EP1062461B1 - Combustion chamber and method for operating a combustion chamber - Google Patents

Combustion chamber and method for operating a combustion chamber Download PDF

Info

Publication number
EP1062461B1
EP1062461B1 EP99913091A EP99913091A EP1062461B1 EP 1062461 B1 EP1062461 B1 EP 1062461B1 EP 99913091 A EP99913091 A EP 99913091A EP 99913091 A EP99913091 A EP 99913091A EP 1062461 B1 EP1062461 B1 EP 1062461B1
Authority
EP
European Patent Office
Prior art keywords
combustion
combustion chamber
burner
heat
shield element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99913091A
Other languages
German (de)
French (fr)
Other versions
EP1062461A1 (en
Inventor
Gerwig Poeschl
Heinrich Pütz
Stefan Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1062461A1 publication Critical patent/EP1062461A1/en
Application granted granted Critical
Publication of EP1062461B1 publication Critical patent/EP1062461B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/16Radiant burners using permeable blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion

Definitions

  • the invention relates to a combustion chamber with a combustion chamber wall and with one of a variety of heat shield elements formed inner lining and a method for Operation of a combustion chamber.
  • EP 0 576 697 B1 describes a combustion chamber of a gas turbine described in which, in addition to classic burner types catalytic burners are also used. As classic burner types, premix burners are used, with which the main combustion is carried out. Through the Combining these types of burners results in a simpler one Regulation with changing load conditions of the gas turbine.
  • Such a two-stage combustion is also from the US 4,910,957 known in which the multi-stage combustion for Reduction of NOx emissions is used.
  • a combustion gas turbine is known from DE-C-253 189 with an annular combustion chamber on its side walls each has a porous clay plate, which as so-called surface burner works.
  • the Combustion chamber rear side through the porous clay plate led a fuel gas mixture.
  • the fuel gas mixture is on the surface of the clay plate facing the combustion chamber ignited and burned to the surface. Through the radiated heat from the clay plate becomes a propellant for heated the drive of the combustion gas turbine.
  • the object of the invention is to provide a combustion chamber which in a particularly simple design, a supply of fuel and of combustion air.
  • Another object of the invention is the specification of a method for operating a combustion chamber, through which a stepped in a particularly simple manner Combustion is enabled.
  • a combustion chamber Object achieved by a combustion chamber with a combustion chamber wall and with one of a variety of heat shield elements formed inner lining, at least one a heat shield element acting as a burner is a burner heat shield element is a fuel supply for supply of fuel and a combustion air supply for Combustion air supply are connected upstream.
  • the burner heat shield element with numerous Cavities material, the fuel and the combustion air can be supplied so that combustion can be generated within this material.
  • combustion is under construction enables in a particularly simple manner that a heat shield element, soft part of the fireproof inner lining the combustion chamber is used as a burner. a such burner heat shield element becomes fuel and combustion air for combustion in the heat shield element fed.
  • Such a burner heat shield element represents a so-called Pore burner. Fuel and combustion air So burned in the cavities or pores, which is Material heats up. On the one hand, this leads to good stabilization the combustion. On the other hand, the pore structure works strongly dampening on combustion vibrations. This Both properties of a pore burner lead to the fact that there is almost no combustion in a pore burner Forms combustion vibration. The material continues to shine, which, as mentioned, strongly changes during combustion heats up a significant amount of heat. This leads to, that the flame temperature of the combustion within the material is comparatively low. This in turn has Consequence that less nitrogen oxides are formed. The advantage the lower flame temperature can also be used for this become more fuel and the burner heat shield element to supply less fuel to the burner in a first stage. This reduces the formation of such combustion vibrations, which is caused by the burner of the first stage can be.
  • a pre-mixing space is preferred for the burner heat shield element upstream, into which the fuel and the combustion air can be initiated.
  • Fuel and combustion air are first fed to the premixing room, where a fuel-air mixture is formed. This fuel-air mixture is then fed to the burner heat shield element. In order to the result is a homogeneous one which is favorable for the combustion Fuel-air mixture.
  • the combustion chamber wall has an outside, along which preferably extends from a fuel line Fuel can be admitted into the premixing chamber.
  • Fuel line could e.g. for an annular combustion chamber one in the circumferential direction of the annular combustion chamber around the combustion chamber wall circular ring line, from which e.g. also in simple Way for a variety of burner heat shield elements, which are arranged along this circumferential direction, fuel can be supplied.
  • At least one burner is intended for a first stage of combustion, and being through the burner heat shield element downstream of the first stage a second stage of combustion can be generated.
  • the burner heat shield element is simple realized a second stage of a two-stage combustion. Of course, further stages of combustion can also be provided his.
  • the two-stage or multi-stage of Combustion becomes a reaction zone of combustion on one distributed larger volume. This results in the combustion chamber a lower tendency to form combustion vibrations. Such combustion vibrations can possibly substantial Cause damage in the combustion chamber.
  • a two-stage or a multi-stage combustion a particularly good controllability for adaptation to different power outputs, i.e. Load conditions, e.g. for a gas turbine operated under different loads. Becomes a gas turbine through the exhaust gas from the combustion chamber is driven for combustion depending on the load the gas turbine-oriented fuel-air ratio required.
  • At least two Burners have a wide range of parameters for control the combustion.
  • e.g. - if necessary - The fuel supply to the burner heat shield element are omitted so that through the burner heat shield element only air flows into the combustion chamber.
  • the air mass flow through the burner is the first Level can be reduced. This has in particular to Consequence that the burner can be made smaller. In order to e.g. the advantage that the burner in simpler Be removed from a surrounding housing can.
  • the burner heat shield element extends along the Direction of expansion from a first end to a second End, the pre-mixing space preferably between the Combustion chamber wall and the burner heat shield element lies and an outlet opening being provided in the region of the second end that connects the premixing chamber with the combustion chamber.
  • Cooling air can preferably be supplied to the burner heat shield element, the cooling air being used as combustion air is usable.
  • the heat shield elements are often thereby cooled that cooling air from the outside of the combustion chamber wall e.g. through holes in the back of the heat shield elements to be led.
  • this cooling air supply as a combustion air supply there is a special one simple supply of combustion air to the burner heat shield element.
  • the material of the burner heat shield element is preferably the pore burner, a foamed ceramic, especially zirconium oxide or silicon carbide.
  • a foamed ceramic especially zirconium oxide or silicon carbide.
  • Such materials are z. B. producible in that in a foam-forming Carrier material the ceramic is introduced and after a foaming and curing of the carrier material is etched away, so that a porous ceramic remains.
  • the combustion chamber is preferably an annular space forming annular combustion chamber, being along a circumferential direction of the annulus a plurality of heat shield elements is designed as a burner heat shield elements. Preferably is most of the along a circumferential direction arranged heat shield elements as burner heat shield elements educated. This results in a uniform Distribution of the second stage of combustion over the Circumference of the ring combustion chamber.
  • the combustion chamber is preferred in a gas turbine, in particular used in a stationary gas turbine.
  • the gas turbine has an output greater than 60 MW.
  • According to the invention is directed to a method Problem solved by a method for operating a Combustion chamber with a combustion chamber wall and with one out of one A large number of inner lining elements formed, wherein at least one of the heat shield elements is fuel and supplied combustion air for combustion and the fuel and the combustion air within a porous structure of the heat shield element be burned.
  • a first stage of combustion preferably runs first from, then a via the heat shield element second stage of combustion takes place.
  • the method in a combustion chamber is further preferred, especially in an annular combustion chamber, a gas turbine carried out.
  • FIG. 1 shows a longitudinal section through an annular combustion chamber 1 for a gas turbine.
  • the ring combustion chamber 1 is rotationally symmetrical around an axis 2. For the sake of clarity only half of the longitudinal section is shown.
  • the ring combustion chamber 1 has a combustion chamber wall 3.
  • the combustion chamber wall 3 encloses an annular space 4.
  • the inner wall of the combustion chamber wall 3 is lined with an inner lining 5.
  • the inner lining 5 is made by a variety of heat shield elements 6 formed.
  • Such heat shield elements 6 are e.g. made of fireproof ceramic.
  • Burner system 7 This is formed by a diffusion burner 8 and a premix burner 9, which is the diffusion burner 8 surrounds in the form of an annular channel.
  • the burner system 7 is at a burner end 11 of the annular combustion chamber 1 arranged. At an opposite end 11 of the burner turbine-side end 13 closes one schematically shown gas turbine 15.
  • the gas turbine system When using such an annular combustion chamber 1 in one here
  • the gas turbine system is the pilot burner 8 Fuel 17A supplied.
  • the pilot burner 8 is also Combustion air 18A supplied.
  • the fuel 17A and the Combustion air 18A are diffused through the Pilot burner 8 burned in the annular space 4 of the annular combustion chamber 1.
  • On the flame stabilized on the pilot burner 8 Combustion ignites a mixture of fuel 17B and Combustion air 18B, which is fed to the premix burner 9 becomes.
  • the exhaust gas 20 generated by the combustion emerges the turbine-side end 13 of the annular combustion chamber 1 and drives the gas turbine 15.
  • FIG 2 shows a section of a corresponding to Figure 1 Longitudinal section through an annular combustion chamber 1.
  • One of the Heat shield elements 6 is as a burner heat shield element 22 executed. Like each of the heat shield elements 6 is also the burner heat shield element 22 with a screw 24 the combustion chamber wall 3 screwed. In the combustion chamber wall 3 22 holes are behind the burner heat shield element 26 provided. On the outside 28 of the combustion chamber wall 3 a fuel line 30 is also provided. Of the Fuel line 30 leads through hole 32 of the combustion chamber wall 3 to a pre-mixing space 34, which by the at the Combustion chamber wall 3 adjacent burner heat shield element 22 is formed. The through holes also open into the premixing chamber 34 26.
  • the burner heat shield element 22 extends from a first end 23 to a second end 25.
  • the burner heat shield element 22 is now in the following manner for a second stage of combustion in the annular combustion chamber 1 used:
  • Fuel 36 is preferred via fuel line 30 Natural gas, the premixing chamber 34 is supplied via the bore 32. Combustion air 38 is also passed through the perforations 26 fed to the premixing chamber 34. In the premixing room 34 the natural gas 36 mixes with the combustion air 38. Am second end 25, an outlet opening 40 is provided which Natural gas-air mixture 42 discharges into the annular combustion chamber 1. The Natural gas-air mixture 42 ignites in the hot annular combustion chamber 1. This creates a second stage of combustion out. With this second stage, the reaction zone the combustion occurring in the annular combustion chamber 1 is increased. This leads to a reduced tendency to training of combustion vibrations. The significant combustion air flow 38 continues to result in high cooling performance for the burner heat shield element 22 and also for the downstream side located in front of the burner heat shield element 22 further heat shield elements 6.
  • Figure 3 shows again in an enlarged and schematic Representation of a arranged on the burner chamber wall 3 Burner heat shield element 22.
  • a burner heat shield element is shown schematically in a longitudinal section in FIG 22 shown, which on a combustion chamber wall 3 is arranged.
  • the burner heat shield element 22 is formed from a porous material 44. It is with brackets 46 attached to the combustion chamber wall 3.
  • brackets 46 attached to the combustion chamber wall 3.
  • a fuel line 30 is integrated into the wall 48. Openings 50 are also provided in the wall 48.
  • the premixing chamber 34 is fluidically connected to the Burner heat shield element 22 through holes 26 in the Combustion chamber wall 3 connected.
  • Combustion air 38 enters the premixing chamber via the openings 50 34.
  • Fuel comes from the fuel line 30, preferably natural gas, also in the premixing chamber 34.
  • the fuel-air mixture passes through the through holes 26 42 from the premixing chamber 34 into the burner heat shield element 22.
  • the fuel-air mixture 42 penetrates into the porous Material 44 a. Due to the heat in one, no further
  • the combustion chamber shown ignites the fuel-air mixture 42 and burns within the pores of the porous material 44.
  • the porous material 44 heats up. This leads to a particularly stable combustion.
  • a combustion vibration due to the pore structure of the porous material 44 suppressed.
  • the porous continues to shine Material 44 heat. This leads to the flame temperature the combustion within the porous material 44 by comparison is low. This in turn has the consequence that less nitrogen oxides are formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)

