EP0793738B1 - Korrosionsschutz und reibungsverminderung von metalloberflächen - Google Patents

Korrosionsschutz und reibungsverminderung von metalloberflächen Download PDF

Info

Publication number
EP0793738B1
EP0793738B1 EP95940171A EP95940171A EP0793738B1 EP 0793738 B1 EP0793738 B1 EP 0793738B1 EP 95940171 A EP95940171 A EP 95940171A EP 95940171 A EP95940171 A EP 95940171A EP 0793738 B1 EP0793738 B1 EP 0793738B1
Authority
EP
European Patent Office
Prior art keywords
acid
aqueous solution
component
carbon atoms
cans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95940171A
Other languages
English (en)
French (fr)
Other versions
EP0793738A1 (de
Inventor
Henry Rossmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0793738A1 publication Critical patent/EP0793738A1/de
Application granted granted Critical
Publication of EP0793738B1 publication Critical patent/EP0793738B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides

Definitions

  • the invention is in the field of surface treatment of molded Metal parts made of aluminum or aluminum alloys as well as tinned Steel (tinplate). It particularly affects beverage and food cans from these materials.
  • the invention pursues the goal in the process of Can manufacturing the can surfaces with a paintable, anti-corrosion To provide a layer that facilitates the drainage of water and which leads in particular to the fact that the coefficient of friction reduced between touching cans and thus the transport of Cans on conveyor belts are lightened, while maintaining porosity a later painting is reduced.
  • Tins made of tinned steel (tinplate) and aluminum (or aluminum alloys, which in the following for simplicity under "aluminum” are summarized) are for storing food and in particular of beverages widely used.
  • these are usually washed after shaping, for example acidic or alkaline cleaners are commercially available.
  • This Cleaner solutions must have sufficient solvent power for those concerned Contain metals to effectively remove metal debris from the cans.
  • the can surface itself can be roughened by the metal attack be, which increases the friction between touching cans elevated. This will reduce the speed of the can transport Conveyor belts are reduced and especially in places where there is separation If the cans build up a can backlog, the can can be transported completely be blocked. Because this increases the capacity of the production plant reduced, one tries to condition the can surfaces in such a way that the friction between touching cans is as low as possible becomes.
  • chrome-free methods for surface treatment are in the prior art known from aluminum, which is usually inorganic acids, especially phosphoric acid, hydrofluoric acid or other sources of fluoride and / or use complex fluorides with or without additional Use organic polymers.
  • inorganic acids especially phosphoric acid, hydrofluoric acid or other sources of fluoride and / or use complex fluorides with or without additional Use organic polymers.
  • US-A-4,992,116 an aqueous acid treatment solution, the phosphate, a fluoric acid of Zr, Ti, Hf or Si and a polyphenol compound contains a Mannich adduct of a substituted amine with a polyalkylene phenol or represents a tannin.
  • EP-B-8942 discloses treatment solutions preferably for aluminum cans containing a) 0.5 to 10 g / l polyacrylic acid or an ester here from and b) 0.2 to 8 g / l at least one of the compounds hexafluorozirconic acid, hexafluorotitanic acid or hexafluorosilicic acid.
  • Conversion solutions for aluminum are known from US Pat. No. 4,470,853 among others 10 to 150 ppm zircon, 20 to 250 ppm fluoride, 15 to 100 ppm of phosphate and 30 to 125 ppm of tannin. Your pH is in the Range 2.3 to 2.95.
  • the use of tannin in surface treatment of aluminum is also taught in DE-A-24 46 492, according to which one Aluminum is treated with an acidic, phosphate-containing solution, the one Contains metal salt of tannin in amounts between 0.1 and 10 g / l.
  • W091 / 14014 describes an aqueous solution containing ions of Fe, Zr, Sn, Al or Ce, metal etching acids such as hydrofluoric acid, alkoxylated phosphoric acid esters and a combination of alkoxylated alcohols and alkoxylated alkylphenols.
  • the W094 / 01517 describes a Process for the friction-reducing conversion treatment of metal cans, in which, in addition to inorganic metal compounds, alkoxylated or not alkoxylated castor oil triglycerides, hydrogenated castor oil derivatives, alkoxylated or non-alkoxylated amine salts of fatty acids, alkoxylated or non-alkoxylated amino fatty acids, alkoxylated or non-alkoxylated Fatty amine N-oxides, alkoxylated or non-alkoxylated quaternary ammonium salts or water-soluble organic polymers are used.
  • EP-A-612 833 proposes a surface treatment to reduce friction with an ester between a polyglycerin and fatty acids in front.
  • An effective surface treatment for tinplate or aluminum cans is intended on the one hand to meet the different requirements with regard to corrosion protection as well as freedom from pores and adhesion of a subsequent painting, each according to different requirements according to different Criteria are checked, sufficient and, on the other hand, the most effective Ensure a reduction in friction.
  • Systems known to date compromises between the different requirements and do not fully satisfy all points.
  • the task of The present invention is a solution for surface treatment of metal cans to provide an improved range of services with regard to the different requirements.
  • the alkyl radicals R 1 can represent radicals with a certain chain length and a certain number of double bonds. For economic reasons, however, it is preferable to use amine oxides or ammonium salts derived from oleochemical raw materials. In these cases, the R 1 radicals have a distribution of chain lengths and double bonds as are characteristic of the fatty acids in vegetable or animal fats and oils. Preference is given to using those compounds of the general formula (I) in which R 1 represents a mixture of alkyl groups, such as in those fatty acid mixtures which can be obtained by hydrolysis of coconut oil, palm kernel oil or animal tallow.
  • Suitable amine oxides of the general formula (I) are: bis (2-hydroxyethyl) cocoalkylamine oxide (Aromox R C / 12), bis (2-hydroxyethyl) tallow alkylamine oxide (Aromox R T / 12), dimethyl cocoalkylamine oxide (Aromox R DMC), hydrogenated dimethyl tallow alkylamine oxide (Aromox R DMHT) and dimethylhexadecylamine oxide (Aromox R DM-16), all of which are available from Akzo Chemicals Inc.
  • quaternary ammonium salts of the general formula (I) are: dodecyltrimethylammonium chloride (Arquad R 12-37W), octadecyltrimethylammonium chloride (Arquad R 18-50), dimethylbenzyl- (C 12-18 ) alkylammonium chloride (Arquad R B-100), Tris ( 2-hydroxyethyl) tallow alkyl ammonium acetate (Ethoquad R T / 13) and methyl bis (2-hydroxy-2-methylethyl) ammonium methyl sulfate (Propoquad R T / 12), all of which are also available from Akzo Chemicals Inc.
  • Preferred alkylamine oxides or quaternary ammonium salts of the general formula (I) are those which carry radicals R 2 , R 3 and, in the case of the quaternary ammonium salts, also R 4 , which form when the alkylamines are reacted with ethylene oxide, propylene oxide or butylene oxide. Examples include 2-hydroxyethyl groups and 2-hydroxy-2-methylethyl groups. As is customary in alkoxylation reactions, radicals R 2 , R 3 and R 4 can also be formed in which several alkoxy groups are linked to one another via ether bonds. Such polyether residues with up to 8 carbon atoms are also within the scope of the invention. However, particular preference is given to those compounds of the general formula (I) which bear 2-hydroxyethyl groups as radicals R 2 , R 3 and optionally R 4 .
  • the components of the Group a) represents the active ingredients which reduce friction the effect of the components of group b) is one-, two- or three-base Hydroxycarboxylic acids with 4 to 7 carbon atoms in the molecule, the sum of hydroxyl and carboxyl groups is at least 3, primarily in that a later applied varnish has a reduced porosity and thus has an increased corrosion resistance.
  • the porosity value referred to in the Anglo-Saxon literature as "Metal Exposure Value", MEV, can be determined and determined by an electrochemical measurement one of the quality requirements of the beverage industry for coated beverage cans
  • This measured variable can, for example, with an "Enamel Rater MK “from Manfred Kunke, Berlin (Germany) or with a “Enamel Rater” from Wilkens-Anderson Co, Chicaco, Illinois become.
  • the measurement is based on the fact that the beverage can is painted on the inside with an electrolytic solution (50.6 g of common salt and 1.19 g of dioctyl sodium sulfosuccinate in 5 liters of deionized water) and fill the can as an electrode switches.
  • a counter electrode is immersed in the electrolyte solution and after switching on the voltage and a waiting time of 4 sec. the flowing Current read in mA. With a perfect coating of the can there is none Current flow expected. Increasing current flow in mA, the "Metal Exposure Value "shows an increasing permeability of the coating for ions that can be interpreted as porosity. For one later filling with soft drinks is required, for example, that the average MEV is below 5 mA at a test voltage of 6.3 V should lie.
  • Suitable hydroxycarboxylic acids are malic acid, tartaric acid, citric acid and in particular those carboxylic acids which can be obtained by oxidation of pentose and hexose type sugars.
