EP0781967B1 - Annular combustion chamber for gas turbine - Google Patents

Annular combustion chamber for gas turbine Download PDF

Info

Publication number
EP0781967B1
EP0781967B1 EP96810777A EP96810777A EP0781967B1 EP 0781967 B1 EP0781967 B1 EP 0781967B1 EP 96810777 A EP96810777 A EP 96810777A EP 96810777 A EP96810777 A EP 96810777A EP 0781967 B1 EP0781967 B1 EP 0781967B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
gas
air
turbine
chamber according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810777A
Other languages
German (de)
French (fr)
Other versions
EP0781967A2 (en
EP0781967A3 (en
Inventor
Klaus Dr. Döbbeling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Publication of EP0781967A2 publication Critical patent/EP0781967A2/en
Publication of EP0781967A3 publication Critical patent/EP0781967A3/en
Application granted granted Critical
Publication of EP0781967B1 publication Critical patent/EP0781967B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/045Air inlet arrangements using pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes

Definitions

  • the invention relates to the field of combustion technology. It relates to a gas turbine ring combustion chamber, which is operated with premix burners, and a method for Operation of this device.
  • Gas turbines essentially consist of the components compressor, Combustion chamber and turbine. For environmental reasons is increased instead of diffusion combustion worked with a low-pollutant premix combustion.
  • the air coming out of the compressor is very high Speed (approx. 200 m / s) and is to the contained in it Recover kinetic energy, as lossless as possible delayed in a deflection diffuser.
  • the speed in the combustion chamber strong at least locally downstream of the burner lowered. Usually a local recirculation zone with negative Speeds generated. In the combustion chamber the speed then about 50 m / s to a sufficient Preservation time and the heat transfer between hot gas and to keep the combustion chamber wall small. At the exit of the The combustion chamber accelerates again, so that on Entry of the turbine speeds up to close to the gas the speed of sound can be reached.
  • the invention tries to avoid all these disadvantages. you is based on the task of a gas turbine ring combustion chamber, which is equipped with special premix burners develop, which is characterized by a small size and simplified compared to the known prior art is, with improved premixing of fuel and Air occurs with a lower total pressure drop.
  • this is done in a gas turbine ring combustion chamber, which is arranged downstream of a compressor and on it Front plate with at least one arranged in a ring Premix burner row is equipped, achieved by direct downstream of the compressor outlet from the guide vanes of the last compressor series for each burner one as Diffuser-trained burner air duct leads to the latter downstream end there is at least one longitudinal vortex generator is located, at least in or downstream of the longitudinal vortex generator a fuel injection is provided and downstream the fuel injection ends in the combustion chamber Mixing channel of constant channel height and with a length that is approximately corresponds to twice the hydraulic duct height, is arranged.
  • the combustion air is released immediately after it leaves the compressor into individual air flows for the burners and for the Cooling of the combustion chamber and turbine split, after that the speed of the air for the burners to about that delayed half the value of the compressor outlet speed, then at least one longitudinal vortex per combustion air duct generated in the air, during or downstream of the Longitudinal vortex generation fuel is added to the mixture now flows along in a mixing channel and with a total swirl contaminated flows into the combustion chamber and there finally burns.
  • the advantages of the invention include that the combustion chamber compared to the prior art has smaller dimensions and the area to be cooled in the Combustion chamber is reduced. The pressure loss between the compressor outlet and turbine entry is smaller. Furthermore there is a very good and robust uniform distribution of the air on the burners and the premixing of fuel and combustion air will be improved.
  • the ratio of the number the blades of the last row of compressors to the number of premix burners is an integer, especially 1 or 2, because then a combustion air duct directly to one or two blade ducts the last row of compressors can be coupled.
  • the mixing channel is approximately rounded Cross-section, because then a good mixing of air and fuel is achieved. But also mixed channels with a rectangular cross section are conceivable. Likewise can if there is only one burner row, the mixing channel be designed as a segmented annular gap.
  • combustion air channels are spiral are arranged around the axis of the gas turbine. In this way axial length can be saved.
  • the axes of the mixing channels are advantageous (i.e. the direction of flow of the entering the combustion chamber Mixture), arranged so that it coincides with the axis of the Gas turbine an angle, preferably an angle of 45 °, form. This will allow the mixture and flame stabilization further improved.
  • FIG. 1 shows a partial longitudinal section of a gas turbine system with an annular combustion chamber according to the prior art.
  • an annular combustion chamber 4 Between a compressor 1 and a turbine 2, of which only one guide vane 3 of the first row of guide vanes is shown is an annular combustion chamber 4, which with premix burners 5 of the double cone design is equipped, arranged.
  • the supply of fuel 6 to each premix burner 5 is realized over fuel lances 7.
  • the annular combustion chamber 4 is cooled convectively or by means of impingement cooling.
  • the compressor 1 essentially consists of the blade carrier 8, in which the guide vanes 9 are hooked in and out of the rotor 10, which receives the blades 11. In Fig. 1 are each only the last compressor stages are shown.
  • a deflection diffuser 12 At the exit of the Compressor 1, a deflection diffuser 12 is arranged. It ends in a arranged between the compressor 1 and the annular combustion chamber 4 Plenary 13.
  • the air 14 emerging from the compressor 1 has a very high high speed. It is delayed in the deflection diffuser 12, to recover the kinetic energy it contains so that in the adjoining the deflection diffuser 12 Plenary 13 only very low air speeds to rule. This can result in a uniform distribution of the air 14 the burner 5 can be reached and there can be cooling air without any problems for the combustion chamber 4 and the turbine 2 are removed. There but on the other hand for the reliable design of the premixing process of air 14 and fuel 6 at the mixing point the fuel 6 the speed in order to avoid must be high from flashback, the air 14 in the premixing zone be accelerated again strongly before again downstream of the burner 5 in the combustion chamber 4 for reasons of flame stability the speed is reduced.
  • Air 14 is no longer delayed to plenary conditions, but instead the delay in the air 14 is only limited to that Speed level of the premix section. This allows the multiple redirection of the total air mass flow is eliminated and the size of the combustion chamber is significantly reduced become.
  • each burner 5 of the annular combustion chamber 4 each designed as a diffuser Burner air duct 15 leads.
  • At least one fuel injection 17 is provided and downstream of the fuel injection 17 is in the combustion chamber 4 ending mixing channel 19 of constant height H and with a length L, which is about twice the value of the hydraulic channel diameter D corresponds to arranged.
  • the deflection diffuser 12 and 12 is therefore omitted plenary session 13.
  • the air from the compressor 1 is immediately after the outlet from the compressor 1 into a large number of individual channels divided, namely into the combustion air channels 15 and in annular Channels 20 arranged on the hub side or housing side for the cooling air 21 of the combustion chamber 4 and the turbine 2, the is provided here at a high pressure level. Furthermore can air 22 from the channels 20 for flushing out the Mixing channel 19 forming boundary layer can be removed. This is only an example for the innermost mixing channel 19 shown.
  • the combustion air channels 15 are designed as diffusers and delay the air speed to about half the value the compressor outlet speed, with a maximum of 75% of the dynamic energy can be converted into pressure gain.
  • the longitudinal vortex generator 16 After the combustion air 14 to an appropriate speed level was delayed at the longitudinal vortex generator 16 generates one or more longitudinal vortices per combustion air duct 15.
  • the longitudinal vortex generator 16 is an integrated Fuel injection 17 fuel 6, which for example is supplied by fuel lances 7, mixed with the air 14.
  • the fuel injection 17 also downstream of the longitudinal vortex generator 16 may be arranged.
  • the longitudinal vortices generated guarantee a good mixture of fuel 6 and combustion air 14 in the subsequent mixing channels 19. These have a constant height H and are approximately double as long as two hydraulic channel diameters D.
  • the mixing channels 19 have a circular shape Cross section, are therefore a mixing tube.
  • the mixing tube axes 24 are arranged parallel to the axis 25 of the gas turbine.
  • the mixing channels 19 not shown here in the drawing can the mixing channels 19 a right or have polygonal cross-section or they can also be a segmented annular gap.
  • FIGS. 1 and 2 the reduction in the area of the combustion chamber wall to be cooled can be clearly seen according to the invention.
  • a gas turbine from the 170 MWel class, eg GT13E2 should serve as an example. While according to the prior art (FIG. 1) the outer diameter in the area of the combustion chamber is approximately 4.5 m, this value is only 3.5 m when using the invention, so that the size is reduced by approx. 20% is reached. Due to the greatly reduced area to be cooled in the new combustion chamber and the extremely low NOx emissions that can be achieved with good premix burner technology at relatively high flame temperatures (theoretically approx. 5 ppm NOx at 15% O 2 and 1850 K flame temperature), the combustion chamber can be cooled via film or effusion cooling.
  • FIG. 3 is a partial cross section of a two-row annular combustion chamber corresponding to a section in the plane III-III of the in Fig. 2 shown four-row combustion chamber.
  • the annular combustion chamber 4 according to FIG. 3 is thus with two rows Premix burners 5 equipped.
  • the arrows in Fig. 3 are intended an opposite angle of attack of the burner 5 in the side by side Clarify rows. By this opposite Angle of attack is achieved in the combustion chamber 4 no total swirl is generated.
  • the cross section of the mixing channels 19 is not round in this embodiment, but elliptical.
  • the mixing tube axes 24 are opposite the shaft in the circumferential direction, i.e. the mixing tube axis 24 forms an angle of ⁇ with the machine axis 25 approx. 45 °. This will allow the mixture and flame stabilization improved in the combustion chamber 4.
  • combustion air channels 15 spiral about the axis 25 of the Gas turbine arranged to the axial length of the machine to keep it as small as possible.
  • the invention is particularly suitable for the use of MBtu as fuel, i.e. fuel with a medium calorific value, for example in the gasification of heavy oil, coal and Tar arises.
  • the fuel admixture can be used in this case very easily into a higher speed range (> 100 m / s) to be relocated to these fuels, too are characterized by a high flame speed, to avoid backfire to the fuel injector.
  • the high-frequency generated by the last row of compressor runs (> 1000 Hz) pressure pulsations (wake of the blades) particularly support the fuel-air mixing process, because between the end of the compressor 1 and the fuel injection 17 only a short delay section, i.e. a short burner air duct 15 designed as a diffuser, is required

