EP0597137B1 - Combustion chamber for gas turbine - Google Patents

Combustion chamber for gas turbine Download PDF

Info

Publication number
EP0597137B1
EP0597137B1 EP19920119123 EP92119123A EP0597137B1 EP 0597137 B1 EP0597137 B1 EP 0597137B1 EP 19920119123 EP19920119123 EP 19920119123 EP 92119123 A EP92119123 A EP 92119123A EP 0597137 B1 EP0597137 B1 EP 0597137B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
cooling
segments
turbine
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19920119123
Other languages
German (de)
French (fr)
Other versions
EP0597137A1 (en
Inventor
Albert Keller
Stefan Tschirren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to DE59208713T priority Critical patent/DE59208713D1/en
Priority to EP19920119123 priority patent/EP0597137B1/en
Priority to JP27937293A priority patent/JP3526895B2/en
Publication of EP0597137A1 publication Critical patent/EP0597137A1/en
Application granted granted Critical
Publication of EP0597137B1 publication Critical patent/EP0597137B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/205Cooling fluid recirculation, i.e. after having cooled one or more components the cooling fluid is recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/224Improvement of heat transfer by increasing the heat transfer surface
    • F05B2260/2241Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a gas turbine combustor with an annular combustion chamber according to the preamble of claim 1.
  • Gas turbine combustion chambers with air-cooled flame tubes are known, for example from US 4,077,205 or US 3,978,662.
  • the flame tube is essentially constructed from wall parts which overlap in the turbine axial direction. On their side facing away from the combustion chamber, the wall parts each have a plurality of inlet openings distributed over the circumference, via which air is introduced into a distribution chamber arranged in the flame tube and communicating with the combustion chamber.
  • the respective flame tube In the cooling system there, the respective flame tube has a lip which extends over the slot through which the cooling air film emerges. This cooling air film should adhere to the wall of the flame tube in order to form a cooling barrier layer for it.
  • a gas turbine combustion chamber of the type mentioned at the beginning with an annular combustion chamber is known from GB-A-2074308.
  • the segments forming the wall of the combustion chamber are suspended in a lattice-shaped frame. They consist of an inner and an outer wall. They are supplied with cooling air through openings on the outer wall.
  • a pot combustion chamber is known from US Pat. No. 4,288,980, in which the walls of the combustion chamber do not extend to the inlet of the gas turbine.
  • there is an extremely complex hot gas housing between their outlet and turbine inlet in which a transition from the circular combustion chamber cross section to the annular gas turbine cross section has to be made.
  • the entire compressed combustion air is led through an annular space between walls around the hot gas housing and introduced into the combustion chamber.
  • the outlet end of the flame tube is thus not in direct communication with the combustion chamber inlet, but opens into the tube via a flange for convective cooling there.
  • This has the disadvantage that, on the one hand, the flow through the tubing is associated with a loss of pressure, and, on the other hand, that the highly stressed primary zone is subjected to cooling air which is already preheated.
  • the invention has for its object to minimize the cooling air consumption in a gas turbine combustion chamber of the type mentioned in order to reduce the emission of NO x .
  • radial openings communicating with the collecting space for the supply of the segment cooling air and, on the other hand, axial channels communicating with the burner inlet are arranged for the joint removal of the segment cooling air and the cooling air acting on the secondary zone.
  • the segment carrier also takes over the channeling of all cooling air flows. Since the carrier is usually a cast piece, the required openings can be made in the simplest way, which makes additional air lines unnecessary.
  • premixing burners of the double-cone type are used as burners, as are known for example from EP-B1-321809, two such burners are generally arranged radially one above the other on a front segment. On the front segments assembled to form a circular ring, the burners of adjacent front segments are each radially offset for reasons of space. This means that every second burner is arranged closer to the segments in the circumferential direction than the immediately adjacent ones.
  • the number of cooling segments lined up corresponds to the number of front segments and if the number of air supply openings and discharge channels in the segment carrier also corresponds to the number of cooling segments in the circumferential direction, then you have a simple tool in hand, for example by differently dimensioning the inflow or outflow bores Dosing air supply to the cooling segments according to their thermal load.
  • the system essentially consists on the gas turbine side (1) of the rotor 11 bladed with rotor blades and the blade carrier 12 equipped with guide blades.
  • the blade carrier 12 is over projections hooked into corresponding receptacles in the turbine housing 13.
  • the exhaust housing 14 is flanged to the turbine housing 13, which essentially consists of a hub-side, annular inner part 16 and an annular outer part 17, which delimit the diffuser 19.
  • Both elements 16 and 17 are usually half-shells with an axial parting plane. They are connected to one another by a plurality of radial flow ribs 18, which are arranged evenly distributed over the circumference.
  • the outlet-side mounting of the turbomachine is arranged in the cavity within the inner part 16, the rotor 11 being located in a support bearing 21.
  • the turbine housing 13 and the blade carrier 12 are provided with a horizontal parting plane (not shown) lying in the machine axis 10.
  • the upper and lower halves of the turbine housing and of the blade carrier, which are generally provided with flanges, are screwed together.
  • the turbine housing 13 also includes the collecting space 15 for the compressed combustion air. Part of the combustion air passes from this collecting space into the annular combustion chamber 3, which in turn enters the turbine inlet, i.e. flows upstream of the first guide row.
  • the compressed air arrives in the collecting space from the diffuser 22 of the compressor 2. Only the last three stages of the latter are shown.
  • the blading of the compressor and the turbine sit on the common shaft 11, the central axis of which represents the longitudinal axis 10 of the gas turbine unit.
  • the shaft part located between the turbine and the compressor is designed as a drum 23.
  • the entire axial extent of this drum is surrounded by a drum cover 24, which is fastened to the diffuser outer housing of the compressor via ribs (not shown).
  • This drum cover forms the cover band for the compressor Buckets of the last compressor guide row.
  • the drum cover together with the end face of the turbine rotor, delimits a radially running wheel side space. This space forms the outlet-side end of an annular channel 25 which, starting from the hub behind the last row of compressor runs, runs between the drum cover and the drum.
  • the entire rotor-side cooling air is introduced into this ring duct.
  • the combustion chamber 3 is equipped at its head end with premix burners 20, as are known for example from EP-B1-321 809.
  • a premix burner shown only schematically in FIG. 2, is a so-called double-cone burner. It essentially consists of two hollow, conical partial bodies 26, 27 which are nested one inside the other in the direction of flow. The respective central axes of the two partial bodies are offset from one another. The adjacent walls of the two partial bodies in their longitudinal extent form tangential slots 28 for the combustion air, which in this way reaches the interior of the burner.
  • a fuel nozzle 29 for liquid fuel is arranged there. The fuel is injected into the hollow cone at an acute angle. The resulting conical liquid fuel profile is enclosed by the combustion air flowing in tangentially.
  • the concentration of the fuel is continuously reduced in the axial direction due to the mixing with the combustion air.
  • the burner can also be operated with gaseous fuel.
  • gas inflow openings distributed in the longitudinal direction are provided in the region of the tangential slots in the walls of the two partial bodies.
  • the mixture formation with the combustion air thus begins in the zone of the inlet slots 28.
  • mixed operation with both types of fuel is also possible in this way.
  • a fuel concentration that is as homogeneous as possible is established over the applied annular cross section. A defined one is created at the burner outlet dome-shaped backflow zone, at the tip of which the ignition takes place.
  • the combustion gases reach very high temperatures, which places special demands on the combustion chamber walls to be cooled. This applies all the more when so-called low NO x burners, for example the premix burners used here, are used, which require relatively modest amounts of cooling air.
  • the annular combustion chamber extends downstream of the burner orifices up to the turbine inlet. It is limited both inside and outside by walls to be cooled, which are usually designed as self-supporting structures.
  • the present combustion chamber is equipped with 72 of the said burners 20. 3, which shows a quarter-circle section, shows the arrangement thereof.
  • Two burners are arranged radially one above the other on a front segment 31. 36 of these adjacent front segments form a closed circular ring, which in this way forms a heat shield.
  • the two burners from adjacent front segments are each radially offset. This means that the radially outer burner of every second front segment directly adjoins the outer ring wall of the combustion chamber, as can also be seen in FIG. 2.
  • the radially inner burners of the other front segments are therefore arranged in the immediate vicinity of the inner ring wall. This results in an uneven thermal load on the corresponding ring walls over the circumference.
  • the interior of the combustion chamber is now divided into two zones, the walls of which are cooled in different ways.
  • a secondary zone 32 lying downstream and opening into the turbine inlet is delimited by a double-walled flame tube. It consists both on its inner ring 33 and on its outer ring 34 from a flangeless, welded sheet metal construction, which is held together by spacers, not shown. Both rings 33 and 34 are open at their turbine end and form the entry for the cooling air there.
  • the annular space 35 between the double wall of the outer ring 34 draws the air directly from the collecting space 15, as can be seen in FIG. 1. With efficient convection cooling, the air flows in the counterflow to the combustion chamber flow in the direction of the primary zone 36.
  • the annular space 37 between the double wall of the inner ring 33 is supplied with air from a hub diffuser 38.
  • This hub diffuser which connects to the compressor diffuser 22, is delimited on the one hand by the drum cover 24 and on the other hand by an annular shell 39. The latter is connected to the drum cover 24 via ribs (not shown). In this annular space 37, too, the air flows in the counterflow to the combustion chamber flow in the direction of the primary zone 36.
  • the cooling of the highly stressed primary zone walls is now carried out according to the invention by means of individually cooled cooling segments 40. These cooling segments lined up in the circumferential direction and in the axial direction form their flow-limiting wall over the entire axial extent of the primary zone 36.
  • the individual cooling has the advantage of a low pressure drop and the cooling can be adapted to local conditions.
  • the thermally highly stressed cooling segments 40 consist of a high-temperature, precision cast alloy. They are in the circumferential direction, each with two feet with supporting teeth 42 suspended in corresponding grooves in a supporting structure, similar to how guide vane feet are fastened in blade carriers.
  • this support structure hereinafter referred to as segment carrier 43, consists of two cast half-shells with a horizontal parting plane and not shown claws with which it is supported in the turbine housing.
  • the number of cooling segments 40 arranged next to one another corresponds to the number of front segments 31, so that a cooling segment is assigned to each front segment and to the burner 20 closest to the wall (FIG. 3).
  • the cooling segments are also equipped with radially extending walls 45 in the circumferential direction. On the occasion of assembly, the cooling segments are brought into abutment with these walls 45. The end faces of the walls seal against the underside of the segment carrier 43
  • each cooling segment 40 On its side facing away from the combustion chamber, i.e. on the side facing the cooling chamber 44, each cooling segment 40 is provided with a ribbed or corrugated surface 41.
  • the ribs run in the circumferential direction (Fig. 2). In principle, the flow direction of the cooling air within the cooling chamber is thus predetermined.
  • a cooling segment is supplied with cooling air via a radially directed opening 46, which penetrates the segment carrier 43 and connects the collecting space 15 to one end of the cooling chamber 44 lying in the circumferential direction, as close as possible to the wall 45. Also located at the opposite end of this same cooling chamber the outlet opening 47 in the segment carrier as close as possible to the wall 45 there.
  • Both the opening 46 and the outlet opening 47 can either be individual bores or elongated holes that extend in the axial direction over a large part of the segment width.
  • the outlet opening 47 opens into a channel 48 which penetrates the segment carrier 43 in its entire axial extent and is open on both sides.
  • a channel 48 which penetrates the segment carrier 43 in its entire axial extent and is open on both sides.
  • this outer ring is flanged to the segment carrier, the contour of the inner wall being matched to the contour of the cooling segments.
  • the channel 48 opens against a head space 49, which is delimited by the cover 30 and the front segments 31.
  • the cover 30 is also flanged to the segment carrier 43.
  • These axial channels 43 serve to jointly guide the segment cooling air and the cooling air acting on the secondary zone. Since the exit of the flame tube 33, 34 directed against the primary zone and the exit of the cooling segments accordingly lead directly into the combustion chamber inlet via the channels 48, the entire cooling air is fed to the combustion process without a large pressure drop.

