EP0636764A1 - Gasturbine with cooled rotor - Google Patents

Gasturbine with cooled rotor Download PDF

Info

Publication number
EP0636764A1
EP0636764A1 EP94108585A EP94108585A EP0636764A1 EP 0636764 A1 EP0636764 A1 EP 0636764A1 EP 94108585 A EP94108585 A EP 94108585A EP 94108585 A EP94108585 A EP 94108585A EP 0636764 A1 EP0636764 A1 EP 0636764A1
Authority
EP
European Patent Office
Prior art keywords
rotor
cooling air
gas turbine
turbine according
disks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94108585A
Other languages
German (de)
French (fr)
Other versions
EP0636764B1 (en
Inventor
Eduard Primoschitz
Pavel Dr. Rihak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0636764A1 publication Critical patent/EP0636764A1/en
Application granted granted Critical
Publication of EP0636764B1 publication Critical patent/EP0636764B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the present connection relates to a single-shaft, stationary gas turbine for power generation with a rotor welded and bladed from a plurality of disks, wherein cavities are present between the disks and in the rotor periphery between the rotor surface and platforms formed with cooling air fed by the rotor blades or heat exchanger segment plates.
  • Gas turbines of this type are known, the cooling air being removed from the high-pressure part of the compressor in the known gas turbines.
  • the object is achieved to provide improved cooling of the rotor in a gas turbine of the type mentioned.
  • this is done by feeding the axial channels in the rotor periphery from the cavities between the rotor disks.
  • the cavities are connected to the axial channels mentioned, preferably via connecting openings and are connected via a central, fed from the downstream end of the rotor cooling air supply duct.
  • cooling air can be taken from the central part of the compressor, where it is still at a lower pressure and a lower temperature than at the compressor outlet.
  • the resulting low-pressure cooling is more effective and also manages with a lower cooling air flow. The losses are also lower and the efficiency is thereby improved.
  • the gas turbine shown in FIG. 1 has a compressor 1, a turbine 2, an exhaust gas housing 3 and an exhaust gas diffuser 4. 5 the combustion chamber and 6 the rotor.
  • the rotor 6 is welded together from a plurality of disks in its axial direction, with cavities remaining between the individual disks.
  • two disks are shown and designated 7 and 8 respectively.
  • the structure of the cavities between the rotor disks can be seen in the enlarged detail in FIG. 2. That one
  • the cavity shown between the rotor disks 7 and 8 is designated 9. It is narrow in its central area around the rotor axis 10 and widens outwards into a kind of annular chamber 11.
  • the rotor 6 is provided along its axis 10 with a central channel 20 extending from the end face 19 of its downstream end. Through the central channel 20, the cavities 9 and the connection openings 18, the axial channel 17 in the rotor periphery is fed with cooling air.
  • the cooling air is branched off in the central part of the compressor from the process air which has already been partially compressed there and is conducted via a line 21 to the end face 19 of the rotor end located downstream.
  • the line 21 passes through hollow ribs 22 between the outer ring 23 and the inner ring 24 of the exhaust gas diffuser or housing 3, 4.
  • the connecting openings 18 start in the cavities 9 on the very outside, ie where they have their greatest diameter or radial distance R1.
  • the annular chambers 11 of the hollow spaces 9 taper beyond the radius R2 each also continuously. This ensures that dirt carried in the cooling air cannot collect in the cavities 9 but is thrown out through the connecting openings 18. In addition to thermal insulation effects due to deposited dirt, this also prevents the imbalance of the rotor caused by dirt accumulation.
  • the weld seam 12 is arranged slightly offset axially with respect to the connection openings 18. Its root 25 therefore comes to lie at a radial distance R3 from the rotor axis 10 which is somewhat smaller than the radial distance R1 from which the connection openings 18 originate.
  • the formation of pockets on both sides of the weld seam 12 on the outer zone of the cavities 9 in order to relieve the weld seam root 25, as was previously the case, is dispensed with for the aforementioned reasons of dirt ejection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The gas turbine has a bladed rotor (6) welded together from a plurality of discs (7,8). Hollow spaces (9) exist between the discs (7,8) and axial ducts (17) occur in the rotor periphery between the rotor surface (15) and platforms (16) formed by the rotor blades (13) and segmental heat accumulation plates respectively. According to the invention cooling air is fed to these axial ducts (17) from at least one hollow space between two rotor discs (7,8). For this purpose the at least one hollow space (9) is connected to the said axial ducts (17), preferably by way of connecting apertures (18). It is fed from a central cooling air feed duct (20) emerging from the downstream end of the rotor. The cooling air is preferably drawn off from the process air at the centre part of the compressor, resulting in low-pressure cooling. <IMAGE>

