EP0776985A1 - Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile - Google Patents

Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile Download PDF

Info

Publication number
EP0776985A1
EP0776985A1 EP96810768A EP96810768A EP0776985A1 EP 0776985 A1 EP0776985 A1 EP 0776985A1 EP 96810768 A EP96810768 A EP 96810768A EP 96810768 A EP96810768 A EP 96810768A EP 0776985 A1 EP0776985 A1 EP 0776985A1
Authority
EP
European Patent Office
Prior art keywords
metallic
layer
binder
adhesive
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96810768A
Other languages
English (en)
French (fr)
Other versions
EP0776985B1 (de
Inventor
Reinhard Fried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0776985A1 publication Critical patent/EP0776985A1/de
Application granted granted Critical
Publication of EP0776985B1 publication Critical patent/EP0776985B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles

Definitions

  • the invention relates to the field of materials technology. It relates to a method for applying a metallic adhesive layer for thermally sprayed ceramic thermal barrier coatings (TBC) to metallic components and to a metallic adhesive layer produced using this method.
  • TBC thermally sprayed ceramic thermal barrier coatings
  • the ceramic thermal insulation layers protect the coated metallic components from harmful thermal stresses, their complete presence is important for a sufficient service life of the components.
  • Components coated in this way are used in particular in the field of combustion technology, for example for combustion chamber parts or gas turbine blades.
  • the disadvantage of the metallic adhesive layers produced so far for ceramic thermal insulation layers is that they have insufficient roughness and therefore offer too little positive locking (undercuts), so that the layer thickness of the TBC layers is limited.
  • Layer thicknesses of approximately 0.2 to 0.4 mm are known, layer thicknesses of approximately 0.3 mm being most frequently encountered. If they are thicker, the risk of flaking increases rapidly. If they are thinner, the thermal insulation effect quickly diminishes.
  • recent developments are aimed at spraying coarse adhesive layers (approx. 0.6 mm), the necessary positive locking is missing.
  • a roughness typical of known metallic adhesive layers is around 30 ⁇ m.
  • the layers cannot be sprayed rougher, since the dimension of the powder particles to be melted is limited to approx. 10 to 50 ⁇ m depending on the coating process (different spraying temperatures and spray speeds) and the liquid powder particles flatten out when they hit the substrate (cf. B. Heine: " Thermally sprayed layers ", metal, 49th year, 1/1995, p.51-57).
  • the layer thickness of the TBC ceramic layer can be increased by low-speed flame spraying, but such layers cannot withstand thermal shock.
  • the invention tries to avoid all these disadvantages. It is based on the object of developing a metallic adhesive layer and a method for applying this adhesive layer for ceramic thermal insulation layers on a metallic base body, with which it is possible compared to the known prior art to subsequently thermally spray and fix ceramic thermal insulation layers of greater thickness.
  • the layers should adhere stably and be insensitive to impact.
  • the advantages of the invention include that these processes produce adhesive layers that are very rough compared to the prior art.
  • the soldered or sintered metal powder particles represent very stable and form-fitting anchors for the TBC layer to be sprayed on, so that comparatively thick, stably adhering ceramic thermal insulation layers can be produced.
  • the two powders are first mixed intensively and then this mixture is applied to the metallic surface of the base material. This results in a more uniform distribution of the powder particles and also shortens the process time.
  • a thin layer of the adhesive powder is additionally applied to the adhesive layer by means of spraying processes, for example protective gas plasma spraying.
  • spraying processes for example protective gas plasma spraying.
  • solder material material of the same type as the base material and boron-free or low-boron solders are advantageously used as solder material. This reduces possible brittle phase formation.
  • the method according to the invention can be used locally for repair purposes as well as for coating new parts.
  • the metallic adhesive layer produced according to the invention consists of a solder layer wetting the surface of the metallic component with spherical or spiky adhesive powder particles firmly soldered therein, or additionally of a thin sprayed, in particular protective gas plasma-sprayed layer of the same type of material as the adhesive powder particles or of a layer onto the surface of the metallic component protective gas plasma-sprayed protective layer with adhesive powder particles sintered onto its surface.
  • This metallic adhesive layer guarantees stable adhesion of the thermally sprayed ceramic thermal insulation layers, allows greater layer thicknesses and leads to good emergency running properties.
  • the height of the adhesive powder particles is approximately as large as the layer thickness of the ceramic thermal insulation layer to be sprayed on. This makes the layer almost insensitive to impacts, because impacts are essentially absorbed by metal.
  • a guide vane of a gas turbine as an example of a metallic component 1 to be coated. It consists of the metallic base material (substrate) 2, in this case the alloy IN 939 with the following chemical composition: Bal. Ni; 22.5% Cr; 19.0% Co; 2.0% W; 1.0% Nb; 1.4% Ta; 3.7% Ti; 1.9% Al; 0.1 Zr; 0.01 B; 0.15 C.
  • the blade is provided with a corrosion and oxidation layer on the gas-carrying surfaces (MCrAlY, e.g. SV201473: Bal. Ni; 25% Cr; 5% Al; 2.5% Si; 0.5% Y; 1 % Ta).
  • this blade is coated on the leading edge, the pressure side of the blade and on the channel walls with an approximately 0.3 mm thick thermal insulation layer made of ytrium-stabilized zirconium oxide with the following composition: Bal. ZrO 2 incl 2.5% HfO 2 ; 7-9% Y 2 O 3 ; ⁇ 3% others.
  • the gas turbine guide vane After an operating time of 25,000 hours, the gas turbine guide vane is reconditioned. It is ascertained that the thermal insulation layer is no longer present due to thermal overloading and erosion at the leading edge of the sheet and on the channel wall (see hatched areas in FIG. 1). Since the shovel did no further damage is not a total re-coating for cost reasons, but a partial repair of the thermal insulation layer is sought. Due to the fact that a particularly strong attack of the TBC occurs systematically at the points described above, the TBC layer should not only be of the same thickness, but should be made as thick as possible.
  • the ceramic layer is more flexibly bonded to the metallic substrate 2 by grading the transition between metal and ceramic using a special adhesive layer.
  • the blade 1 is cleaned of coarse dirt (combustion residues) in the water vapor jet. Then any adhering deposits are removed using soft sandblasting (e.g. fine aluminum powder, 2 bar blasting pressure, 20 cm distance). The still intact ceramic thermal insulation layer must not be removed.
  • soft sandblasting e.g. fine aluminum powder, 2 bar blasting pressure, 20 cm distance.
  • the blade parts that are not to be coated are covered, for example with a sheet metal template, and the surfaces to be coated are blasted (e.g. fine silicon carbide, blasting pressure 4 bar, distance 40 mm), so that any TBC residues and any oxides are removed.
  • a sheet metal template e.g. fine silicon carbide, blasting pressure 4 bar, distance 40 mm
  • the alloy NB 150 (Bal.Ni; 15% Cr; 3.5% B; 0.1% C) is used as the solder material a melting point of 1055 ° C and a soldering range of 1065 to 1200 ° C used.
  • approximately equal amounts by weight of adhesive powder 4 and solder powder 5 are advantageous. Of course, other proportions can also be selected.
  • the packing density of the particles is not of crucial importance, because dense packing is suitable, but less dense packing is also sufficient.
  • FIG. 2 shows schematically a cross section of the different layers after application.
  • the surface coated in this way can now be brought into the soldering furnace horizontally, vertically or overhead.
  • the solder 5 and the adhesive powder 4 remain in place until the solder has melted and has wetted and soldered the substrate surface and the surface of the adhesive powder particles.
  • the soldering is carried out in a high vacuum oven at 5x10 -6 mbar, 1080 ° C and a holding time of 15 min.
  • Fig. 3 shows schematically a cross section of the different layers after the soldering process.
  • the solder 5 has completely wetted the surface to be repaired and the adhesive powder particles 4 are firmly soldered.
  • the surface looks metallic matt silvery shiny.
  • the diffusion zone is only very small due to the short soldering time and the relatively low soldering temperature.
  • the blade is again covered with a template and provided with a 0.5 mm thick ceramic thermal insulation layer 6, here made of calcium-stabilized zirconium oxide (MetaCeram 28085), the zirconium oxide being applied using a known flame spraying process.
  • a ceramic thermal insulation layer 6 here made of calcium-stabilized zirconium oxide (MetaCeram 28085), the zirconium oxide being applied using a known flame spraying process.
  • Fig. 4 shows schematically the layer structure according to the flame spraying process.
  • the fastening of the zirconium oxide can be compared to a push button technique.
  • the zirconium oxide has a strong form fit and many undercuts, in contrast to conventional adhesive geometries, which at best only have a small form fit.
  • the anchoring of the zirconium oxide (TBC) layer on the component is very stable.
  • flame spraying is therefore also suitable for spraying the TBC layers onto the adhesive layers according to the invention. The latter has the advantage that portable coating devices can be used for this.
  • Another advantage of the invention is the high thermal shock resistance of the layers.
  • Process-coated metallic component 1 was then thermocycled in a hot gas stream (heating at about 50 degrees / min gas temperature, 2 minutes holding at 1000 ° C., cooling at 100 degrees / s gas temperature to 500 ° C.). Even after 70 cycles, the layer has not yet come off.
  • Another advantage is the excellent emergency running properties of the TBC layers thermally sprayed onto the adhesive layer according to the invention.
  • the ceramic layer 6, in this case the zirconium oxide only flakes off above the adhesive powder 4. Due to the large positive fit, the TBC layer 6 does not fall out between the adhesive powder particles 4, so that the ceramic thermal insulation layer 6 is retained at least in the thickness of the adhesive powder particles 4 (approx. 200 ⁇ m). This is shown schematically in FIG. 5. This result leads to the assumption that both the leading edge and the The duct wall of the repaired guide vane can withstand the removal of the thermal insulation layer longer than the thinner and less anchored original thermal insulation layer.
  • Fig. 6 shows a perspective view of a thermal insulation panel for hot gas flow, which is to be provided in the new state with a thermally sprayed thermal insulation layer as thick as possible.
  • the thermal insulation board consists of the alloy MAR M 247, which has the following chemical composition: Bal. Ni; 8.2-8.6% Cr; 9.7-10.3% Co; 0.6-0.8% Mo; 9.8-10.2% W; 2.9-3.1% Ta; 5.4-5.6% Al; 0.8-1.2% Ti; 1.0-1.6% Hf; 0.14-0.16% C).
  • the metallic component 1 to be coated is blasted with relatively coarse silicon carbide (particle diameter ⁇ 200 ⁇ m) in an oxide-free and rough manner (10 to 30 ⁇ m).
  • the surface to be coated is then thinly coated with organic binder 3, for example with a brush.
  • Under a trickling device for coarse spherical adhesive powder 4 (SV 20 14 73 with the following chemical composition: Bal.Ni; 25% Cr; 5% Al; 2.5% Si; 0.5% Y; 1% Ta) with a grain diameter of
  • the plate 1 to be coated is moved back and forth 150 to 300 ⁇ m until a uniform distribution of the highly corrosion-resistant adhesive powder 4 has taken place on the adhesive layer.
  • the individual powder particles should be 0.3 to 0.6 mm apart.
  • Amdry Alloy DF 5 which has a high Al content with a slightly reduced B content in addition to the high Cr content, is selected as the solder.
  • the exact composition is as follows: Bal. Ni; 13% Cr; 3% Ta; 4% Al; 2.7% B; 0.02% Y.
  • the solder 5 is also applied evenly to the surface to be soldered using a suitable trickling device. It is also possible to mix adhesive powder 4 and solder 5 and then to sprinkle the mixture onto the surface coated with the cement binder 3 in one process step.
  • the soldering takes place in a high vacuum oven at 1100 ° C and 15 min holding time.
  • a thin layer 7 (approx. 50 ⁇ m) SV 20 14 73 is applied by means of protective gas plasma spraying.
  • this also results in fine toothing, which further increases the adhesive strength of thick TBC layers in thermal shock.
  • Fig. 7 shows schematically the formation of these layers.
  • a 1.5 mm thick ytrium-stabilized zirconium oxide layer is then sprayed as a TBC layer 6 using a known air plasma spraying method.
  • the component coated in this way proved to be resistant to thermal shock in a thermal shock test in a sand bed (1000 ° C. to room temperature).
  • a cooled guide vane made of the material CM 247 LC DS (chemical composition: Ba. Ni; 8.1% Cr; 9.2% Co; 0.5% Mo; 9.5% W; 3.2% Ta; 0.7% Ti; 5.6% Al; 0.01% Zr; 0.01% B; 0.07% C; 1.4% Hf), can be provided with a 0.7 to 0.8 mm thick TBC layer when new.
  • the blade is coated with the powder ProXon 21031 (nickel-based alloy) in the entire channel area using protective gas plasma spraying, about 0.2 mm thick (sprayed with low oxygen).
  • This powder has excellent resistance to oxidation and corrosion due to its high aluminum and chromium content.
  • a thin layer of binder 3 is applied to this roughly sprayed oxidation and corrosion protection layer 8.
  • a coarse adhesive powder 4 with a particle diameter of approximately 100 to 200 ⁇ m of the same composition is sprinkled on it.
  • the coating is then carried out in a high vacuum furnace under solution annealing conditions for CM 247 LS DS (several hours at 1220 to 1250 ° C).
  • the profile suction side and the areas of the cooling air holes in the guide vane are then covered.
  • the pressure side and the channel walls, which are coated with adhesive layer powder 4 are now coated using a known flame spraying system CastoDyn DS 8000 with MetaCeram 28085 (zirconium oxide / calcium stabilized) approx. 0.8 to 0.7 mm thick.
  • a cooled guide vane made of CM 247 LC DS is also to be provided with a thermal barrier coating.
  • a solder of the same type is used for soldering the coarse adhesive powder particles 4 made of ProXon 21031 4 CM 247 with an addition of 6% Cr; 3% Si; 2% Al and 0.5% B used.
  • the order is placed as described above, i.e.
  • the 150 to 200 ⁇ m adhesive powder 4 is sprinkled on the thin cement-binder layer 3 and the solder powder 5 in abundance.
  • the blade is then subjected to a heat treatment in which the base material 2 is solution-annealed and the solder 5 is partially melted .
  • An approximately 0.5 to 0.6 mm thick, Y-stabilized zirconium oxide thermal insulation layer is then applied to this blade surface prepared on the profile pressure side and the channel walls using a known air plasma spraying process.
  • thermal shock tests showed that the thermal insulation layer fastened in this way is superior to a conventionally produced layer. Even if a piece of the TBC layer bursts off for various reasons, this layer remains between the adhesive powder particles and thus guarantees good emergency running properties. If, on the other hand, the TBC layer flakes off in the case of conventionally coated blades, only minimal residues remain on the substrate, which in no case have a heat-insulating property. In addition, this example has shown that it is cheap to use boron-free or almost boron-free Solder to be used, since brittle phase formation with W-borides is hardly possible.
  • FIG. 9 finally shows a micrograph of a plate coated with the adhesive layer according to the invention.
  • the base material 2 is MAR M 247, NB 150 was used as lot 5 and the adhesive powder particles 4 consist of NiAl95 / 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Abstract

