EP0892212B1 - Pressure spray nozzle - Google Patents

Pressure spray nozzle Download PDF

Info

Publication number
EP0892212B1
EP0892212B1 EP98810650A EP98810650A EP0892212B1 EP 0892212 B1 EP0892212 B1 EP 0892212B1 EP 98810650 A EP98810650 A EP 98810650A EP 98810650 A EP98810650 A EP 98810650A EP 0892212 B1 EP0892212 B1 EP 0892212B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
bore
liquid
outlet bore
nozzle outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810650A
Other languages
German (de)
French (fr)
Other versions
EP0892212A2 (en
EP0892212A3 (en
Inventor
Klaus Dr. Döbbeling
Christian Dr. Steinbach
Martin Dr. Valk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Publication of EP0892212A2 publication Critical patent/EP0892212A2/en
Publication of EP0892212A3 publication Critical patent/EP0892212A3/en
Application granted granted Critical
Publication of EP0892212B1 publication Critical patent/EP0892212B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3478Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet the liquid flowing at least two different courses before reaching the swirl chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3442Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cone having the same axis as the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0408Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing two or more liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • F23D11/383Nozzles; Cleaning devices therefor with swirl means

Definitions

  • the invention relates to the field of combustion technology. It affects a pressure atomizing nozzle, comprising a nozzle body with a mixing chamber, which is connected to an outside space via a nozzle bore.
  • the nozzle body has a first feed channel for a liquid to be atomized through which said liquid is under pressure and swirl-free Chamber can be fed. At least one opens into the chamber of the nozzle body another supply channel for part of the liquid to be atomized or for one second liquid to be atomized, through which said part of the liquid or the second liquid can be supplied under pressure and with swirl.
  • the feed hole of the first feed channel lies with the Nozzle outlet bore on one axis.
  • Such Nozzle is known for example from GB 2 001 262.
  • Atomizer burners are known in which the oil which is burned mechanically finely distributed. It is divided into fine droplets of approx. 10 to 400 ⁇ m Disassembled diameter (oil mist), which is mixed with the combustion air in evaporate and burn the flame.
  • oil mist Disassembled diameter
  • pressure atomizers see Lueger Lexicon dertechnik, Manual Verlags-Anstalt Stuttgart, 1965, volume 7, p.600
  • the oil is supplied to an atomizing nozzle under high pressure by an oil pump.
  • the oil passes into an essentially tangential slot Swirl chamber and leaves the nozzle via a nozzle bore. This ensures that the oil particles have two motion components, one axial and one radial, preserved.
  • the one emerging from the nozzle bore as a rotating hollow cylinder Oil film expands to a hollow cone due to centrifugal force Edges vibrate unstably and tear into small oil droplets.
  • the atomized oil forms a cone with a more or less large opening angle.
  • Swirl nozzles pressure atomizers
  • air-assisted atomizers of the known types with a pressure up to approx. 100 bar are hardly suitable because they do not allow small spreading angle, the atomization quality is restricted and the impulse of the drop spray is low.
  • swirl-stabilized burners e.g. double-cone type burners
  • the flame stabilization is achieved with the help of a swirl flow Area between the swirl generator and the recirculation area, which through The swirl flow bursts open for mixing and evaporation of liquid fuel.
  • the fuel is atomized into the flow, which is what easiest to do with a pressure atomizing nozzle.
  • droplets exposed to a swirl flow field can cause one The droplets are thrown out due to the centrifugal forces (cyclone effect). Wetting the swirl generator or the mixing tube walls would have Consequence that the mixture deteriorates and that there is a risk of flashback along the walls and the appearance of deposits due to Fuel decomposition occurs.
  • An improvement is with the high pressure atomizing nozzle known from EP 0 496 016 B1 to reach.
  • This consists of a nozzle body in which a turbulence chamber is formed which has at least one nozzle bore communicates with an outside space, and which have at least one Has feed channel for the liquid to be atomized under pressure. It is characterized in that the cross-sectional area of the turbulence chamber opening feed channel is larger by a factor of 2 to 10 than that Cross-sectional area of the nozzle bore.
  • the aim is to if possible over the entire load range of the gas turbine (approx. 10% to 120% Mass flow based on nominal load conditions) a drop spray generate a stable, low-emission combustion throughout the area in a given air flow field.
  • the invention tries to avoid all of these disadvantages.
  • a Methods for effective operation of this pressure atomizing nozzle are proposed become.
  • a pressure atomizing nozzle comprising a Nozzle body, in which a mixing chamber is formed, which has a Nozzle outlet bore communicates with an outside space and a first one Feed channel with a feed hole for a liquid to be atomized through which said liquid can be supplied without swirl and under pressure, wherein at least one additional supply channel for part of the to the chamber atomizing liquid or for a second liquid to be atomized, through which said part of the liquid or the second liquid under Pressure and swirl can be fed, the feed bore of the first feed channel lies on one axis with the nozzle outlet bore, thereby achieved that the outlet-side diameter of the nozzle outlet bore is at most so is as large as the diameter of the feed bore and the length of the nozzle outlet bore at least 2 to a maximum of 10 times the outlet side Diameter of the nozzle outlet bore.
  • the advantages of the invention include that it enables the possibility is given, the spray angle of the nozzle to an extremely small angle, i.e. up to a full jet without reducing disturbing turbulence. So that will the peculiarities of the swirl flow field of a swirl-stabilized burner Taken into account. On the other hand, the operation of a conventional one atomizing pressure atomizer nozzle can be maintained. Between these Extreme is a sliding control, the setting of all operating conditions, i.e. Spray angles and degrees of atomization possible.
  • the pressure atomizer nozzle has an outlet side Has diameter of the nozzle outlet bore, which is smaller than that Diameter of the feed hole, in particular it should be approximately 0.7 times the Diameter of the feed hole. This will make a bigger part of the total pressure drop across the outlet opening, resulting in a high Stability of the full jet leads.
  • an embodiment variant is advantageous in which the nozzle outlet bore is arranged in the cover of a first tube, in which a second tube smaller outer diameter is used, up to the said lid is sufficient, and at least one slot in the cover-side end of the second tube is provided, which is made tangential and forms a swirl channel and which is the annulus between the first and second tubes with the chamber connects from which the nozzle outlet bore leads into the outside space, the chamber being essentially through the lid, the inner walls of the second Pipe and a filler in the second pipe is limited, and the feed hole arranged in the filler on the same axis as the nozzle outlet bore is.
  • This nozzle is characterized by a simple design.
  • a pressure atomizing nozzle according to the invention is advantageously used, whose nozzle outlet bore is constant over its entire length Has cross-sectional area. This is very easy to manufacture.
  • the nozzle outlet bore over their entire length in the direction of flow has a continuously decreasing cross-sectional area, so as a result of the converging Partly advantageous in the swirl stage, a uniform acceleration of the liquid to be atomized.
  • the friction losses are less than in a variant in which a nozzle with a constant cross section of the Nozzle outlet bore is provided.
  • the pressure atomizing nozzle according to the invention has a Nozzle outlet bore, which has an inlet radius at its inlet end has at least as large as the radius of the mixing chamber. This prevents the flow from detaching at the inlet into the outlet bore and thereby loss of flow or at high speeds possible cavitation prevented.
  • FIGS. 1 to 3 show a first embodiment of the invention, with Fig. 1 the Pressure atomizer nozzle in a partial longitudinal section and FIGS. 2 and 3 two Show cross sections in different planes.
  • the pressure atomizing nozzle comprises a nozzle body 30, consisting of a first tube 31, which is closed at its end seen in the direction of flow by a conical cover 32. In the middle of the cover 32 there is a nozzle bore 33, the longitudinal axis of which is designated 34. According to the invention, the length of the nozzle outlet bore is at least 2 to a maximum of 10 times the outlet-side diameter of the nozzle outlet bore.
  • a second tube 35 which has a smaller outside diameter than the inside diameter of the first tube 31, is inserted into the tube 31 and extends as far as the cover 32 and rests thereon.
  • the annular space 36 between the two tubes 31 and 35 serves to supply the or a part of the liquid 37 to be atomized.
  • the end of the tube 35 resting on the cover 32 is provided with four tangentially arranged slots 38 which connect the annular space 36 to produce a chamber 39 which serves as a swirl chamber for the liquid 37 to be atomized flowing through the slots 38.
  • the chamber 39 is delimited by the inner walls of the cover 32 and the second tube 35, and by a filler 40 which is inserted in the interior of the second tube 35 and fastened therein. This filler 40 is located at the same height as the upper edge of the slots 38, but it can also be spaced from the upper edge of the slots 38 in another embodiment variant, not shown.
  • the feed bore 41 for the liquid 37 to be atomized or for a second liquid to be atomized, which enable a swirl-free inflow of the liquid from the feed channel 42 into the chamber 39.
  • the feed bore 41 lies on the same axis 34 with the nozzle outlet bore 33.
  • the feed bore 41 has a constant diameter d z over its entire length L. This diameter d z is dimensioned somewhat larger than the diameter d a of the nozzle outlet bore 33.
  • the ratio of d a to d z should preferably be about 0.7. Then a good stability of the full jet is achieved when the nozzle is operated in the full jet stage, because a larger part of the total pressure drop occurs via the nozzle outlet bore.
  • the ratio of length L to the outlet-side diameter d a of the nozzle outlet bore 33 is also of particular importance for the function of the nozzle. According to the invention, it is in a range from 2 to 10. If the length-to-diameter ratio is too high, the twist becomes degraded too much from the swirl stage and the atomization in the pressure atomizer operation is insufficient. If the ratio of the length to the diameter of the nozzle outlet bore 33 is too small, on the other hand, the full jet has too great a divergence, which can lead to undesired discharge of drops.
  • the pressure atomizing nozzle according to the invention thus has two stages - one Full jet stage (see Fig. 2) and a pressure swirl stage (see Fig. 3), depending on the requirements can be operated either together or individually.
  • the pressure atomizing nozzle also be provided with more or fewer slots 3 &.
  • slots 38 There is also one other distribution of the channels over the circumference possible.
  • Other swirl generators for example blades, can also be arranged in the channel 36 be that ensure that the liquid to be atomized comes out of the channel 36 swirls into the chamber 39 enters.
  • Fig. 4 shows a partial longitudinal section of a second embodiment of an inventive two-stage pressure atomizer nozzle with full jet stage and swirl stage.
  • the structure of the nozzle differs from the embodiment described above only in that the nozzle outlet bore 33 does not have a constant Has diameter, but that the diameter seen in the direction of flow over the entire length L of the nozzle outlet bore to the actual one Exit steadily decreases.
  • This has compared to the first embodiment the additional advantages that a smooth acceleration of the liquid flow takes place in the nozzle that the friction losses in the swirl stage be reduced so that no turbulence occurs in the full jet stage or possibly existing ones are broken down and that the atomization of the liquid is suppressed becomes.
  • FIG. 5 shows in a partial longitudinal section a third exemplary embodiment of a two-stage pressure atomizer nozzle according to the invention with a full jet stage and a swirl stage.
  • the structure of the nozzle differs from the first exemplary embodiment described above only in that here too the nozzle outlet bore 33 does not have a constant diameter.
  • the nozzle outlet bore has an inlet radius R e which should be approximately as large as the radius R k of the chamber 39.
  • R e which should be approximately as large as the radius R k of the chamber 39.
  • the nozzle according to the invention can, for example, be swirl-stabilized Gas turbine or boiler burners, e.g. a burner of the double cone type, installed and to the requirements of the respective burner flow field or Operating conditions of the gas turbine combustion chamber or the boiler adapted if necessary, also during operation.
  • the nozzle is operated via the pressure swirl stage, by the liquid 37, in this case fuel, via the feed channel 36 and the swirl channel 38 (or via a swirl generator arranged in the channel 36) below high pressure and swirl enters the chamber 39 and through the nozzle outlet bore 33 is injected into the combustion chamber as a finely atomized drop.
  • the rotating movement causes a hollow cone flow at the nozzle bore 33 generated.
  • Both stages can be operated simultaneously, then takes place in the chamber 39 a mixture of the two fuel flows instead.
  • the nozzle can also be in only one Stage operated.
  • As extremely small as possible at full load and overload Spray angle should be set, for example, only the full jet level used, and the fuel mass flow flowing through the swirl channels 38 is completely switched off It is also possible, depending on the load range different liquids, e.g. Water and oil, through channels 36, 38 and 42, 41 to feed the chamber 39 and atomize after their mixing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Nozzles (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft eine Druckzerstäuberdüse, umfassend einen Düsenkörper mit einer Mischkammer, welche über eine Düsenbohrung mit einem Aussenraum in Verbindung steht. Der Düsenkörper weist einen ersten Zufuhrkanal für eine zu zerstäubende Flüssigkeit auf, durch welchen besagte Flüssigkeit unter Druck und drallfrei dieser Kammer zuführbar ist. In die Kammer des Düsenkörpers mündet mindestens ein weiterer Zufuhrkanal für einen Teil der zu zerstäubenden Flüssigkeit oder für eine zweite zu zerstäubende Flüssigkeit, durch welchen besagter Teil der Flüssigkeit oder die zweite Flüssigkeit unter Druck und mit Drall zuführbar ist. Die Zuführungs bohrung des ersten Zufuhrkanals liegt mit der Düsenaustritts bohrung auf einer Achse. Eine derartige Düse ist beispielsweise aus GB 2 001 262 bekannt.The invention relates to the field of combustion technology. It affects a pressure atomizing nozzle, comprising a nozzle body with a mixing chamber, which is connected to an outside space via a nozzle bore. The nozzle body has a first feed channel for a liquid to be atomized through which said liquid is under pressure and swirl-free Chamber can be fed. At least one opens into the chamber of the nozzle body another supply channel for part of the liquid to be atomized or for one second liquid to be atomized, through which said part of the liquid or the second liquid can be supplied under pressure and with swirl. The feed hole of the first feed channel lies with the Nozzle outlet bore on one axis. Such Nozzle is known for example from GB 2 001 262.

