EP0770098B2 - Dispersants based on succinimide additives derived from heavy polyamine used for lubricating oil - Google Patents
Dispersants based on succinimide additives derived from heavy polyamine used for lubricating oil Download PDFInfo
- Publication number
- EP0770098B2 EP0770098B2 EP95925596A EP95925596A EP0770098B2 EP 0770098 B2 EP0770098 B2 EP 0770098B2 EP 95925596 A EP95925596 A EP 95925596A EP 95925596 A EP95925596 A EP 95925596A EP 0770098 B2 EP0770098 B2 EP 0770098B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- additive
- polyamine
- heavy polyamine
- polymer
- polymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000768 polyamine Polymers 0.000 title claims abstract description 89
- 239000000654 additive Substances 0.000 title claims description 54
- 239000010687 lubricating oil Substances 0.000 title claims description 22
- 239000002270 dispersing agent Substances 0.000 title abstract description 53
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 title abstract description 18
- 229960002317 succinimide Drugs 0.000 title abstract description 8
- 229920000642 polymer Polymers 0.000 claims abstract description 106
- 239000000203 mixture Substances 0.000 claims abstract description 58
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 38
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 38
- 150000003141 primary amines Chemical class 0.000 claims abstract description 25
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 16
- 150000003254 radicals Chemical class 0.000 claims abstract description 10
- 238000005660 chlorination reaction Methods 0.000 claims abstract description 9
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 52
- 239000003921 oil Substances 0.000 claims description 38
- 230000000996 additive effect Effects 0.000 claims description 32
- 150000001412 amines Chemical class 0.000 claims description 30
- 229910052757 nitrogen Inorganic materials 0.000 claims description 30
- 239000005977 Ethylene Substances 0.000 claims description 23
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 22
- 239000004215 Carbon black (E152) Substances 0.000 claims description 21
- 229920001577 copolymer Polymers 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 150000008064 anhydrides Chemical class 0.000 claims description 19
- 239000004711 α-olefin Substances 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 14
- 239000002199 base oil Substances 0.000 claims description 13
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 12
- 229940014800 succinic anhydride Drugs 0.000 claims description 12
- 239000000446 fuel Substances 0.000 claims description 8
- 239000000314 lubricant Substances 0.000 claims description 8
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 8
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 229920001281 polyalkylene Polymers 0.000 claims description 7
- 229920001083 polybutene Polymers 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 3
- 230000002140 halogenating effect Effects 0.000 claims description 3
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 125000000524 functional group Chemical group 0.000 claims description 2
- 239000001384 succinic acid Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 28
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 abstract description 19
- 230000026030 halogenation Effects 0.000 abstract description 2
- 238000005658 halogenation reaction Methods 0.000 abstract description 2
- 235000019198 oils Nutrition 0.000 description 36
- -1 polyethylene Polymers 0.000 description 33
- 239000003054 catalyst Substances 0.000 description 25
- 238000006116 polymerization reaction Methods 0.000 description 22
- 239000010802 sludge Substances 0.000 description 22
- 239000000376 reactant Substances 0.000 description 21
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 239000000178 monomer Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- 239000003446 ligand Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 229920002367 Polyisobutene Polymers 0.000 description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 150000002148 esters Chemical group 0.000 description 9
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 8
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 8
- 229910052736 halogen Inorganic materials 0.000 description 8
- 150000002367 halogens Chemical class 0.000 description 8
- 125000001183 hydrocarbyl group Chemical group 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- 150000003624 transition metals Chemical group 0.000 description 8
- 238000007306 functionalization reaction Methods 0.000 description 7
- 239000012968 metallocene catalyst Substances 0.000 description 7
- 239000004034 viscosity adjusting agent Substances 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229920001519 homopolymer Polymers 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 150000002978 peroxides Chemical class 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 5
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 5
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 229920002873 Polyethylenimine Polymers 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004148 curcumin Substances 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000001212 derivatisation Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000010688 mineral lubricating oil Substances 0.000 description 4
- 150000002763 monocarboxylic acids Chemical class 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000010689 synthetic lubricating oil Substances 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- 229960001124 trientine Drugs 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000001639 boron compounds Chemical class 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- 150000005690 diesters Chemical class 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- AQGNVWRYTKPRMR-UHFFFAOYSA-N n'-[2-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCNCCN AQGNVWRYTKPRMR-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 150000003623 transition metal compounds Chemical class 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical class COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- KSSJBGNOJJETTC-UHFFFAOYSA-N COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC Chemical compound COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC KSSJBGNOJJETTC-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005885 boration reaction Methods 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 235000011087 fumaric acid Nutrition 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical group C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- 239000010913 used oil Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- ZQHJVIHCDHJVII-OWOJBTEDSA-N (e)-2-chlorobut-2-enedioic acid Chemical compound OC(=O)\C=C(\Cl)C(O)=O ZQHJVIHCDHJVII-OWOJBTEDSA-N 0.000 description 1
- XLYMOEINVGRTEX-ONEGZZNKSA-N (e)-4-ethoxy-4-oxobut-2-enoic acid Chemical compound CCOC(=O)\C=C\C(O)=O XLYMOEINVGRTEX-ONEGZZNKSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- QCEOZLISXJGWSW-UHFFFAOYSA-K 1,2,3,4,5-pentamethylcyclopentane;trichlorotitanium Chemical compound [Cl-].[Cl-].[Cl-].CC1=C(C)C(C)([Ti+3])C(C)=C1C QCEOZLISXJGWSW-UHFFFAOYSA-K 0.000 description 1
- FOKGVHRHBBEPPI-UHFFFAOYSA-K 1,2,3,4,5-pentamethylcyclopentane;trichlorozirconium Chemical compound Cl[Zr](Cl)Cl.C[C]1[C](C)[C](C)[C](C)[C]1C FOKGVHRHBBEPPI-UHFFFAOYSA-K 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical group ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- IZYHZMFAUFITLK-UHFFFAOYSA-N 1-ethenyl-2,4-difluorobenzene Chemical compound FC1=CC=C(C=C)C(F)=C1 IZYHZMFAUFITLK-UHFFFAOYSA-N 0.000 description 1
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical group CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- CXJAFLQWMOMYOW-UHFFFAOYSA-N 3-chlorofuran-2,5-dione Chemical compound ClC1=CC(=O)OC1=O CXJAFLQWMOMYOW-UHFFFAOYSA-N 0.000 description 1
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 238000006596 Alder-ene reaction Methods 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- LHHAUUVITWQDQI-UHFFFAOYSA-L CC1=C(C)C(C)(C(C)=C1C)[Zr](Cl)(Cl)C1C=CC=C1 Chemical compound CC1=C(C)C(C)(C(C)=C1C)[Zr](Cl)(Cl)C1C=CC=C1 LHHAUUVITWQDQI-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 229910021552 Vanadium(IV) chloride Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ZKDLNIKECQAYSC-UHFFFAOYSA-L [Cl-].[Cl-].C1=CC(CCCC2)=C2C1[Zr+2]C1C=CC2=C1CCCC2 Chemical compound [Cl-].[Cl-].C1=CC(CCCC2)=C2C1[Zr+2]C1C=CC2=C1CCCC2 ZKDLNIKECQAYSC-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000011938 amidation process Methods 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004856 boroles Chemical class 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000007278 cyanoethylation reaction Methods 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 150000002238 fumaric acids Chemical class 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 125000005027 hydroxyaryl group Chemical group 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000002103 osmometry Methods 0.000 description 1
- 150000002927 oxygen compounds Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PJLHTVIBELQURV-UHFFFAOYSA-N pentadecene Natural products CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical class O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000007342 radical addition reaction Methods 0.000 description 1
- 229920013730 reactive polymer Polymers 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- JTJFQBNJBPPZRI-UHFFFAOYSA-J vanadium tetrachloride Chemical compound Cl[V](Cl)(Cl)Cl JTJFQBNJBPPZRI-UHFFFAOYSA-J 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/56—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/42—Introducing metal atoms or metal-containing groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/301—Organic compounds compounds not mentioned before (complexes) derived from metals
- C10L1/303—Organic compounds compounds not mentioned before (complexes) derived from metals boron compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/54—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2462—Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds
- C10L1/2475—Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon to carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2493—Organic compounds containing sulfur, selenium and/or tellurium compounds of uncertain formula; reactions of organic compounds (hydrocarbons, acids, esters) with sulfur or sulfur containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2666—Organic compounds containing phosphorus macromolecular compounds
- C10L1/2683—Organic compounds containing phosphorus macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon to carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2691—Compounds of uncertain formula; reaction of organic compounds (hydrocarbons acids, esters) with Px Sy, Px Sy Halz or sulfur and phosphorus containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/26—Two-strokes or two-cycle engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
Definitions
- the invention relates to succinimide dispersant additives prepared from functionalised hydrocarbons or polymers reacted (derivatised) with "heavy polyamines".