Description

Die Erfindung betrifft eine Brennkammer mit einer Brennkammerwand und mit einer aus einer Vielzahl von Hitzeschildelementen gebildeten Innenauskleidung sowie ein Verfahren zum Betrieb einer Brennkammer.The invention relates to a combustion chamber with a combustion chamber wall and with one of a variety of heat shield elements formed inner lining and a method for Operation of a combustion chamber.

In der EP 0 597 137 B1 ist eine ringförmige Brennkammer für eine Gasturbine beschrieben. Die Brennkammer ist in eine Primärzone und eine Sekundärzone unterteilt. Die Primärzone und die Sekundärzone weisen jeweils eine strömungsbegrenzende Wandung auf, die voneinander unabhängig durch Kühlluft gekühlt sind. Die Wandung der Sekundärzone ist doppelwandig ausgeführt. Sie schließt sich an die Wandung der Primärzone an, welche durch einen Segmentträger für Segmente einer feuerfesten Auskleidung gebildet ist. Die Kühlluft durchströmt zunächst die doppelwandige Wandung der Sekundärzone, strömt anschließend durch den Segmentträger und die Segmente der Primärzone und wird schließlich einem Brenner zur Verbrennung zugeführt.EP 0 597 137 B1 describes an annular combustion chamber for described a gas turbine. The combustion chamber is in a primary zone and divided a secondary zone. The primary zone and the secondary zones each have a flow-restricting one Wall that is independently cooled by cooling air are. The wall of the secondary zone is double-walled executed. It connects to the wall of the primary zone which by a segment carrier for segments of a refractory Lining is formed. The cooling air flows through first the double-walled wall of the secondary zone flows then through the segment carrier and the segments of Primary zone and eventually becomes a burner for combustion fed.