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft eine Gasturbinenringbrennkammer, welche mit Vormischbrennern betrieben wird, sowie ein Verfahren zum Betrieb dieser Vorrichtung.The invention relates to the field of combustion technology. It relates to a gas turbine ring combustion chamber, which is operated with premix burners, and a method for Operation of this device.

Stand der TechnikState of the art

Gasturbinen bestehen im wesentlichen aus den Bauteilen Verdichter, Brennkammer und Turbine. Aus Gründen des Umweltschutzes wird anstelle einer Diffusionsverbrennung vermehrt mit einer schadstoffarmen Vormischverbrennung gearbeitet.Gas turbines essentially consist of the components compressor, Combustion chamber and turbine. For environmental reasons is increased instead of diffusion combustion worked with a low-pollutant premix combustion.

Es ist bekannter Stand der Technik (vgl. H. Neuhoff und K. Thoren: "Die neuen Gasturbinen GT 24 und GT 26 - hohe Wirkungsgrade dank sequentieller Verbrennung", ABB Technik 2(1994), S. 4-7 und D. Viereck: "Die Gasturbine GT13E2 - ein richtungsweisendes Konzept für die Zukunft", ABB Technik 6(1993), S. 11-16), zwischen dem Verdichter und der mit mehreren Vormischbrennern ausgerüsteten Ringbrennkammer einer Gasturbine ein Plenum anzuordnen, in dem sehr geringe Luftgeschwindigkeiten herrschen. Durch das Plenum soll eine Gleichverteilung der Luft auf die Brenner erreicht werden. Zusätzlich wird damit eine Möglichkeit geschaffen, Kühlluft für die Brennkammer und die Turbine auf hohem Druckniveau zu entnehmen.It is known prior art (see H. Neuhoff and K. Thoren: "The new gas turbines GT 24 and GT 26 - high efficiency thanks to sequential combustion ", ABB Technik 2 (1994), pp. 4-7 and D. Viereck: "The gas turbine GT13E2 - a trend-setting concept for the future ", ABB Technik 6 (1993), pp. 11-16), between the compressor and the one with several Ring combustion chamber equipped with premix burners Gas turbine to arrange a plenum in which very low air speeds to rule. Through the plenum, there should be an equal distribution the air on the burners can be reached. additionally this creates a way of cooling air for the Combustion chamber and the turbine can be removed at a high pressure level.

Die aus dem Verdichter austretende Luft hat eine sehr hohe Geschwindigkeit (ca. 200 m/s) und wird, um die in ihr enthaltene kinetische Energie zurückzugewinnen, möglichst verlustfrei in einem Umlenkdiffusor verzögert.The air coming out of the compressor is very high Speed (approx. 200 m / s) and is to the contained in it Recover kinetic energy, as lossless as possible delayed in a deflection diffuser.

Um eine schadstoffarme Verbrennung zu erreichen, werden Brennstoff und Verbrennungsluft im Brenner vorgemischt. Zwecks betriebssicherer Gestaltung des Vormischvorgangs muss an der Einmischungsstelle, in deren Nähe sich eine Zone mit stöchiometrischem Gemisch befindet, die Geschwindigkeit aber sehr hoch sein, damit ein Rückschlagen der Flamme sicher vermieden werden kann. Die Luft, die im Plenum nur noch sehr geringe Geschwindigkeiten (ca. 10 m/s) aufweist, muss daher wieder auf hohe Geschwindigkeiten (ca. 80 bis 100 m/s) in der Vormischzone beschleunigt werden.In order to achieve low-pollution combustion, Fuel and combustion air premixed in the burner. For the operationally reliable design of the premixing process at the point of interference, in the vicinity of which there is a zone with stoichiometric mixture, but the speed be very high so that the flame does not kick back can be. The air in the plenum is very low Speeds (approx. 10 m / s) must therefore back to high speeds (approx. 80 to 100 m / s) in the Premix zone can be accelerated.

Um die Flamme stromab des Vormischbrenners an einem festen Ort zu stabilisieren, wird die Geschwindigkeit in der Brennkammer zumindestens lokal stromab des Brenners wieder stark abgesenkt. Meist wird eine lokale Rezirkulationszone mit negativen Geschwindigkeiten erzeugt. In der Brennkammer beträgt die Geschwindigkeit dann etwa 50 m/s, um eine hinreichende Verweilzeit zu erhalten und den Wärmeübergang zwischen Heissgas und Brennkammerwand klein zu halten. Am Austritt der Brennkammer erfolgt wiederum eine Beschleunigung, so dass am Eintritt der Turbine Geschwindigkeiten des Gases bis nahe an die Schallgeschwindigkeit erreicht werden.Around the flame downstream of the premix burner on a fixed Stabilize place, the speed in the combustion chamber strong at least locally downstream of the burner lowered. Usually a local recirculation zone with negative Speeds generated. In the combustion chamber the speed then about 50 m / s to a sufficient Preservation time and the heat transfer between hot gas and to keep the combustion chamber wall small. At the exit of the The combustion chamber accelerates again, so that on Entry of the turbine speeds up to close to the gas the speed of sound can be reached.

Die mehrfachen Beschleunigungen und Verzögerungen der strömenden Medien (Luft, Brennstoff/Luft-Gemisch, Heissgase) zwischen Verdichteraustritt und Turbineneintritt haben den Nachteil, dass sie jeweils mit Verlusten behaftet sind. Sie erfordern ausserdem mehrfache Umlenkungen des gesamten Luftmassenstromes, da der Abstand zwischen Verdichteraustritt und Turbineneintritt aus rotordynamischen Gründen klein gehalten werden muss, so dass dadurch die Baugrösse der Brennkammer nach dem bekannten Stand der Technik recht gross und kompliziert ist.The multiple accelerations and decelerations of the flowing Media (air, fuel / air mixture, hot gases) between Compressor outlet and turbine inlet have the disadvantage that they are each subject to losses. You require in addition, multiple redirections of the entire air mass flow, because the distance between the compressor outlet and Turbine inlet kept small for rotor dynamic reasons must be, so that the size of the combustion chamber quite large and complicated according to the known prior art is.