  • suitable carboxylic acids are gluconic acid, sugar acid, mannosugar acid, mucic acid and glucuronic acid. Gluconic acid is particularly preferred.
  • These acids can be used as such or in the form of their water-soluble salts, in particular their sodium salts.
  • the hydroxycarboxylic acids are, depending on their pK partly as such and partly in the form of their anions.
  • the other main components of the treatment solution according to the invention, c) and d), are in solutions for the conversion treatment of aluminum surfaces well known.
  • the use of hexafluorozirconate is preferred. It is immaterial whether the complex fluorides as water-soluble salts, for example as sodium or ammonium salts, or used as free acids.
  • the complex fluorine compounds so with the mineral acids of the Group d) or their acidic or neutral salts are combined in such a way that the treatment solution according to the invention has a pH in the effective range from 2.3 to 3.3. At pH values outside this range, the Training the desired corrosion-protecting and friction-reducing Layer the more unsatisfactory the further you go from the specified Area removed.
  • component d) 10 to 100 wt .-% of phosphoric acid or whose anions exist. If not phosphoric acid as the only acid of the Group d) is used, the concomitant use of nitric acid or their anions advantageous.
  • tannin in the concentration range 50 to 500 mg / l increases the Effect of group b) hydroxycarboxylic acids on the reduction the "metal exposure value" of a subsequent coating. Accordingly, it is preferred that the treatment solution according to the invention additionally Contains tannin. Tannins (compare, for example, Römpp Chemie Lexicon 9th edition 1992, keyword “Tannin”) stands as a group name for a number of natural polyphenols of very diverse compositions, which can be derived from gallic acid. Here are the gallic acid derivatives often esterified with glucose before. In the form of herbal extracts The tannins of different origins represent a well-known group of active ingredients for leather tanning.
  • the treatment solution contains, by means of the components of group a), surface-active components which tend to foam, it may be necessary to add defoamers to the treatment baths in the case of strong bath movements, such as for spray systems. Amounts in the range of 50 to 500 mg / l should generally be sufficient.
  • suitable defoamers are alkyl polyalkoxy esters. A suitable polyalkoxy ester of this type is available under the trade name Foamaster R C14 from Henkel KGaA, Düsseldorf (Germany).
  • a further improvement of the coating, especially with regard to their paintability can be achieved by using the treatment solution additionally water-soluble or water-dispersible organic Add polymers in concentrations from about 100 to about 1000 mg / l.
  • these polymers can be selected from h) homopolymers or heteropolymers of ethylene oxide, propylene oxide and / or butylene oxide, i) homopolymers or heteropolymers of acrylic acid, maleic acid and / or derivatives thereof, k) homo- or heteropolymers of vinylphenol and / or vinylphenol derivatives, 1) Homopolymers or heteropolymers of vinyl alcohol and / or vinyl alcohol derivatives. Polymers of the type mentioned are commercially available.
  • the polyvinylphenol derivatives of group k) are obtainable by a Mannich reaction from Polyvinylphenol with aldehydes with alkylamines.
  • a reaction product of poly (4-vinylphenol) with formaldehyde and 2-alkylamino-1-ethanol is contained in W092 / 07973.
  • compositions of the invention have become ready for use Treatment solutions described. It is of course possible to do this Baths by mixing together the individual components in the specified Prepare concentration areas directly on site. For the user such treatment solutions, however, it is cheaper, from a manufacturer to obtain aqueous concentrates of the treatment solutions and these on site by diluting with water to the concentration ranges of the application solutions adjust. Accordingly, the invention also includes aqueous Concentrates of the treatment solutions, which are diluted with water Treatment solutions according to the invention result. It is technical and economically most attractive to adjust the concentrates so that them by diluting them with water in a volume ratio between 1:50 and 1:200 the ready-to-use treatment solutions are obtained can. For example, the concentrate can be adjusted so that it to prepare the ready-to-use treatment solution with water in proportion Must be diluted 1: 100.
  • the treatment solution according to the invention preferably comes in one process for the production of cans, in particular beverage cans made of aluminum alloys, for use.
  • the preformed cans in the Usually subjected to one or two-stage acidic or alkaline cleaning, which is usually followed by a rinse with tap water.
  • the doses are brought in with the treatment solution according to the invention Touch, for example by immersing the cans in the solution or can be done by spraying the cans with the solution.
  • the temperature of the treatment solution is between 30 and 60 ° C and in particular 40 to 45 ° C.
  • the duration of treatment should be 10 do not fall below sec.
  • a treatment duration of more than 120 sec. brings no technical advantage. For example, it is convenient to have one Treatment duration of about 30 seconds to choose.
  • the invention encompasses also a method of producing an anti-corrosion, anti-friction and the protective layer on surfaces which improves the paintability made of aluminum or tin and their alloys, characterized in that that the surfaces with an aqueous solution after a or more of claims 1 to 8, which have a temperature in the range of 30 up to 60 ° C, for a period between 10 and 120 seconds in contact brings, which one preferably for the treatment of cans made of aluminum or uses aluminum alloys.
  • the invention was tested on aluminum beverage cans with a volume between 330 and 350 ml, as are customary for soft drinks.
  • the preformed cans were first cleaned (acidic cleaner Ridoline R 124, Henkel KGaA, Düsseldorf; 54 to 60 ° C, 1 minute) and then rinsed with tap water at room temperature. Thereafter, the surface treatment was carried out with treatment solutions according to the invention and with comparison solutions according to the table with pH values in the range between 2.45 and 2.93 at temperatures between 40 and 45 ° C. for a treatment period of 30 seconds in spraying. This was followed by rinsing with tap water, followed by rinsing with demineralized water, each at room temperature, after which the cans were dried at 150 ° C. for 5 minutes.
  • the well water resistance was determined in that the unpainted cans for 30 minutes in a 66 ° C solution of 0.2 g / l Sodium tetraborate decahydrate were dipped, then with fully desalinated Rinsed water and dried at 105 ° C in a drying oven. The can bottoms were then assessed visually for the degree of discoloration. No or a slight discoloration is considered acceptable, a dark or irregular discoloration as unacceptable. Either those with the method variants according to the invention as well as with comparison methods Doses treated according to the prior art passed these Corrosion resistance test.
  • the surface friction of the unpainted beverage cans was determined on a tilting table. For this, 3 doses are treated equally used. Two cans are placed side by side on the tilting table arranged so that its longitudinal axis is perpendicular to the tilt axis. A third can with its longitudinal axis is perpendicular to this pair of cans to the tilt axis so that it is about 0.5 cm is shifted in the direction of the tilt axis, whereby it is opposed to the lower cans are placed with the open side in the direction of the tilt axis. The tilting table is then automatically tilted at a constant speed and the angle of inclination ⁇ was found at which the upper box slipped while touching a switch.
  • the tangent of the angle of inclination ⁇ , in which the slipping takes place, is called the coefficient of friction.
  • 6 used the same treated doses, of which 3 each for an experiment to be chosen. 6 independent measurements with different ones are carried out Combinations of cans. The 6 measurements become the Average determined.
  • the treatment solutions according to the invention and the comparison solutions determined according to the prior art coefficient of friction showed no significant differences and were in the range from 0.476 to 0.514.
  • the cans connected as electrodes were filled with an electrolyte solution (50.6 g of sodium chloride and 1.19 g of dioctyl sodium sulfosuccinate in 5 l of completely deionized water), into which a metal bracket was immersed as a counter electrode. After applying the voltage, the current was measured in mA after 4 seconds and set as the MEV value. An upper MEV value of 5 mA is specified as the test criterion for beverage cans for soft drinks. The results obtained are entered in the table. The table also contains the number of doses that were measured per treatment solution, the mean MEV value, the maximum observed MEV value and the number of doses at which the specification was exceeded by a maximum MEV value of 5 mA.
  • Pretreatment Solutions and Metal Exposure Value (MEV) Basic recipe: 400 mg / l tris (2-hydroxyethyl) tallow ammonium acetate 145 mg / l hexafluorozirconic acid 66 mg / l phosphoric acid 266 mg / l nitric acid 32 mg / l hydrofluoric acid 200 mg / l defoamer (alkyl polyalkoxy ester, Foamaster R C14, Henkel KGaA, Düsseldorf) Additions of sodium gluconate and tannin Trial No.
  • MUV Metal Exposure Value