- "Heavy polyamine” as referred to herein includes mixtures of higher oligomers of polyalkylene, e.g. polyethylene, amines containing, e.g., essentially no tetraethylene pentamine, small amounts of pentaethylenehexamine but primarily oligomers with 7 or more nitrogens, 2 or more primary amines per molecule and more branching than conventional polyamine mixtures.
- Use of heavy polyamine allows for incorporation of greater amounts of nitrogen into the dispersant molecule than prior art amines and thusly, superior sludge dispersancy properties are obtained.
- the succinimide dispersants disclosed herein are useful as additives in fuel and lubricating oils.
- WO95/35328 discloses amidation (derivatisation) of polymers functionalised by the Koch reaction with heavy polyamine.
- WO95/35330 discloses a preferred amidation process for polymers functionalised by the Koch reaction and use of heavy polyamine.
- WO94/20548 discloses imidisation of an alkenyl substituted succinic anhydride with a heavy polyamine, which product is then post-treated with a cyclic carbonate. The above 3 WO-applications were published after the priority date of the present invention.
- Polyalkenyl succinimides are a widely used class of dispersants for lubricant and fuels applications. They are prepared by the reaction of, for example, polyisobutylene with maleic anhydride to form polyisobutenylsuccinic anhydride, and a subsequent condensation reaction with polyethylene amines.
- EP-A 0 475 609 A1 discloses the use of "heavy polyamine” which is disclosed to be a mixture of polyethyleneamines sold by Union Carbide Co. under the designation Polyamine HPA-X®.
- US-A-5230714 discloses the use of "polyamine bottoms” derived from an alkylene polyamine mixture.
- Polyamine bottoms are characterised as having less than 2, usually less than 1% by weight of material boiling below 200°C.
- ethylene polyamine bottoms the bottoms were disclosed to contain less than 2% by weight total diethylene triamine (DETA) or triethylene tetraamine (TETA).
- DETA diethylene triamine
- TETA triethylene tetraamine
- E-100® ethylene polyamine from Dow Chernical Company
- US-A-5164101 discloses the polybutenylsuccinimide of polyamines, wherein the polyamine has a specific formula.
- US-A-5114435 discloses a polyalkylenesuccinimide prepared from a polyalkylenesuccinnic acid or anhydride reacted with a polyalkylene polyamine of a specific formula. Hexaethylene heptamine is disclosed to be a suitable amine.
- US-A-5241003 discloses succinimides derived from amines of a specific formula.
- Various suitable low cost polyethylene polyamine mixtures are disclosed to be available under various trade designations such as "Polyamine H®”, “Polyamine 400®”, Dow Polyamine E-100®” and “Dow S-1107®”.
- US-A-4152499 discloses isobutene polymer reacted with maleic anhydride and this adduct then converted into a lubricating oil additive by reaction with polyamines of a specific formula.
- Diethylenetriamine and triethylenetetramine are disclosed to be suitable amines.
- US-A-5053152 and the divisional thereof, US-A-5160648 disclose condensates produced by the acid catalyzed condensation of an amine reactant with a hydroxy alkyl or hydroxy aryl reactant.
- the amine reactant is disclosed to be a high molecular weight extended polyamine.
- US-A-4713188 discloses that the treating of hydrocarbyl substituted amides with a cyclic carbonate improves its lubricating oil dispersant properties.
- the polyamine employed to prepare the hydrocarbyl substituted amide is preferably a polyamine having from 2 to 12 amine nitrogen atoms and from 20 to 40 carbon atoms.
- tetraethylene pentamine prepared by the polymerisation of aziridine or the reaction of dichloroethylene and ammonia will have both lower and higher amine members, e.g., triethylene tetramine, substituted piperazines and pentaethylene hexamine, but the composition will be largely tetraethylene pentamine and the empirical formula of the total amine composition will closely approximate that of tetraethylene pentamine.
- DE-A-2545958 discloses the reaction product obtained by partially esterifying a copolymer of a 1-olefin, having 8 to 24 carbon atoms per molecule, and an ethylenically unsaturated dicarboxylic anhydride with an aliphatic alcohol containing from 10 to 18 carbon atoms per molecule to produce a mixed mono- and diester product. This product is then reacted with an amine of a general formula. Mixtures of suitable amines that have a composition approximating tetraethylene pentamine are disclosed to be commercially available under the tradename Polyamine H®, Polyamine 400® (PA-400) and Polyamine 500® (PA-500).
- EP-A-0-545653 A1 discloses the reaction product of a predominantly polyisobutene polymer having a specific end group structure with an acidic reactant, prepared using at least a 1:1 molar ratio and superatmospheric pressure.
- the resultant acylating agent is reacted with at least one polyhydric alcohol and/or an amine.
- the amines are preferably alkylene polyamines such as diethylene triamine, triethylene tetramine, tetraethylene pentamine, or pentaethylene hexamine.
- the present invention is an oil soluble imidised additive comprising the reaction product of a functionalised hydrocarbon and a heavy polyamine wherein said heavy polyamine is a mixture of higher oligomers of polyalkylene amines and has an average of at least 7 nitrogens per molecule and an equivalent weight of 120-160 grams per equivalent of primary amine.
- the polyamine comprises a primary amine content of at least 6.3 to 8.5 milliequivalents of primary amine per gram and a total nitrogen content of at least 32 wt.%.
- the present invention is also a process for producing dispersant comprising the steps of a) functionalising by halogenating, ene reacting, or free radical grafting a backbone selected from the group consisting of hydrocarbon, polymer, and polybutene with a carboxylic acid or anhydride agent; and b) then reacting said backbone with a heavy polyamine.
- the present invention relates to succinimide dispersant additives prepared from functionalized hydrocarbons or polymers reacted (e.g. derivatized) with "heavy polyamines".
- "Heavy polyamine” as referred to herein includes a mixture of higher oligomers of polyalkylene, e.g. polyethylene, amines containing, e.g., no tetraethylenepentamine, at most small amounts of pentaethylenehexamine, but primarily oligomers with more than 7 nitrogens and more branching than conventional polyamine mixtures.
- the succinimide dispersants disclosed herein are useful as additives in fuel and lubricating oils.
- hydrocarbons or polymers are functionalized using a variety of means including halogen assisted functionalization (e.g. chlorination), the thermal "ene” reaction, and free radical grafting using a catalyst (e.g. peroxide) and derivatized using a "heavy polyamine".