Darstellung der ErfindungPresentation of the invention

Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, eine Gasturbinenringbrennkammer, welche mit speziellen Vormischbrennern ausgerüstet ist, zu entwickeln, die sich durch eine geringe Baugrösse auszeichnet und gegenüber dem bekannten Stand der Technik vereinfacht ist, wobei eine verbesserte Vormischung von Brennstoff und Luft bei einem geringeren Gesamtdruckverlust erfolgt.The invention tries to avoid all these disadvantages. you is based on the task of a gas turbine ring combustion chamber, which is equipped with special premix burners develop, which is characterized by a small size and simplified compared to the known prior art is, with improved premixing of fuel and Air occurs with a lower total pressure drop.

Erfindungsgemäss wird dies bei einer Gasturbinenringbrennkammer, welche stromab eines Verdichters angeordnet und auf ihrer Frontplatte mit mindestens einer ringförmig angeordneten Vormischbrennerreihe bestückt ist, dadurch erreicht, dass direkt stromab des Verdichteraustritts von den Leitschaufeln der letzten Verdichterreihe zu jedem Brenner jeweils ein als Diffusor ausgebildeter Brennerluftkanal führt, an dessem stromabwärtigen Ende sich mindestens ein Längswirbelerzeuger befindet, wobei im oder stromab des Längswirbelerzeugers mindestens eine Brennstoffeindüsung vorgesehen ist und stromab der Brennstoffeindüsung ein in die Brennkammer endender Mischkanal konstanter Kanalhöhe und mit einer Länge, die etwa dem zweifachen Wert der hydraulischen Kanalhöhe entspricht, angeordnet ist.According to the invention, this is done in a gas turbine ring combustion chamber, which is arranged downstream of a compressor and on it Front plate with at least one arranged in a ring Premix burner row is equipped, achieved by direct downstream of the compressor outlet from the guide vanes of the last compressor series for each burner one as Diffuser-trained burner air duct leads to the latter downstream end there is at least one longitudinal vortex generator is located, at least in or downstream of the longitudinal vortex generator a fuel injection is provided and downstream the fuel injection ends in the combustion chamber Mixing channel of constant channel height and with a length that is approximately corresponds to twice the hydraulic duct height, is arranged.

Die Verbrennungsluft wird direkt nach Austritt aus dem Verdichter in einzelne Luftströme für die Brenner und für die Kühlung der Brennkammer und Turbine aufgeteilt, danach wird die Geschwindigkeit der Luft für die Brenner auf etwa den halben Wert der Verdichteraustrittsgeschwindigkeit verzögert, anschliessend wird pro Brennluftkanal mindestens ein Längswirbel in der Luft erzeugt, wobei während oder stromab der Längswirbelerzeugung Brennstoff beigemischt wird, das Gemisch nunmehr in einem Mischkanal entlangströmt und mit einem Gesamtdrall behaftet in die Brennkammer strömt und dort schliesslich verbrennt.The combustion air is released immediately after it leaves the compressor into individual air flows for the burners and for the Cooling of the combustion chamber and turbine split, after that the speed of the air for the burners to about that delayed half the value of the compressor outlet speed, then at least one longitudinal vortex per combustion air duct generated in the air, during or downstream of the Longitudinal vortex generation fuel is added to the mixture now flows along in a mixing channel and with a total swirl contaminated flows into the combustion chamber and there finally burns.

Die Vorteile der Erfindung bestehen unter anderem darin, dass die Brennkammer im Vergleich zum bisherigen Stand der Technik geringere Abmasse aufweist und die zu kühlende Fläche in der Brennkammer verringert wird. Der Druckverlust zwischen Verdichteraustritt und Turbineneintritt ist kleiner. Ausserdem erfolgt eine sehr gute und robuste Gleichverteilung der Luft auf die Brenner und die Vormischung von Brennstoff und Verbrennungsluft wird verbessert.The advantages of the invention include that the combustion chamber compared to the prior art has smaller dimensions and the area to be cooled in the Combustion chamber is reduced. The pressure loss between the compressor outlet and turbine entry is smaller. Furthermore there is a very good and robust uniform distribution of the air on the burners and the premixing of fuel and combustion air will be improved.

Es ist besonders zweckmässig, wenn das Verhältnis der Anzahl der Schaufeln der letzten Verdichterreihe zur Anzahl der Vormischbrenner ganzzahlig, insbesondere 1 oder 2 ist, weil dann ein Brennluftkanal unmittelbar an ein oder zwei Schaufelkanäle der letzten Verdichterreihe angekoppelt werden kann.It is particularly useful if the ratio of the number the blades of the last row of compressors to the number of premix burners is an integer, especially 1 or 2, because then a combustion air duct directly to one or two blade ducts the last row of compressors can be coupled.

Von Vorteil ist es, wenn der Mischkanal einen annähernd runden Querschnitt aufweist, weil dann eine gute Durchmischung von Luft und Brennstoff erreicht wird. Aber auch Mischkanäle mit einem rechteckigen Querschnitt sind denkbar. Ebenso kann beim Vorhandensein von nur einer Brennerreihe der Mischkanal als ein segmentierter Ringspalt ausgebildet sein.It is advantageous if the mixing channel is approximately rounded Cross-section, because then a good mixing of air and fuel is achieved. But also mixed channels with a rectangular cross section are conceivable. Likewise can if there is only one burner row, the mixing channel be designed as a segmented annular gap.

Ferner ist es vorteilhaft, wenn die Brennluftkanäle spiralig um die Achse der Gasturbine angeordnet sind. Auf diese Weise kann axiale Länge gespart werden.It is also advantageous if the combustion air channels are spiral are arranged around the axis of the gas turbine. In this way axial length can be saved.

Schliesslich werden mit Vorteil die Achsen der Mischkanäle (d.h. die Strömungsrichtung des in die Brennkammer eintretenden Gemisches), so angeordnet, dass sie mit der Achse der Gasturbine einen Winkel, vorzugsweise einen Winkel von 45°, bilden. Dadurch wird die Mischung und Flammenstabilisierung weiter verbessert.Finally, the axes of the mixing channels are advantageous (i.e. the direction of flow of the entering the combustion chamber Mixture), arranged so that it coincides with the axis of the Gas turbine an angle, preferably an angle of 45 °, form. This will allow the mixture and flame stabilization further improved.

Weiterhin ist es zweckmässig, wenn beim Vorhandensein von mehr als einer ringförmigen Vormischbrennerreihe die Brenner von Reihe zu Reihe gegensinnig in Umfangsrichtung angestellt sind. Dadurch wird der Gesamtdrall in der Brennkammer zu Null.Furthermore, it is useful if in the presence of more than one ring-shaped premix burner row from row to row in opposite directions in the circumferential direction are. As a result, the total swirl in the combustion chamber becomes too Zero.

Es ist ausserdem von Vorteil wenn zusätzlich Luft in die Grenzschicht des Mischkanales eingedüst wird, weil dadurch ein Flammenrückschlag in die Mischzone weiter verhindert wird.It is also an advantage if there is additional air in the Boundary layer of the mixing channel is injected because of this a flashback in the mixing zone is further prevented becomes.

Vorteilhaft ist es, wenn bei Verwendung von Brennstoff mit mittlerem Heizwert (MBtu) dieser in einen Bereich hoher Luftgeschwindigkeit (>100 m/s) eingemischt wird. Dadurch wird auch bei diesen Brennstoffen, die eine sehr hohe Flammengeschwindigkeit aufweisen, ein Rückzünden zum Brennstoffinjektor sicher vermieden.It is advantageous if when using fuel with average calorific value (MBtu) of this in an area of high air speed (> 100 m / s) is mixed in. This will even with these fuels, which have a very high flame speed have backfire to the fuel injector safely avoided.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung dargestellt.In the drawing are several embodiments of the invention shown.