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Verbindung betrifft eine einwellige, stationäre Gasturbine zur Stromerzeugung mit einem aus mehreren Scheiben zusammengeschweissten und beschaufelten Rotor, wobei zwischen den Scheiben Hohlräume und in der Rotoroheripherie zwischen der Rotoroberfläche und durch die Rotorschaufeln bzw. Wärmestausegmentplatten gebildeten Plattformen mit Kühlluft gespeiste Axialkanäle vorhanden sind.The present connection relates to a single-shaft, stationary gas turbine for power generation with a rotor welded and bladed from a plurality of disks, wherein cavities are present between the disks and in the rotor periphery between the rotor surface and platforms formed with cooling air fed by the rotor blades or heat exchanger segment plates.

STAND DER TECHNIKSTATE OF THE ART

Gasturbinen dieser Art sind bekannt, wobei bei den bekannten Gastubinen die Kühlluft aus dem Hochdruckteil des Verdichters entnommen wird.Gas turbines of this type are known, the cooling air being removed from the high-pressure part of the compressor in the known gas turbines.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Durch die vorliegende Erfindung, wie sie im Patentanspruch 1 gekennzeichnet ist, wird die Aufgabe gelöst, bei einer Gasturbine der eingangs genannten Art eine verbesserte Kühlung des Rotors zu schaffen. Erfindungsgemäss erfolgt dies demnach durch eine Anspeisung der Axialkanäle in der Rotorperipherie aus den Hohlräumen zwischen den Rotorscheiben. Die Hohlräume stehen dabei mit den genannten Axialkanälen vorzugsweise über Verbindungsöffnungen in Verbindung und werden über einen zentralen, vom stromabwärts liegenden Ende des Rotors ausgehenden Kühlluftzufuhrkanal gespeist.By the present invention, as characterized in claim 1, the object is achieved to provide improved cooling of the rotor in a gas turbine of the type mentioned. According to the invention, this is done by feeding the axial channels in the rotor periphery from the cavities between the rotor disks. The cavities are connected to the axial channels mentioned, preferably via connecting openings and are connected via a central, fed from the downstream end of the rotor cooling air supply duct.

Ein wichtiger Vorteil der Erfindung ist darin zu sehen, dass die Kühlluft am Mittelteil des Verdichters entnommen werden kann, wo sie noch einen tieferen Druck und eine tiefere Temperatur als am Verdichter-Ausgang aufweist. Im Vergleich mit der bekannten Hochdruckkühlung ist die sich in diesem Fall ergebende Niederdruckkühlung effektiver und kommt auch mit einem geringeren Kühlluftstrom aus. Auch sind die Verluste geringer und der Wirkungsgrad wird dadurch verbessert.An important advantage of the invention can be seen in the fact that the cooling air can be taken from the central part of the compressor, where it is still at a lower pressure and a lower temperature than at the compressor outlet. In comparison with the known high-pressure cooling, the resulting low-pressure cooling is more effective and also manages with a lower cooling air flow. The losses are also lower and the efficiency is thereby improved.

