996-09-16 | 1998-03-26 | Siemens Aktiengesellschaft | Method and device for fuel combustion with air |
DE19640198A1 (en) | 1996-09-30 | 1998-04-02 | Abb Research Ltd | Premix burner |
DE19721937B4 (en) | 1997-05-26 | 2008-12-11 | Alstom | Premix burner for operating a unit for generating a hot gas |
EP0918152A1 (en) | 1997-11-24 | 1999-05-26 | Abb Research Ltd. | Method and apparatus for controlling thermo-acoustic vibratins in combustion chambers |
US6270337B1 (en) * | 1998-06-12 | 2001-08-07 | Precision Combustion, Inc. | Dry, low NOx pilot |
EP0999367B1 (en) | 1998-11-06 | 2003-02-12 | ALSTOM (Switzerland) Ltd | Flow conduit with cross-section discontinuity |
EP1001214B1 (en) * | 1998-11-09 | 2004-09-15 | ALSTOM Technology Ltd | Burner |
AU2001272682A1 (en) * | 2000-06-15 | 2001-12-24 | Alstom Power N.V. | Method for operating a burner and burner with stepped premix gas injection |
DE10029607A1 (en) * | 2000-06-15 | 2001-12-20 | Alstom Power Nv | Method to operate burner; involves operating burner with two groups of fuel outlets to supply different amounts of same fuel, where outlet groups are supplied independently and controlled separately |
DE10055408A1 (en) * | 2000-11-09 | 2002-05-23 | Alstom Switzerland Ltd | Process for fuel injection into a burner |
DE10064893A1 (en) * | 2000-12-23 | 2002-11-14 | Alstom Switzerland Ltd | Burner with graduated fuel injection |
DE10164099A1 (en) | 2001-12-24 | 2003-07-03 | Alstom Switzerland Ltd | Burner with staged fuel injection |
-
2001
- 2001-12-24 DE DE10164099A patent/DE10164099A1/en not_active Ceased
-
2002
- 2002-12-19 WO PCT/CH2002/000714 patent/WO2003056241A1/en active Application Filing
- 2002-12-19 EP EP02782625.4A patent/EP1463911B1/en not_active Expired - Lifetime
-
2004
- 2004-06-24 US US10/874,161 patent/US7241138B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20060154192A1 (en) | 2006-07-13 |
WO2003056241A1 (en) | 2003-07-10 |
US7241138B2 (en) | 2007-07-10 |
DE10164099A1 (en) | 2003-07-03 |
EP1463911A1 (en) | 2004-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1463911B1 (en) | Burner with sequential fuel injection | |
DE10205839B4 (en) | Premix burner for reducing combustion-driven vibrations in combustion systems | |
EP1802915B1 (en) | Gas turbine burner | |
EP2225488B1 (en) | Premix burner for a gas turbine | |
EP2588805B1 (en) | Burner | |
EP2179222B2 (en) | Burner for a combustion chamber of a turbo group | |
DE4446945B4 (en) | Gas powered premix burner | |
EP1864056B1 (en) | Premix burner for a gas turbine combustion chamber | |
EP1645802B1 (en) | Premix Burner | |
EP0576697B1 (en) | Combustor chamber for a gas turbine | |
EP2220433B1 (en) | Method and device for burning hydrogen in a premix burner | |
WO2005095863A1 (en) | Burner | |
EP1265029A2 (en) | Burner system | |
EP0433790A1 (en) | Burner | |
EP0592717A1 (en) | Gas-operated premix burner | |
EP0481111B1 (en) | Gas-turbine combustion chamber | |
EP1356236B1 (en) | Premix burner and method for operating such a premix burner | |
EP2423597A2 (en) | Premix burner for a gas turbine | |
DE19948674A1 (en) | Fuel injection system for gas turbines has resonance chambers in fuel feed pipes | |
EP0718550B1 (en) | Injection nozzle | |
EP1205713B1 (en) | Method of fuel injection in a burner | |
EP1510755B1 (en) | Burner with lance and staged fuel supply. | |
EP1334309A1 (en) | Method and device for supplying fuel to a premix burner | |
DE4412315B4 (en) | Method and device for operating the combustion chamber of a gas turbine | |
WO2002052201A1 (en) | Burner comprising a graduated fuel injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090921 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160218 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50216170 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50216170 Country of ref document: DE Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20161222 Year of fee payment: 15 Ref country code: DE Payment date: 20161213 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50216170 Country of ref document: DE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ANSALDO ENERGIA IP UK LIMITED |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170502 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50216170 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171219 |