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine Gasturbinenbrennkammer mit einem ringförmigen Verbrennungsraum gemäss Oberbegriff des Patentanspruchs 1.The invention relates to a gas turbine combustor with an annular combustion chamber according to the preamble of claim 1.

Stand der TechnikState of the art

Gasturbinenbrennkammern mit luftgekühlten Flammrohren sind bekannt, bspw. aus der US 4,077,205 oder der US 3,978,662. Das Flammrohr ist im wesentlichen aus sich in Turbinenachsrichtung überlappenden Wandteilen aufgebaut. Die Wandteile weisen an ihrer dem Verbrennungsraum abgewandten Seite jeweils mehrere, über dem Umfang verteilte Einlassöffnungen auf, über die Luft in einen im Flammrohr angeordneten und mit dem Verbrennungsraum kommunizierenden Verteilraum eingeleitet wird. Beim dortigen Kühlsystem weist das jeweilige Flammrohr eine Lippe auf, die sich über den Schlitz erstreckt, durch den der Kühlluftfilm austritt. Dieser Kühlluftfilm soll an der Wand des Flammrohres haften, um für dieses eine kühlende Sperrschicht zu bilden.Gas turbine combustion chambers with air-cooled flame tubes are known, for example from US 4,077,205 or US 3,978,662. The flame tube is essentially constructed from wall parts which overlap in the turbine axial direction. On their side facing away from the combustion chamber, the wall parts each have a plurality of inlet openings distributed over the circumference, via which air is introduced into a distribution chamber arranged in the flame tube and communicating with the combustion chamber. In the cooling system there, the respective flame tube has a lip which extends over the slot through which the cooling air film emerges. This cooling air film should adhere to the wall of the flame tube in order to form a cooling barrier layer for it.