Weitere bevorzugte Ausgestaltungen sind in den abhängigen Ansprüchen gekennzeichent.Further preferred configurations are characterized in the dependent claims.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Figuren näher erläutert werden. Es zeigen

Fig. 1
schematisch eine erfindungsgemässe Gasturbine und
Fig. 2
eine Ausschnittsvergrösserung (Kreis A) von Fig. 1.
The invention will be explained in more detail below on the basis of exemplary embodiments in connection with the figures. Show it
Fig. 1
schematically an inventive gas turbine and
Fig. 2
an enlarged section (circle A) of FIG. 1.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Die in Fig. 1 dargestellte Gasturbine weist einen Verdichter 1, eine Turbine 2, ein Abgasgehäuse 3 und einen Abgasdiffusor 4 auf. Mit 5 ist die Brennkammer und mit 6 der Rotor bezeichnet. Der Rotor 6 ist aus mehreren Scheiben in seiner Axialrichtung zusammengeschweisst, wobei zwischen den einzelnen Scheiben jeweils Hohlräume verbleiben. In Fig. 1 sind zwei Scheiben dargestellt und mit 7 bzw. 8 bezeichnet. Die Struktur der Hohlräume zwischen den Rotorscheiben ist in der Ausschnittsvergrösserung von Fig. 2 zu erkennen. Der dort dargestellte Hohlraum zwischen den Rotorscheiben 7 und 8 ist mit 9 bezeichnet. Er ist in seinem zentralen Bereich um die Rotorachse 10 schmal und weitet sich nach aussen zu einer Art Ringkammer 11 auf. Mit 12 ist die ringförmig voll umlaufende Schweissnaht zwischen den angrenzenden Rotorscheiben 7 und 8 bezeichnet. Im oberen Teil von Fig. 2 sind rein schematisch einige Rotorschaufeln 13 sowie Leitschaufeln 14 der Turbine 1 dargestellt. Zwischen der eigentlichen Rotoroberfläche 15 und ebenfalls nur rein schematisch dargestellten, durch die Rotorschaufeln bzw. durch Wärmestausegmentplatten gebildeten Plattformen 16 ist ein Axialkanal 17 vorhanden, der durch eine Dichtung 26 in einen Hochdruckabschnitt 17HD und einen Niederdruckabschnitt 17ND unterteilt ist. Mit dem Axialkanal stehen die Hohlräume 9 zwischen den Rotorscheiben über eine Anzahl von jeweils über den Umfang verteilten Verbindungsöffnungen bzw. Bohrungen 18 in Verbindung.The gas turbine shown in FIG. 1 has a compressor 1, a turbine 2, an exhaust gas housing 3 and an exhaust gas diffuser 4. 5 the combustion chamber and 6 the rotor. The rotor 6 is welded together from a plurality of disks in its axial direction, with cavities remaining between the individual disks. In Fig. 1 two disks are shown and designated 7 and 8 respectively. The structure of the cavities between the rotor disks can be seen in the enlarged detail in FIG. 2. That one The cavity shown between the rotor disks 7 and 8 is designated 9. It is narrow in its central area around the rotor axis 10 and widens outwards into a kind of annular chamber 11. With 12 the ring-shaped, fully encircling weld seam between the adjacent rotor disks 7 and 8 is designated. In the upper part of FIG. 2, some rotor blades 13 and guide blades 14 of the turbine 1 are shown purely schematically. An axial channel 17 is present between the actual rotor surface 15 and also only purely schematically illustrated platforms 16 formed by the rotor blades or by heat exchanger segment plates, which is divided by a seal 26 into a high-pressure section 17 HD and a low-pressure section 17 ND . The cavities 9 between the rotor disks are connected to the axial channel via a number of connection openings or bores 18 distributed over the circumference.

Wie wieder besser in Fig. 1 zu erkennen, ist der Rotor 6 entlang seiner Achse 10 mit einem, von der Stirnseite 19 seines stromabwärts liegenden Endes ausgehenden, zentralen Kanal 20 versehen. Durch den zentralen Kanal 20, die Hohlräume 9 und die Verbindungöffnungen 18 wird der Axialkanal 17 in der Rotorpheripherie mit Kühlluft gespeist.As can be seen more clearly in FIG. 1, the rotor 6 is provided along its axis 10 with a central channel 20 extending from the end face 19 of its downstream end. Through the central channel 20, the cavities 9 and the connection openings 18, the axial channel 17 in the rotor periphery is fed with cooling air.