In der EP 0 576 697 B1 ist eine Brennkammer einer Gasturbine beschrieben, in welcher gleichzeitig neben klassischen Brennertypen auch katalytische Brenner zum Einsatz gelangen. Als klassische Brennertypen kommen Vormischbrenner zum Einsatz, mit denen die Hauptverbrennung durchgeführt wird. Durch die Kombination dieser Brennertypen ergibt sich eine einfachere Regelung bei sich ändernden Lastzuständen der Gasturbine.EP 0 576 697 B1 describes a combustion chamber of a gas turbine described in which, in addition to classic burner types catalytic burners are also used. As classic burner types, premix burners are used, with which the main combustion is carried out. Through the Combining these types of burners results in a simpler one Regulation with changing load conditions of the gas turbine.

In dem Artikel "Options for Low Emissions", von Richard J. Antos, Low NOx Gas Turbines, Mai 1996, Seite 43, ist eine Gasturbine mit einer zweistufigen Verbrennung beschrieben. In einer Primärzone erfolgt eine erste Stufe der Verbrennung mit Hilfe eines Vormischbrenners, der durch einen Diffusionsbrenner stabilisiert ist. An den Verbrennungsraum für die Primärzone schließt sich ein größerer Verbrennungsraum für eine Sekundärzone an, in der eine zweite Stufe der Verbrennung abläuft. Dazu wird über eine Anzahl von Öffnungen in der Brennkammerwand am Eintritt der Sekundärzone ein vorgemischtes Brennstoff-Luft-Gemisch zugeführt. Das Brennstoff-Luft-Gemisch zündet im heißen Abgas, welches von der Primärzone in die Sekundärzone eintritt. Damit ergibt sich die zweite Stufe der Verbrennung.In the article "Options for Low Emissions", by Richard J. Antos, Low NO x Gas Turbines, May 1996, page 43, a gas turbine with a two-stage combustion is described. In a primary zone, a first stage of combustion takes place with the aid of a premix burner, which is stabilized by a diffusion burner. The combustion chamber for the primary zone is followed by a larger combustion chamber for a secondary zone, in which a second stage of combustion takes place. For this purpose, a premixed fuel-air mixture is fed through a number of openings in the combustion chamber wall at the entrance to the secondary zone. The fuel-air mixture ignites in the hot exhaust gas, which enters the secondary zone from the primary zone. This results in the second stage of combustion.

Eine derartige zweistufige Verbrennung ist auch aus der US 4,910,957 bekannt, bei der die mehrstufige Verbrennung zur Reduzierung der NOx-Emissionen herangezogen wird.Such a two-stage combustion is also from the US 4,910,957 known in which the multi-stage combustion for Reduction of NOx emissions is used.

Aus der DE-C-253 189 ist eine Verbrennungsgasturbine bekannt mit einem ringförmigen Verbrennungsraum, der an seinen Seitenwänden jeweils eine poröse Tonplatte aufweist, welche als sogenannter Oberflächenbrenner wirkt. Hierzu wird von der dem Verbrennungsraum rückwärtigen Seite durch die poröse Tonplatte ein Brenngasgemisch geführt. Das Brenngasgemisch wird an der dem Verbrennungsraum zugewandten Oberfläche der Tonplatte entzündet und an der Oberfläche verbrannt. Durch die von der Tonplatte abgestrahlte Wärme wird ein Treibgas für den Antrieb der Verbrennungsgasturbine erhitzt.A combustion gas turbine is known from DE-C-253 189 with an annular combustion chamber on its side walls each has a porous clay plate, which as so-called surface burner works. For this purpose, the Combustion chamber rear side through the porous clay plate led a fuel gas mixture. The fuel gas mixture is on the surface of the clay plate facing the combustion chamber ignited and burned to the surface. Through the radiated heat from the clay plate becomes a propellant for heated the drive of the combustion gas turbine.

Aufgabe der Erfindung ist es, eine Brennkammer anzugeben, die in besonders einfacher Bauart eine Zufuhr von Brennstoff und von Verbrennungsluft ermöglicht. Weitere Aufgabe der Erfindung ist die Angabe eines Verfahrens zum Betrieb einer Brennkammer, durch welches in besonders einfacher Weise eine gestufte Verbrennung ermöglicht ist.The object of the invention is to provide a combustion chamber which in a particularly simple design, a supply of fuel and of combustion air. Another object of the invention is the specification of a method for operating a combustion chamber, through which a stepped in a particularly simple manner Combustion is enabled.

Erfindungsgemäß wird die auf Angabe einer Brennkammer gerichtete Aufgabe gelöst durch eine Brennkammer mit einer Brennkammerwand und mit einer aus einer Vielzahl von Hitzeschildelementen gebildeten Innenauskleidung, wobei mindestens ein als Brenner fungierendes Hitzeschildelement ein Brenner-Hitzeschildelement ist, dem eine Brennstoffzuführung zur Zuführung von Brennstoff und eine Verbrennungsluftzuführung zur Zuführung von Verbrennungsluft vorgeschaltet sind. Dabei weist das Brenner-Hitzeschildelement ein mit zahlreichen Hohlräumen versehenes Material auf, wobei der Brennstoff und die Verbrennungsluft so zuführbar sind, daß eine Verbrennung innerhalb dieses Materials erzeugbar ist.According to the invention is directed to the specification of a combustion chamber Object achieved by a combustion chamber with a combustion chamber wall and with one of a variety of heat shield elements formed inner lining, at least one a heat shield element acting as a burner is a burner heat shield element is a fuel supply for supply of fuel and a combustion air supply for Combustion air supply are connected upstream. there shows the burner heat shield element with numerous Cavities material, the fuel and the combustion air can be supplied so that combustion can be generated within this material.

In einer solchen Brennkammer wird eine Verbrennung in baulich besonders einfacher Weise dadurch ermöglicht, daß ein Hitzeschildelement, weiches Bestandteil der feuerfesten Innenauskleidung der Brennkammer ist, als Brenner benutzt wird. Einem solchen Brenner-Hitzeschildelement wird Brennstoff und Verbrennungsluft zur Verbrennung im Hitzeschildelement zugeführt.In such a combustion chamber, combustion is under construction enables in a particularly simple manner that a heat shield element, soft part of the fireproof inner lining the combustion chamber is used as a burner. a such burner heat shield element becomes fuel and combustion air for combustion in the heat shield element fed.