Es zeigen:

Fig. 1
einen Teillängsschnitt einer Gasturbinenanlage mit einer mit Vormischbrennern bestückten Ringbrennkammer nach dem Stand der Technik;
Fig. 2
einen Teillängsschnitt einer Gasturbinenanlage mit einer erfindungsgemässen vierreihigen Ringbrennkammer;
Fig. 3
einen Teilquerschnitt einer zweireihigen Brennkammer entsprechend einem Schnitt in der Ebene III-III der in Fig. 2 dargestellten vierreihigen Brennkammer;
Fig. 4
eine Abwicklung der Vormischstrecke (entlang IV-IV in Fig. 3) zwischen Verdichteraustritt und Brennkammerfrontplatte .
Show it:
Fig. 1
a partial longitudinal section of a gas turbine system with an annular combustion chamber equipped with premix burners according to the prior art;
Fig. 2
a partial longitudinal section of a gas turbine plant with a four-row annular combustion chamber according to the invention;
Fig. 3
a partial cross section of a two-row combustion chamber corresponding to a section in the plane III-III of the four-row combustion chamber shown in Fig. 2;
Fig. 4
a settlement of the premixing section (along IV-IV in Fig. 3) between the compressor outlet and the combustion chamber front plate.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das Abgasgehäuse der Gasturbine mit Abgasrohr und Kamin sowie die Eintrittspartien des Verdichterteils und die Niederdruckverdichterstufen. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.It is only essential for understanding the invention Elements shown. The system is not shown for example the exhaust gas casing of the gas turbine with an exhaust pipe and chimney and the inlet sections of the compressor section and the low pressure compressor stages. The flow direction of the Work equipment is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 bis 4 näher erläutert.The invention is described below using exemplary embodiments and FIGS. 1 to 4 explained in more detail.

Fig. 1 zeigt zunächst einen Teillängsschnitt einer Gasturbinenanlage mit einer Ringbrennkammer nach dem Stand der Technik. Zwischen einem Verdichter 1 und einer Turbine 2, von der nur eine Leitschaufel 3 der ersten Leitschaufelreihe dargestellt ist, ist eine Ringbrennkammer 4, welche mit Vormischbrennern 5 der Doppelkegelbauart bestückt ist, angeordnet. Die Zufuhr des Brennstoffes 6 zu jedem Vormischbrenner 5 wird über Brennstofflanzen 7 realisiert. Die Ringbrennkammer 4 wird konvektiv bzw. mittels Prallkühlung gekühlt. Der Verdichter 1 besteht im wesentlichen aus dem Schaufelträger 8, in dem die Leitschaufeln 9 eingehängt sind und aus dem Rotor 10, der die Laufschaufeln 11 aufnimmt. In Fig. 1 sind jeweils nur die letzten Verdichterstufen dargestellt. Am Austritt des Verdichters 1 ist ein Umlenkdiffussor 12 angeordnet. Er mündet in ein zwischen Verdichter 1 und Ringbrennkammer 4 angeordnetes Plenum 13.1 shows a partial longitudinal section of a gas turbine system with an annular combustion chamber according to the prior art. Between a compressor 1 and a turbine 2, of which only one guide vane 3 of the first row of guide vanes is shown is an annular combustion chamber 4, which with premix burners 5 of the double cone design is equipped, arranged. The supply of fuel 6 to each premix burner 5 is realized over fuel lances 7. The annular combustion chamber 4 is cooled convectively or by means of impingement cooling. The compressor 1 essentially consists of the blade carrier 8, in which the guide vanes 9 are hooked in and out of the rotor 10, which receives the blades 11. In Fig. 1 are each only the last compressor stages are shown. At the exit of the Compressor 1, a deflection diffuser 12 is arranged. It ends in a arranged between the compressor 1 and the annular combustion chamber 4 Plenary 13.

Die aus dem Verdichter 1 austretende Luft 14 hat eine sehr hohe Geschwindigkeit. Sie wird im Umlenkdiffusor 12 verzögert, um die in ihr enthaltene kinetische Energie zurückzugewinnen, so dass im sich an den Umlenkdiffusor 12 anschliessenden Plenum 13 nur noch sehr geringe Luftgeschwindigkeiten herrschen. Dadurch kann eine Gleichverteilung der Luft 14 auf die Brenner 5 erreicht werden und es kann problemlos Kühlluft für die Brennkammer 4 und die Turbine 2 entnommen werden. Da aber andererseits zur betriebssicheren Gestaltung des Vormischvorgangs von Luft 14 und Brennstoff 6 an der Einmischstelle des Brennstoffes 6 die Geschwindigkeit zwecks Vermeidung von Flammenrückschlag hoch sein muss, muss die Luft 14 in der Vormischzone wieder stark beschleunigt werden, bevor wiederum stromab der Brenner 5 in der Brennkammer 4 aus Flammenstabilitätsgründen eine Absenkung der Geschwindigkeit erfolgt. Am stromabwärtigen Ende der Brennkammer 4 wird dann das Gas wiederum beschleunigt, so dass am Eintritt in die Turbine 2 Geschwindigkeiten nahe der Schallgeschwindigkeit erreicht werden. Die mehrfache Beschleunigungen und Verzögerungen zwischen Verdichteraustritt und Turbineneintritt sind mit Verlusten behaftet und die erforderlichen mehrfachen Umlenkungen des Luftmassenstromes führen zu einer recht grossen Bauhöhe. So beträgt beispielsweise bei einer Gasturbine aus der 170 MWel Klasse nach dem Stand der Technik (siehe Fig. 1) der äussere Durchmesser im Bereich der Brennkammer ca. 4,5 m.The air 14 emerging from the compressor 1 has a very high high speed. It is delayed in the deflection diffuser 12, to recover the kinetic energy it contains so that in the adjoining the deflection diffuser 12 Plenary 13 only very low air speeds to rule. This can result in a uniform distribution of the air 14 the burner 5 can be reached and there can be cooling air without any problems for the combustion chamber 4 and the turbine 2 are removed. There but on the other hand for the reliable design of the premixing process of air 14 and fuel 6 at the mixing point the fuel 6 the speed in order to avoid must be high from flashback, the air 14 in the premixing zone be accelerated again strongly before again downstream of the burner 5 in the combustion chamber 4 for reasons of flame stability the speed is reduced. Then at the downstream end of the combustion chamber 4 the gas in turn accelerates so that at the entrance to the Turbine 2 speeds close to the speed of sound can be achieved. The multiple accelerations and decelerations between compressor outlet and turbine inlet with losses and the required multiple redirections of the air mass flow lead to a very large one Height. For example, for a gas turbine the 170 MWel class according to the prior art (see FIG. 1) the outer diameter in the combustion chamber area approx. 4.5 m.

In Fig. 2 ist ein Ausführungsbeispiel der Erfindung anhand einer vierreihigen Gasturbinenringbrennkammer dargestellt. Im Unterschied zum oben beschriebenen Stand der Technik wird die Luft 14 nicht mehr auf Plenumsbedingungen verzögert, sondern die Verzögerung der Luft 14 beschränkt sich nur noch auf das Geschwindigkeitsniveau der Vormischstrecke. Dadurch kann die mehrfache Umlenkung des Gesamtluftmassenstromes entfallen und die Baugrösse im Bereich der Brennkammer wesentlich reduziert werden.2 is an embodiment of the invention based on a four-row gas turbine ring combustion chamber. in the Difference from the prior art described above Air 14 is no longer delayed to plenary conditions, but instead the delay in the air 14 is only limited to that Speed level of the premix section. This allows the multiple redirection of the total air mass flow is eliminated and the size of the combustion chamber is significantly reduced become.