Die Kühlluft wird im mittleren Teil des Verdichters von der dort bereits teilweise verdichteten Prozessluft abgezweigt und über eine Leitung 21 zur Stirnseite 19 des stromabwärts liegenden Rotorendes geführt. Die Leitung 21 durchsetzt dabei Hohlrippen 22 zwischen dem Aussenring 23 und dem Innenring 24 des Abgasdiffusors bzw. -gehäuses 3,4.The cooling air is branched off in the central part of the compressor from the process air which has already been partially compressed there and is conducted via a line 21 to the end face 19 of the rotor end located downstream. The line 21 passes through hollow ribs 22 between the outer ring 23 and the inner ring 24 of the exhaust gas diffuser or housing 3, 4.

Es wird jetzt wieder auf Fig. 2 Bezug genommen. Dort ist zu erkennen, dass die Verbindungsöffnungen 18 in den Hohlräumen 9 ganz aussen ansetzen, d.h. dort, wo diese ihren grössten Durchmesser bzw. radialen Abstand R1 aufweisen. Zu diesem Abstand und damit zu den Verbindungsöffnungen hin verjüngen sich die Ringkammern 11 der Hohlräme 9 jenseits des Radius R2 jeweils auch kontinuierlich. Dadurch ist sichergestellt, dass in der Kühlluft mitgeführter Schmutz sich nicht in den Hohlräumen 9 ansammeln kann, sondern durch die Verbindungsöffnungen 18 nach aussen herausgeschleudert wird. Dadurch werden neben Wärmedämmeffekten durch sich ablagernden Schmutz auch die durch Schmutzansammlungen verursachten Unwuchten des Rotors vermieden.Reference is now made to FIG. 2 again. It can be seen there that the connecting openings 18 start in the cavities 9 on the very outside, ie where they have their greatest diameter or radial distance R1. At this distance and thus towards the connection openings, the annular chambers 11 of the hollow spaces 9 taper beyond the radius R2 each also continuously. This ensures that dirt carried in the cooling air cannot collect in the cavities 9 but is thrown out through the connecting openings 18. In addition to thermal insulation effects due to deposited dirt, this also prevents the imbalance of the rotor caused by dirt accumulation.

Die Schweissnaht 12 ist im vorliegenden Ausführungsbeispiel gegenüber den Verbindungsöffnungen 18 axial etwas versetzt angeordnet. Ihre Wurzel 25 kommt deshalb bei einem radialen Abstand R3 von der Rotorachse 10 zu liegen, der etwas kleiner ist als der radiale Abstand R1, von dem die Verbindungsöffnungen 18 ausgehen. Auf die Ausbildung von Taschen beidseitig der Schweissnaht 12 an der Aussenzone der Hohlräume 9 zur Entlastung der Schweissnahtwurzel 25, so wie dies bisher üblich war, wird aus den vorgenannten Gründen des Schmutzausschleuderns verzichtet.In the present exemplary embodiment, the weld seam 12 is arranged slightly offset axially with respect to the connection openings 18. Its root 25 therefore comes to lie at a radial distance R3 from the rotor axis 10 which is somewhat smaller than the radial distance R1 from which the connection openings 18 originate. The formation of pockets on both sides of the weld seam 12 on the outer zone of the cavities 9 in order to relieve the weld seam root 25, as was previously the case, is dispensed with for the aforementioned reasons of dirt ejection.

Anders als in der nicht masstäblichen Darstellung von Fig. 2 ist es von Vorteil, die Schweissnaht 12 jeweils dicker zu machen als den geringsten gegenseitigen Abstand der Rotorscheiben.In contrast to the not-to-scale representation of FIG. 2, it is advantageous to make the weld seam 12 thicker than the smallest mutual distance between the rotor disks.