Ein solches Brenner-Hitzeschildelement stellt einen sogenannten Porenbrenner dar. Brennstoff und Verbrennungsluft werden also in den Hohlräumen oder Poren verbrannt, wobei sich das Material aufheizt. Dies führt einerseits zu einer guten Stabilisierung der Verbrennung. Andererseits wirkt die Porenstruktur auf Verbrennungsschwingungen stark dämpfend. Diese beiden Eigenschaften eines Porenbrenners führen dazu, daß sich über eine Verbrennung in einem Porenbrenner nahezu keine Verbrennungsschwingung ausbildet. Weiterhin strahlt das Material, welches sich während der Verbrennung wie erwähnt stark aufheizt, eine erhebliche Menge an Wärme ab. Dies führt dazu, daß die Flammentemperatur der Verbrennung innerhalb des Materials vergleichsweise niedrig ist. Dies hat wiederum zur Folge, daß weniger Stickoxide gebildet werden. Der Vorteil der niedrigeren Flammentemperatur kann aber auch dazu benutzt werden, dem Brenner-Hitzeschildelement mehr Brennstoff und dafür dem Brenner einer ersten Stufe weniger Brennstoff zuzuführen. Dies vermindert die Ausbildung von solchen Verbrennungsschwingungen, welche vom Brenner der ersten Stufe hervorgerufen werden können. Such a burner heat shield element represents a so-called Pore burner. Fuel and combustion air So burned in the cavities or pores, which is Material heats up. On the one hand, this leads to good stabilization the combustion. On the other hand, the pore structure works strongly dampening on combustion vibrations. This Both properties of a pore burner lead to the fact that there is almost no combustion in a pore burner Forms combustion vibration. The material continues to shine, which, as mentioned, strongly changes during combustion heats up a significant amount of heat. This leads to, that the flame temperature of the combustion within the material is comparatively low. This in turn has Consequence that less nitrogen oxides are formed. The advantage the lower flame temperature can also be used for this become more fuel and the burner heat shield element to supply less fuel to the burner in a first stage. This reduces the formation of such combustion vibrations, which is caused by the burner of the first stage can be.

Bevorzugt ist dem Brenner-Hitzeschildelement ein Vormischraum vorgeschaltet, in den der Brennstoff und die Verbrennungsluft einleitbar sind. Brennstoff und Verbrennungsluft werden erst dem Vormischraum zugeführt, wo ein Brennstoff-Luft-Gemisch gebildet wird. Dieses Brennstoff-Luft-Gemisch wird anschließend dem Brenner-Hitzeschildelement zugeführt. Damit ergibt sich ein für die Verbrennung günstiges homogenes Brennstoff-Luft-Gemisch.A pre-mixing space is preferred for the burner heat shield element upstream, into which the fuel and the combustion air can be initiated. Fuel and combustion air are first fed to the premixing room, where a fuel-air mixture is formed. This fuel-air mixture is then fed to the burner heat shield element. In order to the result is a homogeneous one which is favorable for the combustion Fuel-air mixture.

Die Brennkammerwand weist eine Außenseite auf, entlang der sich bevorzugt eine Brennstoffleitung erstreckt, aus der Brennstoff in den Vormischraum einlaßbar ist. Eine solche Brennstoffleitung könnte z.B. bei einer Ringbrennkammer eine in Umfangsrichtung der Ringbrennkammer um die Brennkammerwand umlaufende Ringleitung sein, aus der z.B. auch in einfacher Weise für eine Vielzahl von Brenner-Hitzeschildelementen, welche entlang dieser Umfangsrichtung angeordnet sind, Brennstoff zugeführt werden kann.The combustion chamber wall has an outside, along which preferably extends from a fuel line Fuel can be admitted into the premixing chamber. Such Fuel line could e.g. for an annular combustion chamber one in the circumferential direction of the annular combustion chamber around the combustion chamber wall circular ring line, from which e.g. also in simple Way for a variety of burner heat shield elements, which are arranged along this circumferential direction, fuel can be supplied.

Vorzugsweise ist durch die Brennkammer entlang einer Ausdehnungsrichtung ein Brenngasstrom von einer Eintrittsseite bis zu einer Austrittsseite führbar, wobei mindestens ein Brenner für eine erste Stufe einer Verbrennung vorgesehen ist, und wobei durch das Brenner-Hitzeschildelement stromab von der ersten Stufe eine zweite Stufe der Verbrennung erzeugbar ist.Is preferably through the combustion chamber along an expansion direction a fuel gas flow from an entry side to can be guided to an outlet side, at least one burner is intended for a first stage of combustion, and being through the burner heat shield element downstream of the first stage a second stage of combustion can be generated.

Über das Brenner-Hitzeschildelement wird in einfacher Weise eine zweite Stufe einer zweistufigen Verbrennung realisiert. Natürlich können auch weitere Stufen der Verbrennung vorgesehen sein. Durch die Zweistufigkeit oder Mehrstufigkeit der Verbrennung wird eine Reaktionszone der Verbrennung auf ein größeres Volumen verteilt. Damit ergibt sich in der Brennkammer eine geringere Neigung zur Ausbildung von Verbrennungsschwingungen. Solche Verbrennungsschwingungen können u.U. erhebliche Schäden in der Brennkammer hervorrufen. Weiterhin ergibt sich für eine zweistufige oder eine mehrstufige Verbrennung eine besonders gute Regelbarkeit zur Anpassung an unterschiedliche Leistungsabgaben, d.h. Lastzustände, z.B. für eine unter verschiedenen Belastungen betriebene Gasturbine. Wird durch das Abgas der Brennkammer eine Gasturbine angetrieben, so ist für die Verbrennung ein je nach der Belastung der Gasturbine ausgerichtetes Brennstoff-Luft-Verhältnis erforderlich. Durch die Verwendung von mindestens zwei Brennern ergibt sich ein weiter Parameterbereich für die Regelung der Verbrennung. Darüber hinaus kann z.B. - falls erforderlich - die Brennstoffzufuhr zum Brenner-Hitzeschildelement unterbleiben, so daß durch das Brenner-Hitzeschildelement lediglich Luft in die Brennkammer einströmt. Weiterhin ergibt sich mit der Verwendung des Brenner-Hitzeschildelementes eine verbesserte Kühlleistung für die Kühlung der Innenauskleidung der Brennkammer, da dem Brenner-Hitzeschildelement eine vergleichsweise große Menge an kühlender Verbrennungsluft zugeführt werden kann. Schließlich ist ein weiterer Vorteil, daß der Luftmassenstrom durch den Brenner der ersten Stufe verringert werden kann. Dies hat insbesondere zur Folge, daß der Brenner kleiner ausgeführt werden kann. Damit ergibt sich z.B. der Vorteil, daß der Brenner in einfacherer Art und Weise aus einem ihn umgebenden Gehäuse ausgebaut werden kann.The burner heat shield element is simple realized a second stage of a two-stage combustion. Of course, further stages of combustion can also be provided his. By the two-stage or multi-stage of Combustion becomes a reaction zone of combustion on one distributed larger volume. This results in the combustion chamber a lower tendency to form combustion vibrations. Such combustion vibrations can possibly substantial Cause damage in the combustion chamber. Farther results for a two-stage or a multi-stage combustion a particularly good controllability for adaptation to different power outputs, i.e. Load conditions, e.g. for a gas turbine operated under different loads. Becomes a gas turbine through the exhaust gas from the combustion chamber is driven for combustion depending on the load the gas turbine-oriented fuel-air ratio required. By using at least two Burners have a wide range of parameters for control the combustion. In addition, e.g. - if necessary - The fuel supply to the burner heat shield element are omitted so that through the burner heat shield element only air flows into the combustion chamber. Farther results from the use of the burner heat shield element an improved cooling capacity for cooling the inner lining the combustion chamber because the burner heat shield element a comparatively large amount of cooling combustion air can be supplied. Finally, another one Advantage that the air mass flow through the burner is the first Level can be reduced. This has in particular to Consequence that the burner can be made smaller. In order to e.g. the advantage that the burner in simpler Be removed from a surrounding housing can.