Bei einem Verfahren zur Aufbringung einer metallischen Haftschicht für thermisch gespritzte keramische Wärmedämmschichten (6) auf metallische Bauteile (1), wobei die zu beschichtende Oberfläche in einem ersten Verfahrensschritt gereinigt wird, so dass eine fett- und oxidfreie metallische Oberfläche vorliegt, wird in einem zweiten Verfahrensschritt ein Binder (3) auf die metallische Oberfläche des Grundmaterials (2) aufgebracht. In einem dritten Verfahrensschritt wird auf den Binder (3) gleichmässig metallisches Haftpulver (4) und in einen vierten Verfahrensschritt gleichmässig Lotpulver (5), welches eine geringere Teilchengrösse als das Haftpulver (4) aufweist, aufgebracht. Nach Trocknung des Binders (3) erfolgt eine Wärmebehandlung zwecks Lötung. Die so erzeugten Haftschichten sind rauh und bieten einen grossen Formschluss für die darauf zu spritzenden keramische Wärmedämmschichten (6). <IMAGE>

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft ein Verfahren zur Aufbringung einer metallischen Haftschicht für thermisch gespritzte keramische Wärmedämmschichten (TBC) auf metallische Bauteile sowie eine nach diesem Verfahren hergestellte metallische Haftschicht.
  • Stand der Technik
  • Normalerweise lassen sich Metall und Keramik wegen der unterschiedlichen Wärmesausdehnungskoeffizienten nicht miteinander verbinden.
  • Bekannt ist, dass zur Lösung dieses Problemes eine duktile Zwischenschicht zwischen die zu verbindenden Teile gebracht wird, welche die Differenzdehnungen bei unterschiedlichen Temperaturen elastisch-plastisch ausgleicht (vgl. W. J. Brindley, R. A. Miller: "TBcs for better engine efficiency", Nasa Lewis Research Center Cleveland, Advanced Materials & Progress 8/1989, S.29-33). Diese als Haftschichten bezeichnete Zwischenschichten werden üblicherweise mittels bekannter Flammspritzverfahren, Plasmaspritzverfahren oder Detonationsspritzverfahren aufgebracht. Sie ermöglichen eine metallurgisch-mechanische Bindung an das metallische Bauteil und eine rein mechanische Bindung der ebenfalls thermisch gespritzten Keramikschicht an die Haftschicht, wobei diese Verbindung ausgesprochen schlagempfindlich und thermoschockempfindlich ist.
  • Da die keramischen Wärmedämmschichten die beschichteten metallischen Bauteile vor schädlichen Wärmespannungen schützen, ist deren lückenloses Vorhandensein wichtig für eine ausreichende Lebensdauer der Bauteile. Derartig beschichtete Bauteile werden insbesondere im Gebiet der Verbrennungstechnik eingesetzt, beispielsweise für Brennkammerteile oder Gasturbinenschaufeln.
  • Der Nachteil der bisher erzeugten metallischen Haftschichten für keramische Wärmedämmschichten besteht darin, dass sie eine ungenügende Rauhigkeit aufweisen und damit zu wenig Formschluss (Hinterschneidungen) bieten, so dass die Schichtdicke der TBC-Schichten begrenzt ist. Bekannt sind Schichtdicken von ca. 0,2 bis 0,4 mm, wobei Schichtdicken von etwa 0,3 mm am häufigsten anzutreffen sind. Sind sie dicker, so steigt die Gefahr des Abplatzens rapide an. Sind sie dünner, so lässt die Wärmedämmwirkung schnell nach. Neuere Entwicklungen gehen zwar dahin, gröbere Haftschichten (ca. 0,6 mm) zu spritzen, jedoch fehlt der nötige Formschluss.
  • Eine für bekannte metallische Haftschichten typische Rauhigkeit (Unterschied Spitze-Tal) liegt bei etwa 30 µm. Rauher können die Schichten nicht gespritzt werden, da die Dimension der aufzuschmelzenden Pulverteilchen je nach Beschichtungsverfahren (unterschiedliche Spritztemperaturen und Spritzgeschwindigkeiten) auf ca. 10 bis 50 µm begrenzt ist und die flüssigen Pulverteilchen beim Auftreffen auf das Substrat abflachen (vgl. B. Heine: "Thermisch gespritzte Schichten", Metall, 49. Jahrgang, 1/1995, S.51-57).
  • Einer naheliegenden Abhilfe mittels gröberem Aufrauhen durch Sandstrahlen bzw. mittels Veränderung der Flammspritzparameter sind aber Grenzen gesetzt. Beispielsweise kann durch Niedergeschwindigkeitsflammenspritzen zwar die Schichtdicke der TBC-Keramikschicht erhöht werden, aber derartige Schichten halten keinen Thermoschock aus.
  • Rauhgewindedrehen oder Einfräsen von Nuten in die zu beschichtenden Oberflächen, wie von B. Heine in o.g. Artikel zur Haftungsförderung bei angestrebten Schichtdicken von grösser 1 mm angegeben werden, sind aufwendig und lassen sich bei komplizierter geometrischer Werstückform nur schwer realisieren.
  • Darstellung der Erfindung
  • Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, eine metallische Haftschicht und ein Verfahren zur Aufbringung dieser Haftschicht für keramische Wärmedämmschichten auf einem metallischen Grundkörper zu entwickeln, mit dem es gegenüber dem bekannten Stand der Technik möglich ist, anschliessend keramische Wärmedämmschichten grösserer Dicke thermisch zu spritzen und zu befestigen. Dabei sollen die Schichten stabil haften und unempfindlich gegen Schlageinwirkung sein.
  • Erfindungsgemäss wird dies bei einem Verfahren zur Aufbringung einer metallischen Haftschicht für thermisch gespritzte keramische Wärmedämmschichten auf metallische Bauteile, wobei die zu beschichtende Oberfläche in einem ersten Verfahrensschritt gereinigt wird, so dass eine fett- und oxidfreie metallische Oberfläche vorliegt, dadurch erreicht,
    • a) dass in einem zweiten Verfahrensschritt ein Binder auf die metallische Oberfläche aufgebracht wird,
    • b) dass in einem dritten Verfahrensschritt auf den Binder gleichmässig metallisches Haftpulver aufgebracht wird,
    • c) dass in einem vierten Verfahrensschritt auf den Binder gleichmässig Lotpulver, welches eine geringere Teilchengrösse als das Haftpulver aufweist, aufgebracht wird, und
    • d) dass nach Trocknung des Binders eine Wärmebehandlung zwecks Lötung erfolgt.
  • Erfindungsgemäss wird dies bei einem Verfahren zur Aufbringung einer metallischen Haftschicht für thermisch gespritzte keramische Wärmedämmschichten auf metallische Bauteile, wobei die zu beschichtende Oberfläche in einem ersten Verfahrensschritt gereinigt wird, so dass eine fett- und oxidfreie metallische Oberfläche vorliegt, und in einem zweiten Verfahrensschritt mittels Schutzgasplasmaspritzen eine oxidationsund korrosionsfeste Schicht auf der metallischen Oberfläche erzeugt wird, dadurch erreicht,
    • a) dass in einem dritten Verfahrensschritt ein Binder auf die oxidations- und korrosionsfeste Schicht aufgebracht wird,
    • b) dass auf den Binder gleichmässig ein grobes Haftpulver der gleichen Zusammensetzung wie die oxidations- und korrosionsfeste Schicht aufgebracht wird, und
    • c) dass nach Trocknung des Binders eine Wärmebehandlung (Lösungsglühen) zwecks Bildung einer Sinterverbindung zwischen dem metallischen Bauteil und der Schicht bzw. zwischen der Schicht und dem Haftpulver erfolgt.
  • Die Vorteile der Erfindung bestehen u.a. darin, dass mit diesen Verfahren Haftschichten erzeugt werden, die gegenüber dem Stand der Technik sehr rauh sind. Die aufgelöteten bzw. angesinterten Metallpulverteilchen stellen dabei sehr stabile und formschlüssige Verankerungen für die aufzuspritzende TBC-Schicht dar, so dass vergleichsweise dicke, stabil haftende keramische Wärmedämmschichten erzeugt werden können.
  • Es ist besonders zweckmässig, wenn anstelle des zeitlich nacheinander erfolgenden Aufbringens des metallischen Haftpulvers und des Lotpulvers beide Pulver zunächst intensiv gemischt werden und danach dieses Gemisch auf die metallische Oberfläche des Grundmaterials aufgebracht wird. Dadurch wird eine gleichmässigere Verteilung der Pulverteilchen erreicht und ausserdem die Verfahrenszeit verkürzt.
  • Ferner ist es vorteilhaft, wenn nach erfolgter Lötung zusätzlich auf die Haftschicht eine dünne Schicht des Haftpulvers mittels Spritzverfahren, beispielsweise Schutzgasplasmaspritzen, aufgetragen wird. Das ergibt zwischen der groben Verankerungsmöglichkeit zusätzlich die Möglichkeit einer feinen Verzahnung, was die Haftfestigkeit von dicken TBC-Schichten unter Thermoschockbedingungen weiter steigert.
  • Schliesslich werden mit Vorteil als Lotmaterial artgleiches Material wie das Grundmaterial und borfreie bzw. borarme Lote verwendet. Dadurch wird eine mögliche Sprödphasenbildung verringert.
  • Das erfindungsgemässe Verfahren kann sowohl örtlich für Reperaturzwecke als auch zur Beschichtung von Neuteilen verwendet werden.