Stand der TechnikState of the art

Bekannt sind Zerstäuberbrenner, in denen das zur Verbrennung gelangende Öl mechanisch fein verteilt wird. Es wird in feine Tröpfchen von ca. 10 bis 400 µm Durchmesser (Ölnebel) zerlegt, die unter Mischung mit der Verbrennungsluft in der Flamme verdampfen und verbrennen. In Druckzerstäubern (siehe Lueger-Lexikon der Technik, Deutsche Verlags-Anstalt Stuttgart, 1965, Band 7, S.600) wird durch eine Ölpumpe das Öl unter hohem Druck einer Zerstäuberdüse zugeführt. Über im wesentlichen tangential verlaufende Schlitze gelangt das Öl in eine Drallkammer und verlässt die Düse über eine Düsenbohrung. Dadurch wird erreicht, dass die Ölteilchen zwei Bewegungskomponenten, eine axiale und eine radiale, erhalten. Der als rotierender Hohlzylinder aus der Düsenbohrung austretende Ölfilm weitet sich aufgrund der Fliehkraft zu einem Hohlkegel aus, dessen Ränder in instabile Schwingungen geraten und zu kleinen Öltröpfchen zerreissen. Das zerstäubte Öl bildet einen Kegel mehr oder weniger grossen Öffnungswinkels.Atomizer burners are known in which the oil which is burned mechanically finely distributed. It is divided into fine droplets of approx. 10 to 400 µm Disassembled diameter (oil mist), which is mixed with the combustion air in evaporate and burn the flame. In pressure atomizers (see Lueger Lexicon der Technik, Deutsche Verlags-Anstalt Stuttgart, 1965, volume 7, p.600) the oil is supplied to an atomizing nozzle under high pressure by an oil pump. The oil passes into an essentially tangential slot Swirl chamber and leaves the nozzle via a nozzle bore. This ensures that the oil particles have two motion components, one axial and one radial, preserved. The one emerging from the nozzle bore as a rotating hollow cylinder Oil film expands to a hollow cone due to centrifugal force Edges vibrate unstably and tear into small oil droplets. The atomized oil forms a cone with a more or less large opening angle.

Bei der schadstoffarmen Verbrennung von mineralischen Brennstoffen in modernen Brennern, beispielsweise in Vormischbrennem der Doppelkegelbauart, die in ihrem prinzipiellen Aufbau in EP 0 321 809 B1, beschrieben sind, werden aber besondere Anforderungen an die Zerstäubung des flüssigen Brennstoffes gestellt. Diese sind vor allem folgende:

  • 1. Die Tröpfchengrösse muss gering sein, damit die Öltröpfchen vor der Verbrennung vollständig verdampfen können.
  • 2. Der Öffnungswinkel (Ausbreitungswinkel) des Ölnebels soll insbesondere bei der Verbrennung unter erhöhtem Druck klein sein.
  • 3. Die Tropfen müssen eine hohe Geschwindigkeit und einen hohen Impuls haben, um weit genug in den verdichteten Verbrennungsluftmassenstrom eindringen zu können, damit sich der Brennstoffdampf vollständig mit der Verbrennungsluft vor Erreichen der Flammenfront vormischen kann.
  • In the low-pollutant combustion of mineral fuels in modern burners, for example in premix burners of the double-cone type, which are described in their basic structure in EP 0 321 809 B1, special requirements are placed on the atomization of the liquid fuel. The main ones are:
  • 1. The droplet size must be small so that the oil droplets can evaporate completely before combustion.
  • 2. The opening angle (angle of spread) of the oil mist should be small, especially when burning under increased pressure.
  • 3. The drops must have a high speed and a high momentum in order to be able to penetrate far enough into the compressed combustion air mass flow so that the fuel vapor can completely premix with the combustion air before reaching the flame front.
  • Dralldüsen (Druckzerstäuber) und luftunterstützte Zerstäuber der bekannten Bauarten mit einem Druck bis zu ca. 100 bar sind dafür kaum geeignet, weil sie keinen kleinen Ausbreitungswinkel erlauben, die Zerstäubungsqualität eingeschränkt ist und der Impuls des Tropfensprays gering ist. Swirl nozzles (pressure atomizers) and air-assisted atomizers of the known types with a pressure up to approx. 100 bar are hardly suitable because they do not allow small spreading angle, the atomization quality is restricted and the impulse of the drop spray is low.