BEZEICHNUNGSLISTELIST OF DESIGNATIONS

11
Verdichtercompressor
22nd
Turbineturbine
33rd
AbgasgehäuseExhaust housing
44th
AbgasdiffusorExhaust diffuser
55
BrennkammerCombustion chamber
66
Rotorrotor
77
RotorscheibeRotor disc
88th
RotorscheibeRotor disc
99
Hohlraum zwischen zwei RotorscheibenCavity between two rotor disks
1010th
RotorachseRotor axis
1111
RingkammerRing chamber
1212th
SchweissnahtWeld
1313
RotorschaufelnRotor blades
1414
LeitschaufelnGuide vanes
1515
RotoroberflächeRotor surface
1616
PlattformenPlatforms
1717th
Axialkanal in der RotorperipherieAxial channel in the rotor periphery
1818th
VerbindungsöffnungenConnection openings
1919th
Stirnseite des stromabwärts liegenden RotorendesFront of the downstream rotor end
2020th
zentraler Kühlluftzufuhrkanalcentral cooling air supply duct
2121
KühlluftleitungCooling air line
2222
HohlrippenHollow ribs
2323
AussenringOuter ring
2424th
InnenringInner ring
2525th
SchweissnahtwurzelWeld root
2626
Dichtung HD gegen NDGasket HD against ND

Claims (9)