  • Die erfindungsgemäss hergestellte metallische Haftschicht besteht je nach angewandter Verfahrensvariante aus einer die Oberfläche des metallischen Bauteiles benetzenden Lotschicht mit darin fest verlöteten sphärisch oder spratzig ausgebildeten Haftpulverteilchen oder zusätzlich aus einer dünnen gespritzen, insbesondere schutzgasplasmagespritzten Schicht aus artgleichem Material wie die Haftpulverteilchen oder aus einer auf die Oberfläche des metallischen Bauteiles schutzgasplasmagespritzten Schutzschicht mit an deren Oberfläche angesinterten Haftpulverteilchen. Diese metallische Haftschicht garantiert ein stabiles Haften der thermisch gespritzten keramischen Wärmedämmschichten, erlaubt grössere Schichtdicken und führt zu guten Notlaufeigenschaften.
  • Es ist ausserdem vorteilhaft, wenn die Höhe der Haftpulverteilchen etwa so gross ist wie die Schichtdicke der thermisch aufzuspritzenden keramischen Wärmedämmschicht. Dadurch wird die Schicht nahezu schlagunempfindlich, weil Schläge im Wesentlichen metallisch aufgefangen werden.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung dargestellt.
  • Es zeigen:
  • Fig. 1
    eine perspektivische Darstellung einer zu beschichtenden Leitschaufel;
    Fig. 2
    einen schematischen Querschnitt durch die verschiedenen Schichten nach dem Applizieren;
    Fig. 3
    einen schematischen Querschnitt durch die verschiedenen Schichten nach dem Löten;
    Fig. 4
    einen schematischen Querschnitt durch die verschiedenen Schichten nach dem Flammspritzen der keramischen Wärmedämmschicht;
    Fig. 5
    einen schematischen Querschnitt durch die verschiedenen Schichten nach TBC-Beschichtung und seitlicher Druckbeanspruchung;
    Fig. 6
    eine perspektivische Darstellung einer zu beschichtenden Wärmedämmplatte;
    Fig. 7
    einen schematischen Querschnitt durch die verschiedenen Schichten nach dem Löten und Flammspritzen der Haftschicht;
    Fig. 8
    einen schematischen Querschnitt durch die verschiedenen Schichten eines weiteren Ausführungsbeispieles (angesintertes Haftpulver);
    Fig. 9
    ein Schliffbild einer metallischen Probe mit aufgelöteter Haftschicht.
  • Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt.
  • Weg zur Ausführung der Erfindung
  • Nachfolgend wird die Erfindung anhand von mehreren Ausführungsbeispielen und der Figuren 1 bis 9 näher erläutert.
  • In Fig. 1 ist eine Leitschaufel einer Gasturbine als Beispiel für ein zu beschichtendes metallisches Bauteil 1 dargestellt. Sie besteht aus dem metallischen Grundmaterial (Substrat) 2, in diesem Falle aus der Legierung IN 939 der folgenden chemischen Zusammensetzung: Bal. Ni; 22,5% Cr; 19,0% Co; 2,0% W; 1,0% Nb; 1,4% Ta; 3,7% Ti; 1,9% Al; 0,1 Zr; 0,01 B; 0,15 C. Die Schaufel ist auf den gasführenden Flächen mit einer Korrosions- und Oxidationsschicht versehen (MCrAlY, z.B. SV201473: Bal. Ni; 25% Cr; 5% Al; 2,5% Si; 0,5% Y; 1% Ta). Ausserdem ist diese Schaufel auf der Eintrittskante, der Druckseite des Blattes und auf den Kanalwänden mit einer ca. 0,3 mm dicken keramischen Wärmedämmschicht aus Ytrium-stabilisiertem Zirkonoxid folgender Zusammensetzung beschichtet: Bal. ZrO2 incl 2,5% HfO2; 7-9% Y2O3; <3% andere.
  • Nach einer Betriebszeit von 25 000 Stunden kommt die Gasturbinenleitschaufel zur Rekonditionierung. Dabei wird festgestellt, dass durch thermische Überbeanspruchung und Erosion an der Eintrittskante des Blattes und auf der Kanalwand die Wärmedämmschicht nicht mehr vorhanden ist (vgl. schraffierte Bereiche in Fig. 1). Da die Schaufel keine weiteren Schäden aufweist, wird aus Kostengründen keine totale Neubeschichtung, sondern eine partielle Reparatur der Wärmedämmschicht angestrebt. Auf Grund dessen, dass an den oben beschriebenen Stellen systematisch ein besonders starker Angriff der TBC erfolgt, sollte die TBC-Schicht nicht nur in gleicher Stärke, sondern möglichst dicker ausgeführt werden.
  • Das gelingt mit dem erfindungsgemässen Verfahren, bei dem die keramische Schicht flexibler an das metallische Substrat 2 gebunden wird durch Gradieren des Übergangs Metall-Keramik unter Verwendung einer speziellen Haftschicht.
  • Zunächst wird die Schaufel 1 im Wasserdampfstrahl von grobem Schmutz (Verbrennungsrückstände) gereinigt. Danach werden noch anhaftende Ablagerungen mittels weichem Sandstrahlen, (z.B. feines Aluminiumpulver, 2 bar Strahldruck, 20 cm Abstand) entfernt. Dabei darf die noch intakte keramische Wärmedämmschicht nicht abgetragen werden.
  • Nun werden die nicht zu beschichtenden Schaufelteile abgedeckt, beispielsweise mit einer Blechschablone, und die zu beschichtenden Flächen werden blankgestrahlt (z.B. feines Siliziumcarbid, Strahldruck 4 bar, Abstand 40 mm), so dass jegliche TBC-Reste und eventuelle Oxide entfernt werden.
  • Die so gereinigten, metallischen, sauberen, fett- und oxidfreien Oberflächen werden nun mit Hilfe eines Pinsels, Tupfers oder Sprayers dünn mit einem für die Lotpastenherstellung üblichen organischen Binder 3, sogenanntem Zement, beschichtet. Danach wird Haftpulver 4 des Typs NiAl95/5 mit einer Teichengrösse im Bereich von 100 bis 200 µm über die mit dem Binder 3 befeuchteten Stellen gestreut, bis etwa alle 0,5 mm solche Haftpulverteilchen 4 zu liegen kommen. Danach wird in gleicher Weise das viel feinere Lotpulver 5 (Teilchendurchmesser ca. 10-30 µm) gestreut. Als Lotmaterial wird die Legierung NB 150 (Bal. Ni; 15% Cr; 3,5% B; 0,1% C) mit einem Schmelzpunkt von 1055°C und einem Lötbereich von 1065 bis 1200°C verwendet. Vorteilhaft sind dabei etwa gewichtsmässig gleichgrosse Mengen von Haftpulver 4 und Lotpulver 5. Aber selbstverständlich können auch andere Mengenverhältnisse gewählt werden. Dabei ist die Packungsdichte der Teilchen nicht von ausschlaggebender Bedeutung, denn es sind dichte Packungen geeignet, aber auch weniger dichte Packungen sind schon ausreichend.
  • Der Binder 3 trocknet nach kurzer Zeit (ca. 15 min) und hält das Haftpulver 4 und das Lot 5 fest auf dem Substrat 2. Fig. 2 zeigt schematisch einen Querschnitt der verschiedenen Schichten nach dem Applizieren.
  • Die so beschichtete Fläche kann nun horizontal, senkrecht oder über Kopf in den Lötofen gebracht werden. Das Lot 5 und das Haftpulver 4 bleiben an ihrem applizierten Platz, bis das Lot aufgeschmolzen ist und die Substratoberfläche und die Oberfläche der Haftpulverteilchen benetzt und verlötet hat. Die Lötung erfolgt in einem Hochvakuumofen bei 5x10-6 mbar, 1080°C und einer Haltezeit von 15 min.
  • Fig. 3 zeigt schematisch einen Querschnitt der verschiedenen Schichten nach dem Lötvorgang. Das Lot 5 hat die zu reparierende Fläche gänzlich benetzt und die Haftpulverteilchen 4 sind fest verlötet. Die Oberfläche sieht metallisch matt silbrig glänzend aus. Die Diffusionszone ist wegen der kurzen Lötzeit und der relativ niedrigen Löttemperatur nur sehr klein.
  • Nach dem Aufbringen der erfindungsgemässen metallischen Haftschicht wird die Schaufel wiederum mit einer Schablone abgedeckt und mit einer 0,5 mm dicken keramischen Wärmedämmschicht 6, hier aus Calzium-stabilisierten Zirkonoxid (MetaCeram 28085), wobei das Zirkonoxid mittels bekanntem Flammspritzverfahren aufgebracht wird, versehen.
  • Fig. 4 zeigt schematisch den Schichtaufbau nach dem Flammspritzverfahren.
  • Die Befestigung des Zirkonoxides lässt sich in etwa mit einer Druckknopftechnik vergleichen. Das Zirkonoxid weist einen starken Formschluss und viele Hinterschneidungen auf im Gegensatz zu bisher üblichen Haftgeometrien, welche bestenfalls nur einen kleinen Formschluss aufweisen. Damit ist die Verankerung der Zirkonoxid(TBC)-Schicht auf dem Bauteil sehr stabil. Für das Aufspritzen der TBC-Schichten auf die erfindungsgemässen Haftschichten ist somit neben dem Plasmaspritzen und dem Detonationsflammspritzen wie oben beschrieben auch das Flammspritzen geeignet. Letzteres hat den Vorteil, dass dafür transportable Beschichtungsgeräte eingesetzt werden können.
  • Ein weiterer Vorteil der Erfindung besteht in der hohen Thermoschockunempfindlichkeit der Schichten. Das gemäss o.b. Verfahren beschichtete metallische Bauteil 1 wurde anschliessend in einem Heissgasstrom thermozykliert (Aufheizen mit etwa 50 Grad/min Gastemperatur, 2 min Halten bei 1000°C, Abkühlen mit 100 Grad/s Gastemperatur auf 500°C). Selbst nach 70 Zyklen ist noch keine Ablösung der Schicht aufgetreten.