    Bei drallstabilisierten Brennern (z.B. Brenner der Doppelkegelbauart), bei denen mit Hilfe einer Drallströmung die Flammenstabilisierung erzielt wird, bietet sich der Bereich zwischen dem Drallerzeuger und dem Rezirkulationsgebiet, das durch Aufplatzen der Drallströmung entsteht, für eine Einmischung und Verdampfung des flüssigen Brennstoffes an. Zur Erzielung einer guten Vorverdampfung sollte der Brennstoff fein zerstäubt in die Strömung eingebracht werden, was sich am einfachsten mit einer Druckzerstäuberdüse bewerkstelligen lässt. Werden die feinen Tröpfchen jedoch einem Drallströmungsfeld ausgesetzt, so kann dies zu einem Ausschleudern der Tropfen auf Grund der Zentrifugalkräfte führen (Zyklonwirkung). Eine Benetzung des Drallerzeugers bzw. der Mischrohrwände hätte zur Folge, das die Mischung verschlechtert wird und dass die Gefahr von Flammenrückschlag entlang der Wände und Auftreten von Ablagerungen auf Grund von Brennstoffzersetzung eintritt.With swirl-stabilized burners (e.g. double-cone type burners), where the flame stabilization is achieved with the help of a swirl flow Area between the swirl generator and the recirculation area, which through The swirl flow bursts open for mixing and evaporation of liquid fuel. To achieve good pre-evaporation should the fuel is atomized into the flow, which is what easiest to do with a pressure atomizing nozzle. Become the fine However, droplets exposed to a swirl flow field can cause one The droplets are thrown out due to the centrifugal forces (cyclone effect). Wetting the swirl generator or the mixing tube walls would have Consequence that the mixture deteriorates and that there is a risk of flashback along the walls and the appearance of deposits due to Fuel decomposition occurs.

    Als Folge dieser ungenügenden Verdampfung und Vormischung des Brennstoffes ist deshalb eine Wasserzugabe zum lokalen Absenken der Flammentemperatur und damit der NOx-Bildung notwendig. Da das zugeführte Wasser oftmals auch Flammenzonen stört, die zwar an sich wenig NOx erzeugen, aber für die Flammenstabilität sehr wichtig sind, treten häufig Instabilitäten, wie Flammenpulsation und/oder schlechter Ausbrand auf, was zum Anstieg des CO-Ausstosses führt.As a result of this insufficient evaporation and premixing of the fuel is therefore an addition of water to lower the flame temperature locally and therefore NOx formation is necessary. Because the supplied water often too Flame zones are disturbing, which produce little NOx per se, but for flame stability are very important, instabilities often occur, such as flame pulsation and / or poor burnout, which leads to an increase in CO emissions.

    Eine Verbesserung ist mit der aus EP 0 496 016 B1 bekannten Hochdruckzerstäuberdüse zu erreichen. Diese besteht aus einem Düsenkörper, in welchem eine Turbulenzkammer ausgebildet ist, welche über mindestens eine Düsenbohrung mit einem Aussenraum in Verbindung steht, und welche mindestens einen Zufuhrkanal für die unter Druck zuführbare zu zerstäubende Flüssigkeit aufweist. Sie ist dadurch gekennzeichnet, dass die Querschnittsfläche des in die Turbulenzkammer mündenden Zufuhrkanales um den Faktor 2 bis 10 grösser ist als die Querschnittsfläche der Düsenbohrung. Durch diese Anordnung gelingt es, in der Turbulenzkammer ein hohes Turbulenzniveau zu erzeugen, das auf dem Weg bis zum Austritt aus der Düse nicht abklingt. Der Flüssigkeitsstrahl wird durch die vor der Düsenbohrung erzeugte Turbulenz im Aussenraum, also nach Verlassen der Düsenbohrung zum raschen Zerfall gebracht, wobei sich niedrige Ausbreitungswinkel von 20° und weniger ergeben. Die Tröpfchengrösse ist ebenfalls sehr klein.An improvement is with the high pressure atomizing nozzle known from EP 0 496 016 B1 to reach. This consists of a nozzle body in which a turbulence chamber is formed which has at least one nozzle bore communicates with an outside space, and which have at least one Has feed channel for the liquid to be atomized under pressure. It is characterized in that the cross-sectional area of the turbulence chamber opening feed channel is larger by a factor of 2 to 10 than that Cross-sectional area of the nozzle bore. With this arrangement it is possible in the Turbulence chamber to generate a high level of turbulence that is on the way up does not subside as it exits the nozzle. The liquid jet is through the front the turbulence generated in the outside of the nozzle, ie after leaving the Nozzle bore decayed rapidly, with low spreading angles of 20 ° and less. The droplet size is also very small.

    Beim Betrieb von Gasturbinenbrennem mit flüssigem Brennstoff ist man bestrebt, möglichst über den gesamten Lastbereich der Gasturbine (ca. 10% bis 120% Brennstoffmassenstrom bezogen auf Nennlastbedingungen) ein Tropfenspray zu erzeugen, das im gesamten Bereich eine schadstoffarme und stabile Verbrennung in einem vorgegebenen Luftströmungsfeld ermöglicht.When operating gas turbine burners with liquid fuel, the aim is to if possible over the entire load range of the gas turbine (approx. 10% to 120% Mass flow based on nominal load conditions) a drop spray generate a stable, low-emission combustion throughout the area in a given air flow field.

    Der Einsatz einer oben beschriebenen Hochdruckzerstäuberdüse zum Zerstäuben von flüssigem Brennstoff in Gasturbinenbrennem führt bei Vollast und Überlast (100-120%) wunschgemäss zwar zu einem nicht zu hohen Druck (100 bar) und einer geringen Tröpfchengrösse, wobei aufgrund des engen Spraywinkels unerwünschte Wandbenetzung und Verkokung vermieden werden.The use of a high pressure atomizing nozzle described above for atomizing of liquid fuel in gas turbine burners leads to full load and overload (100-120%) as desired to a not too high pressure (100 bar) and a small droplet size, but undesirable due to the narrow spray angle Wall wetting and coking can be avoided.

    Bei Teillast sinkt jedoch der Brennstoffvordruck aufgrund des fallenden Gesamtbrennstoffmassenstromes ab. Die zur Zerstäubung erforderliche Energie für Druckzerstäuber ist aber über den Brennstoffvordruck gegeben, so dass sich in diesem Lastbereich die Zerstäubungsgüte verschlechtert und die Eindringtiefe des Brennstoffsprays in die Luftströmung durch den niedrigen Brennstoffvordruck geringer wird.At partial load, however, the fuel admission pressure drops due to the falling total fuel mass flow from. The energy required for atomization for Pressure atomizer is given via the fuel pressure, so that in this load range deteriorates the atomization quality and the penetration depth of the Fuel sprays in the air flow are lower due to the low fuel pressure becomes.

    Dieser Nachteil wird mit der bereits erwähnten zweistufigen Druckzerstäuberdüse nach DE 196 08 349.4 beseitigt. Diese wird bei Voll- und Überlastbetrieb über eine drallfreie Turbulenzerzeugerhauptstufe und bei Teil- und Niedriglastbetrieb zusätzlich oder aber allein über eine Druckdrallstufe betrieben. Diese Lösung hat aber den Nachteil, dass infolge der hohen Turbulenz im Strahl der Turbulenzerzeugerhauptstufe keine sehr engen Spraywinkel (< 15°) möglich sind. Für bestimmte Anwendungsfälle, bei welchen die Brennerluft stark verdrallt ist, sind aber sehr enge Brennstoffstrahlwinkel zum Vermeiden von Wandauftragung erforderlich. Prinzipiell sind hierzu Strahldüsen, sogenannte Plain Jets, geeignet. Diese erzeugen aber eine zur Zündung des Brenners nur schlecht geeignete Zerstäubung.This disadvantage is with the two-stage pressure atomizer nozzle already mentioned eliminated according to DE 196 08 349.4. This becomes over during full and overload operation a swirl-free turbulence generator main stage and for partial and low-load operation additionally or operated alone via a pressure swirl stage. Has this solution but the disadvantage that due to the high turbulence in the jet of the main turbulence stage no very narrow spray angles (<15 °) are possible. For certain However, there are applications in which the burner air is strongly swirled very narrow fuel jet angles required to avoid wall application. In principle, jet nozzles, so-called plain jets, are suitable for this. This but produce atomization that is poorly suited to igniting the burner.