Bei der in Fig. 2 dargestellten Ausführungsvariante der Erfindung ist unmittelbar stromab des Verdichteraustritts an den Leitschaufeln 9 der letzten Verdichterschaufelreihe ein Brennerluftverteilersystem angeordnet, bei dem zu jedem Brenner 5 der Ringbrennkammer 4 jeweils ein als Diffusor ausgebildeter Brennerluftkanal 15 führt. Am stromabwärtigen Ende des Brennluftkanales 15 befindet sich mindestens ein Längswirbelerzeuger 16. Im oder stromab des Längswirbelerzeugers 16 ist mindestens eine Brennstoffeindüsung 17 vorgesehen und stromab der Brennstoffeindüsung 17 ist ein in die Brennkammer 4 endender Mischkanal 19 konstanter Höhe H und mit einer Länge L, die etwa dem zweifachen Wert des hydraulischen Kanaldurchmessers D entspricht, angeordnet. Der hydraulische Kanaldurchmesser ist definiert als Verhältnis der vierfaches Querfläche des Kanals zum Kanalumfang. Bei einem kreisförmigen Kanal gilt demnach: H=D.In the embodiment variant of the invention shown in FIG. 2 is immediately downstream of the compressor outlet the guide vanes 9 of the last row of compressor blades Burner air distribution system arranged to each burner 5 of the annular combustion chamber 4, each designed as a diffuser Burner air duct 15 leads. At the downstream end of the combustion air duct 15 there is at least one longitudinal vortex generator 16. In or downstream of the longitudinal vortex generator 16 at least one fuel injection 17 is provided and downstream of the fuel injection 17 is in the combustion chamber 4 ending mixing channel 19 of constant height H and with a length L, which is about twice the value of the hydraulic channel diameter D corresponds to arranged. The hydraulic channel diameter is defined as a ratio of four times Transverse area of the channel to the channel circumference. With a circular Channel therefore applies: H = D.

Gemäss der Erfindung entfällt somit der Umlenkdiffusor 12 und das Plenum 13.According to the invention, the deflection diffuser 12 and 12 is therefore omitted plenary session 13.

Die Luft aus dem Verdichter 1 wird direkt nach dem Austritt aus dem Verdichter 1 in eine Vielzahl von einzelnen Kanälen aufgeteilt, und zwar in die Brennluftkanäle 15 und in ringförmige nabenseitig bzw. gehäuseseitig angeordnete Kanäle 20 für die Kühlluft 21 der Brennkammer 4 und der Turbine 2, die hier auf hohem Druckniveau bereitgestellt wird. Ausserdem kann aus den Kanälen 20 Luft 22 zur Ausspülung der sich im Mischkanal 19 ausbildenden Grenzschicht entnommen werden. Dies ist nur für den innersten Mischkanal 19 beispielhaft dargestellt. The air from the compressor 1 is immediately after the outlet from the compressor 1 into a large number of individual channels divided, namely into the combustion air channels 15 and in annular Channels 20 arranged on the hub side or housing side for the cooling air 21 of the combustion chamber 4 and the turbine 2, the is provided here at a high pressure level. Furthermore can air 22 from the channels 20 for flushing out the Mixing channel 19 forming boundary layer can be removed. This is only an example for the innermost mixing channel 19 shown.

Die Brennluftkanäle 15 sind als Diffusoren ausgestaltet und verzögern die Luftgeschwindigkeit auf etwa den halben Wert der Verdichteraustrittsgeschwindigkeit, wobei maximal 75% der dynamischen Energie in Druckgewinn umgewandelt werden können.The combustion air channels 15 are designed as diffusers and delay the air speed to about half the value the compressor outlet speed, with a maximum of 75% of the dynamic energy can be converted into pressure gain.

Nachdem die Verbrennungsluft 14 auf ein geeignetes Geschwindigkeitsniveau verzögert wurde, werden am Längswirbelerzeuger 16 ein oder mehrere Längswirbel pro Brennluftkanal 15 erzeugt. Im Längswirbelerzeuger 16 wird durch eine integrierte Brennstoffeindüsung 17 Brennstoff 6, welcher beispielsweise durch Brennstofflanzen 7 zugeführt wird, der Luft 14 beigemischt. Selbstverständlich kann in einem anderen Ausführungsbeispiel die Brennstoffeindüsung 17 auch stromab der Längswirbelerzeuger 16 angeordnet sein. Die erzeugten Längswirbel garantieren eine gute Vermischung von Brennstoff 6 und Verbrennungsluft 14 in den sich anschliessenden Mischkanälen 19. Diese weisen eine konstante Höhe H auf und sind etwa doppelt so lang wie zwei hydraulische Kanaldurchmesser D. Im vorliegenden Fall besitzen die Mischkanäle 19 einen kreisförmigen Querschnitt, sind also ein Mischrohr. Die Mischrohrachsen 24 sind dabei parallel zur Achse 25 der Gasturbine angeordnet. In anderen, hier nicht zeichnerisch dargestellten Ausführungsbeispielen können die Mischkanäle 19 auch einen rechtoder mehreckigen Querschnitt aufweisen oder sie können auch ein segmentierten Ringspalt sein.After the combustion air 14 to an appropriate speed level was delayed at the longitudinal vortex generator 16 generates one or more longitudinal vortices per combustion air duct 15. In the longitudinal vortex generator 16 is an integrated Fuel injection 17 fuel 6, which for example is supplied by fuel lances 7, mixed with the air 14. Of course, in another embodiment the fuel injection 17 also downstream of the longitudinal vortex generator 16 may be arranged. The longitudinal vortices generated guarantee a good mixture of fuel 6 and combustion air 14 in the subsequent mixing channels 19. These have a constant height H and are approximately double as long as two hydraulic channel diameters D. In the present In this case, the mixing channels 19 have a circular shape Cross section, are therefore a mixing tube. The mixing tube axes 24 are arranged parallel to the axis 25 of the gas turbine. In other exemplary embodiments, not shown here in the drawing can the mixing channels 19 a right or have polygonal cross-section or they can also be a segmented annular gap.

Es ist von Vorteil, wenn die vom Längswirbelerzeuger 16 hervorgerufenen Längswirbel im Mischkanal 19 einen Gesamtdrall erzeugen, der nach Austritt des Brennstoff/Luft-Gemisches 23 in die Brennkammer 4 zu einer hochturbulenten Flammenstabilisierungszone führt, indem der Wirbel aufplatzt und auf der Achse eine Zone mit sehr geringer oder negativer Axialgeschwindigkeit erzeugt wird. Ein Flammenrückschlag in die Mischzone kann durch ein ausgeglichenes Axialgeschwindigkeitsprofil mit einer Überhöhung auf der Achse und durch eine zusätzliche Eindüsung von Luft 22 in die Grenzschicht des Mischkanales 19 sicher unterbunden werden.It is advantageous if those caused by the longitudinal vortex generator 16 Longitudinal vortex in the mixing channel 19 a total swirl generate the after the fuel / air mixture 23 into the combustion chamber 4 to a highly turbulent flame stabilization zone leads by the vertebrae bursting and on the Axis a zone with very low or negative axial speed is produced. A flashback in the Mixing zone can be achieved by a balanced axial speed profile with a cant on the axis and by a additional injection of air 22 into the boundary layer of the Mixing channel 19 can be safely prevented.

Günstig ist es, wenn die Anzahl der Leitschaufeln 9 der letzten Verdichterreihe und die Anzahl der Vormischbrenner 5 in einem ganzzahligen Verhältnis zueinander stehen. Dadurch kann ein Brennerluftkanal 15 unmittelbar an beispielsweise einen oder zwei Schaufelkanäle der letzten Verdichterreihe angekoppelt werden.It is expedient if the number of guide vanes 9 last Compressor series and the number of premix burners 5 in have an integer relationship to each other. This can a burner air duct 15 directly to, for example, one or two blade channels of the last row of compressors are coupled become.

Vergleicht man die Fig. 1 und 2, so ist deutlich die Reduktion der zu kühlenden Fläche der Brennkammerwand gemäss der Erfindung zu erkennen. Als Beispiel soll eine Gasturbine aus der 170 MWel Klasse, z.B. GT13E2, dienen. Während nach dem Stand der Technik (Fig. 1) der äussere Durchmesser im Bereich der Brennkammer etwa 4,5 m beträgt, ergibt sich für diesen Wert bei Einsatz der Erfindung nur noch 3,5 m, so dass eine Reduktion der Baugrösse um ca. 20% erreicht wird. Durch die stark verringerte zu kühlende Fläche in der neuen Brennkammer und durch die mit einer guten Vormischbrennertechnik erreichbaren extrem niedrigen NOx-Emmissionen bei relativ hohen Flammentemperaturen (theoretisch ca. 5 ppm NOx bei 15% O2 und 1850 K Flammentemperatur) kann die Kühlung der Brennkammer über Film- oder Effusionskühlung erfolgen.Comparing FIGS. 1 and 2, the reduction in the area of the combustion chamber wall to be cooled can be clearly seen according to the invention. A gas turbine from the 170 MWel class, eg GT13E2, should serve as an example. While according to the prior art (FIG. 1) the outer diameter in the area of the combustion chamber is approximately 4.5 m, this value is only 3.5 m when using the invention, so that the size is reduced by approx. 20% is reached. Due to the greatly reduced area to be cooled in the new combustion chamber and the extremely low NOx emissions that can be achieved with good premix burner technology at relatively high flame temperatures (theoretically approx. 5 ppm NOx at 15% O 2 and 1850 K flame temperature), the combustion chamber can be cooled via film or effusion cooling.