  • Ein anderer Vorteil besteht in den hervorragenden Notlaufeigenschaften der auf die erfindungsgemässe Haftschicht thermisch gespritzen TBC-Schichten. Bei Schlag- bzw. seitlicher Druckbeanspruchung platzt die keramische Schicht 6, also in diesem Falle das Zirkonoxid, nur oberhalb des Haftpulvers 4 ab. Zwischen den Haftpulverteilchen 4 fällt die TBC-Schicht 6 aufgrund des grossen Formschlusses nicht heraus, so dass die keramische Wärmedämmschicht 6 mindestens in der Dicke der Haftpulverteilchen 4 (ca. 200 µm) erhalten bleibt. Dies ist schematisch in Fig. 5 dargestellt. Dieses Ergebnis berechtigt zu der Annahme, dass sowohl die Eintrittskante als auch die Kanalwand der reparierten Leitschaufel dem Abtrag der Wärmedämmschicht länger widerstehen kann als die dünnere und weniger verankerte originale Wärmedämmschicht. Mit diesem Ausführungsbeispiel ist die prinzipielle Eignung der grob gelöteten Haftschichten für die Aufbringung thermisch gespritzter Wärmedämmschichten nachgewiesen. Bei der Verwendung der miteinander kombinierten Materialien ist darauf zu achten, dass die Oxidations- und Korrosionsfestigkeit von Haftpulver, Lot und Haftschicht möglichst grösser sind als die entsprechenden Werte des Grundmaterials.
  • In den Fig. 6 und 7 ist ein zweites Ausführungsbeispiel der Erfindung dargestellt. Fig. 6 zeigt in einer perspektivischen Darstellung eine Wärmedämmplatte zur Heissgasführung, die im Neuzustand mit einer möglichst dicken thermisch gespritzen Wärmedämmschicht versehen werden soll. Die Wärmedämmplatte besteht aus der Legierung MAR M 247, die folgende chemische Zusammensetzung aufweist: Bal. Ni; 8,2-8,6% Cr; 9,7-10,3% Co; 0,6-0,8% Mo; 9,8-10,2% W; 2,9-3,1% Ta; 5,4-5,6% Al; 0,8-1,2% Ti; 1,0-1,6% Hf; 0,14-0,16% C).
  • Zunächst wird das zu beschichtende metallische Bauteil 1 mit relativ groben Siliziumcarbid (Partikeldurchmesser <200 µm) oxidfrei und rauh gestrahlt (10 bis 30 µm). Danach wird die zu beschichtende Oberfläche beispielsweise mit einem Pinsel dünn mit organischem Binder 3 bestrichen. Unter einer Rieselvorrichtung für grobes sphärisches Haftpulver 4 (SV 20 14 73 mit folgender chemischer Zusammensetzung: Bal. Ni; 25% Cr; 5% Al; 2,5% Si; 0,5% Y; 1% Ta) mit einem Korndurchmesser von 150 bis 300 µm wird die zu beschichtende Platte 1 hin- und herbewegt, bis auf der Klebeschicht eine gleichmässige Verteilung des hoch korrosionsfesten Haftpulvers 4 stattgefunden hat. Im Mittel sollten die einzelnen Pulverteilchen 0,3 bis 0,6 mm Abstand voneinander haben. Durch elekrostatische Aufladung ist es möglich, dass mehrere der Haftpulverteilchen 4 aneinander zu liegen kommen, was aber für ihre Funktion keinen Nachteil hat. Als Lot wird Amdry Alloy DF 5, welches zusätzlich zum hohen Cr-Gehalt einen hohen Al-Gehalt bei etwas reduziertem B-Gehalt aufweist, gewählt. Die genaue Zusammensetzung ist folgende: Bal. Ni; 13% Cr; 3% Ta; 4% Al; 2,7% B; 0,02% Y. Das Lot 5 wird ebenfalls mittels einer geeigneten Rieselvorrichtung gleichmässig auf die zu lötende Fläche aufgebracht. Es ist auch möglich, Haftpulver 4 und Lot 5 zu mischen und dann das Gemisch in einem Verfahrensschritt auf die mit dem Zement-Binder 3 eingestrichene Fläche aufzustreuen.
  • Die Lötung erfolgt im Hochvakuumofen bei 1100°C und 15 min Haltezeit. Vor dem anschliessenden Luftplasmaspritzen der Wärmedämmschicht 6 wird mittels Schutzgasplasmaspritzen eine dünne Schicht 7 (ca. 50 µm) SV 20 14 73 aufgetragen. Das ergibt neben der groben Verankerungsmöglichkeit (wie im Ausführungsbeispiel 1) noch zusätzlich eine feine Verzahnung, was die Haftfestigkeit von dicken TBC-Schichten im Thermoschock weiter steigert.
  • Fig. 7 zeigt schematisch die Ausbildung dieser Schichten.
  • Anschliessend wird mittels bekanntem Luftplasmaspritzverfahren eine 1,5 mm dicke Ytrium-stabilisierte Zirkonoxidschicht als TBC-Schicht 6 gespritzt.
  • Das so beschichtete Bauteil erwies sich bei einem Thermoschocktest im Sandbett (1000°C auf Raumtemperatur) als thermoschockfest.
  • Nach längerer Betriebszeit ist zwar die Lotschicht zwischen den grossen Haftpulverkörnern etwas wegkorrodiert, aber der Korrosionsangriff kann den tragenden Teil des Lothalses nicht nennenswert reduzieren.
  • In einem dritten Ausführungsbeispiel soll eine gekühlte Leitschaufel, die aus dem Material CM 247 LC DS (chemische Zusammensetzung: Ba. Ni; 8,1% Cr; 9,2% Co; 0,5% Mo; 9,5% W; 3,2% Ta; 0,7% Ti; 5,6% Al; 0,01% Zr; 0,01% B; 0,07% C; 1,4% Hf) besteht, im Neuzustand mit einer 0,7 bis 0,8 mm dicken TBC-Schicht versehen werden.
  • Dazu wird die Schaufel im ganzen Kanalbereich mittels Schutzgasplasmaspritzen mit dem Pulver ProXon 21031 (Legierung auf Nickelbasis) etwa 0,2 mm dick beschichtet (sauerstoffarm gespritzt). Dieses Pulver weist wegen seines hohen Aluminiumgehaltes und Chromgehaltes eine hervorragende Oxidations- und Korrosionsfestigkeit auf. Danach wird auf dieser rauh gespritzen Oxidations- und Korrosionschutzschicht 8 eine dünne Schicht Binder 3 aufgetragen. Darauf wird ein grobes Haftpulver 4 mit einem Teilchendurchmesser von etwa 100 bis 200 µm der gleichen Zusammensetzung gestreut. Die Beschichtung erfolgt dann im Hochvakuumofen bei Lösungsglühbedingungen für CM 247 LS DS (mehrere Stunden bei 1220 bis 1250°C). Dabei entsteht eine definierte metallurgische Bindung (Sinterverbindung 9) der Oxidations- und Korrosionsschutzschicht 8 am Grundmaterial 1. Die Schicht 8 verdichtet sich weiter und die groben Haftpulverteilchen 4 werden durch eine stabile Sinterbildung 9 auf der Schicht 8, die nunmehr gleichzeitig eine Schutz- und Haftschicht ist, gebunden.
  • Fig. 8 verdeutlicht dies in einer schematischen Darstellung der einzelnen Schichten.
  • Danach werden die Profilsaugseite und die Bereiche der Kühlluftbohrungen der Leitschaufel abgedeckt. Die Druckseite und die Kanalwände, die mit Haftschichtpulver 4 belegt sind, werden nun mittels bekanntem Flammspritzsystem CastoDyn DS 8000 mit MetaCeram 28085 (Zirkonoxid/Calzium-stabilisiert) ca. 0,8 bis 0,7 mm dick beschichtet.
  • Selbst nach 1000 Thermozyklen im Fliessbett (Bedingungen: 1000°C/RT/1000°C, Zykluszeit: 6min) konnte keine Beschädigung der Beschichtung festgestellt werden.
  • In einem vierten Ausführungsbeispiel soll ebenfalls eine gekühlte Leitschaufel aus CM 247 LC DS mit einer Wärmedämmschicht versehen werden. Als Lot 5 für die Befestigung der groben Haftpulverteilchen 4 aus ProXon 21031 wird ein artgleiches Pulver CM 247 mit einem Zusatz von 6 % Cr; 3% Si; 2% Al und 0,5% B verwendet. Der Auftrag erfolgt wie bereits oben beschrieben, d.h. auf die dünne Zement-Binder-Schicht 3 wird das etwa 150 bis 200 µm grosse Haftpulver 4 gestreut und darauf in reichlicher Menge das Lotpulver 5. Anschliessend wird die Schaufel einer Wärmebehandlung unterzogen, bei der das Grundmaterial 2 lösungsgeglüht und das Lot 5 teilweise aufgeschmolzen wird. Dabei geht sowohl die γ'-Lösunq im Grundmaterial 2 vor sich als auch die feine γ'-Bildung in der Lötschicht, die in diesem Ausführungsbeispiel dicker aufgetragen wird und eine etwa 65 µm dicke Korrosions- und Oxidationsschicht bildet. Auf diese so vorbereitete Schaufeloberfläche an der Profildruckseite und den Kanalwänden wird nun mittels bekanntem Luftplasmaspritzverfahren eine ca. 0,5 bis 0,6 mm dicke Y-stabilisierte Zirkonoxid-Wärmedämmschicht aufgebracht.
  • Thermoschocktests ergaben, dass die so befestigte Wärmedämmschicht einer konventionell hergestellten Schicht überlegen ist. Selbst wenn aus unterschiedlichen Gründen ein Stück der TBC-Schicht wegplatzt, bleibt zwischen den Haftpulverteilchen diese Schicht erhalten und garantiert somit gute Notlaufeigenschaften. Platzt dagegen bei konventionell beschichteten Schaufeln die TBC-Schicht ab, so verbleiben auf dem Substrat nur minimale Reste, die auf keinen Fall eine wärmedämmende Eigenschaft aufweisen. Ausserdem hat sich in diesem Beispiel gezeigt, dass es günstig ist, borfreie bzw. fast borfreie Lote zu verwenden, da die Sprödphasenbildung mit W-Boriden kaum möglich ist.
  • Fig. 9 zeigt abschliessend ein Schliffbild eines mit der erfindungsgemässen Haftschicht beschichteten Plättchens. Das Grundmaterial 2 ist MAR M 247, als Lot 5 wurde NB 150 verwendet und die Haftpulverteilchen 4 bestehen aus NiAl95/5.
  • Bezugszeichenliste
  • 1
    zu beschichtendes metallisches Bauteil
    2
    metallisches Grundmaterial (Substrat)
    3
    organischer Binder
    4
    Haftpulver
    5
    Lot
    6
    keramische Schicht (TBC)
    7
    schutzgasplasmagespritze Haftpulverschicht
    8
    Oxidations- und Korrosionsschutzschicht
    9
    Sinterbildung