Einwellige, stationäre Gasturbine zur Stromerzeugung mit einem aus mehreren Scheiben (7,8) zusammengeschweissten und beschaufelten Rotor (6), wobei zwischen den Scheiben (7,8) Hohlräume (9) und in der Rotorpheripherie zwischen der Rotoroberfläche (15) und durch die Rotorschaufeln (13) bzw. Wärmestausegmentplatten gebildeten Plattformen (16) Axialkanäle (17) vorhanden sind, gekennzeichnet durch eine Anspeisung dieser Axialkanäle (17) mit Kühlluft aus mindestens einem der Hohlräume zwischen den Rotorscheiben.Single-shaft, stationary gas turbine for power generation with a rotor (6) welded and bladed from a plurality of disks (7, 8), cavities (9) between the disks (7, 8) and in the rotor periphery between the rotor surface (15) and through the There are axial blades (17) in the rotor blades (13) or platforms (16) formed by heat exchanger plates, characterized by supplying these axial channels (17) with cooling air from at least one of the cavities between the rotor disks. Gasturbine nach Anspruch 1, dadurch gekennzeichnet, dass ein oder mehrere Hohlräume (9) zwischen den Rotorscheiben (7,8) mit den genannten Axialkanälen (17) in der Rotorperipherie über Verbindungsöffnungen (18) in Verbindung stehen und dass entlang der Achse (10) des Rotors )6) ein zentraler Kühlluftzufuhrkanal (20) vorgesehen ist.Gas turbine according to claim 1, characterized in that one or more cavities (9) between the rotor disks (7, 8) are connected to said axial channels (17) in the rotor periphery via connection openings (18) and that along the axis (10) of the rotor) 6) a central cooling air supply duct (20) is provided. Gasturbine nach Anspruch 2, dadurch gekennzeichnet, dass der zentrale Rotor-Kühlluftzufuhrkanal (20) von der Stirnseite (19) des stromabwärts liegenden Rotorendes ausgeht und dass die Kühlluft dort in ihn eingespeist wird.Gas turbine according to claim 2, characterized in that the central rotor cooling air supply duct (20) extends from the end face (19) of the downstream rotor end and that the cooling air is fed into it there. Gasturbine nach Anspruch 3 und mit einem Abgasdiffusor (4), welcher einen das stromabwärts liegende Rotorende aufnehmenden Innenring (24), einen Aussenring (23) sowie Innen- und Aussenring miteinander verbindende Hohlrippen (22) aufweist, dadurch gekennzeichnet, dass die Kühlluft in wenigstens einer Kühlluftleitung (21) durch wenigstens eine der Hohlrippen (22) zum stromabwärts liegenden Rotorende geführt wird.Gas turbine according to claim 3 and having an exhaust gas diffuser (4) which has an inner ring (24) receiving the downstream rotor end, an outer ring (23) and hollow ribs (22) connecting the inner and outer ring, characterized in that the cooling air in at least a cooling air line (21) is guided through at least one of the hollow ribs (22) to the downstream rotor end. Gasturbine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kühlluft am Mittelteil des Verdichters (1) abgezapft wird.Gas turbine according to one of claims 1 to 4, characterized in that the cooling air is drawn off at the central part of the compressor (1). Gasturbine nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die genannten Verbindungsöffnungen (18) in dem mindestens einen Hohlraum (9) dort ansetzen, wo der Hohlraum (9) seinen grössten radialen Abstand (R1) von der Rotorachse (10) aufweist.Gas turbine according to one of claims 2 to 5, characterized in that said connection openings (18) start in the at least one cavity (9) where the cavity (9) is at its greatest radial distance (R1) from the rotor axis (10) . Gasturbine nach einem der Ansprüche 1 bis 4 und bei welcher die einzelnen Rotorscheiben (7,8) in ihren Randzonen jeweils über eine ringförmig verlaufende Schweissnaht (12) miteinander verschweisst sind, dadurch gekennzeichnet, dass die Schweissnaht (12) jeweils gegenüber den genannten Verbindungsöffnungen (18) axial versetzt angeordnet ist.Gas turbine according to one of claims 1 to 4 and in which the individual rotor disks (7, 8) are welded to one another in their edge zones each by means of an annular weld seam (12), characterized in that the weld seam (12) is in each case opposite the said connection openings ( 18) is axially offset. Gasturbine nach Anspruch 6 und 7, dadurch gekennzeichnet, dass der radiale Abstand (R1) von der Rotorachse (10), von dem die Verbindungsöffnungen (10) ausgehen, grösser ist als der radiale Abstand (R3), an dem die Wurzel der Schweissnaht (12) angeordnet ist.Gas turbine according to claims 6 and 7, characterized in that the radial distance (R1) from the rotor axis (10) from which the connection openings (10) originate is greater than the radial distance (R3) at which the root of the weld seam ( 12) is arranged. Gasturbine nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass sich der mindestens eine Hohlraum (9) zwischen den Rotorscheiben (7,8) zumindest jenseits eines gewissen radialen Abstandes (R2) von der Rotorachse (10) kontinuierlich zu den Verbindungöffnungen (18) hin verjüngt.Gas turbine according to one of claims 2 to 8, characterized in that the at least one cavity (9) between the rotor disks (7, 8) continuously at least beyond a certain radial distance (R2) from the rotor axis (10) to the connection openings (18 ) tapered.
EP94108585A 1993-07-17 1994-06-04 Gasturbine with cooled rotor Expired - Lifetime EP0636764B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4324034A DE4324034A1 (en) 1993-07-17 1993-07-17 Gas turbine with a cooled rotor
DE4324034 1993-07-17

Publications (2)

Publication Number Publication Date
EP0636764A1 true EP0636764A1 (en) 1995-02-01
EP0636764B1 EP0636764B1 (en) 1997-03-19

Family

ID=6493082

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94108585A Expired - Lifetime EP0636764B1 (en) 1993-07-17 1994-06-04 Gasturbine with cooled rotor

Country Status (5)