Das Brenner-Hitzeschildelement erstreckt sich entlang der Ausdehnungsrichtung von einem ersten Ende bis zu einem zweiten Ende, wobei der Vormischraum vorzugsweise zwischen der Brennkammerwand und dem Brenner-Hitzeschildelement liegt und wobei im Bereich des zweiten Endes eine Auslaßöffnung vorgesehen ist, die den Vormischraum mit dem Brennraum verbindet. Durch die Anordnung des Vormischraumes und mit der stromab angeordneten Auslaßöffnung ergibt sich eine strömungstechnische Verbindung des Vormischraums zur Brennkammer, die sich durch einen besonders niedrigen Strömungswiderstand auszeichnet.The burner heat shield element extends along the Direction of expansion from a first end to a second End, the pre-mixing space preferably between the Combustion chamber wall and the burner heat shield element lies and an outlet opening being provided in the region of the second end that connects the premixing chamber with the combustion chamber. By arranging the premixing room and with the downstream arranged outlet opening results in a fluidic Connection of the premixing chamber to the combustion chamber, which is characterized by a particularly low flow resistance.

Bevorzugt ist dem Brenner-Hitzeschildelement Kühlluft zuführbar, wobei die Kühlluft gleichzeitig als Verbrennungsluft verwendbar ist. Die Hitzeschildelemente werden häufig dadurch gekühlt, daß Kühlluft von der Außenseite der Brennkammerwand z.B. durch Bohrungen an die Hinterseite der Hitzeschildelemente geführt wird. Durch die Ausnutzung dieser Kühlluftzuführung als Verbrennungsluftzuführung ergibt sich eine besonders einfache Zufuhr von Verbrennungsluft zum Brenner-Hitzeschildelement.Cooling air can preferably be supplied to the burner heat shield element, the cooling air being used as combustion air is usable. The heat shield elements are often thereby cooled that cooling air from the outside of the combustion chamber wall e.g. through holes in the back of the heat shield elements to be led. By using this cooling air supply as a combustion air supply there is a special one simple supply of combustion air to the burner heat shield element.

Vorzugsweise ist das Material des Brenner-Hitzeschildelements, also des Porenbrenners, eine aufgeschäumte Keramik, insbesondere Zirkonoxid oder Siliziumkarbid. Solche Materialien sind z. B. dadurch herstellbar, daß in ein schaumbildendes Trägermaterial die Keramik eingebracht wird und nach einer erfolgten Aufschäumung und Aushärtung das Trägermaterial weggeätzt wird, so daß eine poröse Keramik übrig bleibt.The material of the burner heat shield element is preferably the pore burner, a foamed ceramic, especially zirconium oxide or silicon carbide. Such materials are z. B. producible in that in a foam-forming Carrier material the ceramic is introduced and after a foaming and curing of the carrier material is etched away, so that a porous ceramic remains.

Bevorzugtermaßen ist die Brennkammer als eine einen Ringraum bildende Ringbrennkammer ausgebildet, wobei entlang einer Umfangsrichtung des Ringraums eine Mehrzahl von Hitzeschildelementen als Brenner-Hitzeschildelemente ausgebildet ist. Vorzugsweise ist der größte Teil der entlang einer Umfangsrichtung angeordneten Hitzeschildelemente als Brenner-Hitzeschildelemente ausgebildet. Somit ergibt sich eine gleichmäßige Verteilung der zweiten Stufe der Verbrennung über den Umfang der Ringbrennkammer.The combustion chamber is preferably an annular space forming annular combustion chamber, being along a circumferential direction of the annulus a plurality of heat shield elements is designed as a burner heat shield elements. Preferably is most of the along a circumferential direction arranged heat shield elements as burner heat shield elements educated. This results in a uniform Distribution of the second stage of combustion over the Circumference of the ring combustion chamber.

Bevorzugt wird die Brennkammer in einer Gasturbine, insbesondere in einer stationären Gasturbine verwendet. Vorzugsweise hat die Gasturbine eine Leistung größer als 60 MW.The combustion chamber is preferred in a gas turbine, in particular used in a stationary gas turbine. Preferably the gas turbine has an output greater than 60 MW.

Erfindungsgemäß wird die auf Angabe eines Verfahrens gerichtete Aufgabe gelöst durch ein Verfahren zum Betrieb einer Brennkammer mit einer Brennkammerwand und mit einer aus einer Vielzahl von Hitzeschildelementen gebildeten Innenauskleidung, wobei mindestens einem der Hitzeschildelemente Brennstoff und Verbrennungsluft für eine Verbrennung zugeführt werden, und wobei der Brennstoff und die Verbrennungsluft innerhalb einer porösen Struktur des Hitzeschildelementes verbrannt werden.According to the invention is directed to a method Problem solved by a method for operating a Combustion chamber with a combustion chamber wall and with one out of one A large number of inner lining elements formed, wherein at least one of the heat shield elements is fuel and supplied combustion air for combustion and the fuel and the combustion air within a porous structure of the heat shield element be burned.

Die Vorteile eines solchen Verfahrens ergeben sich entsprechend den obigen Ausführungen zu den Vorteilen der Brennkammer.The advantages of such a method result accordingly the above comments on the advantages of the combustion chamber.

Bevorzugt läuft zunächst eine erste Stufe einer Verbrennung ab, wobei anschließend über das Hitzeschildelement eine zweite Stufe der Verbrennung erfolgt. A first stage of combustion preferably runs first from, then a via the heat shield element second stage of combustion takes place.

Weiter bevorzugt wird das Verfahren in einer Brennkammer, insbesondere in einer Ringbrennkammer, einer Gasturbine durchgeführt.The method in a combustion chamber is further preferred, especially in an annular combustion chamber, a gas turbine carried out.

Die Erfindung wird anhand der Zeichnung beispielhaft näher erläutert. Es zeigen:

FIG 1
ein Längsschnitt durch eine Ringbrennkammer einer Gasturbine,
FIG 2
einen vergrößerten Ausschnitt aus einer Ringbrennkammer mit einem Brenner-Hitzeschildelement,
FIG 3
ein Brenner-Hitzeschildelement und
FIG 4
ein Brenner-Hitzeschildelement aus einem porösen Material.
The invention is explained in more detail by way of example with reference to the drawing. Show it:
FIG. 1
2 shows a longitudinal section through an annular combustion chamber of a gas turbine,
FIG 2
2 shows an enlarged section of an annular combustion chamber with a burner heat shield element,
FIG 3
a burner heat shield element and
FIG 4
a burner heat shield element made of a porous material.

Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.The same reference numerals have in the different figures same meaning.