Für die schadstoffarme Verbrennung eines gasförmigen oder flüssigen Brennstoffs hat sich in letzter Zeit die sogenannte "magere Vormischverbrennung" durchgesetzt. Dabei werden der Brennstoff und die Verbrennungsluft möglichst gleichmässig vorgemischt und erst dann der Flamme zugeführt. Wird dies mit hohem Luftüberschuss vollzogen, wie dies bei Gasturbinenanlagen üblich ist, so entstehen relativ niedrige Flammentemperaturen, was wiederum zu der gewünschten, geringen Bildung von Stickoxyden führt.The so-called "lean premix combustion" has recently become established for the low-pollutant combustion of a gaseous or liquid fuel. The fuel and the combustion air are premixed as evenly as possible and only then fed to the flame. If this is done with a high excess of air, as is customary in gas turbine plants, relatively low flame temperatures arise, which in turn leads to the desired, low formation of nitrogen oxides.

Die oben erwähnten bekannten Gasturbinenbrennkammern weisen nunmehr den Nachteil auf, dass der Luftverbrauch für Kühlzwecke viel zu hoch ist und dass infolge der Einspeisung der Kühlluft in das Flammrohrinnere stromabwärts der Flamme diese Luft dem eigentlichen Verbrennungsprozess nicht zur Verfügung steht. Die Brennkammer kann demzufolge nicht mit der erforderlichen hohen Luftüberschusszahl gefahren werden.The known gas turbine combustion chambers mentioned above now have the disadvantage that the air consumption for cooling purposes is much too high and that as a result of the infeed of the Cooling air into the flame tube interior downstream of the flame, this air is not available to the actual combustion process. As a result, the combustion chamber cannot be operated with the required high excess air ratio.

Eine Gasturbinenbrennkammer der eingangs genannten Art mit einem ringförmigen Verbrennungsraum ist bekannt aus der GB-A-2074308. Die die Wandung des Verbrennungsraums bildenden Segmente sind in einem gitterförmigen Rahmen eingehängt. Sie bestehen aus einer innernen und einer äusseren Wand. Sie werden über an der äusseren Wand angeordnete Öffnungen mit Kühlluft versorgt.A gas turbine combustion chamber of the type mentioned at the beginning with an annular combustion chamber is known from GB-A-2074308. The segments forming the wall of the combustion chamber are suspended in a lattice-shaped frame. They consist of an inner and an outer wall. They are supplied with cooling air through openings on the outer wall.

Aus der US-A-4,288,980 ist eine Topfbrennkammer bekannt, bei der die Wandungen des Verbrennungsraumes sich nicht bis zum Eintritt der Gasturbine erstrecken. Bei derartigen Topfbrennkammern befindet sich zwischen deren Austritt und Turbineneintritt ein äusserst komplex gestaltetes Heissgasgehäuse, in welchem vom kreisförmigen Brennkammerquerschnitt auf den ringförmigen Gasturbinenquerschnitt übergegangen werden muss. Die gesamte verdichtete Verbrennungsluft wird über einen Ringraum zwischen Wänden um das Heissgasgehäuse geführt und in die Brennkammer eingeleitet. Dabei findet keine getrennte und unabhängige Kühlung der Primär- und der Sekundärzone statt. Vielmehr strömt die gesamte Verbrennungsluft nach Durchströmung des Ringkanals und nach dortiger Kühlung der Wandung über in die Kühlrohre der Primärzone. Die gleiche Luft kühlt damit sowohl die Wandungen der Sekundärzone als auch anschliessend die durch die Rohre gebildete Wandung der Primärzone. Das Austrittsende des Flammrohres ist somit nicht direkt mit dem Brennkammereintritt in leitender Verbindung, sondern mündet über einen Flansch in die Berohrung zur dortigen konvektiven Kühlung. Dies hat den Nachteil, dass zum einen die Durchströmung der Berohrung mit einem Druckverlust verbunden ist, und zum andern dass die hochbelastete Primärzone mit bereits stark vorgewärmter Kühlluft beaufschlagt wird.A pot combustion chamber is known from US Pat. No. 4,288,980, in which the walls of the combustion chamber do not extend to the inlet of the gas turbine. In such pot combustion chambers there is an extremely complex hot gas housing between their outlet and turbine inlet, in which a transition from the circular combustion chamber cross section to the annular gas turbine cross section has to be made. The entire compressed combustion air is led through an annular space between walls around the hot gas housing and introduced into the combustion chamber. There is no separate and independent cooling of the primary and secondary zones. Instead, the entire combustion air flows into the cooling tubes of the primary zone after flowing through the ring channel and after cooling the wall there. The same air thus cools both the walls of the secondary zone and then the wall of the primary zone formed by the tubes. The outlet end of the flame tube is thus not in direct communication with the combustion chamber inlet, but opens into the tube via a flange for convective cooling there. This has the disadvantage that, on the one hand, the flow through the tubing is associated with a loss of pressure, and, on the other hand, that the highly stressed primary zone is subjected to cooling air which is already preheated.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer der eingangs genannten Art den Kühluftverbrauch zu minimieren, um den Ausstoss an NOx zu reduzieren.The invention has for its object to minimize the cooling air consumption in a gas turbine combustion chamber of the type mentioned in order to reduce the emission of NO x .

Erfindungsgemäss wird diese Aufgabe mit den Merkmalen der Patentansprüche gelöst.According to the invention, this object is achieved with the features of the claims.

Der Vorteil der Erfindung ist unter anderem darin zu sehen, dass mit der neuen Massnahme infolge des getrennten Kreuzstromes der beiden Kühlluftströme deren Druckverluste klein gehalten werden können. Schliesslich wird die gesamte Kühlluft nach vollzogener Kühlung dem Verbrennungsprozess zugeführt.The advantage of the invention can be seen, inter alia, in the fact that with the new measure, as a result of the separate crossflow of the two cooling air flows, their pressure losses can be kept low. Finally, the entire cooling air is fed into the combustion process after cooling.

Es ist besonders zweckmässig, wenn im Segmenträger einerseits mit dem Sammelraum kommunizierende radiale Öffnungen für die Zufuhr der Segment-Kühlluft und andererseits mit dem Brennereintritt kommunizierende axiale Kanäle für die gemeinsame Abfuhr der Segment-Kühlluft und der die Sekundärzone beaufschlagenden Kühlluft angeordnet sind. Der Segmentträger übernimmt neben seiner Tragfunktion somit auch die Kanalisierung sämtlicher Kühlluftströme. Da der Träger in der Regel ein Gussstück ist, können die erforderlichen Öffnungen auf einfachste Art hergestellt werden, wodurch sich zusätzliche Luftleitungen erübrigen.It is particularly expedient if, on the one hand, radial openings communicating with the collecting space for the supply of the segment cooling air and, on the other hand, axial channels communicating with the burner inlet are arranged for the joint removal of the segment cooling air and the cooling air acting on the secondary zone. In addition to its supporting function, the segment carrier also takes over the channeling of all cooling air flows. Since the carrier is usually a cast piece, the required openings can be made in the simplest way, which makes additional air lines unnecessary.