- halogen assisted functionalization e.g. chlorination
- thermal "ene” reaction e.g. thermal "ene” reaction
- free radical grafting e.g. peroxide
- a catalyst e.g. peroxide
- the heavy polyamine as the term is used herein contains more than seven nitrogens per molecule, but preferably polyamine oligomers containing 7 or more nitrogens per molecule and with 2 or more primary amines per molecule.
- the heavy polyamine comprises more than 28 wt. % (e.g. > 32 wt. %) total nitrogen and an equivalent weight of primary amine groups of 120-160 grams per equivalent.
- Commercial dispersants are based on the reaction of carboxylic acid moieties with a polyamine such as tetraethylenepentamine (TEPA) with five nitrogens per molecule.
- TEPA tetraethylenepentamine
- Commercial TEPA is a distillation cut and contains oligomers with three and four nitrogens as well.
- PAM polyamines
- TEPA and pentaethylene hexamine are the major part of the polyamine, usually less than about 80%.
- Typical PAM is commercially available from suppliers such as the Dow Chemical Company under the trade name E-100® or from the Union Carbide Company as HPA-X®. This mixture typically consists of less than 1.0 wt. % low molecular weight amine, 10-15 wt. % TEPA, 40-50 wt.% PEHA and the balance hexaethyleneheptamine (HEHA) and higher oligomers.
- PAM has 8.7 - 8.9 milliequivalents of primary amine per gram (an equivalent weight of 115 to 112 grams per equivalent of primary amine) and a total nitrogen content of 33-34 wt. %.
- HA-2 is prepared by distilling out the lower boiling polyethylene amine oligomers (light ends) including TEPA.
- the TEPA content is less than 1 wt. %. Only a small amount of PEHA, less than 25 wt. %, usually 5 - 15 wt. %, remains in the mixture.
- the balance is higher nitrogen content oligomers usually with a greater degree of branching.
- the heavy polyamine preferably comprises no oxygen.
- Typical analysis of HA-2 gives primary nitrogen values of 7.8 milliequivalents (meq) (e.g. 7.7 - 7.8) of primary amine per gram of polyamine. This calculates to be an equivalent weight (EW) of 128 grams per equivalent (g/eq). The total nitrogen content is 32.0 - 33.0 wt. %.
- Commercial PAM analyzes for 8.7 - 8.9 meq of primary amine per gram of PAM and a nitrogen content of 33 to 34 wt. %.
- the present invention relates to a derivatization (imidization), using a heavy polyamine, of functionalized hydrocarbons or polymers wherein the polymer backbones have a number average molecular weight (Mn) of greater than 300.
- the preferred polymers for preparing the dispersant comprise ethylene/alpha-olefin copolymer having a number average molecular weight greater than 300. Preferably 800 to 7500. Most preferably 1000 to 3000.
- the preferred number average molecular weight depends on the properties of the particular backbone. For example, for ethylene alpha olefin copolymers the preferred molecular weight is 1500 to 5000 (e.g. 2000 - 4000). For polybutenes the preferred molecular weight is 900 to 2000.
- a typical example of functionalized polymer is polyisobutenyl succinic anhydride (PIBSA) which is a reaction product of polyisobutene and maleic anhydride.
- PIBSA polyisobutenyl succinic anhydride
- This reaction can occur via halogen-assisted functionalization (e.g. chlorination), the thermal "ene” reaction, or free radical addition using a catalyst (e.g. a peroxide).
- a catalyst e.g. a peroxide
- Dispersants made from backbones of 450 Mn are useful in 2-cycle engine oils.
- the present invention includes dispersants useful for this application.
- hydrocarbon includes polymers.
- the preferred hydrocarbons or polymers employed in this invention include homopolymers, interpolymers or lower molecular weight hydrocarbons.
- the polymers employed in this invention comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R 1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still 1 to 2 carbon atoms.
- useful alpha-olefin monomers and comonomers include, for example, propylene, butene-1, hexene-1, octene-1, 4-methylpentene-1, decene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonadecene-1, and mixtures thereof (e.g., mixtures of propylene and butene-1).
- Exemplary of such polymers are propylene homopolymers, butene-1 homopolymers, ethylene-propylene copolymers and ethylene-butene-1 copolymers, wherein the polymer contains at least some terminal and/or internal unsaturation.
- Preferred polymers are unsaturated copolymers of ethylene and propylene and ethylene and butene-1.
- the interpolymers of this invention may contain a minor amount, e.g. 0.5 to 5 mole % of a C 4 to C 18 non-conjugated diolefin comonomer.
- the polymers of this invention comprise only alpha-olefin homopolymers, interpolymers of alpha-olefin comonomers and interpolymers of ethylene and alpha-olefin comonomers.
- the molar ethylene content of the polymers employed in this invention is preferably in the range of 20 to 80 %, and more preferably 30 to 70 %. when propylene and/or butene-1 are employed as comonomer(s) with ethylene, the ethylene content of such copolymers is most preferably between 45 and 65 %, although higher or lower ethylene contents may be present.
- the polymers employed in this invention generally possess a Mn of 300 to 10,000, preferably 800 to 7,500; more preferably 1,000 to 3,000 (e.g., 1,500 to 2,500).
- the Mn for such polymers can be determined by several known techniques such as size exclusion chromatography (also known as gel permeation chromatography (GPC)) which also provides molecular weight distribution information.
- Suitable polymers will typically have a narrow molecular weight distribution (MWD) also referred to as polydispersity, as determined by the ratio of weight average molecular weight (Mw) to (Mn). Polymers having a Mw/Mn of less than 5, preferably less than 4, are most desirable. Suitable polymers have a polydispersity of for example, 1 to 5. Consequently, such polymers generally possess an intrinsic viscosity (as measured in tetralin at 135°C) of 0.025 to 0.9 dl/g, preferably 0.05 to 0.5 dl/g, most preferably 0.075 to 0.4 dl/g.
- the polymers employed in this invention preferably exhibit a degree of crystallinity such that, when grafted, they are amorphous.
- Low molecular weight polymers are polymers having Mn less than 20,000, preferably 500 to 20,000 (e.g. 1,000 to 20,000), more preferably 1,500 to 10,000 (e.g. 2,000 to 8,000) and most preferably from 1,500 to 5,000.
- the number average molecular weights are measured by vapor phase osmometry or GPC as discussed above. Low molecular weight polymers are useful in forming dispersants for lubricant additives.
- High molecular weight polymers Mn's ranging from 20,000 to 200,000, preferably 25,000 to 100,000; and more preferably, from 25,000 to 80,000 are useful for viscosity modifiers for lubricating oil compositions.
- terminal and internal olefin monomers which can be used to prepare the polymers of the present invention according to conventional, well-known polymerization techniques include ethylene; propylene; butene-1; butene-2; isobutene and pentene-1; propylene-tetramer; diisobutylene; isobutylene trimer; butadiene-1,2; butadiene-1,3; pentadiene-1,2 and pentadiene-1,3.
- Useful polymers include alpha-olefin homopolymers and interpolymers, and ethylene alpha-olefin copolymers and terpolymers.
- Specific examples of polyalkenes include polypropylenes, polybutenes, ethylene-propylene copolymers, ethylene-butene copolymers, propylene-butene copolymers, styrene-isobutene copolymers, isobutene-butadiene-1,3 copolymers, and terpolymers of isobutene, styrene and piperylene and copolymers of 80% of ethylene and 20% of propylene.
- a useful source of polymers are the poly(isobutene)s obtained by polymerization of C4 refinery stream having a butene content of 35 to 75% by wt., and an isobutene content of 30 to 60% by wt., in the presence of a Lewis acid catalyst such as aluminum trichloride or boron trifluoride.
- a Lewis acid catalyst such as aluminum trichloride or boron trifluoride.