Figur 1 zeigt einen Längsschnitt durch eine Ringbrennkammer 1 für eine Gasturbine. Die Ringbrennkammer 1 liegt rotationssymmetrisch um eine Achse 2. Der Übersichtlichkeit halber ist nur eine Hälfte des Längsschnittes gezeigt. Die Ringbrennkammer 1 weist eine Brennkammerwand 3 auf. Die Brennkammerwand 3 umschließt einen Ringraum 4. Die Innenwand der Brennkammerwand 3 ist mit einer Innenauskleidung 5 ausgekleidet. Die Innenauskleidung 5 wird durch eine Vielzahl von Hitzeschildelementen 6 gebildet. Solche Hitzeschildelemente 6 bestehen z.B. aus feuerfester Keramik. In die Ringbrennkammer 1 mündet ein Brennersystem 7. Dieses wird gebildet durch einen Diffusionsbrenner 8 und einen Vormischbrenner 9, welcher den Diffusionsbrenner 8 in Form eines Ringkanals umgibt. Das Brennersystem 7 ist an einem brennerseitigen Ende 11 der Ringbrennkammer 1 angeordnet. An einem dem brennerseitigen Ende 11 gegenüberliegenden turbinenseitigen Ende 13 schließt sich eine schematisch dargestellte Gasturbine 15 an.FIG. 1 shows a longitudinal section through an annular combustion chamber 1 for a gas turbine. The ring combustion chamber 1 is rotationally symmetrical around an axis 2. For the sake of clarity only half of the longitudinal section is shown. The ring combustion chamber 1 has a combustion chamber wall 3. The combustion chamber wall 3 encloses an annular space 4. The inner wall of the combustion chamber wall 3 is lined with an inner lining 5. The inner lining 5 is made by a variety of heat shield elements 6 formed. Such heat shield elements 6 are e.g. made of fireproof ceramic. Open into the annular combustion chamber 1 Burner system 7. This is formed by a diffusion burner 8 and a premix burner 9, which is the diffusion burner 8 surrounds in the form of an annular channel. The burner system 7 is at a burner end 11 of the annular combustion chamber 1 arranged. At an opposite end 11 of the burner turbine-side end 13 closes one schematically shown gas turbine 15.

Bei Verwendung einer solchen Ringbrennkammer 1 in einer hier nicht dargestellten Gasturbinenanlage wird dem Pilotbrenner 8 Brennstoff 17A zugeführt. Dem Pilotbrenner 8 wird ebenfalls Verbrennungsluft 18A zugeführt. Der Brennstoff 17A und die Verbrennungsluft 18A werden über einen Diffusionsbetrieb des Pilotbrenners 8 im Ringraum 4 der Ringbrennkammer 1 verbrannt. An der am Pilotbrenner 8 stabilisierten Flamme dieser Verbrennung entzündet sich ein Gemisch aus Brennstoff 17B und Verbrennungsluft 18B, welches dem Vormischbrenner 9 zugeführt wird. Das durch die Verbrennung erzeugte Abgas 20 tritt aus dem turbinenseitigen Ende 13 der Ringbrennkammer 1 aus und treibt die Gasturbine 15 an. Im folgenden wird erläutert, wie die hier dargestellte, konventionelle einstufige Verbrennung in besonders einfacher Weise durch eine zweite Stufe einer Verbrennung unter Verwendung eines Brenner-Hitzeschildelementes ergänzt werden kann.When using such an annular combustion chamber 1 in one here The gas turbine system, not shown, is the pilot burner 8 Fuel 17A supplied. The pilot burner 8 is also Combustion air 18A supplied. The fuel 17A and the Combustion air 18A are diffused through the Pilot burner 8 burned in the annular space 4 of the annular combustion chamber 1. On the flame stabilized on the pilot burner 8 Combustion ignites a mixture of fuel 17B and Combustion air 18B, which is fed to the premix burner 9 becomes. The exhaust gas 20 generated by the combustion emerges the turbine-side end 13 of the annular combustion chamber 1 and drives the gas turbine 15. The following explains how the conventional single-stage combustion shown here in a particularly simple manner by means of a second stage Combustion using a burner heat shield element can be added.

Figur 2 zeigt einen Ausschnitt aus einem der Figur 1 entsprechenden Längsschnitt durch eine Ringbrennkammer 1. Eines der Hitzeschildelemente 6 ist als ein Brenner-Hitzeschildelement 22 ausgeführt. Wie jedes der Hitzeschildelemente 6 ist auch das Brenner-Hitzeschildelement 22 mit einer Schraube 24 an die Brennkammerwand 3 angeschraubt. In der Brennkammerwand 3 sind hinter dem Brenner-Hitzeschildelement 22 Durchbohrungen 26 vorgesehen. Auf der Außenseite 28 der Brennkammerwand 3 ist weiterhin eine Brennstoffleitung 30 vorgesehen. Von der Brennstoffleitung 30 führt eine Durchbohrung 32 der Brennkammerwand 3 zu einem Vormischraum 34, welcher durch das an der Brennkammerwand 3 anliegende Brenner-Hitzeschildelement 22 gebildet ist. In den Vormischraum 34 münden auch die Durchbohrungen 26. Das Brenner-Hitzeschildelement 22 erstreckt sich von einem ersten Ende 23 bis zu einem zweiten Ende 25. Figure 2 shows a section of a corresponding to Figure 1 Longitudinal section through an annular combustion chamber 1. One of the Heat shield elements 6 is as a burner heat shield element 22 executed. Like each of the heat shield elements 6 is also the burner heat shield element 22 with a screw 24 the combustion chamber wall 3 screwed. In the combustion chamber wall 3 22 holes are behind the burner heat shield element 26 provided. On the outside 28 of the combustion chamber wall 3 a fuel line 30 is also provided. Of the Fuel line 30 leads through hole 32 of the combustion chamber wall 3 to a pre-mixing space 34, which by the at the Combustion chamber wall 3 adjacent burner heat shield element 22 is formed. The through holes also open into the premixing chamber 34 26. The burner heat shield element 22 extends from a first end 23 to a second end 25.

Das Brenner-Hitzeschildelement 22 wird nun in folgender Weise für eine zweite Stufe einer Verbrennung in der Ringbrennkammer 1 eingesetzt:The burner heat shield element 22 is now in the following manner for a second stage of combustion in the annular combustion chamber 1 used:

Über die Brennstoffleitung 30 wird Brennstoff 36, vorzugsweise Erdgas, dem Vormischraum 34 über die Bohrung 32 zugeführt. Weiterhin wird Verbrennungsluft 38 über die Durchbohrungen 26 dem Vormischraum 34 zugeführt. Im Vormischraum 34 vermischt sich das Erdgas 36 mit der Verbrennungsluft 38. Am zweiten Ende 25 ist eine Auslaßöffnung 40 vorgesehen, die das Erdgas-Luft-Gemisch 42 in die Ringbrennkammer 1 ausläßt. Das Erdgas-Luft-Gemisch 42 entzündet sich in der heißen Ringbrennkammer 1. Damit bildet sich eine zweite Stufe einer Verbrennung aus. Mit dieser zweiten Stufe wird die Reaktionszone der in der Ringbrennkammer 1 ablaufenden Verbrennung vergrößert. Dies führt zu einer verringerten Neigung zur Ausbildung von Verbrennungsschwingungen. Der erhebliche Verbrennungsluftstrom 38 führt weiterhin zu einer hohen Kühlleistung für das Brenner-Hitzeschildelement 22 und auch für die abströmseitig vor dem Brenner-Hitzeschildelement 22 gelegenen weiteren Hitzeschildelemente 6.Fuel 36 is preferred via fuel line 30 Natural gas, the premixing chamber 34 is supplied via the bore 32. Combustion air 38 is also passed through the perforations 26 fed to the premixing chamber 34. In the premixing room 34 the natural gas 36 mixes with the combustion air 38. Am second end 25, an outlet opening 40 is provided which Natural gas-air mixture 42 discharges into the annular combustion chamber 1. The Natural gas-air mixture 42 ignites in the hot annular combustion chamber 1. This creates a second stage of combustion out. With this second stage, the reaction zone the combustion occurring in the annular combustion chamber 1 is increased. This leads to a reduced tendency to training of combustion vibrations. The significant combustion air flow 38 continues to result in high cooling performance for the burner heat shield element 22 and also for the downstream side located in front of the burner heat shield element 22 further heat shield elements 6.