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung liegt auf dem Gebiet der Oberflächenbehandlung von geformten Metallteilen aus Aluminium oder Aluminiumlegierungen sowie aus verzinntem Stahl (Weißblech). Sie betrifft insbesondere Getränke- und Lebensmitteldosen aus diesen Materialien. Die Erfindung verfolgt das Ziel, im Prozeß der Dosenherstellung die Dosenoberflächen mit einer überlackierbaren, korrosionsschützenden Schicht zu versehen, die das Ablaufen von Wasser erleichtert und die insbesondere dazu führt, daß sich der Reibungskoeffizient zwischen einander berührenden Dosen verringert und damit der Transport der Dosen auf Transportbändern erleichtert wird, wobei gleichzeitig die Porosität einer späteren Lackierung verringert wird.
Dosen aus verzinntem Stahl (Weißblech) sowie aus Aluminium (bzw. aus Aluminiumlegierungen, die im folgenden der Einfachheit wegen unter "Aluminium" zusammengefaßt werden) sind zum Aufbewahren von Lebensmitteln und insbesondere von Getränken weit verbreitet. Im Prozeß der Dosenherstellung werden diese nach der Formgebung üblicherweise gewaschen, wozu beispielsweise saure oder alkalische Reiniger kommerziell erhältlich sind. Diese Reinigerlösungen müssen ein ausreichendes Lösevermögen für die betreffenden Metalle aufweisen, um Metallabrieb aus den Dosen wirkungsvoll zu entfernen. Durch den Metallangriff kann dabei die Dosenoberfläche selbst aufgerauht werden, wodurch sich die Reibung zwischen sich berührenden Dosen erhöht. Hierdurch wird die Geschwindigkeit des Dosentransports auf den Transportbändern verringert und besonders an Stellen, wo sich durch Vereinzelung der Dosen ein Dosenrückstau bildet, kann der Dosentransport völlig blockiert werden. Da sich hierdurch die Kapazität der Produktionsanlage verringert, ist man bestrebt, die Dosenoberflächen so zu konditionieren, daß die Reibung zwischen sich berührenden Dosen möglichst gering wird.
Das Aufbringen einer reibungsvermindernden Schicht darf jedoch nicht dazu führen, daß die Haftung von zum Korrosionsschutz und/oder aus dekorativen Gründen aufgebrachten Lackierungen, Beschriftungen oder sonstigen Beschichtungen leidet. Weiterhin muß die Beschichtung gewährleisten, daß die je nach Füllgut der Dosen unterschiedlichen Anforderungen hinsichtlich Korrosionsbeständigkeit erfüllt werden. Dabei sollen nur solche Wirkstoffe zum Einsatz kommen, die allgemein ökologisch und insbesondere lebensmitteltechnisch unbedenklich sind. Beispielsweise ist man aus Umweltaspekten bestrebt, auf chromhaltige Reagenzien zu verzichten.
Im Stand der Technik sind verschiedene chromfreie Verfahren zur Oberflächenbehandlung von Aluminium bekannt, die in der Regel anorganische Säuren, insbesondere Phosphorsäure, Flußsäure oder sonstige Quellen für Fluorid und/oder komplexe Fluoride einsetzen und die mit oder ohne zusätzlicher Verwendung organischer Polymere arbeiten. Beispielsweise beschreibt die US-A-4,992,116 eine wäßrige saure Behandlungslösung, die Phosphat, eine Fluorosäure von Zr, Ti, Hf oder Si sowie eine Polyphenolverbindung enthält, die ein Mannich-Addukt eines substituierten Amins an ein Polyalkylenphenol oder ein Tannin darstellt. Die EP-B-8942 offenbart Behandlungslösungen, vorzugsweise für Aluminiumdosen, enthaltend a) 0,5 bis 10 g/l Polyacrylsäure oder eines Esters hier von und b) 0,2 bis 8 g/l mindestens einer der Verbindungen Hexafluorozirkonsäure, Hexafluorotitansäure oder Hexafluorokieselsäure.
Aus der US-A-4,470,853 sind Konversionslösungen für Aluminium bekannt, die unter anderem 10 bis 150 ppm Zirkon, 20 bis 250 ppm Fluorid, 15 bis 100 ppm Phosphat und 30 bis 125 ppm Tannin enthalten. Ihr pH-Wert liegt im Bereich 2,3 bis 2,95. Die Verwendung von Tannin bei der Oberflächenbehandlung von Aluminium wird auch in der DE-A-24 46 492 gelehrt, wonach man Aluminium mit einer sauren, phosphathaltigen Lösung behandelt, die ein Metallsalz von Tannin in Mengen zwischen 0,1 und 10 g/l enthält.
Für die Verringerung der Reibung zwischen Aluminiumdosen beim Dosentransport wurden bereits unterschiedliche Lösungen vorgeschlagen. Beispielsweise beschreibt die W091/14014 eine wäßrige Lösung, die Ionen von Fe, Zr, Sn, Al oder Ce, metallätzende Säuren wie beispielsweise Flußsäure, alkoxylierte Phosphorsäureester sowie eine Kombination alkoxylierter Alkohole und alkoxylierter Alkylphenole enthält. Die W094/01517 beschreibt ein Verfahren zur reibungsvermindernden Konversionsbehandlung von Metalldosen, bei denen neben anorganischen Metallverbindungen alkoxylierte oder nicht alkoxylierte Castoröl-Triglyceride, hydrierte Castorölderivate, alkoxylierte oder nicht alkoxylierte Aminsalze von Fettsäuren, alkoxylierte oder nicht alkoxylierte Aminofettsäuren, alkoxylierte oder nicht alkoxylierte Fettamin-N-oxide, alkoxylierte oder nicht alkoxylierte quartäre Ammoniumsalze oder wasserlösliche organische Polymere zum Einsatz kommen. Dabei werden solche Aminoxide oder quartäre Ammoniumsalze eingesetzt, bei denen mindestens ein Alkylrest bis zu 20 Kohlenstoffatome enthält. Aminverbindungen dieses Typs kommen auch im Rahmen der vorliegenden Erfindung zum Einsatz. Die EP-A-612 833 schlägt zur Reibungsverminderung eine Oberflächenbehandlung mit einem Ester zwischen einem Polyglycerin und Fettsäuren vor.
Eine wirkungsvolle Oberflächenbehandlung von Weißblech- oder Aluminiumdosen soll einerseits den unterschiedlichen Anforderungen hinsichtlich Korrosionsschutz sowie Porenfreiheit und Haftung einer anschließenden Lackierung, die jeweils nach unterschiedlichen Anforderungen nach verschiedenen Kriterien geprüft werden, genügen und andererseits eine möglichst effektive Reibungsverminderung gewährleisten. Bisher bekannte Systeme stellen jeweils Kompromisse zwischen den unterschiedlichen Anforderungen dar und befriedigen nicht in jeweils allen Punkten vollständig. Die Aufgabe der vorliegenden Erfindung besteht darin, eine Lösung zur Oberflächenbehandlung von Metalldosen zur Verfügung zu stellen, die ein verbessertes Leistungsspektrum hinsichtlich der unterschiedlichen Anforderungen aufweist. Insbesondere hat sich gezeigt, daß bei Verfahren zur Konversionsbehandlung und Reibungsverminderung gemäß der W094/01517, bei denen als reibungsvermindernde Wirkstoffe Fettamin-N-oxide oder quartäre Fettalkylammoniumsalze zum Einsatz kommen, die Porosität einer nachfolgenden Lackierung den Anforderungen speziell der Getränkeindustrie nicht zuverlässig genügt.
Die Aufgabe wird gelöst durch eine wäßrige Lösung zum Behandeln von Oberflächen aus Aluminium oder Zinn sowie jeweils deren Legierungen, die einen pH-Wert im Bereich 2,3 bis 3,3 aufweist und zumindest die folgenden Komponenten enthält:
  • a) 0,14 bis 2,25 mMol/l einer Komponenten ausgewählt aus oberflächenaktiven quartären Ammoniumsalzen oder Aminoxiden der allgemeinen Formel (I)
    Figure 00040001