Claims (13)

  1. Verfahren zur Aufbringung einer metallischen Haftschicht für thermisch gespritzte keramische Wärmedämmschichten (6) auf metallische Bauteile (1), wobei die zu beschichtende Oberfläche in einem ersten Verfahrensschritt gereinigt wird, so dass eine fett- und oxidfreie metallische Oberfläche vorliegt, dadurch gekennzeichnet,
    a) dass in einem zweiten Verfahrensschritt ein Binder (3) auf die metallische Oberfläche des Grundmaterials (2) aufgebracht wird,
    b) dass in einem dritten Verfahrensschritt auf den Binder (3) gleichmässig metallisches Haftpulver (4) aufgebracht wird,
    c) dass in einem vierten Verfahrensschritt auf den Binder (3) gleichmässig Lotpulver (5), welches eine geringere Teilchengrösse als das Haftpulver (4) aufweist, aufgebracht wird, und
    d) dass nach Trocknung des Binders (3) eine Wärmebehandlung zwecks Lötung erfolgt.
  2. Verfahren zur Aufbringung einer metallischen Haftschicht für thermisch gespritzte keramische Wärmedämmschichten (6) auf metallische Bauteile (1), wobei die zu beschichtende Oberfläche in einem ersten Verfahrensschritt gereinigt wird, so dass eine fett- und oxidfreie metallische Oberfläche vorliegt, und in einem zweiten Verfahrensschritt mittels Schutzgasplasmaspritzen eine oxidations- und korrosionsfeste Schicht (8) auf der metallischen Oberfläche erzeugt wird, dadurch gekennzeichnet,
    a) dass in einem dritten Verfahrensschritt ein Binder (3) auf die oxidations- und korrosionsfeste Schicht (8) aufgebracht wird,
    b) dass auf den Binder (3) gleichmässig ein grobes Haftpulver (4) der gleichen Zusammensetzung wie die oxidations- und korrosionsfeste Schicht (8) aufgebracht wird,
    c) dass nach Trocknung des Binders (3) eine Wärmebehandlung (Lösungsglühen) zwecks Bildung einer Sinterverbindung (9) zwischen dem metallischen Bauteil (1) und der Schicht (8) bzw. zwischen der Schicht (8) und dem Haftpulver (4) erfolgt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das metallische Haftpulver (4) und das Lotpulver (5) intensiv gemischt und danach dieses Gemisch auf die metallische Oberfläche des Grundmaterials (2) aufgebracht wird.
  4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass gewichtsmässig ein Mengenverhältnis von Haftpulver (4) zu Lotpulver (5) von 1:1 verwendet wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach erfolgter Lötung auf die Haftschicht eine dünne Schicht (7) des Haftpulvers (4) mittels Spritzverfahren, vorzugsweise Schutzgasplasmaspritzen, aufgetragen wird.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Lotmaterial (5) artgleiches Material wie das Grundmaterial (2) verwendet wird.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass borfreie bzw. borarme Lote (5) verwendet werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Verfahren für örtlich begrenzte Reparaturzwecke angewendet wird.
  9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Verfahren für die Beschichtung von Neuteilen angewendet wird.
  10. Metallische Haftschicht für thermisch gespritzte keramische Wärmedämmschichten (6) auf metallischen Bauteilen (1), welche mit einem Verfahren nach Anspruch 1 hergestellt werden, dadurch gekennzeichnet, dass die Haftschicht aus einer die Oberfläche des metallischen Bauteiles (1) benetzenden Lotschicht (5) mit darin fest verlöteten sphärisch oder spratzig ausgebildeten Haftpulverteilchen (4) besteht.
  11. Metallische Haftschicht für thermisch gespritzte keramische Wärmedämmschichten (6) auf metallischen Bauteilen (1), welche mit einem Verfahren nach Anspruch 5 hergestellt werden, dadurch gekennzeichnet, dass die Haftschicht aus einer die Oberfläche des metallischen Bauteiles (1) benetzenden Lotschicht (5) mit darin fest verlöteten sphärisch oder spratzig ausgebildeten Haftpulverteilchen (4) sowie einer dünnen gespritzten, vorzugsweise schutzgasplasmagespritzten Schicht (7) aus artgleichem Material wie die Haftpulverteilchen (4) besteht.
  12. Metallische Haftschicht für thermisch gespritzte keramische Wärmedämmschichten (6) auf metallischen Bauteilen (1), welche mit einem Verfahren nach Anspruch 2 hergestellt werden, dadurch gekennzeichnet, dass die Haftschicht aus einer auf die Oberfläche des metallischen Bauteiles (1) schutzgasplasmagespritzten Schutzschicht (8) mit an deren Oberfläche angesinterten Haftpulverteilchen (4) besteht.
  13. Metallische Haftschicht nach Anspruch 10 oder 11 oder 12, dadurch gekennzeichnet, dass die Höhe der Haftpulverteilchen (4) der Schichtdicke der thermisch aufzuspritzenden keramischen Wärmedämmschicht (6) entspricht.
EP96810768A 1995-12-02 1996-11-11 Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile Expired - Lifetime EP0776985B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19545025 1995-12-02
DE19545025A DE19545025A1 (de) 1995-12-02 1995-12-02 Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile

Publications (2)

Publication Number Publication Date
EP0776985A1 true EP0776985A1 (de) 1997-06-04
EP0776985B1 EP0776985B1 (de) 2001-12-19

Family

ID=7779041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810768A Expired - Lifetime EP0776985B1 (de) 1995-12-02 1996-11-11 Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile

Country Status (11)

Country Link
US (1) US5894053A (de)
EP (1) EP0776985B1 (de)
JP (1) JP3983323B2 (de)
CN (1) CN1161489C (de)
AT (1) ATE211185T1 (de)
CA (1) CA2188614C (de)
CZ (1) CZ290920B6 (de)
DE (2) DE19545025A1 (de)
PL (2) PL182552B1 (de)
RU (1) RU2209256C2 (de)
UA (1) UA42001C2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491658A1 (de) * 2003-06-26 2004-12-29 ALSTOM Technology Ltd Verfahren für das Auftragen eines mehrschichtigen Systems
EP1491657A1 (de) * 2003-06-26 2004-12-29 ALSTOM Technology Ltd Verfahren für das Auftragen eines mehrschichtigen Systems
EP1867749A1 (de) * 2006-06-12 2007-12-19 Siemens Aktiengesellschaft Verfahren zum Aufbringen von Material auf ein Bauteil
CN102127729A (zh) * 2011-02-18 2011-07-20 湖北工业大学 一种金属材料表面热喷涂涂层的钎焊强化方法
EP2034132A3 (de) * 2007-09-06 2011-07-20 United Technologies Corporation Mantelringsegment mit Dichtung und entsprechendes Herstellungsverfahren
EP2460981A1 (de) * 2010-12-01 2012-06-06 BBAT Berlin Brandenburg Aerospace Technology AG Wärmedämmende Auskleidung für eine Fluggasturbine
DE10332938B4 (de) * 2003-07-19 2016-12-29 General Electric Technology Gmbh Thermisch belastetes Bauteil einer Gasturbine