Figur 3 zeigt noch einmal in einer vergrößerten und schematischen Darstellung ein an der Brennerkammerwand 3 angeordnetes Brenner-Hitzeschildelement 22. Es gelten die entsprechenden Erläuterungen wie zu Figur 2.Figure 3 shows again in an enlarged and schematic Representation of a arranged on the burner chamber wall 3 Burner heat shield element 22. The corresponding apply Explanations as for Figure 2.

In Figur 4 ist schematisch in einem Längsschnitt ein Brenner-Hitzeschildelement 22 gezeigt, welches an einer Brennkammerwand 3 angeordnet ist. Das Brenner-Hitzeschildelement 22 ist aus einem porösen Material 44 gebildet. Es ist mit Klammern 46 an der Brennkammerwand 3 befestigt. Auf der dem Brenner-Hitzeschildelement 22 abgewandten Außenseite 28 der Brennkammerwand 3 ist gegenüber dem Brenner-Hitzeschildelement 22 eine Wandung 48 vorgesehen, welche den Vormischraum 34 umschließt. In die Wandung 48 ist eine Brennstoffleitung 30 integriert. In der Wandung 48 sind weiterhin Öffnungen 50 vorgesehen. Der Vormischraum 34 ist strömungstechnisch mit dem Brenner-Hitzeschildelement 22 durch Durchbohrungen 26 in der Brennkammerwand 3 verbunden.A burner heat shield element is shown schematically in a longitudinal section in FIG 22 shown, which on a combustion chamber wall 3 is arranged. The burner heat shield element 22 is formed from a porous material 44. It is with brackets 46 attached to the combustion chamber wall 3. On the burner heat shield element 22 facing away from the outside 28 of the combustion chamber wall 3 is opposite the burner heat shield element 22 a wall 48 is provided which surrounds the premixing chamber 34. A fuel line 30 is integrated into the wall 48. Openings 50 are also provided in the wall 48. The premixing chamber 34 is fluidically connected to the Burner heat shield element 22 through holes 26 in the Combustion chamber wall 3 connected.

Über die Öffnungen 50 gelangt Verbrennungsluft 38 in den Vormischraum 34. Aus der Brennstoffleitung 30 gelangt Brennstoff, vorzugsweise Erdgas, ebenfalls in den Vormischraum 34. Über die Durchbohrungen 26 gelangt das Brennstoff-Luft-Gemisch 42 aus dem Vormischraum 34 in das Brenner-Hitzeschildelement 22. Das Brennstoff-Luft-Gemisch 42 dringt in das poröse Material 44 ein. Durch die Hitze in einer nicht weiter dargestellten Brennkammer entzündet sich das Brennstoff-Luft-Gemisch 42 und verbrennt innerhalb der Poren des porösen Materials 44. Dabei heizt sich das poröse Material 44 auf. Dies führt zu einer besonders stabilen Verbrennung. Zudem wird durch die Porenstruktur des porösen Materials 44 eine Verbrennungsschwingung unterdrückt. Weiterhin strahlt das poröse Material 44 Wärme ab. Dies führt dazu, daß die Flammentemperatur der Verbrennung innerhalb des porösen Materials 44 vergleichsweise niedrig ist. Dies hat wiederum zur Folge, daß weniger Stickoxide gebildet werden.Combustion air 38 enters the premixing chamber via the openings 50 34. Fuel comes from the fuel line 30, preferably natural gas, also in the premixing chamber 34. The fuel-air mixture passes through the through holes 26 42 from the premixing chamber 34 into the burner heat shield element 22. The fuel-air mixture 42 penetrates into the porous Material 44 a. Due to the heat in one, no further The combustion chamber shown ignites the fuel-air mixture 42 and burns within the pores of the porous material 44. The porous material 44 heats up. This leads to a particularly stable combustion. In addition, a combustion vibration due to the pore structure of the porous material 44 suppressed. The porous continues to shine Material 44 heat. This leads to the flame temperature the combustion within the porous material 44 by comparison is low. This in turn has the consequence that less nitrogen oxides are formed.

Claims (12)

  1. Combustion chamber (1) having a combustion chamber wall (3) surrounding a combustion space (4) and having an inner lining (5) formed from a plurality of heat-shield elements (6), characterized in that at least one heat-shield element (5), functioning as a burner, is a burner/heat-shield element (22), upstream of which are connected a fuel supply feature (30) for fuel (36) and a combustion air supply feature (26) for combustion air (38) and in that the burner/heat-shield element (22) exhibits a material (44) provided with numerous cavities (45), which material (44) is configured in such a way that a combustion process can be generated within it.
  2. Combustion chamber (1) according to Claim 1, characterized in that a premixing space (34), into which the fuel (36) and the combustion air (38) can be introduced, is connected upstream of the burner/heat-shield element (22).
  3. Combustion chamber (1) according to Claim 2, characterized in that the combustion chamber wall (3) has an outer surface (28) along which the fuel supply feature (30) extends.
  4. Combustion chamber (1) according to one of the preceding claims, through which a combustion gas flow (20) can be guided from an inlet end (11) to an outlet end (13) along an extension direction, at least one burner (8) being provided for a first stage of a combustion process, characterized in that a second stage of the combustion process can be generated downstream of the first stage by means of the burner/heat-shield element (22).
  5. Combustion chamber (1) according to Claims 2 and 4, characterized in that the premixing space (34) is arranged between the combustion chamber wall (3) and the burner/heat-shield element (22), the burner/heat-shield element (22) extending from a first end (23) to a second end (25) along the extension direction and an outlet opening (40) connecting the premixing space (34) to the combustion space (4) in the region of the second end (25).
  6. Combustion chamber (1) according to one of the preceding claims, characterized in that the material (44) of the burner/heat-shield element (22) is metal, in which the cavities (45) are introduced mechanically, in particular by drilling.
  7. Combustion chamber (1) according to one of Claims 1 to 5, characterized in that the material (44) of the burner/heat-shield element (22) is a porous ceramic, in particular zirconium oxide or silicon carbide.
  8. Combustion chamber (1), in particular an annular combustion chamber, according to one of the preceding claims, in which the combustion space (4) is of annular configuration, characterized in that a plurality of heat-shield elements (6) are configured as burner/heat-shield elements (22) along a peripheral direction of the annular space (4).
  9. Use of a combustion chamber (1) according to one of the preceding claims for a gas turbine, in particular for a stationary gas turbine with a power greater than 60 MW.
  10. Method of operating a combustion chamber (1) having a combustion chamber wall (3) and having an inner lining (15) formed from a plurality of heat-shield elements (6, 22), characterized in that fuel (36) and combustion air (38) are supplied to at least one of the heat-shield elements (6, 22) for a combustion process and in that the fuel (36) and the combustion air (38) are burnt within a porous material (44) of the heat-shield element (22).
  11. Method according to Claim 10, characterized in that a first stage of a combustion process takes place initially and, subsequently, a second stage of the combustion process takes place by means of the heat-shield element (22).
  12. Implementation of the method according to one of Claims 10 or 11 in a combustion chamber (1), in particular in an annular combustion chamber, of a gas turbine.
EP99913091A 1998-03-10 1999-02-25 Combustion chamber and method for operating a combustion chamber Expired - Lifetime EP1062461B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19810276 1998-03-10
DE19810276 1998-03-10
PCT/DE1999/000513 WO1999046540A1 (en) 1998-03-10 1999-02-25 Combustion chamber and method for operating a combustion chamber