    Darstellung der ErfindungPresentation of the invention

    Die Erfindung versucht, alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, eine Druckzerstäuberdüse der o.g. Art zu entwickeln, die eine einfache Bauweise aufweist und einen an die jeweiligen Betriebsbedingungen genau angepassten Spraywinkel bzw. Zerstäubungsgrad der zu zerstäubenden Flüssigkeit bzw. Flüssigkeiten ermöglicht. Dabei sollen vor allem auch extrem kleine Sprühwinkel realisiert werden, wobei die Zerstäubung unterdrückt wird und es nur zu einer verzögerten Auflösung des Flüssigkeitsstromes kommt. Ausserdem soll ein Verfahren zum effektiven Betrieb dieser Druckzerstäuberdüse vorgeschlagen werden.The invention tries to avoid all of these disadvantages. You have the task based on a pressure atomizing nozzle of the above Kind of develop a simple Has construction and a precisely adapted to the respective operating conditions Spray angle or degree of atomization of the liquid to be atomized or liquids. Above all, extremely small spray angles should also be used can be realized, whereby the atomization is suppressed and it only goes there is a delayed dissolution of the liquid flow. In addition, a Methods for effective operation of this pressure atomizing nozzle are proposed become.

    Erfindungsgemäss wird dies bei einer Druckzerstäuberdüse, umfassend einen Düsenkörper, in welchem eine Mischkammer ausgebildet ist, welche über eine Düsenaustrittsbohrung mit einem Aussenraum in Verbindung steht und einen ersten Zufuhrkanal mit einer Zuführungbohrung für eine zu zerstäubende Flüssigkeit aufweist, durch welche besagte Flüssigkeit drallfrei und unter Druck zuführbar ist, wobei in die Kammer mindestens ein weiterer Zufuhrkanal für einen Teil der zu zerstäubenden Flüssigkeit oder für eine zweite zu zerstäubende Flüssigkeit mündet, durch welchen besagter Teil der Flüssigkeit oder die zweite Flüssigkeit unter Druck und mit Drall zuführbar ist, wobei die Zuführungsbohrung des ersten Zufuhrkanales mit der Düsenaustrittsbohrung auf einer Achse liegt, dadurch erreicht, dass der austrittsseitige Durchmesser der Düsenaustrittsbohrung höchstens so gross ist wie der Durchmesser der Zuführungsbohrung und die Länge der Düsenaustrittsbohrung mindestens das 2- bis maximal 10-fache des austrittsseitigen Durchmessers der Düsenaustrittsbohrung beträgt.According to the invention, this is the case with a pressure atomizing nozzle, comprising a Nozzle body, in which a mixing chamber is formed, which has a Nozzle outlet bore communicates with an outside space and a first one Feed channel with a feed hole for a liquid to be atomized through which said liquid can be supplied without swirl and under pressure, wherein at least one additional supply channel for part of the to the chamber atomizing liquid or for a second liquid to be atomized, through which said part of the liquid or the second liquid under Pressure and swirl can be fed, the feed bore of the first feed channel lies on one axis with the nozzle outlet bore, thereby achieved that the outlet-side diameter of the nozzle outlet bore is at most so is as large as the diameter of the feed bore and the length of the nozzle outlet bore at least 2 to a maximum of 10 times the outlet side Diameter of the nozzle outlet bore.

    Die Vorteile der Erfindung bestehen unter anderem darin, dass damit die Möglichkeit gegeben ist, den Sprühwinkel der Düse bis auf einen extrem kleinen Winkel, d.h. bis zu einem Vollstrahl ohne störende Turbulenzen zu reduzieren. Damit wird den Besonderheiten des Drallströmungsfeldes eines drallstabilisierten Brenners Rechnung getragen. Andererseits kann die Betriebsweise einer herkömmlichen feinzerstäubenden Druckzerstäuberdüse beibehalten werden. Zwischen diesen Extremen ist durch einen gleitende Regelung die Einstellung aller Betriebszustände, d.h. Sprühwinkel und Zerstäubungsgrade möglich. Durch Einhaltung des o.g. Verhältnisses von Länge zu Durchmesser der Düsenaustrittsbohrung wird erreicht, dass einerseits der Drall aus der Drallstufe nicht zu stark abgebaut wird und damit die Zerstäubung im Druckzerstäuberbetrieb ausreichend ist und andererseits die Divergenz des Vollstrahles klein genug ist, damit es nicht zu einem unerwünschten Ausschleudern von Tropfen kommen kann.The advantages of the invention include that it enables the possibility is given, the spray angle of the nozzle to an extremely small angle, i.e. up to a full jet without reducing disturbing turbulence. So that will the peculiarities of the swirl flow field of a swirl-stabilized burner Taken into account. On the other hand, the operation of a conventional one atomizing pressure atomizer nozzle can be maintained. Between these Extreme is a sliding control, the setting of all operating conditions, i.e. Spray angles and degrees of atomization possible. By observing the above The ratio of length to diameter of the nozzle outlet bore is achieved, that on the one hand the swirl from the swirl stage is not reduced too much and thus the atomization in the pressure atomizer operation is sufficient and on the other hand the divergence of the full beam is small enough that it does not become one unwanted ejection of drops can occur.

    Es ist besonders zweckmässig, wenn die Druckzerstäuberdüse einen austrittsseitigen Durchmesser der Düsenaustrittsbohrung aufweist, der kleiner ist als der Durchmesser der Zuführungsbohrung, insbesondere soll er ca. das 0,7-fache des Durchmessers der Zuführungsbohrung betragen. Dadurch wird ein grösserer Teil des gesamten Druckabfalls über die Austrittsöffnung erreicht, was zu einer hohen Stabilität des Vollstrahles führt.It is particularly expedient if the pressure atomizer nozzle has an outlet side Has diameter of the nozzle outlet bore, which is smaller than that Diameter of the feed hole, in particular it should be approximately 0.7 times the Diameter of the feed hole. This will make a bigger part of the total pressure drop across the outlet opening, resulting in a high Stability of the full jet leads.

    Ferner ist eine Ausführungsvariante vorteilhaft, bei welcher die Düsenaustrittsbohrung im Deckel eines ersten Rohres angeordnet ist, in welchem ein zweites Rohr kleineren Aussendurchmessers eingesetzt ist, das bis zu dem besagten Deckel reicht, und im deckelseitigen Ende des zweiten Rohres mindestens ein Schlitz vorgesehen ist, welcher tangential angestellt ist und einen Drallkanal bildet und welcher den Ringraum zwischen den ersten und dem zweiten Rohr mit der Kammer verbindet, von welcher die Düsenaustrittsbohrung in den Aussenraum führt, wobei die Kammer im wesentlichen durch den Deckel, die Innenwände des zweiten Rohres und ein Füllstück im zweiten Rohr begrenzt ist, und die Zuführungsbohrung im Füllstück auf der gleichen Achse wie die Düsenaustrittsbohrung angeordnet ist. Diese Düse zeichnet sich durch eine einfache Bauweise aus.Furthermore, an embodiment variant is advantageous in which the nozzle outlet bore is arranged in the cover of a first tube, in which a second tube smaller outer diameter is used, up to the said lid is sufficient, and at least one slot in the cover-side end of the second tube is provided, which is made tangential and forms a swirl channel and which is the annulus between the first and second tubes with the chamber connects from which the nozzle outlet bore leads into the outside space, the chamber being essentially through the lid, the inner walls of the second Pipe and a filler in the second pipe is limited, and the feed hole arranged in the filler on the same axis as the nozzle outlet bore is. This nozzle is characterized by a simple design.

    Schliesslich wird mit Vorteil eine erfindungsgemässe Druckzerstäuberdüse verwendet, deren Düsenaustrittsbohrung über ihre Gesamtlänge eine konstante Querschnittsfläche aufweist. Diese ist sehr einfach herstellbar.Finally, a pressure atomizing nozzle according to the invention is advantageously used, whose nozzle outlet bore is constant over its entire length Has cross-sectional area. This is very easy to manufacture.

    Wird dagegen eine erfindungsgemässe zweistufige Druckzerstäuberdüse verwendet, deren Düsenaustrittsbohrung über ihre Gesamtlänge eine in Strömungsrichtung stetig abnehmende Querschnittsfläche aufweist, so wird infolge des konvergierenden Teiles vorteilhaft in der Drallstufe eine gleichmässige Beschleunigung der zu zerstäubenden Flüssigkeit erreicht. Die Reibungsverluste sind geringer als bei einer Ausführungsvariante, bei der eine Düse mit konstantem Querschnitt der Düsenaustrittsbohrung vorgesehen ist. Mit dieser Geometrie wird bei Betrieb in der Vollstrahlstufe die Zerstäubung unterdrückt, und es kommt zu einer verzögerten Auflösung des Flüssigkeitsstromes.If, on the other hand, a two-stage pressure atomizing nozzle according to the invention is used, the nozzle outlet bore over their entire length in the direction of flow has a continuously decreasing cross-sectional area, so as a result of the converging Partly advantageous in the swirl stage, a uniform acceleration of the liquid to be atomized. The friction losses are less than in a variant in which a nozzle with a constant cross section of the Nozzle outlet bore is provided. With this geometry, when operating in the full jet stage suppresses atomization and there is a delay Dissolution of the liquid flow.