    wobei R1 ein gesättigter oder ein- oder mehrfach ungesättigter Alkylrest mit 8 bis 22 C-Atomen, R2 und R3 unabhängig voneinander ein Alkyl- oder Hydroxyalkylrest mit 1 bis 8 C-Atomen oder ein Aryl- oder Alkylarylrest mit 6 bis 10 C-Atomen, R4 ein Rest des Typs R2 oder R3 oder ein -0--Rest und X- ein einwertiges Anion oder ein einwertiges Äquivalent eines mehrwertigen Anions bedeuten und a dann = 0 ist, wenn R4 ein -0-- Rest bedeutet, und ansonsten a = 1 ist,
  • b) 0,25 bis 1,5 mMol/l einer oder mehrerer ein- zwei- oder dreibasischer Hydroxycarbonsäuren mit 4 bis 7 C-Atomen im Molekül, wobei die Summe aus Hydroxyl- und Carboxylgruppen mindestens 3 beträgt, oder jeweils deren Anionen,
  • c) 0,4 bis 2 mMol/l eines oder mehrerer komplexer Fluoride und
  • d) 20 bis 500 mg/l Mineralsäuren, ausgewählt aus Phosphorsäure, Salpetersäure und Schwefelsäure, oder jeweils deren Anionen.
  • Dabei können die Alkylreste R1 Reste mit einer bestimmten Kettenlänge und einer bestimmten Anzahl von Doppelbindungen darstellen. Aus ökonomischen Gründen ist es jedoch vorzuziehen, Aminoxide oder Ammoniumsalze einzusetzen, die aus fettchemischen Rohstoffen abgeleitet sind. In diesen Fällen weisen die Reste R1 eine Verteilung von Kettenlängen und Doppelbindungen auf, wie sie für die Fettsäuren in pflanzlichen oder tierischen Fetten und Ölen charakteristisch sind. Mit Vorzug werden solche Verbindungen der allgemeinen Formel (I) eingesetzt, in denen R1 für ein Gemisch von Alkylgruppen wie in denjenigen Fettsäuregemischen steht, die man durch Hydrolyse von Kokosöl, Palmkernöl oder von tierischem Talg erhalten kann.
    Beispiele geeigneter Aminoxide der allgemeinen Formel (I) sind: Bis(2-hydroxyethyl)kokosalkylaminoxid (AromoxR C/12), Bis(2-hydroxyethyl)talgalkylaminoxid (AromoxR T/12), Dimethylkokosalkylaminoxid (AromoxR DMC), hydriertes Dimethyltalgalkylaminoxid (AromoxR DMHT) und Dimethylhexadecylaminoxid (AromoxR DM-16), die alle bei Akzo Chemicals Inc. erhältlich sind.
    Beispiele geeigneter quartärer Ammoniumsalze der allgemeinen Formel (I) sind: Dodecyltrimethylammoniumchlorid (ArquadR 12-37W), Octadecyltrimethylammoniumchlorid (ArquadR 18-50), Dimethylbenzyl-(C12-18)-alkylammoniumchlorid (ArquadR B-100), Tris(2-hydroxyethyl)talgalkylammoniumacetat (EthoquadR T/13) und Methylbis(2-hydroxy-2-methylethyl)ammoniummethylsulfat (PropoquadR T/12), die alle ebenfalls bei Akzo Chemicals Inc. erhältlich sind.
    Dabei werden solche Alkylaminoxide oder quartäre Ammoniumsalze der allgemeinen Formel (I) bevorzugt, die Reste R2, R3 und im Falle der quartären Ammoniumsalze auch R4 tragen, die sich bei der Umsetzung der Alkylamine mit Ethylenoxid, Propylenoxid oder Butylenoxid bilden. Beispiele hierfür sind 2-Hydroxyethylgruppen und 2-Hydroxy-2-methylethylgruppen. Wie bei Alkoxylierungsreaktionen üblich, können hierbei auch Reste R2, R3 und R4 entstehen, in denen jeweils mehrere Alkoxygruppen über Etherbindungen miteinander verknüpft sind. Derartige Polyetherreste mit bis zu 8 C-Atomen liegen ebenfalls im Rahmen der Erfindung. Besonders bevorzugt sind jedoch solche Verbindungen der allgemeinen Formel (I), die als Reste R2, R3 und gegebenenfalls R4 2-Hydroxyethylgruppen tragen.
    In den erfindungsgemäßen Behandlungslösungen stellen die Komponenten der Gruppe a) die reibungsvermindernd wirkenden Wirkstoffe dar. Demgegenüber liegt der Effekt der Komponenten der Gruppe b), eins-, zwei- oder dreibasische Hydroxycarbonsäuren mit 4 bis 7 C-Atomen im Molekül, wobei die Summe aus Hydroxyl- und Carboxylgruppen mindestens 3 beträgt, vornehmlich darin, daß ein später aufgebrachter Lack eine verringerte Porosität und damit eine erhöhte Korrosionsbeständigkeit aufweist. Der Porositätswert, in der angelsächsischen Literatur als "Metal Exposure Value", MEV, bezeichnet, ist durch eine elektrochemische Messung bestimmbar und stellt eine der Qualitätsanforderungen der Getränkeindustrie an lackierte Getränkedosen dar. Diese Meßgröße kann beispielsweise mit einem "Enamel Rater MK" der Firma Manfred Kunke, Berlin (Deutschland) oder mit einem "Enamel Rater" der Firma Wilkens-Anderson Co, Chicaco, Illinois bestimmt werden. Die Meßung beruht darauf, daß man die innen lackierte Getränkedose mit einer Elektrolytlösung (50,6 g Kochsalz und 1,19 g Dioctyl-Natrium-Sulfosuccinat in 5 1 vollentsalztem Wasser) füllt und die Dose als Elektrode schaltet. In die Elektrolytlösung wird eine Gegenelektrode getaucht und nach Einschalten der Spannung und einer Wartezeit von 4 sec. der fließende Strom in mA abgelesen. Bei perfekter Beschichtung der Dose ist kein Stromfluß zu erwarten. Zunehmender Stromfluß in mA, der den "Metal Exposure Value" darstellt, zeigt eine zunehmende Durchlässigkeit der Beschichtung für Ionen an, die als Porosität interpretiert werden kann. Für eine spätere Befüllung mit Erfrischungsgetränken wird beispielsweise gefordert, daß der durchschnittliche MEV unter 5 mA bei einer Prüfspannung von 6,3 V liegen soll.
    Der Kern der vorliegenden Erfindung besteht darin, daß die Komponenten b) in der Behandlungslösung den MEV signifikant absenken, ohne die übrigen Eigenschaften wie Reibungsverminderung und Korrosionsschutz, die im wesentlichen auf die Komponenten a), c) und d) der Behandlungslösung zurückzuführen sind, negativ zu beeinflussen.
    Beispiele geeigneter Hydroxycarbonsäuren sind Äpfelsäure, Weinsäure, Citronensäure und insbesondere solche Carbonsäuren, die sich durch Oxidation von Zuckern vom Typ der Pentosen und der Hexosen erhalten lassen. Beispiele derartiger Säuren sind Gluconsäure, Zuckersäure, Mannozuckersäure, Schleimsäure und Glucuronsäure. Gluconsäure ist besonders bevorzugt. Diese Säuren können als solche oder in Form ihrer wasserlöslichen Salze, insbesondere ihrer Natriumsalze, eingesetzt werden. Bei dem pH-Wert der erfindungsgemäßen Behandlungslösungen im Bereich 2,3 bis 3,3 liegen die Hydroxycarbonsäuren je nach ihrem pKs-Wert teilweise als solche und teilweise in Form ihrer Anionen vor. Die Mitverwendung derartiger Carbonsäuren, insbesondere der Gluconsäure, bei der Oberflächenbehandlung von Aluminium, beispielsweise bei der alkalischen Beize, ist prinzipiell bekannt. Unerwartet ist jedoch der Effekt, daß die Hydroxycarbonsäuren der Gruppe b) die Wirkung der übrigen Komponenten der erfindungsgemäßen Behandlungslösung dahingehend ergänzt, daß der "Metal Exposure Value" einer aufgebrachten Lackierung verringert wird.
    Die weiteren Hauptkomponenten der erfindungsgemäßen Behandlungslösung, c) und d), sind in Lösungen zur Konversionsbehandlung von Aluminiumoberflächen gut bekannt. Als komplexe Fluoride der Gruppe c) kommen beispielsweise Hexafluorotitanat, Hexafluorozirkonat, Hexafluorohafnat, Hexafluorosilicat oder Tetrafluoroborat in Betracht. Die Verwendung von Hexafluorozirkonat ist bevorzugt. Dabei ist es unwesentlich, ob die komplexen Fluoride als wasserlösliche Salze, beispielsweise als Natrium- oder Ammoniumsalze, oder als freie Säuren eingesetzt werden. Es muß lediglich darauf geachtet werden, daß die komplexen Fluoroverbindungen so mit den Mineralsäuren der Gruppe d) bzw. deren sauren oder neutralen Salzen kombiniert werden, daß die erfindungsgemäße Behandlungslösung einen pH-Wert im wirksamen Bereich von 2,3 bis 3,3 aufweist. Bei pH-Werten außerhalb dieses Bereichs wird die Ausbildung der angestrebten korrosionsschützenden und reibungsvermindernden Schicht um so unbefriedigender, je weiter man sich von dem angegebenen Bereich entfernt.