- a preferred source of monomer for making poly-n-butenes is petroleum feedstreams such as Raffinate II. These feedstocks are disclosed in the art such as in US-A-4952739 .
- the polymers employed in this invention which preferably are further characterized in that up to 95 % and more of the polymer chains possess terminal ethenylidene-type unsaturation, may be prepared by polymerizing alpha-olefin monomer, or mixtures of alpha-olefin monomers, or mixtures comprising ethylene and at least one C 3 to C 28 alpha-olefin monomer, in the presence of a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound.
- a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound.
- the chain length of the R 1 alkyl group will vary depending on the comonomer(s) selected for use in the polymerization.
- At least 30 % of the polymer chains possess terminal ethenylidene unsaturation.
- the percentage of polymer chains exhibiting terminal ethenylidene unsaturation may be determined by FTIR spectroscopic analysis, titration, or C 13 NMR.
- the preferred terminally unsaturated interpolymer to be used in this invention may be prepared by known metallocene chemistry.
- Preferred polymers to be used in this invention also may be prepared as described in WO94/13714 and WO94/13715 , and WO94/19436 .
- the preferred interpolymers can be prepared by polymerizing monomer mixtures comprising ethylene in combination with other monomers such as alphaolefins having from 3 to 28 carbon atoms (and preferably from 3 to 4 carbon atoms, i.e., propylene, butene-1, and mixtures thereof) in the presence of a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound.
- the comonomer content can be controlled through the selection of the metallocene catalyst component and by controlling the partial pressure of the various monomers.
- the polymers used in this invention are substantially free of ethylene homopolymer.
- the catalyst is preferably a bulky ligand transition metal compound.
- the bulky ligand may contain a multiplicity of bonded atoms, preferably carbon atoms, forming a group which may be cyclic with one or more optional heteroatoms.
- the bulky ligand may be a cyclopentadienyl derivative which can be mono- or polynuclear.
- One or more bulky ligands may be bonded to the transition metal ("Group” refers to an identified group of the Periodic Table of Elements, comprehensively presented in "Advanced Inorganic Chemistry", F.A. Cotton, G. Wilkinson, Fifth Edition, 1988, John Wiley & Sons).
- ligands may be bonded to the transition metal, preferably detachable by a cocatalyst such as a hydrocarbyl or halogen leaving group.
- the catalyst is derivable from a compound of the formula [L] m M[X] n wherein L is the bulky ligand, X is the leaving group, M is the transition metal and m and n are such that the total ligand valency corresponds to the transition metal valency.
- the catalyst is four coordinate such that the compound is ionizable to a 1 + valency state.
- the ligands L and X may be bridged to each other and if two ligands L and/or X are present, they may be bridged.
- the metallocenes may be full-sandwich compounds having two ligands L which are cyclopentadienyl groups or half-sandwich compounds having one ligand L only which is a cyclopentadienyl group.
- the term "metallocene” is defined to contain one or more cyclopentadienyl moiety in combination with a transition metal of the Periodic Table of Elements.
- Various forms of the catalyst system of the metallocene type may be used in the polymerization process of this invention.
- Exemplary of the development of metallocene catalysts in the art for the polymerization of ethylene is the disclosure of US-A-4871705 to Hoel, US-A-4937299 to Ewen et al., and EP-A-0 129 368 published July 26, 1989 , and US-A-5017714 and 5120867 to Welborn, Jr.
- These publications teach the structure of the metallocene catalysts and include alumoxane as the cocatalyst. There are a variety of methods for preparing alumoxane, one of which is described in US-A-4665208 .
- the terms "cocatalysts or activators” are used interchangeably and are defined by any compound or component which can activate a bulky ligand transition metal compound.
- the activators generally contain a metal of Group II and III of the Periodic Table of Elements.
- the bulky transition metal compound are metallocenes, which are activated by trialkylaluminum compounds, alumoxanes both linear and cyclic, or ionizing ionic activators or compounds such as tri (n-butyl) ammonium tetra (pentaflurorophenyl) boron, which ionize the neutral metallocene compound.
- Such ionizing compounds may contain an active proton, or some other cation associated with but not coordinated, or only loosely coordinated to the remaining ion of the ionizing ionic compound.
- Such compounds are described in EP-A-0520732 , EP-A-0277003 and EP-A-0277004 published August 3, 1988 , and US-A-5153157 ; 5198401 ; and 5241025 .
- the metallocene catalyst component can be a monocyclopentadienyl heteroatom containing compound. This heteroatom is activated by either an alumoxane or an ionic activator to form an active polymerization catalyst system to produce polymers useful in this invention.
- the metallocene catalysts useful in this invention can include non-cyclopentadienyl catalyst components, or ancillary ligands such as boroles or carbollides in combination with a transition metal.
- the catalysts and catalyst systems used may be those described in U.S.-A-5064802 and PCT publications WO 93/08221 and WO 93/08199 published April 29, 1993 . All the catalyst systems ofthe invention may be, optionally, prepolymerized or used in conjunction with an additive or scavenging component to enhance catalytic productivity.
- metallocenes are dialkyl metallocenes such as bis(cyclopentadienyl)titanium di-methyl, bis(cyclopentadienyl)hafnium dimethyl and bis(cyclopentadienyl)zirconium di-neopentyl.
- dialkyl metallocenes such as bis(cyclopentadienyl)titanium di-methyl, bis(cyclopentadienyl)hafnium dimethyl and bis(cyclopentadienyl)zirconium di-neopentyl.
- metallocenes which can be usefully employed are monocyclopentadienyl titanocenes such as, pentamethyl-cyclopentadienyl titanium trichloride, and substituted bis(Cp)Ti(IV) compounds such as bis(indenyl) titanium diphenyl.
- zirconocenes which can be usefully employed are, pentamethylcyclopentadienyl zirconium tri-chloride.
- Mixed cyclopentadienyl metallocene compounds such as cyclopentadienyl (pentamethyl cyclopentadienyl)-zirconium dichloride, can be employed.
- Bis(cyclopentadienyl)hafnium dichloride is illustrative of other metallocenes.
- Some preferred metallocenes are bis(cyclopentadienyl)zirconium dimethyl; and the racemic and/or meso isomer of 1, 2-ethylene-bridged bis-(4, 5, 6, 7 -tetra-hydroindenyl) zirconium dichloride.
- the alumoxane compounds useful in the polymerization process may be cyclic or linear. Cyclic alumoxanes may be represented by the general formula (R-Al-O) n while linear alumoxanes may be represented by the general formula R(R-Al-O) n 'AlR 2 .
- R is a C 1 -C 5 alkyl group such as, for example, methyl, ethyl, propyl, butyl and pentyl
- n is an integer of from 3 to 20
- n' is an integer from 1 to 20.
- R is methyl and n and n' are 4-18.
- alumoxanes from, for example, aluminum trimethyl and water
- they are prepared by contacting water with a solution of aluminum trialkyl, such as aluminum trimethyl in a suitable organic solvent such as toluene or an aliphatic hydrocarbon.
- the mole ratio of aluminum in the alumoxane to total metal in the metallocenes which can be usefully employed can be in the range of 0.5:1 to 1000:1, and desirably 1:1 to 100:1.
- the mole ratio will be in the range of 50:1 to about 5:1 and most preferably 20:1 to 5:1.
- the solvents used in the preparation of the catalyst system are inert hydrocarbons, in particular a hydrocarbon that is inert with respect to the catalyst system. Such solvents include isobutane, butane and pentane.
- Polymerization is generally conducted at temperatures ranging between 20° and 300°C, preferably between 30° and 200°C. Reaction time is not critical and may vary from several hours or more to several minutes or less, depending upon factors such as reaction temperature and the monomers to be copolymerized. The skilled artisan may readily obtain the optimum reaction time for a given set of reaction parameters by routine experimentation.