    Ferner ist es vorteilhaft, wenn die erfindungsgemässe Druckzerstäuberdüse eine Düsenaustrittsbohrung hat, welche an ihrem einlaufseitigen Ende einen Einlaufradius aufweist, der mindestens so gross ist wie der Radius der Mischkammer. Hierdurch wird ein Ablösen der Strömung am Eintritt in die Austrittsbohrung verhindert und dadurch werden Strömungsverluste bzw. bei hohen Geschwindigkeiten mögliche Kavitation verhindert. It is also advantageous if the pressure atomizing nozzle according to the invention has a Nozzle outlet bore, which has an inlet radius at its inlet end has at least as large as the radius of the mixing chamber. This prevents the flow from detaching at the inlet into the outlet bore and thereby loss of flow or at high speeds possible cavitation prevented.

    Kurze Beschreibung der ZeichnungBrief description of the drawing

    In der Zeichnung sind drei Ausführungsbeispiele der Erfindung dargestellt.In the drawing, three embodiments of the invention are shown.

    Es zeigen:

    Fig. 1
    einen Teillängsschnitt einer erfindungsgemässen Druckzerstäuberdüse mit Vollstrahlstufe und Drallstufe in einer ersten Ausführungsvariante;
    Fig. 2
    einen Querschnitt der Druckzerstäuberdüse nach Fig. 1 im Bereich der Vollstrahlstufe entlang der Linie II-II;
    Fig. 3
    einen Querschnitt der Druckzerstäuberdüse nach Fig. 1 im Bereich der Drallstufe entlang der Linie III-III;
    Fig. 4
    einen Teillängsschnitt einer erfindungsgemässen Druckzerstäuberdüse mit Vollstrahlstufe und Drallstufe in einer zweiten Ausführungsvariante;
    Fig. 5
    einen Teillängsschnitt einer erfindungsgemässen Druckzerstäuberdüse mit Vollstrahlstufe und Drallstufe in einer dritten Ausführungsvariante.
    Show it:
    Fig. 1
    a partial longitudinal section of a pressure atomizing nozzle according to the invention with full jet stage and swirl stage in a first embodiment;
    Fig. 2
    a cross section of the pressure atomizing nozzle of Figure 1 in the area of the full jet stage along the line II-II.
    Fig. 3
    a cross section of the pressure atomizing nozzle of Figure 1 in the region of the swirl stage along the line III-III.
    Fig. 4
    a partial longitudinal section of a pressure atomizing nozzle according to the invention with full jet stage and swirl stage in a second embodiment;
    Fig. 5
    a partial longitudinal section of a pressure atomizer nozzle according to the invention with full jet stage and swirl stage in a third embodiment.

    Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind beispielsweise Regelorgane, mit denen die Grösse des durch die einzelnen Stufen der Düse strömende Flüssigkeitsstromes beeinflusst werden kann. Die Strömungsrichtung der Medien ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. Not shown, for example, regulating organs with which the size of the influenced by the individual stages of the nozzle flowing liquid flow can be. The direction of flow of the media is indicated by arrows.

    Weg zur Ausführung der ErfindungWay of carrying out the invention

    Nachfolgend wird die Erfindung arthand von Ausführungsbeispielen und der Fig. 1 bis 5 näher erläutert. In the following, the invention will be described in terms of exemplary embodiments and FIG. 1 to 5 explained in more detail.

    Fig. 1 bis 3 zeigen ein erstes Ausführungsbeispiel der Erfindung , wobei Fig. 1 die Druckzerstäuberdüse in einem Teillängsschnitt darstellt und die Fig. 2 und 3 zwei Querschnitte in unterschiedlichen Ebenen zeigen.1 to 3 show a first embodiment of the invention, with Fig. 1 the Pressure atomizer nozzle in a partial longitudinal section and FIGS. 2 and 3 two Show cross sections in different planes.

    Die Druckzerstäuberdüse umfasst einen Düsenkörper 30, bestehend aus einem ersten Rohr 31, das an seinem in Strömungsrichtung gesehenen Ende durch einen kegeligen Deckel 32 verschlossen ist. In der Mitte des Deckels 32 ist eine Düsenbohrung 33 angeordnet, deren Längsachse mit 34 bezeichnet ist. Erfindungsgemäss beträgt die Länge der Düsenaustrittsbohrung mindestens das 2- bis maximal 10-fache des austrittsseitigen Durchmessers der Düsenaustrittsbohrung. In das Rohr 31 ist ein zweites, einen kleineren Aussendurchmesser als der Innendurchmesser des ersten Rohres 31 aufweisendes Rohr 35 eingesetzt, das bis an den Deckel 32 heranreicht und auf diesem aufliegt. Der Ringraum 36 zwischen den beiden Rohren 31 und 35 dient der Zufuhr der bzw. eines Teiles der zu zerstäubenden Flüssigkeit 37. Das auf dem Deckel 32 aufliegende Ende des Rohres 35 ist mit vier tangential angestellten Schlitzen 38 versehen, die eine Verbindung des Ringraumes 36 mit einer Kammer 39 herstellen, welche als Drallkammer für die durch die Schlitze 38 einströmende zu zerstäubende Flüssigkeit 37 dient. Die Kammer 39 wird begrenzt durch die Innenwände des Deckels 32 und des zweiten Rohres 35, sowie durch ein Füllstück 40, welches im Inneren des zweiten Rohres 35 eingeschoben und darin befestigt ist. Dieses Füllstück 40 befindet sich auf gleicher Höhe wie die Oberkante der Schlitze 38, es kann aber bei einer anderen nicht dargestellten Ausführungsvariante auch von der Oberkante der Schlitze 38 beabstandet sein. Im Füllstück 40 ist eine Zuführungsbohrung 41 für die zu zerstäubende Flüssigkeit 37 bzw. für eine zweite zu zerstäubende Flüssigkeit angeordnet, die eine drallfreie Zuströmung der Flüssigkeit vom Zufuhrkanal 42 in die Kammer 39 ermöglichen. Die Zuführungsbohrung 41 liegt mit der Düsenaustrittsbohrung 33 auf der gleiche Achse 34. Die Zuführungsbohrung 41 weist in diesem ersten Ausführungsbeispiel über ihre gesamte Länge L einen konstanten Durchmesser dz auf. Dieser Durchmesser dz ist im Vergleich zum Durchmesser da der Düsenaustrittsbohrung 33 etwas grösser bemessen. Vorzugsweise sollte das Verhältnis von da zu dz etwa 0,7 betragen. Dann wird beim Betrieb der Düse in der Vollstrahlstufe eine gute Stabilität des Vollstrahles erreicht, weil ein grösserer Teil des gesamten Druckabfalls über die Düsenaustrittsbohrung auftritt. Von besonderer Bedeutung für die Funktion der Düse ist auch das Verhältnis von Länge L zum austrittsseitigen Durchmesser da der Düsenaustrittsbohrung 33. Es liegt erfindungsgemäss in einem Bereich von 2 bis 10. Ist nämlich das Längen- zu Durchmesser-Verhältnis zu hoch, wird der Drall aus der Drallstufe zu stark abgebaut und die Zerstäubung im Druckzerstäuberbetrieb ist unzureichend. Bei zu kleinem Verhältnis von Länge zu Durchmesser der Düsenaustrittsbohrung 33 weist dagegen der Vollstrahl eine zu grosse Divergenz auf, was zu einem unerwünschten Ausschleudem von Tropfen führen kann.The pressure atomizing nozzle comprises a nozzle body 30, consisting of a first tube 31, which is closed at its end seen in the direction of flow by a conical cover 32. In the middle of the cover 32 there is a nozzle bore 33, the longitudinal axis of which is designated 34. According to the invention, the length of the nozzle outlet bore is at least 2 to a maximum of 10 times the outlet-side diameter of the nozzle outlet bore. A second tube 35, which has a smaller outside diameter than the inside diameter of the first tube 31, is inserted into the tube 31 and extends as far as the cover 32 and rests thereon. The annular space 36 between the two tubes 31 and 35 serves to supply the or a part of the liquid 37 to be atomized. The end of the tube 35 resting on the cover 32 is provided with four tangentially arranged slots 38 which connect the annular space 36 to produce a chamber 39 which serves as a swirl chamber for the liquid 37 to be atomized flowing through the slots 38. The chamber 39 is delimited by the inner walls of the cover 32 and the second tube 35, and by a filler 40 which is inserted in the interior of the second tube 35 and fastened therein. This filler 40 is located at the same height as the upper edge of the slots 38, but it can also be spaced from the upper edge of the slots 38 in another embodiment variant, not shown. In the filler 40 there is a feed bore 41 for the liquid 37 to be atomized or for a second liquid to be atomized, which enable a swirl-free inflow of the liquid from the feed channel 42 into the chamber 39. The feed bore 41 lies on the same axis 34 with the nozzle outlet bore 33. In this first exemplary embodiment, the feed bore 41 has a constant diameter d z over its entire length L. This diameter d z is dimensioned somewhat larger than the diameter d a of the nozzle outlet bore 33. The ratio of d a to d z should preferably be about 0.7. Then a good stability of the full jet is achieved when the nozzle is operated in the full jet stage, because a larger part of the total pressure drop occurs via the nozzle outlet bore. The ratio of length L to the outlet-side diameter d a of the nozzle outlet bore 33 is also of particular importance for the function of the nozzle. According to the invention, it is in a range from 2 to 10. If the length-to-diameter ratio is too high, the twist becomes degraded too much from the swirl stage and the atomization in the pressure atomizer operation is insufficient. If the ratio of the length to the diameter of the nozzle outlet bore 33 is too small, on the other hand, the full jet has too great a divergence, which can lead to undesired discharge of drops.