    Da der Phosphorsäure oder deren Anionen aufgrund der Bildung schwerlöslicher und auf der Metalloberfläche fest haftender Metallphosphate eine besondere korrosionsschützende Wirkung zukommt, ist es besonders vorzuziehen, daß die Komponente d) zu 10 bis 100 Gew.-% aus Phosphorsäure oder deren Anionen besteht. Falls nicht Phosphorsäure als einzige Säure der Gruppe d) eingesetzt wird, ist die Mitverwendung von Salpetersäure oder deren Anionen vorteilhaft.
    Die Wirkung der vorstehend beschriebenen Stoffkombination kann durch Zusatz weiterer Wirkstoffe aus dem Stand der Technik verstärkt werden:
    Ein Zusatz von Tannin im Konzentrationsbereich 50 bis 500 mg/l erhöht die Wirkung der Hydroxycarbonsäuren der Gruppe b) hinsichtlich der Reduktion des "Metal Exposure Value" einer anschließend aufgebrachten Lackierung. Demnach ist es bevorzugt, daß die erfindungsgemäße Behandlungslösung zusätzlich Tannin enthält. Tannine (vergleiche beispielsweise Römpp Chemie Lexikon 9. Auflage 1992, Stichwort "Tannin") steht als Gruppenname für eine Reihe von natürlichen Polyphenolen sehr vielfältiger Zusammensetzung, die sich von der Gallussäure ableiten lassen. Dabei liegen die Gallussäurederivate häufig mit Glucose verestert vor. In Form pflanzlicher Extrakte unterschiedlicher Herkunft stellen die Tannine eine bekannte Wirstoffgruppe für die Ledergerbung dar. In diesem Zusammenhang werden Strukturen und Herkunft der Tannine näher diskutiert in: Kirk-Othmer "Encyclopedia of Chemical Technology", 2. Auflage, Band XII (1967), SS. 303-341. Wie aus den Dokumenten US-A-4,470,853 und DE-A-24 46 492 hervorgeht, wurde die Verwendung von Tanninen bei der Oberflächenbehandlung von Aluminium bereits vorgeschlagen.
    Bei der Erzeugung von Konversionsschichten auf Aluminiumoberflächen wirkt sich erfahrungsgemäß die Anwesenheit von freien Fluoridionen günstig aus. Aus den vorstehend unter der Gruppe c) angeführten komplexen Fluoriden können durch Hydrolysereaktionen in der Behandlungslösung freie Fluoridionen entstehen, die bei dem pH-Wert der Behandlungslösung zumindest teilweise in Form von undissoziierter Flußsäure vorliegen. Die mit den erfindungsgemäßen Behandlungslösungen erzielte Schichtbildung kann, besonders in der Einfahrphase der Bäder, unterstützt werden, wenn die Behandlungslösungen zusätzlich 10 bis 100 mg/l Fluoridionen enthält, die als Flußsäure oder als lösliche neutrale oder saure Fluoride zugegeben werden können. Beispiele hierfür sind NaF, KF, KHF2 oder (NH4)HF2. Die Fluoridkomponente ist so zu wählen, daß der erforderlich pH-Bereich von 2,3 bis 3,3 nicht verlassen wird.
    Da die Behandlungslösung durch die Komponenten der Gruppe a) zur Schaumbildung neigende oberflächenaktive Komponenten enthält, kann es bei starker Badbewegung wie beispielsweise für Spritzanlagen erforderlich sein, den Behandlungsbädern Entschäumer zuzusetzen. Mengen im Bereich von 50 bis 500 mg/l sollten in der Regel ausreichend sein. Als Entschäumer sind beispielsweise Alkylpolyalkoxyester geeignet. Ein geeigneter Polyalkoxyester dieses Typs ist unter dem Handelsnamen FoamasterR C14 von der Henkel KGaA, Düsseldorf (Deutschland) erhältlich.
    Alle vorstehend angegebenen Bereiche für wirksame Konzentrationen und pH-Wert sind so zu verstehen, daß innerhalb dieser Parameterbereiche die erwünschte Wirkung zuverlässig eintritt. Bei Unterschreitung der angegebenen Mindestkonzentrationen läßt in der Regel die erwünschte kombinierte reibungsvermindernde, korrosionsschützende und die Porosität einer nachfolgenden Lackierung verringernde Wirkung der Schutzschicht nach. Überschreitungen der maximalen Konzentrationen nach oben sind zumindest unökonomisch, können aber auch zu Nachteilen in der Schichtausbildung führen. Eine den Ansprüchen voll genügende Beschichtung wird besonders zuverlässig erhalten, wenn die Komponente a) in Konzentrationen von 0,5 bis 1,1 mMol/l und/oder die Komponente b) in Konzentrationen von 0,3 bis 1,15 mMol/l in der Behandlungslösung vorliegt. Das vorzugsweise mitverwendete Tannin setzt man bevorzugt in Konzentrationen von 100 bis 400 mg/l ein.
    Eine weitere Verbesserung der Beschichtung, insbesondere hinsichtlich ihrer Lackierbarkeit, kann dadurch erreicht werden, daß man der Behandlungslösung zusätzlich wasserlösliche oder wasserdispergierbare organische Polymere in Konzentrationen von etwa 100 bis etwa 1000 mg/l zusetzt. Dabei können diese Polymere ausgewählt sein aus h) Homo- oder Heteropolymeren von Ethylenoxid, Propylenoxid und/oder Butylenoxid, i) Homo- oder Heteropolymeren von Acrylsäure, Maleinsäure und/oder Derivaten hiervon, k) Homo- oder Heteropolymeren von Vinylphenol und/oder Vinylphenolderivaten, 1) Homo- oder Heteropolymeren von Vinylakohol und/oder Vinylakoholderivaten. Polymere der genannten Art sind kommerziell erhältlich. Die Polyvinylphenolderivate der Gruppe k) sind erhältlich durch eine Mannich-Reaktion von Polyvinylphenol mit Aldehyden mit Alkylaminen. Beispielsweise genannt sei ein Umsetzungsprodukt von Poly(4-vinylphenol) mit Formaldehyd und 2-Alkylamino-1-ethanol. Nähere Angaben über dieses Polymer und seine Verwendung bei der Oberflächenbehandlung von Aluminium sind in der W092/07973 enthalten.
    Vorstehend wurden Zusammensetzungen erfindungsgemäßer einsatzbereiter Behandlungslösungen beschrieben. Es ist selbstverständlich möglich, diese Bäder durch Zusammenmischen der einzelnen Komponenten in den angegebenen Konzentrationsbereichen am Einsatzort direkt zuzubereiten. Für den Anwender solcher Behandlungslösungen ist es jedoch günstiger, von einem Hersteller wäßrige Konzentrate der Behandlungslösungen zu beziehen und diese vor Ort durch Verdünnen mit Wasser auf die Konzentrationsbereiche der Anwendungslösungen einzustellen. Demnach umfaßt die Erfindung auch wäßrige Konzentrate der Behandlungslösungen, die durch Verdünnen mit Wasser die erfindungsgemäßen Behandlungslösungen ergeben. Dabei ist es technisch und wirtschaftlich am attraktivsten, die Konzentrate so einzustellen, daß aus ihnen durch Verdünnen mit Wasser in einem Volumenverhältnis zwischen 1 : 50 und 1 : 200 die anwendungsfertigen Behandlunglösungen erhalten werden können. Beispielsweise kann das Konzentrat so eingestellt sein, daß es zum Bereiten der anwendungsfertigen Behandlungslösung mit Wasser im Verhältnis 1 : 100 verdünnt werden muß.