Country Link
US (1) US5507620A (en)
EP (1) EP0636764B1 (en)
JP (1) JP3853383B2 (en)
DE (2) DE4324034A1 (en)
RU (1) RU94026895A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217280B1 (en) 1995-10-07 2001-04-17 Siemens Westinghouse Power Corporation Turbine inter-disk cavity cooling air compressor
KR19990077142A (en) * 1996-01-11 1999-10-25 피터 토마스 Steam turbine shaft, internally cooled
DE19613472A1 (en) * 1996-04-04 1997-10-09 Asea Brown Boveri Thermal insulation device
PL330755A1 (en) * 1996-06-21 1999-05-24 Siemens Ag Turbine shaft as well as method of cooling same
US5628621A (en) * 1996-07-26 1997-05-13 General Electric Company Reinforced compressor rotor coupling
US5704764A (en) * 1996-10-07 1998-01-06 Westinghouse Electric Corporation Turbine inter-disk cavity cooling air compressor
DE19648185A1 (en) * 1996-11-21 1998-05-28 Asea Brown Boveri Welded rotor of a turbomachine
PT991850E (en) * 1997-06-27 2002-07-31 Siemens Ag A STEAM TURBINE WITH INTERNAL REFRIGERATION AS A PROCESS FOR COOLING OF A TURBINE AXLE
DE59710425D1 (en) * 1997-12-24 2003-08-14 Alstom Switzerland Ltd Rotor of a turbomachine
DE19852604A1 (en) * 1998-11-14 2000-05-18 Abb Research Ltd Rotor for gas turbine, with first cooling air diverting device having several radial borings running inwards through first rotor disk
DE59809583D1 (en) 1998-12-10 2003-10-16 Alstom Switzerland Ltd Process for producing a welded rotor of a turbomachine
EP1705339B1 (en) * 2005-03-23 2016-11-30 General Electric Technology GmbH Rotor shaft, in particular for a gas turbine
US8277170B2 (en) * 2008-05-16 2012-10-02 General Electric Company Cooling circuit for use in turbine bucket cooling
CH702191A1 (en) 2009-11-04 2011-05-13 Alstom Technology Ltd Welded rotor.
US9091172B2 (en) * 2010-12-28 2015-07-28 Rolls-Royce Corporation Rotor with cooling passage
US9206693B2 (en) 2011-02-18 2015-12-08 General Electric Company Apparatus, method, and system for separating particles from a fluid stream
CN104929692A (en) * 2014-03-19 2015-09-23 阿尔斯通技术有限公司 Rotor shaft with cooling bore inlets
EP3342979B1 (en) 2016-12-30 2020-06-17 Ansaldo Energia Switzerland AG Gas turbine comprising cooled rotor disks
CN111927561A (en) * 2020-07-31 2020-11-13 中国航发贵阳发动机设计研究所 Rotary pressurizing structure for cooling turbine blade

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB512301A (en) * 1937-12-27 1939-08-31 Bayerische Motoren Werke Ag An arrangements for cooling solid blades for exhaust gas turbines
GB709210A (en) * 1950-05-15 1954-05-19 Gen Motors Corp Improvements in gas turbine engines
US2868500A (en) * 1949-02-15 1959-01-13 Boulet George Cooling of blades in machines where blading is employed
DE1139326B (en) * 1960-03-24 1962-11-08 Siemens Ag Liquid-cooled gas turbine
DE1426799A1 (en) * 1965-03-05 1969-05-08 Escher Wyss Gmbh Runner for a centrifugal machine, especially a steam or gas turbine
US4034558A (en) * 1975-10-14 1977-07-12 Westinghouse Canada Limited Cooling apparatus for split shaft gas turbine
US4447188A (en) * 1982-04-29 1984-05-08 Williams International Corporation Cooled turbine wheel
EP0313826A1 (en) * 1987-10-30 1989-05-03 BBC Brown Boveri AG Axial gas turbine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB612097A (en) * 1946-10-09 1948-11-08 English Electric Co Ltd Improvements in and relating to the cooling of gas turbine rotors
DE943328C (en) * 1951-01-20 1956-05-17 Maschf Augsburg Nuernberg Ag Thermal protection device for the steely runner of a gas turbine with high propellant temperatures
US2858103A (en) * 1956-03-26 1958-10-28 Westinghouse Electric Corp Gas turbine apparatus
DE2042478C3 (en) * 1970-08-27 1975-08-14 Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Gas turbine engine, preferably jet engine for aircraft, with cooling air and optionally sealing air extraction
US3742706A (en) * 1971-12-20 1973-07-03 Gen Electric Dual flow cooled turbine arrangement for gas turbine engines
DE2633222A1 (en) * 1976-07-23 1978-01-26 Kraftwerk Union Ag GAS TURBINE SYSTEM WITH COOLING OF TURBINE PARTS
US4987736A (en) * 1988-12-14 1991-01-29 General Electric Company Lightweight gas turbine engine frame with free-floating heat shield