Werden als Brenner Vormischbrenner der Doppelkegelbauart eingesetzt, wie sie beispielsweise aus der EP-B1-321809 bekannt sind, so sind in der Regel jeweils zwei solcher Brenner radial übereinanderliegend auf einem Frontsegment angeordnet. Auf den zu einem Kreisring zusammengesetzten Frontsegmenten sind die Brenner von benachbarten Frontsegmenten aus Platzgründen jeweils radial versetzt. Dies führt dazu, dass in Umfangsrichtung jeder zweite Brenner näher an den Segmenten angeordnet ist als die unmittelbar benachbarten. Wenn nun in Umfangsrichtung die Anzahl der aneinandergereihten Kühlsegmente der Anzahl Frontsegmente entspricht und wenn die die Anzahl der Luftzuführöffnungen und der Abführkanäle im Segmenträger ebenfalls der Anzahl Kühlsegmente in Umfangsrichtung entspricht, so hat man ein einfaches Mittel in der Hand, durch beispielsweise unterschiedliches Dimensionieren der Zuström- oder Abströmbohrungen die Luftzufuhr zu den Kühlsegmenten entsprechend ihrer thermischen Belastung zu dosieren.If premixing burners of the double-cone type are used as burners, as are known for example from EP-B1-321809, two such burners are generally arranged radially one above the other on a front segment. On the front segments assembled to form a circular ring, the burners of adjacent front segments are each radially offset for reasons of space. This means that every second burner is arranged closer to the segments in the circumferential direction than the immediately adjacent ones. If now in The number of cooling segments lined up corresponds to the number of front segments and if the number of air supply openings and discharge channels in the segment carrier also corresponds to the number of cooling segments in the circumferential direction, then you have a simple tool in hand, for example by differently dimensioning the inflow or outflow bores Dosing air supply to the cooling segments according to their thermal load.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer einwelligen axialdurchströmten Gasturbine dargestellt.In the drawing, an embodiment of the invention is shown using a single-shaft gas turbine with axial flow.

Es zeigen:

Fig. 1
einen Teillängsschnitt der Gasturbine;
Fig. 2
ein vergrösserter Ausschnitt der Primärzone der Brennkammer;
Fig. 3
einen Teilquerschnitt durch die Primärzone der Brennkammer nach Linie 3-3 in Fig. 2;
Show it:
Fig. 1
a partial longitudinal section of the gas turbine;
Fig. 2
an enlarged section of the primary zone of the combustion chamber;
Fig. 3
a partial cross section through the primary zone of the combustion chamber according to line 3-3 in Fig. 2;

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das vollständige Abgasrohr mit Kamin sowie die Eintrittspartien des Verdichterteils. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The system does not show, for example, the complete exhaust pipe with chimney and the inlet parts of the compressor part. The direction of flow of the work equipment is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Die Anlage, von der in Fig. 1 nur die oberhalb der Maschinenachse 10 liegende Hälfte dargestellt ist, besteht gasturbinenseitig (1) im wesentlichen aus dem mit Laufschaufeln beschaufelten Rotor 11 und dem mit Leitschaufeln bestückten Schaufelträger 12. Der Schaufelträger 12 ist über Vorsprünge in entsprechenden Aufnahmen im Turbinengehäuse 13 eingehängt. An das Turbinengehäuse 13 ist das Abgasgehäuse 14 angeflanscht, welches im wesentlichen aus einem nabenseitigen, ringförmigen Innenteil 16 und einem ringförmigen Aussenteil 17 besteht, welche den Diffusor 19 begrenzen. Beide Elemente 16 und 17 sind in der Regel Halbschalen mit axialer Trennebene. Sie sind miteinander verbunden durch mehrere radiale Strömungsrippen 18, die gleichmässig verteilt über den Umfang angeordnet sind. Im Hohlraum innerhalb des Innenteils 16 ist die austrittsseitige Lagerung der Turbomaschine angeordnet, wobei der Rotor 11 in einem Traglager 21 einliegt.The system, of which only the half lying above the machine axis 10 is shown in FIG. 1, essentially consists on the gas turbine side (1) of the rotor 11 bladed with rotor blades and the blade carrier 12 equipped with guide blades. The blade carrier 12 is over projections hooked into corresponding receptacles in the turbine housing 13. The exhaust housing 14 is flanged to the turbine housing 13, which essentially consists of a hub-side, annular inner part 16 and an annular outer part 17, which delimit the diffuser 19. Both elements 16 and 17 are usually half-shells with an axial parting plane. They are connected to one another by a plurality of radial flow ribs 18, which are arranged evenly distributed over the circumference. The outlet-side mounting of the turbomachine is arranged in the cavity within the inner part 16, the rotor 11 being located in a support bearing 21.

Das Turbinengehäuse 13 und der Schaufelträger 12 sind mit einer in der Maschinenachse 10 liegenden, nicht dargestellten, horizontalen Trennebene versehen. Darin sind die in der Regel mit Flanschen versehenen oberen und unteren Hälften des Turbinengehäuses und des Schaufelträgers miteinander verschraubt.The turbine housing 13 and the blade carrier 12 are provided with a horizontal parting plane (not shown) lying in the machine axis 10. The upper and lower halves of the turbine housing and of the blade carrier, which are generally provided with flanges, are screwed together.

Im dargestellten Fall umfasst das Turbinengehäuse 13 ebenfalls den Sammelraum 15 für die verdichtete Brennluft. Aus diesem Sammelraum gelangt ein Teil der Brennluft in die Ringbrennkammer 3, welche ihrerseits in den Turbineneinlass, d.h. stromaufwärts der ersten Leitreihe mündet. In den Sammelraum gelangt die verdichtete Luft aus dem Diffusor 22 des Verdichters 2. Von letzterem sind lediglich die drei letzten Stufen dargestellt. Die Laufbeschaufelung des Verdichters und der Turbine sitzen auf der gemeinsamen Welle 11, Deren Mittelachse stellt die Längsachse 10 der Gasturbineneinheit dar.In the illustrated case, the turbine housing 13 also includes the collecting space 15 for the compressed combustion air. Part of the combustion air passes from this collecting space into the annular combustion chamber 3, which in turn enters the turbine inlet, i.e. flows upstream of the first guide row. The compressed air arrives in the collecting space from the diffuser 22 of the compressor 2. Only the last three stages of the latter are shown. The blading of the compressor and the turbine sit on the common shaft 11, the central axis of which represents the longitudinal axis 10 of the gas turbine unit.