    Die erfindungsgemäße Behandlungslösung kommt vorzugsweise in einem Verfahren zur Herstellung von Dosen, insbesondere von Getränkedosen aus Aluminiumlegierungen, zum Einsatz. Hierbei werden die vorgeformten Dosen in der Regel einer ein- oder zweistufigen sauren oder alkalischen Reinigung unterzogen, worauf üblicherweise eine Spülung mit Leitungswasser erfolgt. Danach bringt man die Dosen mit der erfindungsgemäßen Behandlungslösung in Berührung, was beispielsweise durch Eintauchen der Dosen in die Lösung oder durch Besprühen der Dosen mit der Lösung erfolgen kann. Dabei soll die Temperatur der Behandlungslösung im Bereich zwischen 30 bis 60 °C liegen und insbesondere 40 bis 45 °C betragen. Die Behandlungsdauer soll 10 sec. nicht unterschreiten. Eine Behandlungsdauer von mehr als 120 sec. bringt keinen technischen Vorteil. Beispielsweise ist es günstig, eine Behandlungsdauer von etwa 30 sec. zu wählen. Danach werden die Dosen mit Leitungswasser und anschließend mit vollentsalztem Wasser gespült, wonach sie getrocknet und lackiert werden können. Demnach umfaßt die Erfindung auch ein Verfahren zum Erzeugen einer korrosionsschützenden, reibungsvermindernden und die Lackierbarkeit verbessernden Schutzschicht auf Oberflächen aus Aluminium oder Zinn sowie jeweils deren Legierungen, dadurch gekennzeichnet, daß man die Oberflächen mit einer wäßrigen Lösung nach einem oder mehreren der Ansprüche 1 bis 8, die eine Temperatur im Bereich von 30 bis 60 °C aufweist, für einen Zeitraum zwischen 10 und 120 Sekunden in Berührung bringt, das man vorzugsweise zur Behandlung von Dosen aus Aluminium oder Aluminiumlegierungen einsetzt.
    Die Erfindung wurde an Aluminium-Getränkedosen mit einem Volumen zwischen 330 und 350 ml, wie sie für Erfrischungsgetränke üblich sind, erprobt. Die vorgeformten Dosen wurden zunächst gereinigt (saurer Reiniger RidolineR 124, Henkel KGaA, Düsseldorf; 54 bis 60 °C, 1 Minute) und anschließend mit Leitungswasser von Raumtemperatur gespült. Danach erfolgte die Oberflächenbehandlung mit erfindungsgemäßen Behandlungslösungen sowie mit Vergleichslösungen gemäß Tabelle mit pH-Werten im Bereich zwischen 2,45 und 2,93 bei Temperaturen zwischen 40 und 45 °C für eine Behandlungsdauer von 30 sec. im Spritzen. Anschließend erfolgte ein Spülung mit Leitungswasser, gefolgt von einer Spülung mit vollentsalztem Wasser, jeweils bei Raumtemperatur, wonach die Dosen für 5 Minuten bei 150 °C getrocknet wurden.
    Die Bestimmung der Brunnenwasserbeständigkeit nach Standardmethoden, die ein Maß für den Korrosionsschutz der behandelten Dosen liefert, erfolgte an den unlackierten Dosen. Unlackierte Dosen wurden auch für die nachstehende Bestimmung des Reibungskoeffizienten verwendet. Für die Bestimmung der Lackporosität, ausgedrückt als "Metal Exposure Value", wurden die Doseninnenseiten mit einem handelsüblichen Lack (Dexter Ecodex 4020) mit einem Lackauftrag von 120 bis 130 mg/Dose lackiert.
    Die Bestimmung der Brunnenwasserbeständigkeit erfolgte dadurch, daß die unlackierten Dosen für 30 Minuten in eine 66 °C heiße Lösung von 0,2 g/l Natriumtetraboratdecahydrat getaucht wurden, anschließend mit vollentsalztem Wasser gespült und bei 105 °C in einem Trockenofen getrocknet wurden. Danach wurden die Dosenböden visuell nach dem Grad ihrer Verfärbung beurteilt. Dabei wird keine oder eine leichte Verfärbung als akzeptabel angesehen, eine dunkle oder unregelmäßige Verfärbung als unakzeptabel. Sowohl die mit den erfindungsgemäßen Verfahrensvarianten als auch mit Vergleichsverfahren nach dem Stand der Technik behandelten Dosen bestanden diesen Test auf Korrosionsbeständigkeit.
    Die Bestimmung der Oberflächenreibung der unlackierten Getränkedosen erfolgte auf einem Kipptisch. Hierzu werden jeweils 3 gleich behandelte Dosen verwendet. Zwei Dosen werden parallel aneinanderliegend auf dem Kipptisch so angeordnet, daß ihre Längsachse senkrecht zur Kippachse liegt. Auf dieses Dosenpaar wird eine dritte Dose mit ihrer Längsachse senkrecht zur Kippachse so gelegt, daß sie gegenüber den unteren Dosen um etwa 0,5 cm in Richtung der Kippachse verschoben ist, wobei sie entgegensetzt zu den unteren Dosen mit der offenen Seite in Richtung Kippachse gelegt wird. Danach wird der Kipptisch automatisch mit konstanter Geschwindigkeit gekippt und der Neigungswinkel α festgestellt, bei dem die obere Dose verrutscht und dabei einen Ausschalter berührt. Der Tangens des Neigungswinkels α, bei dem das Verrutschen erfolgt, wird als Reibungskoeffizient bezeichnet. Um statistisch gesicherte Aussagen zu erhalten, werden jeweils 6 gleich behandelte Dosen verwendet, aus denen jeweils 3 für einen Versuch ausgewählt werden. Man führt 6 voneinander unabhängige Messungen mit unterschiedlichen Dosenkombinationen durch. Aus den 6 Messungen wird der Mittelwert bestimmt. Die mit den erfindungsgemäßen Behandlungslösungen und den Vergleichslösungen nach dem Stand der Technik ermittelten Reibungskoeffizienten wiesen keine signifikanten Unterschiede auf und lagen im Bereich von 0,476 bis 0,514.
    Dagegen zeigt sich Effekt der erfindungsgemäßen Behandlung gegenüber einer Behandlung ohne Zusatz von Hydroxycarbonsäuren der Gruppe b) in einer deutlich verringerten Porosität einer Lackierung, die als "Metal Exposure Value" (MEV) bestimmt wurde. Die Bestimmung erfolgte an innen lackierten Dosen gemäß der Bedienungsanleitung des Enamel Rater MK der Firma Manfred Kunke, Taunusstr. 29, Berlin (Deutschland) bei einer Prüfspannung von 6,3 Volt. Dabei wurden die als Elektrode geschalteten Dosen mit einer Elektrolytlösung gefüllt (50,6 g Kochsalz und 1,19 g Dioctyl-Natrium-Sulfosuccinat in 5 l vollentsalztem Wasser), in die als Gegenelektrode ein Metallbügel eingetaucht wurde. Nach Anlegen der Spannung wurde nach 4 sec. der Strom in mA gemessen und als MEV-Wert gesetzt. Als Prüfkriterium für Getränkedosen für Erfrischungsgetränke wird ein oberer MEV-Wert von 5 mA angegeben. Die erhaltenen Ergebnisse sind in der Tabelle eingetragen. Die Tabelle enthält ebenfalls die Anzahl der Dosen, die pro Behandlungslösung jeweils vermessen wurden, den mittleren MEV-Wert, den maximal beobachteten MEV-Wert und die Anzahl der Dosen, bei denen die Spezifikation von einem maximalen MEV-Wert von 5 mA überschritten wurde. Die Zusammensetzung der Probelösungen geht aus der Tabelle hervor.
    Vorbehandlungslösungen und "Metal Exposure Value" (MEV)
    Grundrezeptur: 400 mg/l Tris(2-hydroxyethyl)talgammonium-Acetat
    145 mg/l Hexafluorozirkonsäure
    66 mg/l Phosphorsäure
    266 mg/l Salpetersäure
    32 mg/l Flußsäure
    200 mg/l Entschäumer (Alkylpolyalkoxyester, FoamasterR C14, Henkel KGaA, Düsseldorf)
    Zusätze von Natriumgluconat und Tannin
    Versuch Nr. Natriumgluconat (mg/l) Tannin (mg/l) Dosenzahl mittlerer MEV (mA) maximaler MEV (mA) Dosen mit MEV > 5 mA
    Vergleich - - 8 5,5 42,1 1
    Beisp.1 67 - 8 3,9 17,7 2
    Beisp.2 133 - 7 1,3 6,0 1
    Beisp.3 200 - 8 2,1 6,0 1
    Beisp.4 125 - 9 1,25 6,4 1
    Beisp.5 125 83 8 4,0 11,4 1
    Beisp.6 125 167 7 0,6 2,3 0
    Beisp.7 125 250 9 0,2 0,8 0