- the catalyst systems described herein are suitable for the polymerization of olefins in solution over a wide range of pressures.
- the polymerization will be completed at a pressure of 1,000 to 300,000 kPa (10 to 3,000 bar), and generally at a pressure within the range of 4,000 to 200,000 kPa (40 bar to 2,000 bar), and most preferably, the polymerization will be completed at a pressure within the range from 5,000 to 150,000 kPa (50 bar to 1,500 bar).
- deactivation of the catalyst e.g., by conventional techniques such as contacting the polymerization reaction medium with water or an alcohol, such as methanol, propanol and isopropanol, or cooling or flashing the medium to terminate the polymerization reaction
- the product polymer can be recovered by known processes. Excess reactants may be flashed off.
- the polymerization may be conducted employing liquid monomer, such as liquid propylene or mixtures of liquid monomers (such as mixtures of liquid propylene and 1-butene) as the reaction medium.
- liquid monomer such as liquid propylene or mixtures of liquid monomers (such as mixtures of liquid propylene and 1-butene)
- polymerization may be accomplished in the presence of a hydrocarbon inert to the polymerization such as butane, pentane, isopentane, hexane, isooctane, decane, toluene and xylene.
- a hydrocarbon inert such as butane, pentane, isopentane, hexane, isooctane, decane, toluene and xylene.
- any of the techniques known in the art for control of molecular weight such as the use of hydrogen and/or polymerization temperature control, may be used in the process of this invention.
- the polymerization may be carried out in the presence of hydrogen to lower the polymer molecular weight. Care should be taken, however, to assure that terminal ethenylidene unsaturation is not reduced below the preferred level of at least 30 % of the polymer chains.
- the preferred polymers are reactive polymers possessing ethenylidene-type terminal unsaturation
- the polymerizations will be conducted employing less than 5 wppm, and more preferably less than 1 wppm, of added H 2 gas, based on the moles of the ethylene monomer charged to the polymerization zone.
- reaction diluent if any
- ethylene and alpha-olefin comonomer(s) are charged at appropriate ratios to a suitable reactor.
- the polymerization may be conducted in a continuous manner by simultaneously feeding the reaction diluent (if employed), monomers, catalyst and cocatalyst to a reactor and withdrawing solvent, unreacted monomer and polymer from the reactor so as to allow a residence time of ingredients long enough for forming polymer of the desired molecular weight and separating the polymer from the reaction mixture.
- Polyisobutylene is a most preferred backbone of the present invention because it is readily available by cationic polymerization from butene streams (e.g., using AlCl 3 catalysts). Such polyisobutylenes generally contain residual unsaturation in amounts of one ethylenic double bond per polymer chain, positioned along the chain.
- the polyisobutylene polymers employed are generally based on a hydrocarbon chain of from 900 to 2500.
- Polyisobutylene having an Mn of less than 300 tends to give poor performance when employed as dispersant because the molecular weight is insufficient to keep the dispersant molecule fully solubilized in lubricating oils.
- Methods for making polyisobutylene are known.
- Polyisobutylene can be functionalized by halogenation (e.g. chlorination), the thermal "ene” reaction, or by free radical grafting using a catalyst (e.g. peroxide) as described below.
- ethylene-alpha-olefin interpolymers having a number average molecular weight above 10,000 e.g. 20,000 to 200,000
- ethylene-propylene copolymers and terpolymers containing non-conjugated dienes are suitable polymers for the preparation of dispersants or multifunctional viscosity modifiers of the present invention.
- ethylene-alpha-olefin interpolymers of the above molecular weights could be produced using Ziegler-Natta catalysts only in combination with H 2 as molecular weight control in order to terminate the growing copolymer chains within this molecular weight range.
- the polymer or hydrocarbon may be functionalized, for example, with carboxylic acid producing moieties (preferably acid or anhydride) by reacting the polymer or hydrocarbon under conditions that result in the addition of functional moieties or agents, i.e., acid, anhydride, and ester moieties, onto the polymer or hydrocarbon chains primarily at sites of carbon-to-carbon unsaturation (also referred to as ethylenic or olefinic unsaturation) using the halogen assisted functionalization (e.g. chlorination) process or the thermal "ene” reaction.
- a catalyst e.g. peroxide
- the functionalization is randomly effected along the polymer chain.
- this selective functionalization can be accomplished by halogenating, e.g., chlorinating or brominating the unsaturated ⁇ -olefin polymer to 1 to 8 wt. %, preferably 3 to 7 wt. % chlorine, or bromine, based on the weight of polymer or hydrocarbon, by passing the chlorine or bromine through the polymer at a temperature of 60 to 250°C, preferably 110 to 160°C, e.g., 120 to 140°C, for 0.5 to 10, preferably 1 to 7 hours.
- halogenating e.g., chlorinating or brominating the unsaturated ⁇ -olefin polymer to 1 to 8 wt. %, preferably 3 to 7 wt. % chlorine, or bromine, based on the weight of polymer or hydrocarbon, by passing the chlorine or bromine through the polymer at a temperature of 60 to 250°C, preferably 110 to 160°C, e.g., 120 to 140°C, for 0.5 to 10, preferably
- the halogenated polymer or hydrocarbon (hereinafter backbones) is then reacted with sufficient monounsaturated reactant capable of adding functional moieties to the backbone, e.g., monounsaturated carboxylic reactant, at 100 to 250°C, usually 180°C to 235°C, for 0.5 to 10, e.g., 3 to 8 hours, such that the product obtained will contain the desired number of moles of the monounsaturated carboxylic reactant per mole of the halogenated backbones.
- the backbone and the monounsaturated carboxylic reactant are mixed and heated while adding chlorine to the hot material.
- the hydrocarbon or polymer backbone can be functionalized, e.g., with carboxylic acid producing moieties (preferably acid or anhydride moieties) selectively at sites of carbon-to-carbon unsaturation on the polymer or hydrocarbon chains, or randomly along chains using the three processes mentioned above or combinations thereof in any sequence.
- the functionalized hydrocarbon can have an average of up to two functional groups.
- Mixtures of monounsaturated carboxylic materials (i) - (iv) also may be used.
- the monounsaturation of the monounsaturated carboxylic reactant becomes saturated.
- maleic anhydride becomes backbone-substituted succinic anhydride
- acrylic acid becomes backbone-substituted propionic acid.
- Such monounsaturated carboxylic reactants are fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., C 1 to C 4 alkyl) acid esters of the foregoing, e.g., methyl maleate, ethyl fumarate, and methyl fumarate.
- the monounsaturated carboxylic reactant, preferably maleic anhydride typically will be used in an amount ranging from 0.01 to 20 wt. %, preferably 0.5 to 10 wt. %, based on the weight of the polymer or hydrocarbon.
- chlorination normally helps increase the reactivity of starting olefin polymers with monounsaturated functionalizing reactant, it is not necessary with the polymers or hydrocarbons contemplated for use in the present invention, particularly those preferred polymers or hydrocarbons which possess a high terminal unsaturated bond content and reactivity.
- the backbone and the monounsaturated functionality reactant e.g., carboxylic reactant, are contacted at elevated temperature to cause an initial thermal "ene" reaction to take place. Ene reactions are known.
- High molecular weight ethylene/propylene copolymer and ethylene/propylene/diene terpolymers having number average molecular weights of from 20,000 to 200,000, are generally produced employing Ziegler catalysts, generally VCl 4 or VOCl 3 with a halide source, such as organoaluminum halides and/or hydrogen halides.
- a halide source such as organoaluminum halides and/or hydrogen halides.