Der zwischen Turbine und Verdichter befindliche Wellenteil ist als Trommel 23 ausgebildet. Diese Trommel ist in ihrer ganzen axialen Erstreckung von einer Trommelabdeckung 24 umgeben, welche über nichtdargestellte Rippen mit dem Diffusoraussengehäuse des Verdichters befestigt ist. Diese Trommelabdeckung bildet verdichterseitig das Deckband für die Schaufeln der letzten Verdichterleitreihe. Turbinenseitig begrenzt die Trommelabdeckung zusammen mit der Stirnseite des Turbinenrotors einen radial verlaufenden Radseitenraum. Dieser Raum bildet das austrittsseitige Ende eines Ringkanals 25, welcher, ausgehend von der Nabe hinter der letzten Verdichterlaufreihe, zwischen Trommelabdeckung und Trommel verläuft. In diesen Ringkanal wird die gesamte rotorseitige Kühlluft eingeleitet.The shaft part located between the turbine and the compressor is designed as a drum 23. The entire axial extent of this drum is surrounded by a drum cover 24, which is fastened to the diffuser outer housing of the compressor via ribs (not shown). This drum cover forms the cover band for the compressor Buckets of the last compressor guide row. On the turbine side, the drum cover, together with the end face of the turbine rotor, delimits a radially running wheel side space. This space forms the outlet-side end of an annular channel 25 which, starting from the hub behind the last row of compressor runs, runs between the drum cover and the drum. The entire rotor-side cooling air is introduced into this ring duct.

Die Brennkammer 3 ist an ihrem Kopfende mit Vormischbrennern 20 bestückt, wie sie beispielsweise aus der EP-B1-321 809 bekannt sind. Bei einem solchen in Fig. 2 nur schematisch dargestellten Vormischbrenner handelt es sich um einen sogenannte Doppelkegelbrenner. Im wesentlichen besteht er aus zwei hohlen, kegelförmigen Teilkörpern 26, 27 die in Strömungsrichtung ineinandergeschachtelt sind. Dabei sind die jeweiligen Mittelachsen der beiden Teilkörper gegeneinander versetzt. Die benachbarten Wandungen der beiden Teilkörper bilden in deren Längserstreckung tangentiale Schlitze 28 für die Verbrennungsluft, die auf diese Weise in das Brennerinnere gelangt. Dort ist eine Brennstoffdüse 29 für flüssigen Brennstoff angeordnet. Der Brennstoff wird in einem spitzen Winkel in die Hohlkegel eingedüst. Das entstehende kegelige Flüssigbrennstoffprofil wird von der tangential einströmenden Verbrennungsluft umschlossen. In axialer Richtung wird die Konzentration des Brennstoffes fortlaufend infolge der Vermischung mit der Verbrennungsluft abgebaut. Der Brenner kann ebenfalls mit gasförmigem Brennstoff betrieben werden. Hierzu sind im Bereich der tangentialen Schlitze in den Wandungen der beiden Teilkörper in Längsrichtung verteilte Gaseinströmöffnungen vorgesehen. Im Gasbetrieb beginnt die Gemischbildung mit der Verbrennungsluft somit bereits in der Zone der Eintrittsschlitze 28. Es versteht sich, dass auf diese Weise auch ein Mischbetrieb mit beiden Brennstoffarten möglich ist. Am Brenneraustritt stellt sich eine möglichst homogene Brennstoffkonzentration über dem beaufschlagten kreisringförmigen Querschnitt ein. Es entsteht am Brenneraustritt eine definierte kalottenförmige Rückströmzone, an deren Spitze die Zündung erfolgt.The combustion chamber 3 is equipped at its head end with premix burners 20, as are known for example from EP-B1-321 809. Such a premix burner, shown only schematically in FIG. 2, is a so-called double-cone burner. It essentially consists of two hollow, conical partial bodies 26, 27 which are nested one inside the other in the direction of flow. The respective central axes of the two partial bodies are offset from one another. The adjacent walls of the two partial bodies in their longitudinal extent form tangential slots 28 for the combustion air, which in this way reaches the interior of the burner. A fuel nozzle 29 for liquid fuel is arranged there. The fuel is injected into the hollow cone at an acute angle. The resulting conical liquid fuel profile is enclosed by the combustion air flowing in tangentially. The concentration of the fuel is continuously reduced in the axial direction due to the mixing with the combustion air. The burner can also be operated with gaseous fuel. For this purpose, gas inflow openings distributed in the longitudinal direction are provided in the region of the tangential slots in the walls of the two partial bodies. In gas operation, the mixture formation with the combustion air thus begins in the zone of the inlet slots 28. It goes without saying that mixed operation with both types of fuel is also possible in this way. At the burner outlet, a fuel concentration that is as homogeneous as possible is established over the applied annular cross section. A defined one is created at the burner outlet dome-shaped backflow zone, at the tip of which the ignition takes place.

Ein Teil der verdichteten Brennluft tritt aus dem Sammelraum 15 durch eine gelochte Abdeckung 30 in Pfeilrichtung in die Brenner ein. Anlässlich der Verbrennung erreichen die Verbrennungsgase sehr hohe Temperaturen, was besondere Anforderungen an die zu kühlenden Brennkammerwandungen darstellt. Dies gilt umsomehr, wenn sogenannte Low NOx-Brenner, beispielsweise die hier zugrundegelegten Vormischbrenner zur Anwendung gelangen, welche relativ bescheidene Kühlluftmengen erfordern. Stromabwärts der Brennermündungen erstreckt sich der ringförmige Verbrennungsraum bis zum Turbineneintritt. Er ist sowohl innen als auch aussen begrenzt durch zu kühlende Wandungen, welche in der Regel als selbsttragende Strukturen konzipiert sind.Part of the compressed combustion air enters the burner from the collecting space 15 through a perforated cover 30 in the direction of the arrow. On the occasion of the combustion, the combustion gases reach very high temperatures, which places special demands on the combustion chamber walls to be cooled. This applies all the more when so-called low NO x burners, for example the premix burners used here, are used, which require relatively modest amounts of cooling air. The annular combustion chamber extends downstream of the burner orifices up to the turbine inlet. It is limited both inside and outside by walls to be cooled, which are usually designed as self-supporting structures.

Soweit sind Ringbrennkammern für Gasturbinen bekannt.So far, ring combustion chambers for gas turbines are known.

Die vorliegende Brennkammer ist mit 72 der genannten Brenner 20 bestückt. Aus Fig. 3, welches einen Viertelkreisausschnitt zeigt, ist deren Anordnung erkennbar. Je zwei Brenner sind radial übereinanderliegend auf einem Frontsegment 31 angeordnet. 36 von diesen aneinanderliegenden Frontsegmenten bilden einen geschlossenen Kreisring, welcher auf diese Art einen Hitzeschild bildet. Die beiden Brenner von benachbarten Frontsegmenten sind jeweils radial versetzt. Dies bedeutet, dass der radial äussere Brenner jedes zweiten Frontsegmentes unmittelbar an die äussere Ringwand der Brennkammer angrenzt, wie dies auch in Fig. 2 erkennbar ist. Die radial inneren Brenner der andern Frontsegmente sind demnach in unmittelbarer Nähe der innernen Ringwand angeordnet. Hieraus ergibt sich eine ungleichmässige thermische Belastung der entsprechenden Ringwände über dem Umfang.The present combustion chamber is equipped with 72 of the said burners 20. 3, which shows a quarter-circle section, shows the arrangement thereof. Two burners are arranged radially one above the other on a front segment 31. 36 of these adjacent front segments form a closed circular ring, which in this way forms a heat shield. The two burners from adjacent front segments are each radially offset. This means that the radially outer burner of every second front segment directly adjoins the outer ring wall of the combustion chamber, as can also be seen in FIG. 2. The radially inner burners of the other front segments are therefore arranged in the immediate vicinity of the inner ring wall. This results in an uneven thermal load on the corresponding ring walls over the circumference.