    Claims (11)

    1. Wäßrige Lösung zum Behandeln von Oberflächen aus Aluminium oder Zinn sowie jeweils deren Legierungen, die einen pH-Wert im Bereich 2,3 bis 3,3 aufweist und zumindest die folgenden Komponenten enthält:
      a) 0,14 bis 2,25 mMol/l einer Komponenten ausgewählt aus oberflächenaktiven quartären Ammoniumsalzen oder Aminoxiden der allgemeinen Formel (I)
      Figure 00140001
      wobei R1 ein gesättigter oder ein- oder mehrfach ungesättigter Alkylrest mit 8 bis 22 C-Atomen, R2 und R3 unabhängig voneinander ein Alkyl- oder Hydroxyalkylrest mit 1 bis 8 C-Atomen oder ein Aryl- oder Alkylarylrest mit 6 bis 10 C-Atomen, R4 ein Rest des Typs R2 oder R3 oder ein -O--Rest und X- ein einwertiges Anion oder ein einwertiges Äquivalent eines mehrwertigen Anions bedeuten und a dann = 0 ist, wenn R4 ein -0-- Rest bedeutet, und ansonsten a = 1 ist,
      b) 0,25 bis 1,5 mMol/l einer oder mehrerer ein- zwei- oder dreibasischer Hydroxycarbonsäuren mit 4 bis 7 C-Atomen im Molekül, wobei die Summe aus Hydroxyl- und Carboxylgruppen mindestens 3 beträgt, oder jeweils deren Anionen,
      c) 0,4 bis 2 mMol/l eines oder mehrerer komplexer Fluoride und
      d) 20 bis 500 mg/l Mineralsäuren, ausgewählt aus Phosphorsäure, Salpetersäure und Schwefelsäure, oder jeweils deren Anionen.
    2. Wäßrige Lösung nach Anspruch 1, dadurch gekennzeichnet, daß sie zusätzlich eine oder mehrere der folgenden Komponenten enthält:
      e) 50 bis 500 mg/l Tannin
      f) 10 bis 100 mg/l Flußsäure oder Fluoridionen
      g) 50 bis 500 mg/l Entschäumer.
    3. Wäßrige Lösung nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Komponente
      a) ein Aminoxid oder ein quartäres Ammoniumsalz darstellt, in dem R1 für ein Gemisch von Alkylgruppen wie in denjenigen Fettsäuregemischen steht, die man durch Hydrolyse von Kokosöl, Palmkernöl oder tierischem Talg erhalten kann.
      und/oder daß die Komponente
      b) ausgewählt ist aus ein- oder zweibasischen Hydroxycarbonsäuren mit 6 C-Atomen und mindestens 4 Hydroxylgruppen
      und/oder daß die Komponente
      c) Hexafluorozirkonsäure darstellt
      und/oder daß die Komponente
      d) zu 10 bis 100 % Gew.-% aus Phosphorsäure oder deren Anionen besteht.
    4. Wäßrige Lösung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Komponente
      a) ein quartäres Ammoniumsalz darstellt, in dem R2, R3 und R4 Hydroxyalkylgruppen mit 1 bis 4 C-Atomen bedeuten,
      und/oder daß die Komponente
      b) Gluconsäure oder deren Anion darstellt.
    5. Wäßrige Lösung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie die Komponente a) in Konzentrationen von 0,5 bis 1,1 mMol/l und/oder die Komponente b) in Konzentrationen von 0,3 bis 1,15 mMol/l enthält.
    6. Wäßrige Lösung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie Tannin in Konzentrationen von 100 bis 400 mg/l enthält.
    7. Wäßrige Lösung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie zusätzlich wasserlösliche oder wasserdispergierbare Polymere in Konzentrationen von 100 bis 1000 mg/l enthält.
    8. Wäßrige Lösung nach Anspruch 7, dadurch gekennzeichnet, daß die Polymere ausgewählt sind aus h) Homo- oder Heteropolymeren von Ethylenoxid, Propylenoxid und/oder Butylenoxid, i) Homo- oder Heteropolymeren von Acrylsäure, Maleinsäure und/oder Derivaten hiervon, k) Homo- oder Heteropolymeren von Vinylphenol und/oder Vinylphenolderivaten, l) Homo- oder Heteropolymeren von Vinylakohol und/oder Vinylakoholderivaten.
    9. Wäßriges Konzentrat, das beim Verdünnen mit Wasser in einem Volumenverhältnis zwischen 1 : 50 und 1 : 200 eine Behandlungslösung nach einem oder mehreren der Ansprüche 1 bis 8 ergibt.
    10. Verfahren zum Erzeugen einer korrosionsschützenden, reibungsvermindernden und die Lackierbarkeit verbessernden Schutzschicht auf Oberflächen aus Aluminium oder Zinn sowie jeweils deren Legierungen, dadurch gekennzeichnet, daß man die Oberflächen mit einer wäßrigen Lösung nach einem oder mehreren der Ansprüche 1 bis 8, die eine Temperatur im Bereich von 30 bis 60 °C aufweist, für einen Zeitraum zwischen 10 und 120 Sekunden in Berührung bringt.
    11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß es sich bei den Metalloberflächen um Oberflächen von Dosen aus Aluminium oder Aluminiumlegierungen handelt.
    EP95940171A 1994-11-23 1995-11-14 Korrosionsschutz und reibungsverminderung von metalloberflächen Expired - Lifetime EP0793738B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4441710A DE4441710A1 (de) 1994-11-23 1994-11-23 Korrosionsschutz und Reibungsverminderung von Metalloberflächen
    DE4441710 1994-11-23
    PCT/EP1995/004466 WO1996016205A1 (de) 1994-11-23 1995-11-14 Korrosionsschutz und reibungsverminderung von metalloberflächen