Fig. 3 und Fig. 4 zeigen ein weiteres Ausführungsbeispiel. In Fig. 3 ist ein Teilquerschnitt einer zweireihigen Ringbrennkammer entsprechend einem Schnitt in der Ebene III-III der in Fig. 2 dargestellten vierreihigen Brennkammer dargestellt. Die Ringbrennkammer 4 gemäss Fig. 3 ist somit mit zwei Reihen Vormischbrennern 5 bestückt. Die Pfeile in Fig. 3 sollen einen gegensinnigen Anstellwinkel der Brenner 5 in den nebeneinanderliegenden Reihen verdeutlichen. Durch diesen gegensinnigen Anstellwinkel wird erreicht, dass in der Brennkammer 4 kein Gesamtdrall erzeugt wird. Der Querschnitt der Mischkanäle 19 ist in diesem Ausführungsbeispiel nicht rund, sondern elliptisch.3 and 4 show a further exemplary embodiment. In Fig. 3 is a partial cross section of a two-row annular combustion chamber corresponding to a section in the plane III-III of the in Fig. 2 shown four-row combustion chamber. The annular combustion chamber 4 according to FIG. 3 is thus with two rows Premix burners 5 equipped. The arrows in Fig. 3 are intended an opposite angle of attack of the burner 5 in the side by side Clarify rows. By this opposite Angle of attack is achieved in the combustion chamber 4 no total swirl is generated. The cross section of the mixing channels 19 is not round in this embodiment, but elliptical.

In Fig. 4 ist eine Abwicklung der Vormischstrecke zwischen dem Verdichteraustritt und der Brennkammerfrontplatte 18 entlang IV-IV dargestellt. Die Mischrohrachsen 24 sind gegenüber der Welle in Umfangsrichtung angestellt, d.h. die Mischrohrachse 24 bildet mit der Maschinenachse 25 einen Winkel von α ca. 45°. Dadurch wird die Mischung und Flammenstabilisierung in der Brennkammer 4 verbessert.4 is a settlement of the premix section between along the compressor outlet and the combustor faceplate 18 IV-IV shown. The mixing tube axes 24 are opposite the shaft in the circumferential direction, i.e. the mixing tube axis 24 forms an angle of α with the machine axis 25 approx. 45 °. This will allow the mixture and flame stabilization improved in the combustion chamber 4.

In einem weiteren, nicht dargestellten Ausführungsbeispiel sind die Brennluftkanäle 15 spiralig um die Achse 25 der Gasturbine angeordnet, um die axiale Länge der Maschine möglichst klein zu halten.In a further embodiment, not shown are the combustion air channels 15 spiral about the axis 25 of the Gas turbine arranged to the axial length of the machine to keep it as small as possible.

Die Erfindung eignet sich besonders für die Verwendung von MBtu als Brennstoff, also Brennstoff mit mittlerem Heizwert, der beispielsweise bei der Vergasung von Schweröl, Kohle und Teer entsteht. Die Brennstoffzumischung kann in diesem Falle sehr einfach in einen Bereich höherer Geschwindigkeit (>100 m/s) verlegt werden, um auch bei diesen Brennstoffen, die durch eine hohe Flammengeschwindigkeit charakterisiert sind, ein Rückzünden zum Brennstoffinjektor sicher zu vermeiden. Die durch die letzte Verdichterlaufreihe erzeugten hochfrequenten (>1000 Hz) Druckpulsationen (Nachläufe der Schaufeln) unterstützen hier den Brennstoff-Luft-Mischungsvorgang besonders, weil zwischen dem Ende des Verdichters 1 und der Brennstoffeindüsung 17 nur eine kurze Verzögerungsstrecke, d.h. ein kurzer als Diffusor ausgebildeter Brennerluftkanal 15, erforderlich ist The invention is particularly suitable for the use of MBtu as fuel, i.e. fuel with a medium calorific value, for example in the gasification of heavy oil, coal and Tar arises. The fuel admixture can be used in this case very easily into a higher speed range (> 100 m / s) to be relocated to these fuels, too are characterized by a high flame speed, to avoid backfire to the fuel injector. The high-frequency generated by the last row of compressor runs (> 1000 Hz) pressure pulsations (wake of the blades) particularly support the fuel-air mixing process, because between the end of the compressor 1 and the fuel injection 17 only a short delay section, i.e. a short burner air duct 15 designed as a diffuser, is required

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Verdichtercompressor
22
Turbineturbine
33
Leitschaufel von Pos. 2Guide vane from item 2
44
Ringbrennkammerannular combustion chamber
55
Vormischbrennerpremix
5a5a
äussere Brennerreiheouter row of burners
5b5b
innere Brennerreiheinner row of burners
66
Brennstofffuel
77
Brennstofflanzefuel lance
88th
Schaufelträgerblade carrier
99
Leitschaufel von Pos. 1Guide vane from item 1
1010
Rotorrotor
1111
Laufschaufel von Pos. 1Blade from pos. 1
1212
Umlenkdiffusordeflection diffusor
1313
Plenumplenum
1414
Luftair
1515
als Diffusor ausgebildeter BrennluftkanalCombustion air duct designed as a diffuser
1616
LängswirbelerzeugerLongitudinal vortex generators
1717
Brennstoffeindüsungfuel injection
1818
Frontplattefront panel
1919
Mischkanalmixing channel
2020
Kanal für Pos. 21Channel for item 21
2121
Kühlluftcooling air
2222
Luft zur Ausspülung der Grenzschicht in Pos. 19Air to flush out the boundary layer in pos. 19
2323
Brennstoff/Luft-GemischFuel / air mixture
2424
Achse von Pos. 19Axis from item 19
2525
Maschinenachsemachine axis
HH
Höhe von Pos. 19Height of item 19
LL
Länge von Pos. 19Length of item 19
DD
hydraulischer Kanaldurchmesserhydraulic channel diameter
αα
Winkel zwischen Pos. 24 und 25Angle between items 24 and 25

Claims (15)