Das Brennkammerinnere ist nunmehr in zwei Zonen unterteilt, deren Wandungen auf unterschiedliche Art gekühlt werden.The interior of the combustion chamber is now divided into two zones, the walls of which are cooled in different ways.

Eine stromabwärts liegende und in den Turbineneintritt mündende Sekundärzone 32 ist von einem doppelwandigen Flammrohr begrenzt. Es besteht sowohl an seinem Innenring 33 als auch an seinem Aussenring 34 aus einer flanschlosen, geschweissten Blechkonstruktion, welche über nichtgezeigte Distanzstücke zusammengehalten ist. Beide Ringe 33 und 34 sind an ihrem turbinenseitigen Ende offen und bilden dort den Eintritt für die Kühlluft.A secondary zone 32 lying downstream and opening into the turbine inlet is delimited by a double-walled flame tube. It consists both on its inner ring 33 and on its outer ring 34 from a flangeless, welded sheet metal construction, which is held together by spacers, not shown. Both rings 33 and 34 are open at their turbine end and form the entry for the cooling air there.

Der Ringraum 35 zwischen der Doppelwand des Aussenringes 34 bezieht die Luft direkt aus dem Sammelraum 15, wie aus Fig. 1 erkennbar ist. Unter Ausübung einer effizienten Konvektionskühlung strömt die Luft im Gegenstrom zur Brennkammerströmung in Richtung Primärzone 36.The annular space 35 between the double wall of the outer ring 34 draws the air directly from the collecting space 15, as can be seen in FIG. 1. With efficient convection cooling, the air flows in the counterflow to the combustion chamber flow in the direction of the primary zone 36.

Der Ringraum 37 zwischen der Doppelwand des Innenringes 33 wird mit Luft aus einem Nabendiffusor 38 versorgt. Dieser Nabendiffusor, welcher an den Verdichterdiffusor 22 anschliesst, wird begrenzt einerseits von der Trommelabdeckung 24 und andererseits von einer Ringschale 39. Letztere ist über nicht dargestellte Rippen mit der Trommelabdeckung 24 verbunden. Auch in diesem Ringraum 37 strömt die Luft im Gegenstrom zur Brennkammerströmung in Richtung Primärzone 36.The annular space 37 between the double wall of the inner ring 33 is supplied with air from a hub diffuser 38. This hub diffuser, which connects to the compressor diffuser 22, is delimited on the one hand by the drum cover 24 and on the other hand by an annular shell 39. The latter is connected to the drum cover 24 via ribs (not shown). In this annular space 37, too, the air flows in the counterflow to the combustion chamber flow in the direction of the primary zone 36.

Die Kühlung der hochbelasteten Primärzonen-Wandungen wird nun erfindungsgemäss mittels einzeln gekühlter Kühlsegmenten 40 durchgeführt. Diese in Umfangsrichtung und in Axialrichtung aneinandergereihten Kühlsegmente bilden über die ganze axiale Erstreckung der Primärzone 36 deren strömungsbegrenzende Wandung. Die Einzelkühlung hat den Vorteil des geringen Druckabfalls und die Kühlung kann an lokale Bedingungen angepasst werden.The cooling of the highly stressed primary zone walls is now carried out according to the invention by means of individually cooled cooling segments 40. These cooling segments lined up in the circumferential direction and in the axial direction form their flow-limiting wall over the entire axial extent of the primary zone 36. The individual cooling has the advantage of a low pressure drop and the cooling can be adapted to local conditions.

Die thermisch hochbelasteten Kühlsegmente 40 bestehen aus einer hochwarmfesten Präzisionsgusslegierung. Sie sind in Umfangsrichtung mit je zwei mit Tragzacken versehenen Füssen 42 in entsprechenden Nuten in einer Tragstruktur eingehängt, ähnlich wie beispielsweise Leitschaufelfüsse in Schaufelträgern befestigt sind. Ebenfalls ähnlich wie Schaufelträger besteht diese Tragstruktur, im folgenden Segmentträger 43 genannt, aus zwei gegossenen Halbschalen mit horizontaler Trennebene und nichtgezeigten Pratzen, mit welchen sie im Turbinengehäuse abgestützt ist.The thermally highly stressed cooling segments 40 consist of a high-temperature, precision cast alloy. They are in the circumferential direction, each with two feet with supporting teeth 42 suspended in corresponding grooves in a supporting structure, similar to how guide vane feet are fastened in blade carriers. Similarly to blade carriers, this support structure, hereinafter referred to as segment carrier 43, consists of two cast half-shells with a horizontal parting plane and not shown claws with which it is supported in the turbine housing.

In axialer Richtung sind auf diese Weise drei solche Kühlsegmente nebeneinander angeordnet (Fig.2). Die gegenseitige Abdichtung kann auf einfache Art durch Einlegen einer Dichtschnur zwischen zwei benachbarten Füssen erfolgen.In this way, three such cooling segments are arranged side by side in the axial direction (FIG. 2). The mutual sealing can be done easily by inserting a sealing cord between two adjacent feet.

In Umfangsrichtung entspricht die Anzahl nebeneinandergereihter Kühlsegmente 40 der Anzahl Frontsegmente 31, so dass jedem Frontsegment und dem der Wand nächstliegendem Brenner 20 ein Kühlsegment zugeordnet ist (Fig. 3). Zur Bildung einer geschlossenen Kühlkammer 44 sind die Kühlsegmente in Umfangsrichtung ebenfalls mit radial verlaufenden Wänden 45 ausgerüstet. Anlässlich der Montage werden die Kühlsegmente mit diesen Wänden 45 in Anschlag gebracht. Die Wände dichten mit ihren Stirnseiten gegen die Unterseite des Segmentträgers 43In the circumferential direction, the number of cooling segments 40 arranged next to one another corresponds to the number of front segments 31, so that a cooling segment is assigned to each front segment and to the burner 20 closest to the wall (FIG. 3). To form a closed cooling chamber 44, the cooling segments are also equipped with radially extending walls 45 in the circumferential direction. On the occasion of assembly, the cooling segments are brought into abutment with these walls 45. The end faces of the walls seal against the underside of the segment carrier 43

An seiner dem Verbrennungsraum abgekehrten Seite, d.h. der Kühlkammer 44 zugekehrten Seite ist jedes Kühlsegment 40 mit einer verippten oder gewellten Oberfläche 41 versehen. Die Rippen verlaufen in Umfangsrichtung (Fig. 2). Damit ist im Prinzip die Strömungsrichtung der Kühlluft innerhalb der Kühlkammer vorgegeben.On its side facing away from the combustion chamber, i.e. on the side facing the cooling chamber 44, each cooling segment 40 is provided with a ribbed or corrugated surface 41. The ribs run in the circumferential direction (Fig. 2). In principle, the flow direction of the cooling air within the cooling chamber is thus predetermined.