    Publications (2)

    Publication Number Publication Date
    EP0793738A1 EP0793738A1 (de) 1997-09-10
    EP0793738B1 true EP0793738B1 (de) 1999-04-14

    Family

    ID=6533963

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95940171A Expired - Lifetime EP0793738B1 (de) 1994-11-23 1995-11-14 Korrosionsschutz und reibungsverminderung von metalloberflächen

    Country Status (12)

    Country Link
    EP (1) EP0793738B1 (de)
    JP (1) JPH10509766A (de)
    AR (1) AR000259A1 (de)
    AT (1) ATE178951T1 (de)
    AU (1) AU698370B2 (de)
    BR (1) BR9509759A (de)
    CA (1) CA2205996A1 (de)
    DE (2) DE4441710A1 (de)
    TR (1) TR199501469A2 (de)
    TW (1) TW283740B (de)
    WO (1) WO1996016205A1 (de)
    ZA (1) ZA959938B (de)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19654642C2 (de) * 1996-12-28 2003-01-16 Chemetall Gmbh Verfahren zur Behandlung metallischer Oberflächen mit einer wässerigen Lösung
    CA2300276A1 (en) 1997-08-06 1999-02-18 Henkel Kommanditgesellschaft Auf Aktien Phosphating method accelerated by n-oxides
    DE19933189A1 (de) * 1999-07-15 2001-01-18 Henkel Kgaa Verfahren zur korrosionsschützenden Behandlung oder Nachbehandlung von Metalloberflächen
    JP3998057B2 (ja) * 2002-04-23 2007-10-24 日本ペイント株式会社 ノンクロム金属表面処理方法、及び、アルミニウム又はアルミニウム合金板
    JP3998056B2 (ja) * 2002-04-23 2007-10-24 日本ペイント株式会社 熱可塑性ポリエステル系樹脂被覆金属板の製造方法及び熱可塑性ポリエステル系樹脂被覆金属板
    ES2574561T3 (es) * 2007-07-10 2016-06-20 Atotech Deutschland Gmbh Solución y proceso para incrementar la capacidad de soldadura y la resistencia a la corrosión de la superficie de un metal o de una aleación metálica
    EP2376678B1 (de) * 2009-01-14 2012-09-12 Atotech Deutschland GmbH Lösung und verfahren zur erhöhung der lösbarkeit und des korrosionswiderstandes einer metall- oder metalllegierungsoberfläche
    TWI482879B (zh) 2010-09-15 2015-05-01 Jfe Steel Corp 容器用鋼板及其製造方法
    CA2982739C (en) 2015-04-15 2023-06-27 Henkel Ag & Co. Kgaa Thin corrosion protective coatings incorporating polyamidoamine polymers
    DE102015206812A1 (de) 2015-04-15 2016-10-20 Henkel Ag & Co. Kgaa Polymerhaltige Vorspüle vor einer Konversionsbehandlung
    DE102015209910A1 (de) * 2015-05-29 2016-12-01 Henkel Ag & Co. Kgaa Vorspüle enthaltend ein quartäres Amin zur Konditionierung vor einer Konversionsbehandlung

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB875972A (en) * 1960-01-18 1961-08-30 Collardin Gmbh Gerhard Improvements in or relating to the phosphatising of metals
    US4298404A (en) * 1979-09-06 1981-11-03 Richardson Chemical Company Chromium-free or low-chromium metal surface passivation
    US4273592A (en) * 1979-12-26 1981-06-16 Amchem Products, Inc. Coating solution for metal surfaces
    WO1985005131A1 (en) * 1984-05-04 1985-11-21 Amchem Products, Inc. Metal treatment
    JPH05320936A (ja) * 1991-09-20 1993-12-07 Mitsubishi Heavy Ind Ltd 鉄鋼表面の錆転化による防錆処理剤
    ZA934846B (en) * 1992-07-08 1994-02-03 Henkel Corp Aqueous lubrication and surface conditioning for formed metal surfaces
    WO1995002660A1 (en) * 1993-07-13 1995-01-26 Henkel Corporation Aqueous lubricant and surface conditioner for formed metal surfaces

    Also Published As

    Publication number Publication date
    EP0793738A1 (de) 1997-09-10
    ATE178951T1 (de) 1999-04-15
    WO1996016205A1 (de) 1996-05-30
    CA2205996A1 (en) 1996-05-30
    TR199501469A2 (tr) 1996-07-21
    BR9509759A (pt) 1997-09-16
    TW283740B (de) 1996-08-21
    JPH10509766A (ja) 1998-09-22
    AU4171996A (en) 1996-06-17
    MX9703762A (es) 1998-07-31
    DE4441710A1 (de) 1996-05-30
    AR000259A1 (es) 1997-06-18
    ZA959938B (en) 1996-05-23
    AU698370B2 (en) 1998-10-29
    DE59505673D1 (de) 1999-05-20

    Similar Documents

    Publication Publication Date Title
    DE102005059314B4 (de) Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
    EP2255026B1 (de) Optimierte passivierung auf ti-/zr-basis für metalloberflächen
    EP2507408B1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
    EP1254279B1 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
    DE2428065C2 (de) Verfahren zum Versiegeln von Zinkphosphatüberzügen auf Stahlsubstraten
    EP2907894A1 (de) Verfahren zum Herstellen eines mit einer Chrom-VI-freien und kobaltfreien Passivierung versehenen Substrats
    EP0793738B1 (de) Korrosionsschutz und reibungsverminderung von metalloberflächen
    DE3650659T2 (de) Verfahren zur Phosphatierung von Metalloberflächen
    DE10131723A1 (de) Korrosionsschutzmittel und Korrosionsschutzverfahren für Metalloberflächen
    EP2215285A1 (de) Zirconiumphosphatierung von metallischen bauteilen, insbesondere eisen
    DE10030462A1 (de) Haftvermittler in Konversionslösungen
    DE3875459T2 (de) Verfahren zum phosphatieren von metalloberflaechen.
    EP0039093A1 (de) Verfahren zur Phosphatierung von Metalloberflächen sowie dessen Anwendung
    EP3011074B1 (de) Mehrstufiges verfahren zur elektrotauchlackierung
    EP0127204B1 (de) Verfahren zum Phosphatieren von Verbundmetallen
    EP3336219B1 (de) Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen
    DE19905479A1 (de) Verfahren zur Phospatisierung von Zink- oder Aluminiumoberflächen
    DE2338290C3 (de) Lösung und Verfahren zur Phosphatierung von Weißblech
    DE1521877C (de) Verfahren zum Aufbringen von Phosphat überzügen auf Eisen und Stahl
    DE1192487B (de) Verfahren zur Herstellung oder Erhoehung der Korrosionsbestaendigkeit von Metallen oder Legierungen, insbesondere des Eisens oder Zinks, durch Phosphatieren
    DE1107047B (de) Verfahren und Mittel zur Herstellung von irisierenden UEberzuegen auf Aluminium oder Aluminiumlegierungen
    DE1521877B1 (de) Verfahren zum Aufbringen von Phosphatueberzuegen auf Eisen und Stahl
    DE2338290B2 (de) Loesung und verfahren zur phosphatierung von weissblech
    DE2237284A1 (de) Zusammensetzungen, konzentrate, loesungen und verfahren zum entfernen von oxidschichten und schmutzablagerungen von aluminiumoberflaechen
    MXPA97003762A (en) Anticorrosive and reductive treatment of the labeling of metali surfaces

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970514

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT DE FR GB IT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19971126

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT DE FR GB IT

    REF Corresponds to:

    Ref document number: 178951

    Country of ref document: AT

    Date of ref document: 19990415

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 59505673

    Country of ref document: DE

    Date of ref document: 19990520

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990629

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991114

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991114

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 19991114

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000901

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051114