  1. Gas-turbine annular combustion chamber (4) which is arranged downstream of a compressor (1) and is equipped on its front plate (18) with at least one row of premix burners (5) arranged in an annular form, characterized in that in each case a combustion-air duct (15) designed as a diffuser leads directly downstream of the compressor outlet from the guide vanes (9) of the last compressor row to each burner (5), at the downstream end of which combustion-air duct (15) at least one longitudinal-vortex generator (16) is located, at least one fuel injection means (17) being provided in or downstream of the longitudinal-vortex generator (16), and a mixing duct (19) which ends in the combustion chamber (4) and has a constant height (H) and a length (L) which corresponds approximately to twice the value of the hydraulic duct diameter (D) being arranged downstream of the fuel injection means (17).
  2. Gas-turbine annular combustion chamber according to Claim 1, characterized in that the ratio of the number of blades (9) of the last compressor row to the number of premix burners (5) is integral.
  3. Gas-turbine annular combustion chamber according to Claim 2, characterized in that the ratio of the number of blades (9) of the last compressor row to the number of premix burners (5) is one.
  4. Gas-turbine annular combustion chamber according to Claim 2, characterized in that the ratio of the number of blades (9) of the last compressor row to the number of premix burners (5) is two.
  5. Gas-turbine annular combustion chamber according to Claim 1, characterized in that the combustion-air ducts (15) are arranged spirally around the axis (25) of the gas turbine.
  6. Gas-turbine annular combustion chamber according to Claim 1, characterized in that the mixing duct (19) has a round cross section.
  7. Gas-turbine annular combustion chamber according to Claim 1, characterized in that the mixing duct (19) has a rectangular cross section.
  8. Gas-turbine annular combustion chamber according to Claim 1, characterized in that the mixing duct (19) is a segmented annular gap.
  9. Gas-turbine annular combustion chamber according to Claim 1, characterized in that the axes (24) of the mixing ducts (19) and the axis (25) of the gas turbine are parallel.
  10. Gas-turbine annular combustion chamber according to Claim 1, characterized in that the axes (24) of the mixing ducts (19) form an angle (α) with the axis (25) of the gas turbine.
  11. Gas-turbine annular combustion chamber according to Claim 10, characterized in that the angle (α) is about 45°.
  12. Gas-turbine annular combustion chamber according to one of claims 1 to 11, characterized in that, in the case of more than one annular premix-burner row, the burners (5) are set in an opposed manner from row (5a) to row (5b) in the peripheral direction.
  13. Method of operating a gas-turbine annular combustion chamber according to one of claims 1 to 12, characterized in that the combustion air (15), directly after discharge from the compressor (1), is split up into individual air flows for the burners and for the cooling of the combustion chamber and the turbine, in that the velocity of the air (14) for the burners (5) is then decelerated in the combustion-air ducts (15) to about half the value of the compressor outlet velocity, and in that at least one longitudinal vortex is then generated in the air (14) per combustion-air duct (15), fuel (6) being admixed during or downstream of the longitudinal-vortex generation, the mixture flowing along in a mixing duct (19) and flowing with an overall swirl imposed on it into the combustion chamber (4) and being burnt there.
  14. Method according to Claim 13, characterized in that air (22) is additionally injected into the boundary layer of the mixing duct (19).
  15. Method according to Claim 13, characterized in that, when fuel (6) having an average calorific value (MBtu) is used, this fuel (6) is intermixed in a region of high air velocity of greater than 100 m/s.
EP96810777A 1995-12-29 1996-11-12 Annular combustion chamber for gas turbine Expired - Lifetime EP0781967B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19549143 1995-12-29
DE19549143A DE19549143A1 (en) 1995-12-29 1995-12-29 Gas turbine ring combustor

Publications (3)

Publication Number Publication Date
EP0781967A2 EP0781967A2 (en) 1997-07-02
EP0781967A3 EP0781967A3 (en) 1999-04-07
EP0781967B1 true EP0781967B1 (en) 2003-04-02

Family

ID=7781645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810777A Expired - Lifetime EP0781967B1 (en) 1995-12-29 1996-11-12 Annular combustion chamber for gas turbine

Country Status (5)

Country Link
US (1) US5839283A (en)
EP (1) EP0781967B1 (en)
JP (1) JPH09196379A (en)
CN (1) CN1088151C (en)
DE (2) DE19549143A1 (en)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119459A (en) * 1998-08-18 2000-09-19 Alliedsignal Inc. Elliptical axial combustor swirler
DE19914666B4 (en) * 1999-03-31 2009-08-20 Alstom Burner for a heat generator
US6564555B2 (en) 2001-05-24 2003-05-20 Allison Advanced Development Company Apparatus for forming a combustion mixture in a gas turbine engine
US6405703B1 (en) 2001-06-29 2002-06-18 Brian Sowards Internal combustion engine
US7603841B2 (en) * 2001-07-23 2009-10-20 Ramgen Power Systems, Llc Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel
US6694743B2 (en) 2001-07-23 2004-02-24 Ramgen Power Systems, Inc. Rotary ramjet engine with flameholder extending to running clearance at engine casing interior wall
US7003961B2 (en) * 2001-07-23 2006-02-28 Ramgen Power Systems, Inc. Trapped vortex combustor
JP2003065537A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd Gas turbine combustor
JP2003074854A (en) * 2001-08-28 2003-03-12 Honda Motor Co Ltd Combustion equipment of gas-turbine engine
JP2003074853A (en) * 2001-08-28 2003-03-12 Honda Motor Co Ltd Combustion equipment of gas-turbine engine
EP1507120A1 (en) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Gasturbine
IL165233A (en) * 2004-11-16 2013-06-27 Israel Hirshberg Energy conversion device
US20060156734A1 (en) * 2005-01-15 2006-07-20 Siemens Westinghouse Power Corporation Gas turbine combustor
DE102006004840A1 (en) * 2006-02-02 2007-08-23 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustion chamber with fuel injection over the entire combustion chamber ring
WO2007102807A1 (en) * 2006-03-06 2007-09-13 United Technologies Corporation Angled flow annular combustor for turbine engine
FR2917487B1 (en) * 2007-06-14 2009-10-02 Snecma Sa TURBOMACHINE COMBUSTION CHAMBER WITH HELICOIDAL CIRCULATION OF THE AIR
CA2715186C (en) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
WO2009121008A2 (en) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
US20090241547A1 (en) * 2008-03-31 2009-10-01 Andrew Luts Gas turbine fuel injector for lower heating capacity fuels
SG195533A1 (en) 2008-10-14 2013-12-30 Exxonmobil Upstream Res Co Methods and systems for controlling the products of combustion
US8221073B2 (en) * 2008-12-22 2012-07-17 Pratt & Whitney Canada Corp. Exhaust gas discharge system and plenum
US8133017B2 (en) * 2009-03-19 2012-03-13 General Electric Company Compressor diffuser
US8474266B2 (en) * 2009-07-24 2013-07-02 General Electric Company System and method for a gas turbine combustor having a bleed duct from a diffuser to a fuel nozzle
DE102009046066A1 (en) 2009-10-28 2011-05-12 Man Diesel & Turbo Se Burner for a turbine and thus equipped gas turbine
MX341477B (en) 2009-11-12 2016-08-22 Exxonmobil Upstream Res Company * Low emission power generation and hydrocarbon recovery systems and methods.
US8381532B2 (en) * 2010-01-27 2013-02-26 General Electric Company Bled diffuser fed secondary combustion system for gas turbines
DE102010023816A1 (en) 2010-06-15 2011-12-15 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustor assembly
EP2397764A1 (en) * 2010-06-18 2011-12-21 Siemens Aktiengesellschaft Turbine burner
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
JP5906555B2 (en) 2010-07-02 2016-04-20 エクソンモービル アップストリーム リサーチ カンパニー Stoichiometric combustion of rich air by exhaust gas recirculation system
WO2012003078A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
TWI593872B (en) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 Integrated system and methods of generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (en) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same
US8978388B2 (en) 2011-06-03 2015-03-17 General Electric Company Load member for transition duct in turbine system
US8448450B2 (en) 2011-07-05 2013-05-28 General Electric Company Support assembly for transition duct in turbine system
US8650852B2 (en) 2011-07-05 2014-02-18 General Electric Company Support assembly for transition duct in turbine system
DE102011108887A1 (en) 2011-07-28 2013-01-31 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine centripetal ring combustion chamber and method for flow guidance
US9328623B2 (en) * 2011-10-05 2016-05-03 General Electric Company Turbine system
EP2587021A1 (en) 2011-10-24 2013-05-01 Siemens Aktiengesellschaft Gas turbine and method for guiding compressed fluid in a gas turbine
FR2982010B1 (en) * 2011-10-26 2013-11-08 Snecma ANNULAR COMBUSTION CHAMBER IN A TURBOMACHINE
US8701415B2 (en) 2011-11-09 2014-04-22 General Electric Company Flexible metallic seal for transition duct in turbine system
US8459041B2 (en) 2011-11-09 2013-06-11 General Electric Company Leaf seal for transition duct in turbine system
US8974179B2 (en) 2011-11-09 2015-03-10 General Electric Company Convolution seal for transition duct in turbine system
WO2013095829A2 (en) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9133722B2 (en) 2012-04-30 2015-09-15 General Electric Company Transition duct with late injection in turbine system
US9038394B2 (en) 2012-04-30 2015-05-26 General Electric Company Convolution seal for transition duct in turbine system
CA2830031C (en) 2012-10-23 2016-03-15 Alstom Technology Ltd. Burner for a can combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US8707673B1 (en) 2013-01-04 2014-04-29 General Electric Company Articulated transition duct in turbomachine
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (en) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co Reducing oxygen in a gas turbine exhaust
RU2637609C2 (en) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани System and method for turbine combustion chamber
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TW201500635A (en) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co Processing exhaust for use in enhanced oil recovery
WO2014137648A1 (en) 2013-03-08 2014-09-12 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US9080447B2 (en) 2013-03-21 2015-07-14 General Electric Company Transition duct with divided upstream and downstream portions
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
TWI654368B (en) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 System, method and media for controlling exhaust gas flow in an exhaust gas recirculation gas turbine system
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US11732892B2 (en) 2013-08-14 2023-08-22 General Electric Company Gas turbomachine diffuser assembly with radial flow splitters
US9458732B2 (en) 2013-10-25 2016-10-04 General Electric Company Transition duct assembly with modified trailing edge in turbine system
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9631814B1 (en) 2014-01-23 2017-04-25 Honeywell International Inc. Engine assemblies and methods with diffuser vane count and fuel injection assembly count relationships
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9851107B2 (en) * 2014-07-18 2017-12-26 Ansaldo Energia Ip Uk Limited Axially staged gas turbine combustor with interstage premixer
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US10465907B2 (en) 2015-09-09 2019-11-05 General Electric Company System and method having annular flow path architecture
RU2015156419A (en) 2015-12-28 2017-07-04 Дженерал Электрик Компани The fuel injector assembly made with a flame stabilizer pre-mixed mixture
US10260424B2 (en) 2016-03-24 2019-04-16 General Electric Company Transition duct assembly with late injection features
US10145251B2 (en) 2016-03-24 2018-12-04 General Electric Company Transition duct assembly
US10260360B2 (en) 2016-03-24 2019-04-16 General Electric Company Transition duct assembly
US10260752B2 (en) 2016-03-24 2019-04-16 General Electric Company Transition duct assembly with late injection features
US10227883B2 (en) 2016-03-24 2019-03-12 General Electric Company Transition duct assembly
US10605459B2 (en) * 2016-03-25 2020-03-31 General Electric Company Integrated combustor nozzle for a segmented annular combustion system
US10584876B2 (en) * 2016-03-25 2020-03-10 General Electric Company Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system
US10584880B2 (en) * 2016-03-25 2020-03-10 General Electric Company Mounting of integrated combustor nozzles in a segmented annular combustion system
US10352569B2 (en) 2016-11-04 2019-07-16 General Electric Company Multi-point centerbody injector mini mixing fuel nozzle assembly
US10295190B2 (en) 2016-11-04 2019-05-21 General Electric Company Centerbody injector mini mixer fuel nozzle assembly
US10465909B2 (en) 2016-11-04 2019-11-05 General Electric Company Mini mixing fuel nozzle assembly with mixing sleeve
US10393382B2 (en) 2016-11-04 2019-08-27 General Electric Company Multi-point injection mini mixing fuel nozzle assembly
US10724740B2 (en) 2016-11-04 2020-07-28 General Electric Company Fuel nozzle assembly with impingement purge
US10634353B2 (en) 2017-01-12 2020-04-28 General Electric Company Fuel nozzle assembly with micro channel cooling
US10890329B2 (en) 2018-03-01 2021-01-12 General Electric Company Fuel injector assembly for gas turbine engine
US10935245B2 (en) 2018-11-20 2021-03-02 General Electric Company Annular concentric fuel nozzle assembly with annular depression and radial inlet ports
US11073114B2 (en) 2018-12-12 2021-07-27 General Electric Company Fuel injector assembly for a heat engine
US11286884B2 (en) 2018-12-12 2022-03-29 General Electric Company Combustion section and fuel injector assembly for a heat engine
US11156360B2 (en) 2019-02-18 2021-10-26 General Electric Company Fuel nozzle assembly
CN111396926B (en) * 2020-04-02 2021-12-07 西北工业大学 Combustion chamber with integrated gas discharge type diffuser and flame tube
US11994292B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
KR102663869B1 (en) 2022-01-18 2024-05-03 두산에너빌리티 주식회사 Nozzle for combustor, combustor, and gas turbine including the same
CN114576655A (en) * 2022-03-09 2022-06-03 西北工业大学 Flame cylinder wall laminate cooling structure of combustion chamber with fan on turbulence column
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages
US20240068402A1 (en) * 2022-08-25 2024-02-29 Collins Engine Nozzles, Inc. Fuel injectors assemblies with tangential flow component