- Such high molecular weight EP and EPDM polymers find use as viscosity modifiers.
- the polymer in solution or in solid form, may be grafted with the monounsaturated carboxylic reactant, as described above, in the presence of a free-radical initiator.
- the grafting takes place at an elevated temperature in the range of 100 to 260°C, preferably 120 to 240°C.
- free-radical initiated grafting would be accomplished in a mineral lubricating oil solution containing, e.g., 1 to 50 wt.%, preferably 5 to 30 wt. % polymer based on the initial total oil solution.
- the free-radical initiators which may be used are peroxides, hydroperoxides, and azo compounds, preferably those which have a boiling point greater than 100°C and decompose thermally within the grafting temperature range to provide free-radicals.
- Representative of these free-radical initiators are azobutyronitrile, 2,5-dimethylhex-3-ene-2,5-bis-tertiary-butyl peroxide and dicumene peroxide.
- the initiator when used, typically is used in an amount of between 0.005% and 1% by weight based on the weight of the reaction mixture solution.
- the aforesaid monounsaturated carboxylic reactant material and free-radical initiator are used in a weight ratio range of from 1.0:1 to 30:1. preferably 3:1 to 6:1.
- the grafting is preferably carried out in an inert atmosphere, such as under nitrogen blanketing.
- the resulting grafted polymer is characterized by having carboxylic acid (or ester or anhydride) moieties randomly attached along the polymer chains: it being understood, of course, that some of the polymer chains remain ungrafted.
- the free radical grafting described above can be used for the other polymers and hydrocarbons of the present invention.
- This functionalized high molecular weight copolymer then may be derivatized using a heavy polyamine.
- the dispersants of the present invention are based on, for example, the polyolefins as disclosed in WO94/19436 . These polymers can be functionalized using halogen assisted functionalization (e.g. chlorination), the thermal "ene” reaction, or via free radical grafting using a catalyst (e.g. peroxide). It has been found that the amine segment of the dispersant is very critical both to product performance of the dispersants and that dispersants made from heavy polyamine are superior to dispersants made from conventional polyamine mixtures (PAM).
- PAM polyamine mixtures
- the polar segment of the molecule becomes the limiting factor in dispersancy performance with polyamine systems of the prior art such as triethylenetetramine and tetraethylenepentamine.
- polyamine systems of the prior art such as triethylenetetramine and tetraethylenepentamine.
- Increasing the stoichiometric ratio of amine to polymer raises the nitrogen content, but results in significant levels of free unreacted polyamine which is detrimental to diesel engine and elastomer seal performance.
- amines higher than heavy polyamines of the present invention is detrimental because higher amines are insoluble or only partially soluble in oils and result in a hazy product in a lubricating oil composition.
- Amines higher than heavy polyamine comprise less than 6.0 milliequivalents of primary amine per gram (alternatively an equivalent weight of primary amine greater than 160 grams per equivalent) and greater than 12 nitrogens per molecule.
- Typical disclosures of polyamine reactants for the preparation of lubricant dispersants teach a range of nitrogens per molecule of from 1-12, a variety of spacing groups between the nitrogens, and a range of substitution patterns on the amine groups.
- dispersants derived from the preferred compositions described below exhibit surprisingly enhanced dispersancy relative to the prior art while retaining superior solubility in oil.
- one embodiment of this invention comprises oil-soluble derivatized compositions of C 2 -C 18 ⁇ -olefin polymers, copolymers, homopolymers or hydrocarbons, functionalized with carboxylic acid or anhydride moieties, further reacted with heavy polyalkylene polyamines which contain >28% N, more preferably >30% N, e.g. >32% N, and an equivalent weight of primary amine groups of between 120-160 g/eq, more preferably 120-150 g/eq, e.g. 125-140 g/eq.
- the heavy polyamine preferably comprises no oxygen. Heavy polyamine comprises less than 1 wt.% pentamines and lower polyamines and less than 25 wt.% hexamines.
- Polyamines with these characteristics are commercially available and can be produced by distilling out the tetraethylenepentamine and most of the pentaethylenehexamine fractions from standard polyethyleneamine mixtures. Alternatively, they could be synthesized by cyanoethylation of the primary amine groups of polyethylene or polypropylene pentamines or hexamines followed by hydrogenation.
- the reaction between the functionalised backbone and the heavy polyamine is carried out for a time and under conditions sufficient to form imide groups on the functionalised polymer with the concomitant release of water.
- the progress of this reaction can be followed by infrared analysis.
- the dispersant-forming reaction can be conducted in a polar or non-polar solvent (e.g., xylene, toluene, and benzene), and is preferably conducted in the presence of a mineral or synthetic lubricating oil.
- a polar or non-polar solvent e.g., xylene, toluene, and benzene
- the heavy polyamine is readily reacted with the selected material, e.g., polybutenyl succinic acid or anhydride, by reacting an oil solution containing 5 to 95 wt. % of the polymer substituted mono- or dicarboxylic acid or anhydride material at 100° to 250°C, preferably 125° to 175°C, generally for 1 to 10, e.g., 2 to 6 hrs. until the desired amount of water is removed.
- the heating is preferably carried out to favor formation of imides or mixtures of imides and amides, rather than amides and salts.
- Reaction ratios of polymer functionalized mono- and dicarboxylic acid or anhydride material to equivalents of amine can vary considerably, for example, depending on the reactants and type of bonds formed.
- the polymer comprises a polymer substituted dicarboxylic acid material, containing dicarboxylic acid producing moieties derived from monounsaturated dicarboxylic acids, or anhydride or ester derivatives thereof, generally from 0.1 to 5, preferably from 0.5 to 2, e.g., 0.8 to 1.2 equivalents of dicarboxylic acid moiety content (e.g., grafted maleic anhydride content) is used, per equivalent of primary amine of the heavy polyamine.
- dicarboxylic acid moiety content e.g., grafted maleic anhydride content
- Dispersants maintain oil insolubles, resulting from oil use, in suspension in the fluid thus preventing sludge flocculation and precipitation.
- Suitable dispersants include, for example, dispersants of the ash-producing (also known as detergents) and ashless type, the latter type being preferred.
- the derivatized polymer or hydrocarbon compositions of the present invention can be used as dispersants and multifunctional viscosity index improvers in lubricant and fuel compositions.
- the present invention includes oleaginous compositions comprising the additive.
- the oleaginous composition comprises the additive and a base oil in the form of a lubricating oil or a lubricating oil additive package.
- the derivatized polymers may be post-treated.
- the processes for post-treating the derivatized polymer or hydrocarbon are analogous to the post-treating processes used with respect to conventional dispersants and MFVM's of the prior art. Accordingly, the same reaction conditions and ratio of reactants can be used. Accordingly, derivatized polymer or hydrocarbon can be post-treated with such reagents as urea, thiourea, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds or phosphorus compounds.
- the amine derivatized polymers or hydrocarbons of the present invention as described above can be post-treated, particularly for use as dispersants and viscosity modifiers by contacting said polymers or hydrocarbons with one ore more post-treating reagents such as boron compounds, nitrogen compounds, phosphorus compounds, oxygen compounds, succinic acids and anhydrides (e.g., succinic anhydride, dodecyl succinic anhydride, and C 1 to C 30 hydrocarbyl substituted succinic anhydride), other acids and anhydrides such as maleic and fumaric acids and anhydrides, and esters of the foregoing e.g., methyl maleate.
- succinic acids and anhydrides e.g., succinic anhydride, dodecyl succinic anhydride, and C 1 to C 30 hydrocarbyl substituted succinic anhydride
- other acids and anhydrides such as maleic and fumaric acids and anhydrides, and esters of the fore
- the amine derivatized polymers or hydrocarbons are preferably treated with boron oxide, boron halides, boron acid esters or boron ester in an amount to provide from 0.1 - 20.0 atomic proportions of boron per mole of nitrogen composition.