Die Anspeisung eines Kühlsegmentes mit Kühlluft erfolgt über eine radialgerichtete Öffnung 46, welche den Segmentträger 43 durchdringt und den Sammelraum 15 mit einem in Umfangsrichtung liegenden Ende der Kühlkammer 44 verbindet, möglichst nahe an der Wand 45. Am gegenüberliegenden Ende dieser gleichen Kühlkammer befindet sich, ebenfalls möglichst nahe an der dortigen Wand 45 die Auslassöffnung 47 im Segmentträger.A cooling segment is supplied with cooling air via a radially directed opening 46, which penetrates the segment carrier 43 and connects the collecting space 15 to one end of the cooling chamber 44 lying in the circumferential direction, as close as possible to the wall 45. Also located at the opposite end of this same cooling chamber the outlet opening 47 in the segment carrier as close as possible to the wall 45 there.

Sowohl die Öffnung 46 als auch die Auslassöffnung 47 können entweder Einzelbohrungen oder Langlöcher sein, die sich in Axialrichtung über einen Grossteil der Segmentbreite erstrecken.Both the opening 46 and the outlet opening 47 can either be individual bores or elongated holes that extend in the axial direction over a large part of the segment width.

Die Auslassöffnung 47 mündet in einen Kanal 48, der den Segmentträger 43 in seiner ganzen axialen Erstreckung durchdringt und beidseitig offen ist. Turbinenseitig öffnet er gegen den Ringraum 35 zwischen der Doppelwand des Aussenringes 34. Wie in Fig. 2 schematisch angedeutet, ist dieser Aussenring am Segmentträger angeflanscht, wobei die Kontur der Innenwand an die Kontur der Kühlsegmente angepasst ist. Brennerseitig öffnet der Kanal 48 gegen einen Kopfraum 49, welcher von der Abdeckung 30, und den Frontsegmenten 31 begrenzt ist. Die Abdeckung 30 ist ebenfalls am Segmentträger 43 angeflanscht.The outlet opening 47 opens into a channel 48 which penetrates the segment carrier 43 in its entire axial extent and is open on both sides. On the turbine side, it opens against the annular space 35 between the double wall of the outer ring 34. As indicated schematically in FIG. 2, this outer ring is flanged to the segment carrier, the contour of the inner wall being matched to the contour of the cooling segments. On the burner side, the channel 48 opens against a head space 49, which is delimited by the cover 30 and the front segments 31. The cover 30 is also flanged to the segment carrier 43.

Diese axialen Kanäle 43, von denen je einer einem Segment in Umfangsrichtung zugeordet ist, dienen somit der gemeinsamen Führung der Segment-Kühlluft und der die Sekundärzone beaufschlagenden Kühlluft. Da der gegen die Primärzone gerichtete Austritt des Flammrohres 33, 34 und der Austritt der Kühlsegmente demnach über die Kanäle 48 unmittelbar in den Brennkammereintritt münden, wird die gesamte Kühlluft ohne grossen Druckabfall dem Verbrennungsprozess zugeführt.These axial channels 43, one of which is assigned to a segment in the circumferential direction, thus serve to jointly guide the segment cooling air and the cooling air acting on the secondary zone. Since the exit of the flame tube 33, 34 directed against the primary zone and the exit of the cooling segments accordingly lead directly into the combustion chamber inlet via the channels 48, the entire cooling air is fed to the combustion process without a large pressure drop.

Zur Kühlung der inneren Wandung der Primärzone werden die gleichen Massnahmen getroffen, wie dies in Fig. 3 anhand der Kühlsegmente 40' angedeutet ist.The same measures are taken for cooling the inner wall of the primary zone as is indicated in FIG. 3 with the aid of the cooling segments 40 '.

Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausfürungsbeispiel bechränkt. Sie könnte genau so gut Anwendung finden bei der Wandkühlung von Brennkammern der Topfbauart.Of course, the invention is not limited to the exemplary embodiment shown and described. It could just as well be used for wall cooling of pot-type combustion chambers.

BezugszeichenlisteReference list

11
GasturbineGas turbine
22nd
Verdichtercompressor
33rd
BrennkammerCombustion chamber
1010th
MaschinenachseMachine axis
1111
Rotorrotor
1212th
SchaufelträgerShovel carrier
1313
TurbinengehäuseTurbine casing
1414
AbgasgehäuseExhaust housing
1515
SammelraumGathering room
1616
Innenteil vom AbgasgehäuseInner part of the exhaust housing
1717th
Aussenteil vom AbgasgehäuseOuter part of the exhaust housing
1818th
StrömungsrippeFlow rib
1919th
Diffusor von 1Diffuser of 1
2020th
Brennerburner
2121
TraglagerSupport bearing
2222
Diffusor von 2Diffuser of 2
2323
Trommeldrum
2424th
TrommelabdeckungDrum cover
2525th
RingkanalRing channel
2626
Teilkörper von 20Partial body of 20
2727
Teilkörper von 20Partial body of 20
2828
tangentialer Schlitztangential slot
2929
BrennstoffdüseFuel nozzle
3030th
Abdeckungcover
3131
FrontsegmentFront segment
3232
SekundärzoneSecondary zone
3333
Innenring von 32Inner ring of 32
3434
Aussenring von 32Outer ring of 32
3535
Ringraum von 34Annulus of 34
3636
PrimärzonePrimary zone
3737
Ringraum von 33Annulus of 33
3838
NabendiffusorHub diffuser
3939
RingschaleRing bowl
40, 40'40, 40 '
KühlsegmentCooling segment
4141
gewellte Oberfläche von 40corrugated surface of 40
4242
FussFoot
4343
SegmentträgerSegment carrier
4444
KühlkammerCooling chamber
4545
radiale Wand von 40radial wall of 40
4646
Öffnungopening
4747
AuslassöffnungOutlet opening
4848
Kanalchannel
4949
KopfraumHeadroom

Claims (6)