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302589B2 (ja) * 1997-02-06 2002-07-15 株式会社日立製作所 セラミック被覆ガスタービン動翼
TW587967B (en) 2000-04-14 2004-05-21 Emitec Emissionstechnologie Housing with passivation layer and method for the production of a catalyst support structure with such a housing
US6279811B1 (en) 2000-05-12 2001-08-28 Mcgraw-Edison Company Solder application technique
DE10057187B4 (de) * 2000-11-17 2011-12-08 Alstom Technology Ltd. Verfahren für die Herstellung von Verbundaufbauten zwischen metallischen und nichtmetallischen Materialien
DE10117128A1 (de) * 2001-04-06 2002-10-10 Alstom Switzerland Ltd Verfahren zur Herstellung von Verbundaufbauten zwischen metallischen und nichtmetallischen Materialien
DE10117127B4 (de) * 2001-04-06 2009-12-31 Alstom Technology Ltd. Verbundaufbau zwischen metallischen und nichtmetallischen Materialien
DE10121019A1 (de) * 2001-04-28 2002-10-31 Alstom Switzerland Ltd Gasturbinendichtung
FR2827308B1 (fr) * 2001-07-12 2004-05-14 Snecma Moteurs Procede de reparation globale d'une piece revetue d'une barriere thermique
EP1275748A3 (de) 2001-07-13 2004-01-07 ALSTOM (Switzerland) Ltd Hochtemperaturbeständiger Schutzüberzug mit eingebetteten lokalen Erhebungen sowie Verfahren zur Herstellung des Schutzüberzuges
EP1284337B1 (de) 2001-08-14 2005-04-06 ALSTOM Technology Ltd Verfahren zur Bearbeitung einer beschichteten Gasturbinenschaufel
EP1327702A1 (de) * 2002-01-10 2003-07-16 ALSTOM (Switzerland) Ltd MCrAlY-Haftschicht und Verfahren zur Herstellung einer MCrAlY-Haftschichtbeschichtung
US6679680B2 (en) * 2002-03-25 2004-01-20 General Electric Company Built-up gas turbine component and its fabrication
US7066235B2 (en) * 2002-05-07 2006-06-27 Nanometal, Llc Method for manufacturing clad components
US6759151B1 (en) 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
US6733908B1 (en) 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
EP1411210A1 (de) * 2002-10-15 2004-04-21 ALSTOM Technology Ltd Verfahren zur Abscheidung einer ermüdungs- und oxydationsbeständigen MCrAlY-Beschichtung
US7338699B2 (en) 2002-10-31 2008-03-04 Tosoh Corporation Island projection-modified part, method for producing the same, and apparatus comprising the same
EP1422054A1 (de) * 2002-11-21 2004-05-26 Siemens Aktiengesellschaft Schichtsystem für eine Verwenbdung in Gasturbinen
EP1437426A1 (de) * 2003-01-10 2004-07-14 Siemens Aktiengesellschaft Verfahren zum Herstellen von einkristallinen Strukturen
DE10357180A1 (de) * 2003-12-08 2005-06-30 Alstom Technology Ltd Verbundaufbau zwischen metallischen und nichtmetallischen Materialien
US20050238894A1 (en) * 2004-04-22 2005-10-27 Gorman Mark D Mixed metal oxide ceramic compositions for reduced conductivity thermal barrier coatings
EP1645653A1 (de) * 2004-10-07 2006-04-12 Siemens Aktiengesellschaft Schichtsystem
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
US20060222776A1 (en) * 2005-03-29 2006-10-05 Honeywell International, Inc. Environment-resistant platinum aluminide coatings, and methods of applying the same onto turbine components
DE102005050873B4 (de) * 2005-10-21 2020-08-06 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil
US20100047526A1 (en) * 2008-08-19 2010-02-25 Merrill Gary B Subsurface inclusions of spheroids and methodology for strengthening a surface bond in a hybrid ceramic matrix composite structure
US20100047512A1 (en) * 2008-08-19 2010-02-25 Morrison Jay A Methodology and tooling arrangements for strengthening a surface bond in a hybrid ceramic matrix composite structure
US7704596B2 (en) 2008-09-23 2010-04-27 Siemens Energy, Inc. Subsurface inclusion of fugitive objects and methodology for strengthening a surface bond in a hybrid ceramic matrix composite structure
US8006740B2 (en) * 2008-10-08 2011-08-30 Synergen, Inc High performance brake rotor
US8360756B2 (en) * 2008-10-31 2013-01-29 Michael Brent Ford Valve rod guide with cyclonic debris removal
JP4981828B2 (ja) * 2009-02-06 2012-07-25 三菱重工業株式会社 Hvof溶射コーティング層の形成方法及びタービン部材保持装置
JP5381384B2 (ja) * 2009-06-19 2014-01-08 日産自動車株式会社 溶射前処理形状及び溶射前処理方法並びに溶射前処理装置
CN102401214B (zh) * 2011-07-15 2013-09-04 浙江天泉表面技术有限公司 一种隔热材料以及生产隔热材料的方法
DE102011085801A1 (de) * 2011-11-04 2013-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bauelement und Turbomaschine mit einem Bauelement
RU2483137C1 (ru) * 2012-03-15 2013-05-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку
US9102015B2 (en) * 2013-03-14 2015-08-11 Siemens Energy, Inc Method and apparatus for fabrication and repair of thermal barriers
RU2567764C2 (ru) * 2013-10-16 2015-11-10 Общество с ограниченной ответственностью научно-производственный центр "Трибоника" Способ высокоэнергетического плазменного напыления теплозащитного покрытия на лопатки турбин газотурбинного двигателя и оборудование для его реализации
US9243511B2 (en) 2014-02-25 2016-01-26 Siemens Aktiengesellschaft Turbine abradable layer with zig zag groove pattern
US9151175B2 (en) 2014-02-25 2015-10-06 Siemens Aktiengesellschaft Turbine abradable layer with progressive wear zone multi level ridge arrays
EP3111055A2 (de) 2014-02-25 2017-01-04 Siemens Aktiengesellschaft Wärmedämmschicht für turbinenkomponente mit tiefenvariierenden materialeigenschaften
WO2016133987A2 (en) 2015-02-18 2016-08-25 Siemens Aktiengesellschaft Forming cooling passages in combustion turbine superalloy castings
US8939706B1 (en) 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
CN104611693B (zh) * 2015-01-23 2017-08-01 华中科技大学 一种纳米颗粒增强的热障涂层的制备方法
US10190435B2 (en) 2015-02-18 2019-01-29 Siemens Aktiengesellschaft Turbine shroud with abradable layer having ridges with holes
CN104959617A (zh) * 2015-07-14 2015-10-07 上海胜桀精密机械科技有限公司 一种粉末冶金制备方法
RU2634864C1 (ru) * 2016-07-18 2017-11-07 Общество С Ограниченной Ответственностью "Технологические Системы Защитных Покрытий" (Ооо "Тсзп") Порошковый материал для газотермического напыления покрытий
CN107467110B (zh) * 2016-11-10 2023-06-13 徐巍 饸饹面机
US10718350B2 (en) * 2016-11-24 2020-07-21 Pratt & Whitney Canada Corp. Fan blade with galvanic separator
RU2665647C2 (ru) * 2017-01-30 2018-09-03 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ плазменного напыления износостойких покрытий толщиной более 2мм
CN112342367B (zh) * 2020-10-15 2022-04-01 西安热工研究院有限公司 一种复合强化型盾构机刀圈及工艺方法
RU2763953C1 (ru) * 2021-03-11 2022-01-11 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Комбинированное защитное покрытие