- Borated derivatized polymer useful as dispersants can contain from 0.05 to 2.0 wt. %, e.g. 0.05 to 0.7 wt. % boron based on the total weight of said borated nitrogen-containing dispersant compound.
- Treating is readily carried out by adding said boron compound, preferably boric acid usually as a slurry, to said nitrogen compound and heating with stirring at from 135 to 190°C, e.g. 140 to 170°C, for from 1 to 5 hours.
- said boron compound preferably boric acid usually as a slurry
- the derivatized polymers or hydrocarbons of the present invention can also be treated with polymerizable lactones (such as epsilon-caprolactone) to form dispersant adducts.
- polymerizable lactones such as epsilon-caprolactone
- the additives of the invention may be used by incorporation into an oleaginous material such as fuels and lubricating oils.
- Fuels include normally liquid petroleum fuels such as middle distillate boiling from 65 to 430°C, including kerosene, diesel fuels, home heating fuel oil and jet fuels.
- a concentration of the additives in the fuel is in the range of typically from 0.001 to 0.5 wt.%, and preferably 0.005 to 0.15 wt. %, based on the total weight of the composition, will usually be employed.
- the additives of the present invention may be used in lubricating oil compositions which employ a base oil in which the additives are dissolved or dispersed therein.
- Such base oils may be natural or synthetic.
- Base oils suitable for use in preparing the lubricating oil compositions of the present invention include those conventionally employed as crankcase lubricating oils for spark-ignited and compression-ignited internal combustion engines, such as automobile and truck engines, and marine and railroad diesel engines.
- Advantageous results are also achieved by employing the additive mixtures of the present invention in base oils conventionally employed in and/or adapted for use as power transmitting fluids, universal tractor fluids and hydraulic fluids, heavy duty hydraulic fluids and power steering fluids.
- Gear lubricants, industrial oils, pump oils and other lubricating oil compositions can also benefit from the incorporation therein of the additives of the present invention.
- Natural oils include animal oils and vegetable oils (e.g., castor, lard oil) liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
- animal oils and vegetable oils e.g., castor, lard oil
- mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types.
- Oils of lubricating viscosity derived from coal or shale are also useful base oils.
- Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers and chlorinated polybutylenes.
- Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids.
- Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane oils and silicate oils comprise another useful class of synthetic lubricants. Unrefined, refined and rerefined oils can be used in the lubricants of the present invention.
- the additives of the present invention can be incorporated into a lubricating oil in any convenient way. Thus, they can be added directly to the oil by dispersing or dissolving the same in the oil. Such blending into the additional lube oil can occur at room temperature or elevated temperatures.
- the additives may be first formed into concentrates, which are in turn blended into the oil.
- Such dispersant concentrates will typically contain as active ingredient (A.I.), from 10 to 80 wt. %, typically 20 to 60 wt. %, and preferably from 40 to 50 wt. %, additive, (based on the concentrate weight) in base oil.
- MFVI concentrates typically will contain from 5 to 50 wt. % AI.
- the additives of the invention may be mixed with other additives selected to perform at least one desired function.
- additional additives are detergents, viscosity modifiers, wear inhibitors, oxidation inhibitors, corrosion inhibitors, friction modifiers, foam inhibitors, rust inhibitors, demulsifiers, antioxidants, lube oil flow improvers, and seal swell control agents.
- compositions when containing these additives, typically are blended into the base oil in amounts which are effective to provide their normal attendant function.
- Representative effective amounts of such additives are illustrated as follows: Compositions (Broad) Wt. % Preferred Wt. % V.I.
- additive concentrates or packages comprising concentrated solutions or dispersions of the subject additives of this invention together with one or more of said other additives. Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential.
- the final formulations may employ typically 2 to 20 wt. %, e.g. 10 wt. %, of the additive package with the remainder being base oil.
- Example 2 (Comparative) - Boration of Example 1
- the SIB test forecasts the performance of a lubricant in a gasoline engine. The test is described below:
- the SIB test employs a used crankcase mineral lubricating oil composition having an original viscosity of 70.65 mm 2 /sec (325 SSU) at 37.8°C that has been used in a taxicab driven generally for short trips only thereby causing a build up of a high concentration of sludge precursors.
- the oil used contains only a refined base mineral oil, a viscosity index improver, a pour point depressant and a zinc dialkyldithiophosphate antiwear additive.
- the oil contains no sludge dispersants.
- Such used oil is acquired by draining and refilling taxicab crankcases at about 1600 to 3200 km (1,000 - 2,000 mile) intervals.
- the SIB test is conducted in the following manner: The used crankcase oil is freed of sludge by centrifuging for one half hour at 383,000 m-sec/sec (39,000 gravities (gs)). The resulting clear bright red oil is then decanted from the insoluble sludge particles. However, the supernatant oil still contains oil-soluble sludge precursors which, under the conditions employed by this test, will tend to form additional oil-insoluble deposits of sludge.
- the sludge inhibiting properties of the additives being tested are determined by adding to portions ofthe used oil 0.5 wt. %, on an active ingredient basis, of the particular additive being tested.
- results are reported as milligrams of sludge per ten grams of sludge, thus measuring differences as small as one part per ten thousand.
- Samples of the dispersants prepared as set forth in Examples 1 - 4 below were subjected to a standard sludge inhibition bench test (SIB).
- SIB standard sludge inhibition bench test
- the samples of the PIBSA-PAM were subjected to the SIB test to provide a basis of comparison between the PIBSA-heavy amine dispersant of this invention and the corresponding prior art PIBSA-PAM dispersants.