    Die erfindungsgemässe Druckzerstäuberdüse weist somit zwei Stufen auf - eine Vollstrahlstufe (s. Fig. 2) und eine Druckdrallstufe (s. Fig. 3), die je nach Erfordernissen entweder gemeinsam oder auch einzeln betrieben werden können .The pressure atomizing nozzle according to the invention thus has two stages - one Full jet stage (see Fig. 2) and a pressure swirl stage (see Fig. 3), depending on the requirements can be operated either together or individually.

    Abweichend vom dargestellten Ausführungsbeispiel kann die Druckzerstäuberdüse auch mit mehr oder weniger Schlitzen 3& versehen sein. Ebenso ist auch eine andere Verteilung der Kanäle über den Umfang möglich. Anstelle der Schlitze 38 können auch andere Drallerzeuger, beispielsweise Schaufeln, im Kanal 36 angeordnet sein, die dafür sorgen, dass die zu zerstäubende Flüssigkeit aus dem Kanal 36 verdrallt in die Kammer 39 eintritt.Deviating from the illustrated embodiment, the pressure atomizing nozzle also be provided with more or fewer slots 3 &. There is also one other distribution of the channels over the circumference possible. Instead of slots 38 Other swirl generators, for example blades, can also be arranged in the channel 36 be that ensure that the liquid to be atomized comes out of the channel 36 swirls into the chamber 39 enters.

    Fig. 4 zeigt in einem Teillängsschnitt ein zweites Ausführungsbeispiel einer erfindungsgemässen zweistufigen Druckzerstäuberdüse mit Vollstrahlstufe und Drallstufe. Der Aufbau der Düse unterscheidet sich vom oben beschriebenen Ausführungsbeispiel nur dadurch, dass die Düsenaustrittsbohrung 33 keinen konstanten Durchmesser aufweist, sondern dass der Durchmesser in Strömungsrichtung gesehen über die gesamte Länge L der Düsenaustrittsbohrung bis zum eigentlichen Austritt hin stetig abnimmt. Das hat gegenüber dem ersten Ausführungsbeispiel die zusätzlichen Vorteile, dass eine gleichmässige Beschleunigung des Flüssigkeitsstromes in der Düse stattfindet, dass die Reibungsverluste in der Drallstufe vermindert werden, dass in der Vollstrahlstufe keine Turbulenzen auftreten bzw. ev. vorhandene abgebaut werden und dass die Zerstäubung der Flüssigkeit unterdrückt wird.Fig. 4 shows a partial longitudinal section of a second embodiment of an inventive two-stage pressure atomizer nozzle with full jet stage and swirl stage. The structure of the nozzle differs from the embodiment described above only in that the nozzle outlet bore 33 does not have a constant Has diameter, but that the diameter seen in the direction of flow over the entire length L of the nozzle outlet bore to the actual one Exit steadily decreases. This has compared to the first embodiment the additional advantages that a smooth acceleration of the liquid flow takes place in the nozzle that the friction losses in the swirl stage be reduced so that no turbulence occurs in the full jet stage or possibly existing ones are broken down and that the atomization of the liquid is suppressed becomes.

    Fig. 5 zeigt in einem Teillängsschnitt ein drittes Ausführungsbeispiel einer erfindungsgemässen zweistufigen Druckzerstäuberdüse mit Vollstrahlstufe und Drallstufe. Der Aufbau der Düse unterscheidet sich vom oben beschriebenen ersten Ausführungsbeispiel nur dadurch, dass auch hier die Düsenaustrittsbohrung 33 keinen konstanten Durchmesser aufweist. In diesem dritten Ausführungsbeispiel hat die Düsenaustrittsbohrung einen Einlaufradius Re, der etwa so gross sein sollte wie der Radius Rk der Kammer 39. Auch hier entstehen weniger Reibungsverluste.5 shows in a partial longitudinal section a third exemplary embodiment of a two-stage pressure atomizer nozzle according to the invention with a full jet stage and a swirl stage. The structure of the nozzle differs from the first exemplary embodiment described above only in that here too the nozzle outlet bore 33 does not have a constant diameter. In this third exemplary embodiment, the nozzle outlet bore has an inlet radius R e which should be approximately as large as the radius R k of the chamber 39. Here, too, there are fewer friction losses.

    Die erfindungsgemässe Düse kann beispielsweise in einen drallstabilisierten Gasturbinen- oder Kesselbrenner, z.B. einen Brenner der Doppelkegelbauart, eingebaut und an die Erfordernisse des jeweiligen Brennerströmungsfeldes bzw. an Betriebszustände der Gasturbinenbrennkammer oder des Kessels angepasst werden, falls erforderlich, auch während des Betriebes. Beim Zünden und im Teillastbetrieb wird beispielsweise die Düse über die Druckdrallstufe betrieben, indem die Flüssigkeit 37, in diesem Falle Brennstoff, über den Zufuhrkanal 36 und den Drallkanal 38 (oder über einen im Kanal 36 angeordneten Drallerzeuger) unter hohem Druck und verdrallt in die Kammer 39 gelangt und über die Düsenaustrittsbohrung 33 in den Brennraum als fein zerstäubte Tropfen eingedüst wird. Durch die rotierende Bewegung wird an der Düsenbohrung 33 eine Hohlkegelströmung erzeugt. Mit zunehmender Gesamtbrennstoffmenge und daher mit zunehmender Gefahr des Ausschleudems von Tropfen wird dann auf die Vollstrahldüse übergegangen, indem der Brennstoff über den Kanal 42 und die Zuführungsbohrung 41, welche mit der Düsenaustrittsbohrung 33 auf einer Achse liegt, unverdrallt in die Kammer 39 eingebracht wird, von wo aus der Brennstoff dann über die Düsenaustrittsbohrung 33 als Vollstrahl in den Brennraum eintritt. Der Spraywinkel der Vollstrahldüse ist extrem niedrig, er liegt bei < 5°.The nozzle according to the invention can, for example, be swirl-stabilized Gas turbine or boiler burners, e.g. a burner of the double cone type, installed and to the requirements of the respective burner flow field or Operating conditions of the gas turbine combustion chamber or the boiler adapted if necessary, also during operation. When igniting and in Partial load operation, for example, the nozzle is operated via the pressure swirl stage, by the liquid 37, in this case fuel, via the feed channel 36 and the swirl channel 38 (or via a swirl generator arranged in the channel 36) below high pressure and swirl enters the chamber 39 and through the nozzle outlet bore 33 is injected into the combustion chamber as a finely atomized drop. The rotating movement causes a hollow cone flow at the nozzle bore 33 generated. With increasing total fuel quantity and therefore with increasing The danger of dropping droplets is then on the full jet nozzle passed over by the fuel through the channel 42 and the supply bore 41, which lies on an axis with the nozzle outlet bore 33, is not swirled is introduced into the chamber 39, from where the fuel then the nozzle outlet bore 33 enters the combustion chamber as a full jet. The spray angle the full jet nozzle is extremely low, it is <5 °.

    Es können beide Stufen gleichzeitig betrieben werden, dann findet in der Kammer 39 eine Mischung der beiden Brennstoffströme statt.Both stages can be operated simultaneously, then takes place in the chamber 39 a mixture of the two fuel flows instead.

    Je nach Betriebsbedingungen der Gasturbine kann die Düse auch in nur einer Stufe betrieben werden. Da bei Vollast und Überlast möglichst extrem kleine Sprühwinkel eingestellt werden sollten, wird dann beispielsweise nur die Vollstrahlstufe benutzt, und der durch die Drallkanäle 38 strömende Brennstoffmassenstrom wird vollständig abgeschaltet Ausserdem ist es möglich, je nach Lastbereich verschiedene Flüssigkeiten, z.B. Wasser und Öl, über die Kanäle 36, 38 und 42, 41 der Kammer 39 zuzuführen und nach ihrer Mischung zu zerstäuben.Depending on the operating conditions of the gas turbine, the nozzle can also be in only one Stage operated. As extremely small as possible at full load and overload Spray angle should be set, for example, only the full jet level used, and the fuel mass flow flowing through the swirl channels 38 is completely switched off It is also possible, depending on the load range different liquids, e.g. Water and oil, through channels 36, 38 and 42, 41 to feed the chamber 39 and atomize after their mixing.