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627721A (en) * 1947-01-30 1953-02-10 Packard Motor Car Co Combustion means for jet propulsion units
GB1048968A (en) * 1964-05-08 1966-11-23 Rolls Royce Combustion chamber for a gas turbine engine
US3879939A (en) * 1973-04-18 1975-04-29 United Aircraft Corp Combustion inlet diffuser employing boundary layer flow straightening vanes
GB1581050A (en) * 1976-12-23 1980-12-10 Rolls Royce Combustion equipment for gas turbine engines
DE3261484D1 (en) * 1981-03-04 1985-01-24 Bbc Brown Boveri & Cie Annular combustion chamber with an annular burner for gas turbines
DE3836446A1 (en) * 1988-10-26 1990-05-03 Proizv Ob Nevskij Z Im V I Method of supplying air to the combustion zone of a combustion chamber, and combustion chamber for carrying out this method
US4991398A (en) * 1989-01-12 1991-02-12 United Technologies Corporation Combustor fuel nozzle arrangement
US5207064A (en) * 1990-11-21 1993-05-04 General Electric Company Staged, mixed combustor assembly having low emissions
CH684963A5 (en) * 1991-11-13 1995-02-15 Asea Brown Boveri Annular combustion chamber.
FR2711771B1 (en) * 1993-10-27 1995-12-01 Snecma Variable circumferential feed chamber diffuser.
DE4411623A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
DE4419338A1 (en) * 1994-06-03 1995-12-07 Abb Research Ltd Gas turbine and method for operating it
DE4435266A1 (en) * 1994-10-01 1996-04-04 Abb Management Ag burner
US5619855A (en) * 1995-06-07 1997-04-15 General Electric Company High inlet mach combustor for gas turbine engine

Also Published As

Publication number Publication date
JPH09196379A (en) 1997-07-29
CN1088151C (en) 2002-07-24
US5839283A (en) 1998-11-24
DE59610298D1 (en) 2003-05-08
EP0781967A2 (en) 1997-07-02
EP0781967A3 (en) 1999-04-07
CN1158383A (en) 1997-09-03
DE19549143A1 (en) 1997-07-03

Similar Documents

Publication Publication Date Title
EP0781967B1 (en) Annular combustion chamber for gas turbine
DE4426351B4 (en) Combustion chamber for a gas turbine
EP0597138B1 (en) Combustion chamber for gas turbine
DE69828916T2 (en) Low emission combustion system for gas turbine engines
DE102007004864C5 (en) Combustion chamber of a gas turbine and combustion control method for a gas turbine
DE4406399B4 (en) heat generator
DE19615910B4 (en) burner arrangement
EP1141628B1 (en) Burner for heat generator
EP1800062B1 (en) Burner for combustion of a low-calorific fuel gas and method for operating a burner
EP1654496B1 (en) Burner and method for operating a gas turbine
EP0687860A2 (en) Self igniting combustion chamber
EP0620362A1 (en) Gasturbine
CH708992A2 (en) Fuel injector with premixed pilot nozzle.
DE4415315A1 (en) Power plant
EP0733861A2 (en) Combustor for staged combustion
EP0718561B1 (en) Combustor
DE102013108725A1 (en) System and method for reducing combustion dynamics
WO2014191495A1 (en) Annular combustion chamber for a gas turbine, with tangential injection for late lean injection
EP2006606A1 (en) Swirling-free stabilising of the flame of a premix burner
EP1207350B1 (en) Combustor and method for operating the same
EP0924470A2 (en) Premix combustor for a gas turbine
CH701773B1 (en) Burner with a Einlassleitschaufelsystem.
DE2222366A1 (en) CARBURETTOR SYSTEM WITH ANNUAL GAP FOR FUEL / AIR FOR THE BURNER OF GAS TURBINE ENGINES
DE3821078A1 (en) RING GASIFICATION BURNER FOR GAS TURBINE
DE112016003028T5 (en) Fuel nozzle assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19990614

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59610298

Country of ref document: DE

Date of ref document: 20030508

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031029

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031103

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031107

Year of fee payment: 8

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051112