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB512301A (en) * 1937-12-27 1939-08-31 Bayerische Motoren Werke Ag An arrangements for cooling solid blades for exhaust gas turbines
US2868500A (en) * 1949-02-15 1959-01-13 Boulet George Cooling of blades in machines where blading is employed
GB709210A (en) * 1950-05-15 1954-05-19 Gen Motors Corp Improvements in gas turbine engines
DE1139326B (en) * 1960-03-24 1962-11-08 Siemens Ag Liquid-cooled gas turbine
DE1426799A1 (en) * 1965-03-05 1969-05-08 Escher Wyss Gmbh Runner for a centrifugal machine, especially a steam or gas turbine
US4034558A (en) * 1975-10-14 1977-07-12 Westinghouse Canada Limited Cooling apparatus for split shaft gas turbine
US4447188A (en) * 1982-04-29 1984-05-08 Williams International Corporation Cooled turbine wheel
EP0313826A1 (en) * 1987-10-30 1989-05-03 BBC Brown Boveri AG Axial gas turbine

Also Published As

Publication number Publication date
JP3853383B2 (en) 2006-12-06
US5507620A (en) 1996-04-16
DE59402122D1 (en) 1997-04-24
DE4324034A1 (en) 1995-01-19
RU94026895A (en) 1997-04-27
JPH0754602A (en) 1995-02-28
EP0636764B1 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
EP0636764B1 (en) Gasturbine with cooled rotor
DE602004011859T2 (en) Device for the control of gaps in a gas turbine
DE69018338T2 (en) Gas turbine.
DE3712628C2 (en) Swirl nozzle for a cooling device of a turbine wheel in a gas turbine engine
DE69302788T2 (en) Afterburner for two-stream engine
EP2154431B1 (en) Thermal machine
DE69209634T2 (en) Dual fuel nozzle for gas turbine
EP0489193B1 (en) Combustion chamber for gas turbine
EP0589215B1 (en) Gasturbine with exhaust casing and exhaust duct
EP1111189B1 (en) Cooling air path for the rotor of a gas turbine engine
DE69935745T2 (en) Steam-cooled gas turbine
EP1270874A1 (en) Gas turbine with an air compressor
DE3309268C2 (en)
DE112017002155B4 (en) GAS TURBINE
CH708487A2 (en) A method and system for cooling of blade angel wings.
EP0542044A1 (en) Annular combustion system
EP1451450A1 (en) Gas turbo group
DE19617539B4 (en) Rotor for a thermal turbomachine
EP0702129B1 (en) Cooling the rotor of an axial gasturbine
DE3248439A1 (en) GAS TURBINE ENGINE WITH COOLED SHOVEL TIPS
CH663251A5 (en) DEVICE FOR COOLING THE ROTORS OF STEAM TURBINES.
EP0844367B1 (en) Welded rotor for a turbomachine
DE102010044819B4 (en) Axial flow turbine and method of removing flow from an axial flow turbine
DE3424141A1 (en) AIR STORAGE GAS TURBINE
EP0597137B1 (en) Combustion chamber for gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19950714

17Q First examination report despatched

Effective date: 19960401

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59402122

Country of ref document: DE

Date of ref document: 19970424

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970620

Year of fee payment: 4

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990101

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110603

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110523

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110630

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120604

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59402122

Country of ref document: DE

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120702

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120604