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB971981A (en) * 1959-04-08 1964-10-07 Dehavilland Aircraft Improvements relating to protective flame sprayed coatings
FR1379044A (fr) * 1963-10-09 1964-11-20 Desmarquest & Cie L Procédé de revêtement par projection à haute température d'oxydes réfractairessur la surface d'objets en matières organiques combustibles
DE2022803A1 (de) * 1969-05-14 1970-11-19 Castolin Sa Verfahren zur Haftgrundvorbereitung
DE2162699A1 (de) * 1971-12-17 1973-06-28 Daimler Benz Ag Verfahren zur erhoehung der haftfestigkeit von durch thermisches spritzen aufgebrachten schichten
US4095005A (en) * 1975-08-18 1978-06-13 Nissan Motor Company, Ltd. Method of producing low wear coating reinforced with brazing solder for use as rubbing seal
WO1984001727A1 (en) * 1982-10-27 1984-05-10 Sermatech Int Inc Coated part, coating therefor and method of forming same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2248940A (en) * 1939-07-03 1941-07-15 Hans S Berg Bearing packer
DE1236345B (de) * 1960-04-27 1967-03-09 Bendix Corp Gleitkufe fuer Flugzeuge mit verschleissfester Oberflaeche
US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
SE7610298L (sv) * 1975-09-19 1977-03-20 Alloy Surfaces Co Inc Med ett skyddande metallskikt belagt alster av korroderbar metall samt forfarande for framstellning av detsamma
DE2910962C2 (de) * 1979-03-21 1981-07-02 Josef 4250 Bottrop Adam Verfahren zum Aufbringen einer matrixbildenden metallischen Schicht mit darin eingebettetem verschleißfestem Material auf einen Träger
US4273824A (en) * 1979-05-11 1981-06-16 United Technologies Corporation Ceramic faced structures and methods for manufacture thereof
US5180285A (en) * 1991-01-07 1993-01-19 Westinghouse Electric Corp. Corrosion resistant magnesium titanate coatings for gas turbines
FR2691658B1 (fr) * 1992-05-27 1994-07-22 Snecma Piece en superalliage comportant un apport et procede de realisation de l'apport.
DE4226272C1 (de) * 1992-08-08 1994-02-10 Mtu Muenchen Gmbh Verfahren zur Behandlung von MCrAlZ-Schichten und mit dem Verfahren hergestellte Bauteile
DE4417384C1 (de) * 1994-05-18 1995-01-12 Hans Leistner Gmbh Suedd Metal Beschichtung für Flugkörper, insbesondere für die Vorderkante des Höhenleitwerkes von Flugzeugen und Verfahren zum Aufbringen der Beschichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB971981A (en) * 1959-04-08 1964-10-07 Dehavilland Aircraft Improvements relating to protective flame sprayed coatings
FR1379044A (fr) * 1963-10-09 1964-11-20 Desmarquest & Cie L Procédé de revêtement par projection à haute température d'oxydes réfractairessur la surface d'objets en matières organiques combustibles
DE2022803A1 (de) * 1969-05-14 1970-11-19 Castolin Sa Verfahren zur Haftgrundvorbereitung
DE2162699A1 (de) * 1971-12-17 1973-06-28 Daimler Benz Ag Verfahren zur erhoehung der haftfestigkeit von durch thermisches spritzen aufgebrachten schichten
US4095005A (en) * 1975-08-18 1978-06-13 Nissan Motor Company, Ltd. Method of producing low wear coating reinforced with brazing solder for use as rubbing seal
WO1984001727A1 (en) * 1982-10-27 1984-05-10 Sermatech Int Inc Coated part, coating therefor and method of forming same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. HEINE: "Thermisch gespritzte Schichten", METALL, vol. 49, no. 1, 1995, pages 51 - 57
N. MESRATI: "role du zinc et de l'argent sur l'adherence de zircone projetee sur un alliage aluminium-silicium 12%.", REVUE DE METALLURGIE, vol. 90, no. 12, December 1993 (1993-12-01), PARIS,FR, pages 1673 - 1680, XP000425777 *
W.J. BRINDLEY, R.A. MILLER: "TBCs for better engine efficiency", NASA LEWIS RESEARCH CENTER CLEVELAND, ADVANCED MATERIALS & PROGRESS, vol. 8, 1989, pages 29 - 33

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491658A1 (de) * 2003-06-26 2004-12-29 ALSTOM Technology Ltd Verfahren für das Auftragen eines mehrschichtigen Systems
EP1491657A1 (de) * 2003-06-26 2004-12-29 ALSTOM Technology Ltd Verfahren für das Auftragen eines mehrschichtigen Systems
DE10332938B4 (de) * 2003-07-19 2016-12-29 General Electric Technology Gmbh Thermisch belastetes Bauteil einer Gasturbine
EP1867749A1 (de) * 2006-06-12 2007-12-19 Siemens Aktiengesellschaft Verfahren zum Aufbringen von Material auf ein Bauteil
WO2007144217A1 (de) * 2006-06-12 2007-12-21 Siemens Aktiengesellschaft Verfahren zum aufbringen von material auf ein bauteil
EP2034132A3 (de) * 2007-09-06 2011-07-20 United Technologies Corporation Mantelringsegment mit Dichtung und entsprechendes Herstellungsverfahren
US8303247B2 (en) 2007-09-06 2012-11-06 United Technologies Corporation Blade outer air seal
EP2460981A1 (de) * 2010-12-01 2012-06-06 BBAT Berlin Brandenburg Aerospace Technology AG Wärmedämmende Auskleidung für eine Fluggasturbine
CN102127729A (zh) * 2011-02-18 2011-07-20 湖北工业大学 一种金属材料表面热喷涂涂层的钎焊强化方法
CN102127729B (zh) * 2011-02-18 2012-09-05 湖北工业大学 一种金属材料表面热喷涂涂层的钎焊强化方法

Also Published As

Publication number Publication date
CA2188614C (en) 2005-10-04
ATE211185T1 (de) 2002-01-15
CZ346896A3 (en) 1997-08-13
CN1160088A (zh) 1997-09-24
RU2209256C2 (ru) 2003-07-27
PL317298A1 (en) 1997-06-09
US5894053A (en) 1999-04-13
JPH09176818A (ja) 1997-07-08
CN1161489C (zh) 2004-08-11
CZ290920B6 (cs) 2002-11-13
PL181404B1 (pl) 2001-07-31
JP3983323B2 (ja) 2007-09-26
PL182552B1 (pl) 2002-01-31
EP0776985B1 (de) 2001-12-19
DE59608498D1 (de) 2002-01-31
UA42001C2 (uk) 2001-10-15
DE19545025A1 (de) 1997-06-05
CA2188614A1 (en) 1997-06-03

Similar Documents

Publication Publication Date Title
EP0776985B1 (de) Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile
DE60021178T2 (de) Abrasions- und hochtemperaturbeständige, abschleifbare wärmedämmende verbundbeschichtung
DE69925590T2 (de) Mehrschichtige haftbeschichtung für wärmedämmschicht und verfahren dazu
EP0219536B1 (de) Schutzschicht
DE102005050873B4 (de) Verfahren zur Herstellung einer segmentierten Beschichtung und nach dem Verfahren hergestelltes Bauteil
DE60010271T2 (de) Verbundbeschichtung für turbinenkomponenten und verfahren zur herstellung
DE10121019A1 (de) Gasturbinendichtung
DE102005033176A1 (de) Abschleifbare Beschichtungen für eine 7FA+E-Stufe 1 und Verfahren zum Herstellen der Beschichtungen
DE102006032110A1 (de) Verfahren zum Beschichten eines Aluminium-Silizium-Guss-Gegenstands
DE19935164C2 (de) Verfahren zur gleichzeitigen Reinigung und Flußmittelbehandlung von Aluminium-Motorblock-Zylinderbohrungsoberflächen zur Befestigung von thermisch gespritzten Überzügen
EP2100864A1 (de) Verfahren zur Herstellung von Reibflächen oder Reibschichten einer Carbon-Keramik-Bremsscheibe sowie eine mit derartigen Reibflächen oder Reibschichten ausgestatteten Carbon-Keramik-Bremsscheibe
DE202006009145U1 (de) Verbindung von Bauteilen
DE4220063C1 (de) Verfahren zur Herstellung einer Schutzschicht auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden
EP0911423B1 (de) Verfahren zum Verbinden von Werkstücken
DE1646667C3 (de) Verfahren zum Aufspritzen einer Keramik- oder Oxidschicht auf einen Grundkörper
DE2166949C3 (de) Reibklotz für eine elektromagnetisch betätigte Bremse oder Kupplung
DE19743579C2 (de) Wärmedämmschicht und Verfahren zu ihrer Herstellung
DE2655460A1 (de) Verfahren zur herstellung eines permeablen mikroporoesen keramikelements
WO1982001898A1 (en) Method for coating a metal with a protection layer resistant to hot gas corrosion
DE19733506B4 (de) Verbundwerkstoff für thermisches Spritzen und daraus gebildete Beschichtung
DD224057A1 (de) Beschichtungspulver auf der basis von titancarbid
DE3427456A1 (de) Keramische schutzschicht
DE102018215389A1 (de) Verfahren für ein Beschichten eines Bauteils und beschichtetes Bauteil
WO2015031921A1 (de) Verfahren zur oberflächenbehandlung mittels kaltgasspritzen
EP1063389A2 (de) Turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19971106

17Q First examination report despatched

Effective date: 19990201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SCHWEIZ) AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 211185

Country of ref document: AT

Date of ref document: 20020115

Kind code of ref document: T

BECA Be: change of holder's address

Free format text: 20011219 *ALSTOM (SCHWEIZ) A.G.:BROWN BOVERI STRASSE 7, CH-5401 BADEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59608498

Country of ref document: DE

Date of ref document: 20020131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: ALSTOM (SCHWEIZ) AG,HASELSTRASSE 16,5400 BADEN (CH) TRANSFER- ALSTOM (SCHWEIZ) AG,BROWN BOVERI STRASSE 7,5401 BADEN (CH)

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020311

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

ET Fr: translation filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALSTOM (SWITZERLAND) LTD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091106

Year of fee payment: 14

Ref country code: DE

Payment date: 20091130

Year of fee payment: 14

Ref country code: CH

Payment date: 20091026

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20101025

Year of fee payment: 15

Ref country code: FR

Payment date: 20101109

Year of fee payment: 15

Ref country code: AT

Payment date: 20101022

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20011219

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20101102

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20011219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101118

Year of fee payment: 15

Ref country code: GB

Payment date: 20101022

Year of fee payment: 15

Ref country code: BE

Payment date: 20101116

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101112

BERE Be: lapsed

Owner name: *ALSTOM (SCHWEIZ) A.G.

Effective date: 20111130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 211185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111111