    BezugszeichenlisteLIST OF REFERENCE NUMBERS

    3030
    Düsenkörpernozzle body
    3131
    erstes Rohrfirst pipe
    3232
    Deckel von Pos. 31Cover of item 31
    3333
    DüsenaustrittsbohrungNozzle outlet bore
    3434
    Längsachse der DüseLongitudinal axis of the nozzle
    3535
    zweites Rohrsecond pipe
    3636
    Ringraum zwischen Pos. 31 und 35Annulus between items 31 and 35
    3737
    zu zerstäubende Flüssigkeitliquid to be atomized
    37'37 '
    zweite zu zerstäubende Flüssigkeitsecond liquid to be atomized
    3838
    tangential angestellter Schlitztangential slit
    3939
    Drallkammerswirl chamber
    4040
    Füllstückfilling
    4141
    Zuführungbohrungfeed bore
    4242
    Zufuhrkanalsupply channel
    LL
    Länge von Pos. 33Length of item 33
    da d a
    Durchmesser von Pos. 33Diameter from item 33
    dz d z
    Durchmesser von Pos. 41Diameter from item 41
    Re R e
    Einlaufradius von Pos. 33Inlet radius from item 33
    Rk R k
    Radius von Pos. 39Radius of pos. 39

    Claims (10)

    1. Pressure atomizer nozzle, comprising a nozzle body (30), in which a mixing chamber (39) is designed, the said mixing chamber being connected to an outside space via a nozzle outlet bore (33) and having a first feed duct (42) with a feed bore (41) for a liquid (37) to be atomized, through which feed bore the said liquid (37) can be supplied, free of swirling and under pressure, at least one further feed duct (36) for a portion of the liquid (37) to be atomized or for a second liquid (37') to be atomized opening into the chamber (39), through which feed duct the said portion of liquid (37) or the second liquid (37') can be fed under pressure, and with swirling, the feed bore (41) of the first feed duct (42) lying on one axis (34) with the nozzle outlet bore (33), characterized in that
      a) the outlet-side diameter (da) of the nozzle outlet bore (33) is at most as large as the diameter (dz) of the feed bore (41), and
      b) the length (L) of the nozzle outlet bore (33) is at least twice to at most ten times the outlet-side diameter (da) of the nozzle outlet bore (33).
    2. Pressure atomizer nozzle according to Claim 1, characterized in that the outlet-side diameter (da) of the nozzle outlet bore (33) is approximately 0.7 times the diameter (dz) of the feed bore (41).
    3. Pressure atomizer nozzle according to Claim 1 or 2, characterized in that the nozzle outlet bore (33) is arranged in the cover (32) of a first tube (31), in which is inserted a second tube (35) of smaller outside diameter, which reaches as far as the said cover (32), and in the cover-side end of the second tube (35) at least one slit (38) is provided, which is set tangentially and forms a swirl duct and which connects the annular space (36) between the first (31) and the second (35) tube to the chamber (39), from which the nozzle outlet bore (33) leads into the outside space, the chamber (39) being delimited essentially by the cover (32), the inner walls of the second tube (35) and a filling piece (40) in the second tube (35), and the feed bore (41) in the filling piece (40) being arranged on the same axis (34) as the nozzle outlet bore (33).
    4. Pressure atomizer nozzle according to one of Claims 1 to 3, characterized in that the nozzle outlet bore (33) has a constant cross-sectional area over its entire length (L).
    5. Pressure atomizer nozzle according to one of Claims 1 to 3, characterized in that the nozzle outlet bore (33) has, over its entire length (L), a cross-sectional area decreasing continuously in the direction of flow.
    6. Pressure atomizer nozzle according to one of Claims 1 to 3, characterized in that the nozzle outlet bore (33) has, at its inflow-side end, an inflow radius (Ra) which is at least as large as the radius (Rk) of the chamber (39).
    7. Method for operating a pressure atomizer nozzle according to one of Claims 1 to 6 in a swirl-stabilized burner, during ignition and in the part load mode the nozzle being operated via a pressure swirl stage, in that a portion of the liquid (37) to be atomized or a portion of the liquid (37') to be atomized is fed, swirled, via the feed duct (38) to the chamber (39), and a sharply swirled flow is generated there, which subsequently passes through the nozzle outlet bore (33) into the outside space, the proportion of liquid (37, 37'), fed via the swirl stage, being reduced with an increasing overall liquid mass flow, characterized in that, in the full load and overload mode, the nozzle is operated via a full jet stage, in that the liquid (37) is fed via the feed bore (41) to the chamber (39) and passes from there through the nozzle outlet bore (33) into the outside space as a full jet.
    8. Method according to Claim 7, characterized in that a sliding changeover is made between the two stages.
    9. Method according to Claim 7, characterized in that both stages are operated simultaneously and with a variable throughput.
    10. Method according to Claim 7, characterized in that only one of the two stages is operated.
    EP98810650A 1997-07-17 1998-07-08 Pressure spray nozzle Expired - Lifetime EP0892212B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19730617A DE19730617A1 (en) 1997-07-17 1997-07-17 Pressure atomizer nozzle
    DE19730617 1997-07-17

    Publications (3)

    Publication Number Publication Date
    EP0892212A2 EP0892212A2 (en) 1999-01-20
    EP0892212A3 EP0892212A3 (en) 1999-02-10
    EP0892212B1 true EP0892212B1 (en) 2003-04-09

    Family

    ID=7835979

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98810650A Expired - Lifetime EP0892212B1 (en) 1997-07-17 1998-07-08 Pressure spray nozzle

    Country Status (4)

    Country Link
    US (1) US6045058A (en)
    EP (1) EP0892212B1 (en)
    JP (1) JP4049893B2 (en)
    DE (2) DE19730617A1 (en)

    Families Citing this family (55)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2772118B1 (en) * 1997-12-05 2001-08-17 Saint Gobain Vitrage COMBUSTION PROCESS AND FUEL SPRAY BURNER IMPLEMENTING SUCH A METHOD
    ES2379275T3 (en) * 2000-07-06 2012-04-24 Vrtx Technologies, Llc Apparatus for the treatment of fluids
    DE10231218A1 (en) 2002-07-11 2004-01-29 Alstom (Switzerland) Ltd. Atomizing device and method for producing a liquid-gas mixture
    US6863230B2 (en) 2002-11-12 2005-03-08 Nathan Palestrant Atomizing nozzle and method for manufacture thereof
    US7140558B2 (en) * 2003-03-24 2006-11-28 Irene Base, legal representative Mixing arrangement for atomizing nozzle in multi-phase flow
    EP1668290A1 (en) * 2003-09-01 2006-06-14 Danfoss A/S A nozzle for air-assisted atomization of a liquid fuel
    DE10348237A1 (en) * 2003-10-16 2005-05-19 Pari GmbH Spezialisten für effektive Inhalation Inhalation therapy device with a jet nebulizer
    CN100559080C (en) 2004-10-18 2009-11-11 阿尔斯通技术有限公司 The burner that gas turbine is used
    US8096280B2 (en) * 2005-02-04 2012-01-17 AADI Inc. Fuel injection system and fuel injector with improved spray generation
    FI20055394A0 (en) * 2005-07-07 2005-07-07 Metso Automation Oy Paper path wetting nozzle
    US7643753B2 (en) * 2005-09-29 2010-01-05 Broadlight Ltd. Enhanced passive optical network (PON) processor
    JP2007155170A (en) * 2005-12-02 2007-06-21 Hitachi Ltd Fuel nozzle, gas turbine combustor, fuel nozzle of gas turbine combustor, and remodeling method of gas turbine combustor
    US7434447B2 (en) * 2006-05-17 2008-10-14 David Deng Oxygen depletion sensor
    US7677236B2 (en) 2006-05-17 2010-03-16 David Deng Heater configured to operate with a first or second fuel
    US7607426B2 (en) * 2006-05-17 2009-10-27 David Deng Dual fuel heater
    US8152515B2 (en) 2007-03-15 2012-04-10 Continental Appliances Inc Fuel selectable heating devices
    US20080227041A1 (en) * 2007-03-14 2008-09-18 Kirchner Kirk J Log sets and lighting devices therefor
    US8011920B2 (en) 2006-12-22 2011-09-06 David Deng Valve assemblies for heating devices
    US8757139B2 (en) 2009-06-29 2014-06-24 David Deng Dual fuel heating system and air shutter
    US8241034B2 (en) 2007-03-14 2012-08-14 Continental Appliances Inc. Fuel selection valve assemblies
    JP2008031847A (en) * 2006-07-26 2008-02-14 Hitachi Ltd Gas turbine combustor, its operating method, and modification method of gas turbine combustor
    US8545216B2 (en) 2006-12-22 2013-10-01 Continental Appliances, Inc. Valve assemblies for heating devices
    US7654820B2 (en) 2006-12-22 2010-02-02 David Deng Control valves for heaters and fireplace devices
    US8403661B2 (en) 2007-03-09 2013-03-26 Coprecitec, S.L. Dual fuel heater
    US7766006B1 (en) 2007-03-09 2010-08-03 Coprecitec, S.L. Dual fuel vent free gas heater
    US8057219B1 (en) 2007-03-09 2011-11-15 Coprecitec, S.L. Dual fuel vent free gas heater
    US8118590B1 (en) 2007-03-09 2012-02-21 Coprecitec, S.L. Dual fuel vent free gas heater
    US8523805B2 (en) * 2008-10-29 2013-09-03 Biomet Biologics, Llc Method and apparatus for containing, transporting, and providing a material
    US20110031328A1 (en) * 2009-08-06 2011-02-10 Greg Rundle Nozzle apparatus for dispersing droplets of flowable material
    US9829195B2 (en) * 2009-12-14 2017-11-28 David Deng Dual fuel heating source with nozzle
    EP2584258A3 (en) 2010-06-07 2013-06-12 David Deng Heating system
    US10073071B2 (en) 2010-06-07 2018-09-11 David Deng Heating system
    CN101922569B (en) * 2010-07-13 2013-04-17 汤炳生 All-functional separated-control low-carbon water nozzle
    US8899971B2 (en) 2010-08-20 2014-12-02 Coprecitec, S.L. Dual fuel gas heater
    US8985094B2 (en) 2011-04-08 2015-03-24 David Deng Heating system
    US9739389B2 (en) 2011-04-08 2017-08-22 David Deng Heating system
    US10222057B2 (en) 2011-04-08 2019-03-05 David Deng Dual fuel heater with selector valve
    WO2012162525A2 (en) 2011-05-26 2012-11-29 Georgia-Pacific Wood Products Llc Systems and methods for adjusting moisture concentration of a veneer
    CN102506198B (en) 2011-10-20 2013-05-22 南京普鲁卡姆电器有限公司 Dual-gas-source gas self-adaptive main control valve
    DE102012019951A1 (en) * 2012-10-11 2014-04-17 Man Diesel & Turbo Se Device for introducing a liquid into an exhaust gas stream and exhaust aftertreatment system
    WO2014068778A1 (en) * 2012-11-05 2014-05-08 東芝三菱電機産業システム株式会社 Film-forming apparatus
    US11326775B2 (en) 2013-02-28 2022-05-10 Raytheon Technologies Corporation Variable swirl fuel nozzle
    US20140248567A1 (en) 2013-03-02 2014-09-04 David Deng Safety pilot
    US9752779B2 (en) 2013-03-02 2017-09-05 David Deng Heating assembly
    US9234445B2 (en) * 2013-06-06 2016-01-12 Cummins Emission Solutions Inc. Systems and techniques for nozzle cooling of diesel exhaust fluid injection systems
    FI20135903L (en) * 2013-09-09 2015-03-10 Beneq Oy Device and method for producing aerosol and focusing lot
    US10429074B2 (en) 2014-05-16 2019-10-01 David Deng Dual fuel heating assembly with selector switch
    US10240789B2 (en) 2014-05-16 2019-03-26 David Deng Dual fuel heating assembly with reset switch
    EP3088802A1 (en) * 2015-04-29 2016-11-02 General Electric Technology GmbH Nozzle for a gas turbine combustor
    JP6804755B2 (en) * 2015-11-26 2020-12-23 ウエムラ技研株式会社 Swirl type injection nozzle
    CN108636625B (en) 2018-03-13 2021-09-14 因诺弥斯特有限责任公司 Multi-mode fluid nozzle
    EP3593907B1 (en) * 2018-07-13 2021-05-19 Elysion Family Office GmbH Nozzle for a nano-aerosol
    CN112474093B (en) * 2020-11-23 2022-07-15 中国科学技术大学 Jet flow range extending method and device based on composite flow cooperation
    WO2023076149A1 (en) * 2021-10-29 2023-05-04 Micronic Technologies, Inc. Atomizer for use in water treatment and method for its use
    CN115013204A (en) * 2022-06-20 2022-09-06 江苏大学 Dual-fuel vortex nozzle