Publications (2)

Publication Number Publication Date
EP1062461A1 EP1062461A1 (en) 2000-12-27
EP1062461B1 true EP1062461B1 (en) 2003-12-03

Family

ID=7860355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99913091A Expired - Lifetime EP1062461B1 (en) 1998-03-10 1999-02-25 Combustion chamber and method for operating a combustion chamber

Country Status (4)

Country Link
EP (1) EP1062461B1 (en)
JP (1) JP4365027B2 (en)
DE (1) DE59907940D1 (en)
WO (1) WO1999046540A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029272B2 (en) 2001-08-09 2006-04-18 Siemens Aktiengesellschaft Premix burner and method for operation thereof
DE102017207487A1 (en) * 2017-05-04 2018-11-08 Siemens Aktiengesellschaft combustion chamber

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524902B2 (en) * 2000-10-25 2010-08-18 株式会社Ihi Low NOx combustor with premixed fuel injection valve
EP1460339A1 (en) * 2003-03-21 2004-09-22 Siemens Aktiengesellschaft Gas turbine
ATE483138T1 (en) * 2004-01-21 2010-10-15 Siemens Ag BURNER WITH COOLED COMPONENT, GAS TURBINE AND METHOD FOR COOLING THE COMPONENT
EP1847684A1 (en) 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Turbine blade
EP1847696A1 (en) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Component for a secondary combustion system in a gas turbine and corresponding gas turbine.
US8800293B2 (en) * 2007-07-10 2014-08-12 United Technologies Corporation Floatwell panel assemblies and related systems
EP2161500A1 (en) 2008-09-04 2010-03-10 Siemens Aktiengesellschaft Combustor system and method of reducing combustion instability and/or emissions of a combustor system
WO2019172925A2 (en) * 2018-03-09 2019-09-12 Siemens Aktiengesellschaft Finely distributed combustion system for a gas turbine engine
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE253189C (en) *
BE790956A (en) * 1971-11-05 1973-03-01 Penny Robert N FLAME TUBE FOR AGAZ TURBINE ENGINE COMBUSTION CHAMBER
US3981675A (en) * 1974-12-19 1976-09-21 United Technologies Corporation Ceramic burner construction
US4112676A (en) * 1977-04-05 1978-09-12 Westinghouse Electric Corp. Hybrid combustor with staged injection of pre-mixed fuel
US4910957A (en) * 1988-07-13 1990-03-27 Prutech Ii Staged lean premix low nox hot wall gas turbine combustor with improved turndown capability
FR2647534B1 (en) * 1989-05-29 1991-09-13 Europ Propulsion REACTOR CHAMBER AND METHOD FOR THE PRODUCTION THEREOF
DE59208831D1 (en) 1992-06-29 1997-10-02 Abb Research Ltd Combustion chamber of a gas turbine
EP0597137B1 (en) 1992-11-09 1997-07-16 Asea Brown Boveri AG Combustion chamber for gas turbine
JP3404981B2 (en) * 1995-04-21 2003-05-12 日本鋼管株式会社 Gas heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029272B2 (en) 2001-08-09 2006-04-18 Siemens Aktiengesellschaft Premix burner and method for operation thereof
DE102017207487A1 (en) * 2017-05-04 2018-11-08 Siemens Aktiengesellschaft combustion chamber
WO2018202407A1 (en) 2017-05-04 2018-11-08 Siemens Aktiengesellschaft Combustion chamber

Also Published As

Publication number Publication date
EP1062461A1 (en) 2000-12-27
JP4365027B2 (en) 2009-11-18
DE59907940D1 (en) 2004-01-15
WO1999046540A1 (en) 1999-09-16
JP2002506193A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
EP0576697B1 (en) Combustor chamber for a gas turbine
DE69719688T2 (en) Gas turbine burners and operating methods therefor
EP1064498B1 (en) Burner for a gas turbine
DE60224141T2 (en) Gas turbine and combustion chamber for it
EP0193838B1 (en) Burner disposition for combustion installations, especially for combustion chambers of gas turbine installations, and method for its operation
DE60007946T2 (en) A combustion chamber
EP0710797B1 (en) Method and device for operating a premix burner
DE10205839B4 (en) Premix burner for reducing combustion-driven vibrations in combustion systems
EP1654496B1 (en) Burner and method for operating a gas turbine
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
DE10064259B4 (en) Burner with high flame stability
DE4446842B4 (en) Method and device for feeding a gaseous fuel into a premix burner
EP0274630A1 (en) Arrangement for a burner
DE10050248A1 (en) Pre-mixing burner comprises swirl burner with inner chamber, with widening passage, injector with adjustable elements.
EP1950494A1 (en) Combustion chamber for a gas turbine
EP0687860A2 (en) Self igniting combustion chamber
EP1062461B1 (en) Combustion chamber and method for operating a combustion chamber
EP0363834A1 (en) Burner, particularly a high-speed burner
EP0995066B1 (en) Arrangement of burners for heating installation, in particular a gas turbine combustion chamber
EP1356236B1 (en) Premix burner and method for operating such a premix burner
WO2012016748A2 (en) Gas turbine combustion chamber
EP1112462B1 (en) Method for operating a gas turbine and corresponding gas turbine
DE102005061486A1 (en) Combustion chamber with burner and associated operating method
EP0727611A1 (en) Combustion chamber with two-stage combustion
EP1555484B1 (en) Process to operate a gas turbine combustor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59907940

Country of ref document: DE

Date of ref document: 20040115

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040310

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040906

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130301

Year of fee payment: 15

Ref country code: GB

Payment date: 20130213

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130419

Year of fee payment: 15

Ref country code: CH

Payment date: 20130510

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907940

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907940

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140225

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140225