  1. Gas-turbine combustion chamber having an annular combustion space (32, 36) whose walls extend from the combustion chamber inlet, whose circular-ring-shaped cross section is fitted with burners (20), to the inlet of the gas turbine (1) and are at the same time exposed to an air flow supplied by the compressor (2) of the gas turbine and are cooled by the latter, the cooling air being drawn at least partly from a collecting space (15) bounded by the turbine housing (13), a plurality of individually cooled cooling segments (40) forming the flow-limiting wall in a primary zone (36), and the cooling segments being lined up in the circumferential direction and in the axial direction and being suspended in a segment carrier (32),
    characterized in that
    - the combustion space is subdivided into the primary zone (36) and a secondary zone (32), whose flowlimiting walls (40, 33, 34) are separated and are cooled independently of one another,
    - in that the segment carrier (43) forms the outer boundary between the primary zone and the collecting space (15),
    - in that the secondary zone (32) situated downstream is bounded by a double-walled flame tube (33, 34) which surrounds an annular space (35, 37) and whose inlet end on the turbine side is open and forms the inlet for the cooling air of the secondary zone, the cooling air in the annular space (35, 37) flowing in the direction of the primary zone (36) in a counterflow with respect to the combustion chamber flow,
    - and in that both the outlet end, directed towards the primary zone (36), of the annular space (35, 37) of the flame tube (33, 34) and the outlet openings (47) of the cooling segments (40) of the primary zone are in conducting connection with the burners (20) at the combustion chamber inlet.
  2. Gas-turbine combustion chamber according to Claim 1, characterized in that there are disposed in the segment carrier (43), on the one hand, radial openings (46), communicating with the collecting space (15), for the supply of the segment cooling air and, on the other hand, axial channels (48), communicating with the burner inlet, for the combined removal of the segment cooling air and of the cooling air acting on the secondary zone.
  3. Gas-turbine combustion chamber according to Claim 2, characterized in that the number of channels (48) in the segment carrier (43) corresponds to the number of cooling segments (40) in the circumferential direction.
  4. Gas-turbine combustion chamber according to Claim 1, in which the burners (20) are premix burners having two hollow conical subbodies (26, 27) which are nested in one another and whose central axes are offset with respect to one another such that in the longitudinal extension of the subbodies tangential slots (28) are formed, two burners in each case being radially disposed one on top of the other on a front segment (31) and a plurality of front segments lined up with one another forming a circular ring, characterized in that, in the circumferential direction, the number of cooling segments (40) lined up and the number of front segments (31) form an integral ratio.
  5. Gas-turbine combustion chamber according to Claim 4, characterized in that, in the circumferential direction, the number of cooling segments (40) lined up corresponds to the number of front segments (31).
  6. Gas-turbine combustion chamber according to Claim 2, characterized in that, in the axial direction, at least three cooling segments (40) disposed next to one another extend over the primary zone (36).
EP19920119123 1992-11-09 1992-11-09 Combustion chamber for gas turbine Expired - Lifetime EP0597137B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59208713T DE59208713D1 (en) 1992-11-09 1992-11-09 Gas turbine combustor
EP19920119123 EP0597137B1 (en) 1992-11-09 1992-11-09 Combustion chamber for gas turbine
JP27937293A JP3526895B2 (en) 1992-11-09 1993-11-09 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19920119123 EP0597137B1 (en) 1992-11-09 1992-11-09 Combustion chamber for gas turbine

Publications (2)

Publication Number Publication Date
EP0597137A1 EP0597137A1 (en) 1994-05-18
EP0597137B1 true EP0597137B1 (en) 1997-07-16

Family

ID=8210217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920119123 Expired - Lifetime EP0597137B1 (en) 1992-11-09 1992-11-09 Combustion chamber for gas turbine

Country Status (3)

Country Link
EP (1) EP0597137B1 (en)
JP (1) JP3526895B2 (en)
DE (1) DE59208713D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046540A1 (en) 1998-03-10 1999-09-16 Siemens Aktiengesellschaft Combustion chamber and method for operating a combustion chamber
US6370863B2 (en) 1998-07-27 2002-04-16 Asea Brown Boveri Ag Method of operating a gas-turbine chamber with gaseous fuel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504565A (en) * 1996-09-26 2001-04-03 シーメンス アクチエンゲゼルシヤフト Heat shield component having a return path for cooling fluid and heat shield device for hot gas guide component
SE9801822L (en) * 1998-05-25 1999-11-26 Abb Ab combustion device
EP1482246A1 (en) * 2003-05-30 2004-12-01 Siemens Aktiengesellschaft Combustion chamber
CN113924444A (en) * 2019-06-07 2022-01-11 赛峰直升机引擎公司 Method for manufacturing a flame tube for a turbomachine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012902A (en) * 1974-03-29 1977-03-22 Phillips Petroleum Company Method of operating a gas turbine combustor having an independent airstream to remove heat from the primary combustion zone
US4288980A (en) * 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines
US4414816A (en) * 1980-04-02 1983-11-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Combustor liner construction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046540A1 (en) 1998-03-10 1999-09-16 Siemens Aktiengesellschaft Combustion chamber and method for operating a combustion chamber
US6370863B2 (en) 1998-07-27 2002-04-16 Asea Brown Boveri Ag Method of operating a gas-turbine chamber with gaseous fuel

Also Published As

Publication number Publication date
JPH06213458A (en) 1994-08-02
EP0597137A1 (en) 1994-05-18
JP3526895B2 (en) 2004-05-17
DE59208713D1 (en) 1997-08-21

Similar Documents

Publication Publication Date Title
EP0597138B1 (en) Combustion chamber for gas turbine
DE60310170T2 (en) Fuel injection device
DE102005025823B4 (en) Method and device for cooling a combustion chamber lining and a transition part of a gas turbine
EP0781967B1 (en) Annular combustion chamber for gas turbine
DE60031744T2 (en) Turbine combustor assembly
DE102011000587B4 (en) Systems and methods for supplying high pressure air to the head end of a combustion chamber
DE3602644C2 (en)
DE102008002931A1 (en) Apparatus / method for cooling a combustor / venturi in a low NOx burner
CH697920A2 (en) Turbine engine with a combustor liner with wirbelluftgekühltem rear end and cooling methods.
DE102005048815A1 (en) Inexpensive dual fuel combustion chamber and associated method
DE102011051366A1 (en) Apparatus and method for mixing fuel in a gas turbine nozzle
EP2340397B1 (en) Burner insert for a gas turbine combustion chamber and gas turbine
DE112017002155B4 (en) GAS TURBINE
DE102015112767A1 (en) Fuel injector assemblies in combustion turbines
DE2632386A1 (en) GAS TURBINE ENGINE
DE102008022669A1 (en) Fuel nozzle and method for its production
EP0489193B1 (en) Combustion chamber for gas turbine
DE102012100368A1 (en) Combustor nozzle and method of making the combustion chamber nozzle
DE102011051324A1 (en) Apparatus and method for mixing fuel in a gas turbine nozzle
DE2161644A1 (en) Combustion chamber for gas turbines
DE3317722C2 (en) Annular diffuser device for a gas turbine engine
CH701773B1 (en) Burner with a Einlassleitschaufelsystem.
EP0718558A2 (en) Combustor
EP2808611B1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
EP0636764A1 (en) Gasturbine with cooled rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TSCHIRREN, STEFAN

Inventor name: KELLER, ALBERT

17P Request for examination filed

Effective date: 19941031

17Q First examination report despatched

Effective date: 19951201

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970716

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970716

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

REF Corresponds to:

Ref document number: 59208713

Country of ref document: DE

Date of ref document: 19970821

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970919

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101109

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101130

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101022

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20101102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130