    Family Cites Families (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2503481A (en) * 1946-12-04 1950-04-11 William W Hallinan Atomizing nozzle
    DE808722C (en) * 1948-10-02 1951-07-19 Deisting & Co G M B H Dr Contact clamp
    US3053462A (en) * 1961-08-07 1962-09-11 Monarch Mfg Works Inc Constant capacity nozzle
    DE1808722A1 (en) * 1968-11-13 1970-06-04 Nat Res Dev Jet
    IT1004458B (en) * 1973-04-10 1976-07-10 Lucas Aerospace Ltd FUEL NEBULISATION DEVICE FOR GAS TURBINE ENGINES
    DE2733102A1 (en) * 1977-07-22 1979-02-01 Bayer Ag METHOD AND DEVICE FOR ATOMIZING LIQUIDS
    IL63171A0 (en) * 1980-11-25 1981-09-13 Gen Electric Fuel nozzle for a gas turbine engine
    DE3477141D1 (en) * 1983-08-15 1989-04-20 Gmt Sa A method of cleaning industrial components and a jet assembly for use therein
    CH674561A5 (en) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
    DE3811261A1 (en) * 1988-04-02 1989-10-19 Thomae Gmbh Dr K DEVICES FOR THE CONTROLLED RELEASE OF DOSED AMOUNTS OF LIQUIDS FINE DISTRIBUTED IN GASES
    US4970865A (en) * 1988-12-12 1990-11-20 Sundstrand Corporation Spray nozzle
    DE59105449D1 (en) 1991-01-23 1995-06-14 Asea Brown Boveri High pressure atomization nozzle.
    DE4118538C2 (en) * 1991-06-06 1994-04-28 Maurer Friedrich Soehne Dual-substance nozzle
    DE4137136A1 (en) * 1991-11-12 1993-05-13 Graf Rolf Dr Ing Nozzle for producing atomised jet of liquid - has outlet connected to swirl chamber by tubular element having smaller diameter than chamber and anti stick coating
    EP0617779B1 (en) * 1991-12-26 1997-09-03 Solar Turbines Incorporated Low emission combustion nozzle for use with a gas turbine engine
    DE4212360A1 (en) * 1992-04-13 1993-10-14 Babcock Energie Umwelt Burner lance for atomizing a coal-water suspension
    DE4326802A1 (en) * 1993-08-10 1995-02-16 Abb Management Ag Fuel lance for liquid and / or gaseous fuels and process for their operation
    DE19510744A1 (en) * 1995-03-24 1996-09-26 Abb Management Ag Combustion chamber with two-stage combustion
    DE19608349A1 (en) * 1996-03-05 1997-09-11 Abb Research Ltd Pressure atomizer nozzle
    US5845716A (en) * 1997-10-08 1998-12-08 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for dispensing liquid with gas

    Also Published As

    Publication number Publication date
    JPH1172205A (en) 1999-03-16
    JP4049893B2 (en) 2008-02-20
    DE19730617A1 (en) 1999-01-21
    EP0892212A2 (en) 1999-01-20
    US6045058A (en) 2000-04-04
    DE59807805D1 (en) 2003-05-15
    EP0892212A3 (en) 1999-02-10

    Similar Documents

    Publication Publication Date Title
    EP0892212B1 (en) Pressure spray nozzle
    EP0794383B1 (en) Method of operating a pressurised atomising nozzle
    EP0902233B1 (en) Combined pressurised atomising nozzle
    EP0911583B1 (en) Method of operating a premix burner
    EP0769655B1 (en) Air-blast spray nozzle
    EP0321809B1 (en) Process for combustion of liquid fuel in a burner
    DE69718253T2 (en) Device for injecting air jets of liquid fuel
    DE3518080C2 (en)
    CH680467A5 (en)
    WO2006042796A2 (en) Gas turbine burner
    CH682952A5 (en) Burner for a premixing combustion of a liquid and / or gaseous fuel.
    EP0711953B1 (en) Premix burner
    EP0924460B1 (en) Two-stage pressurised atomising nozzle
    EP0394800B1 (en) Premix burner for generating a hot gas
    EP0816759B1 (en) Premix burner and method of operating the burner
    EP0924461B1 (en) Two-stage pressurised atomising nozzle
    EP0742411B1 (en) Air supply for a premix combustor
    EP0911582B1 (en) Method for operating a premix burner and premix burner
    EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
    EP0496016B1 (en) High pressure spray nozzle
    DE69423900T2 (en) V-JET ATOMISATEUR
    DE2428622A1 (en) Nozzle head for burning gas with compressed air - has plate for retarding air flow speed and for mixing gas with air
    DE2552864A1 (en) PROCEDURE AND BURNER FOR BURNING LIQUID FUEL
    EP0807787A2 (en) Burner
    DE19505614A1 (en) Operating method for pre-mixing burner

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE FR GB

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990527

    AKX Designation fees paid

    Free format text: DE FR GB

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: VALK, MARTIN, DR.

    Inventor name: STEINBACH, CHRISTIAN, DR.

    Inventor name: DOEBBELING, KLAUS, DR.

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040112

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59807805

    Country of ref document: DE

    Representative=s name: UWE ROESLER, DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20120802 AND 20120808

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59807805

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Effective date: 20120713

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59807805

    Country of ref document: DE

    Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

    Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

    Effective date: 20120713

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59807805

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

    Effective date: 20120713

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59807805

    Country of ref document: DE

    Owner name: ALSTOM TECHNOLOGY LTD., CH

    Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

    Effective date: 20120713

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: ALSTOM TECHNOLOGY LTD., CH

    Effective date: 20120918

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59807805

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59807805

    Country of ref document: DE

    Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59807805

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Owner name: ALSTOM TECHNOLOGY LTD, CH

    Effective date: 20161110

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20170824 AND 20170830

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

    Effective date: 20170914

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59807805

    Country of ref document: DE

    Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59807805

    Country of ref document: DE

    Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

    Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20170724

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20170719

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20170724

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59807805

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20180707

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20180707