- Example # Compound SIB Results (mgs sludge/10 grams sludge) Concentration 0.3% 0.5% 1 (Comparative) PIBSA-2225/PAM 7.92 3.8 2 (Comparative) B-PIBSA-2225/PAM 5.10 4.0 3 PIBSA-2225/HA-2 4.30 0.24 4 B-PIBSA-2225/HA-2 1.15 0.48 Blank 10.0
- the SIB results indicate that dispersants made from HA-2® heavy polyamine have superior sludge dispersancy properties than those made from commercial PAM at equivalent active ingredient for both non-borated as well as borated materials. Lower values indicate better dispersancy performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Lubricants (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US273294 | 1988-11-18 | ||
US27329494A | 1994-07-11 | 1994-07-11 | |
PCT/US1995/008623 WO1996001854A1 (en) | 1994-07-11 | 1995-07-11 | Lubricating oil succinimide dispersants derived from heavy polyamine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0770098A1 EP0770098A1 (en) | 1997-05-02 |
EP0770098B1 EP0770098B1 (en) | 1998-11-11 |
EP0770098B2 true EP0770098B2 (en) | 2010-03-03 |
Family
ID=23043336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95925596A Expired - Lifetime EP0770098B2 (en) | 1994-07-11 | 1995-07-11 | Dispersants based on succinimide additives derived from heavy polyamine used for lubricating oil |
Country Status (10)
Country | Link |
---|---|
US (1) | US5792730A (zh) |
EP (1) | EP0770098B2 (zh) |
JP (1) | JP4083796B2 (zh) |
CN (1) | CN1203097C (zh) |
AU (1) | AU712427B2 (zh) |
BR (1) | BR9508269A (zh) |
CA (1) | CA2191483C (zh) |
DE (1) | DE69505981T3 (zh) |
ES (1) | ES2124002T3 (zh) |
WO (1) | WO1996001854A1 (zh) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1264680B1 (it) | 1993-07-07 | 1996-10-04 | Spherilene Srl | Catalizzatori supportati per la polimerizzazione delle olefine |
US6818601B1 (en) | 1996-09-13 | 2004-11-16 | The Lubrizol Corporation | Dispersant-viscosity improvers for lubricating oil compositions |
US6733550B1 (en) * | 1997-03-21 | 2004-05-11 | Shell Oil Company | Fuel oil composition |
GB9709826D0 (en) * | 1997-05-15 | 1997-07-09 | Exxon Chemical Patents Inc | Improved oil composition |
US6821307B2 (en) * | 1997-05-15 | 2004-11-23 | Infineum International Ltd. | Oil composition |
US6770605B1 (en) * | 2000-09-11 | 2004-08-03 | The Lubrizol Corporation | Modified polyisobutylene succinimide dispersants having improved seal, sludge, and deposit performance |
EP1409620B1 (en) * | 2001-07-05 | 2014-01-15 | The Lubrizol Corporation | Low-chlorine, polyolefin-substituted, with amine reacted, alpha-beta unsaturated carboxylic compounds |
US20050215441A1 (en) * | 2002-03-28 | 2005-09-29 | Mackney Derek W | Method of operating internal combustion engine by introducing detergent into combustion chamber |
FR2839315B1 (fr) * | 2002-05-03 | 2006-04-28 | Totalfinaelf France | Additif pour ameliorer la stabilite thermique de compositions d'hydrocarbures |
US7238650B2 (en) | 2002-06-27 | 2007-07-03 | The Lubrizol Corporation | Low-chlorine, polyolefin-substituted, with amine reacted, alpha-beta unsaturated carboxylic compounds |
CN1671828B (zh) * | 2002-06-28 | 2012-05-30 | 新日本石油株式会社 | 润滑油添加剂,包含这种添加剂的润滑油组合物,以及这种添加剂和组合物的生产方法 |
US6933351B2 (en) * | 2003-06-20 | 2005-08-23 | Infineum International Limited | Process for forming polyalkenyl acylating agents |
US7339007B2 (en) * | 2003-06-20 | 2008-03-04 | Infineum International Limited | Low sediment process for thermally reacting highly reactive polymers and enophiles |
WO2005012468A1 (en) | 2003-08-01 | 2005-02-10 | The Lubrizol Corporation | Mixed dispersants for lubricants |
US20050183325A1 (en) * | 2004-02-24 | 2005-08-25 | Sutkowski Andrew C. | Conductivity improving additive for fuel oil compositions |
US7879774B2 (en) * | 2004-07-19 | 2011-02-01 | Afton Chemical Corporation | Titanium-containing lubricating oil composition |
US7250126B2 (en) * | 2004-08-11 | 2007-07-31 | Fleetguard, Inc. | Acid-neutralizing filter media |
EP1858634A1 (en) * | 2005-02-03 | 2007-11-28 | The Lubrizol Corporation | Dispersants from condensed polyamines |
US8513169B2 (en) | 2006-07-18 | 2013-08-20 | Infineum International Limited | Lubricating oil compositions |
US20080182768A1 (en) * | 2007-01-31 | 2008-07-31 | Devlin Cathy C | Lubricant composition for bio-diesel fuel engine applications |
EP2075264B1 (en) | 2007-12-26 | 2016-09-28 | Infineum International Limited | Method of forming polyalkene substituted carboxylic acid compositions |
US20090186784A1 (en) | 2008-01-22 | 2009-07-23 | Diggs Nancy Z | Lubricating Oil Composition |
JP2010047747A (ja) * | 2008-07-22 | 2010-03-04 | Sanyo Chem Ind Ltd | 潤滑油添加剤及び潤滑油組成物 |
US9181511B2 (en) | 2009-04-01 | 2015-11-10 | Infineum International Limited | Lubricating oil composition |
EP2290041B1 (en) | 2009-08-24 | 2012-08-29 | Infineum International Limited | Use of an ashless borated dispersant |
CN104274540B (zh) * | 2013-07-05 | 2018-05-25 | 中国中医科学院广安门医院 | 含有雷公藤的中药组合物、其制备方法和用途 |
US11034912B2 (en) | 2014-04-29 | 2021-06-15 | Infineum International Limited | Lubricating oil compositions |
US10724408B2 (en) | 2015-05-22 | 2020-07-28 | Cummins Inc. | Unique oil as a service event |
US10472584B2 (en) | 2015-07-30 | 2019-11-12 | Infineum International Ltd. | Dispersant additives and additive concentrates and lubricating oil compositions containing same |
FR3039835B1 (fr) * | 2015-08-03 | 2019-07-05 | Total Marketing Services | Utilisation d'une amine grasse pour prevenir et/ou reduire les pertes metalliques des pieces dans un moteur |
CA2938020C (en) | 2015-08-26 | 2023-07-04 | Infineum International Limited | Lubricating oil compositions |
US10487288B2 (en) | 2015-09-16 | 2019-11-26 | Infineum International Limited | Additive concentrates for the formulation of lubricating oil compositions |
US11168280B2 (en) | 2015-10-05 | 2021-11-09 | Infineum International Limited | Additive concentrates for the formulation of lubricating oil compositions |
JP5948481B1 (ja) * | 2015-11-26 | 2016-07-06 | 征夫 草野 | スラッジ分散剤、それを含有する液体燃料及びスラッジの形成を防止又は形成されているスラッジを減少させる方法 |
EP3366755B1 (en) | 2017-02-22 | 2023-11-29 | Infineum International Limited | Improvements in and relating to lubricating compositions |
EP3369802B1 (en) | 2017-03-01 | 2019-07-10 | Infineum International Limited | Improvements in and relating to lubricating compositions |
BR112019022507B1 (pt) | 2017-04-27 | 2022-12-13 | Shell Internationale Research Maatschappij B.V. | Uso de um dispersante sem cinzas contendo nitrogênio em uma composição lubrificante |
US20190024007A1 (en) | 2017-07-24 | 2019-01-24 | Infineum International Limited | Motorcycle Lubricant |
EP3461877B1 (en) | 2017-09-27 | 2019-09-11 | Infineum International Limited | Improvements in and relating to lubricating compositions08877119.1 |
US10731103B2 (en) | 2017-12-11 | 2020-08-04 | Infineum International Limited | Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same |
EP3546549B1 (en) | 2018-03-27 | 2022-11-09 | Infineum International Limited | Lubricating oil composition |
JP7170958B2 (ja) * | 2018-08-06 | 2022-11-15 | 合資会社三和歯ブラシ工業所 | 歯ブラシ用基台及び歯ブラシ用基台を備えた歯ブラシ |
EP3778841B1 (en) | 2019-08-15 | 2021-11-24 | Infineum International Limited | Method for reducing piston deposits in a marine diesel engine |
CN111690143B (zh) * | 2020-06-23 | 2022-08-05 | 新乡市瑞丰新材料股份有限公司 | 一种高分子量高氮无灰分散剂的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3259578A (en) † | 1960-08-04 | 1966-07-05 | Petrolite Corp | Lubricating compositions |
US4234435A (en) † | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US5053152A (en) † | 1985-03-14 | 1991-10-01 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1526788A (en) * | 1974-10-17 | 1978-09-27 | Exxon Research Engineering Co | Lubricating compositions |
DE2702604C2 (de) * | 1977-01-22 | 1984-08-30 | Basf Ag, 6700 Ludwigshafen | Polyisobutene |
US4579674A (en) * | 1981-12-28 | 1986-04-01 | Texaco Inc. | Hydrocarbylsuccinimide of a secondary hydroxyl-substituted polyamine and lubricating oil containing same |
ZA844157B (en) * | 1983-06-06 | 1986-01-29 | Exxon Research Engineering Co | Process and catalyst for polyolefin density and molecular weight control |
US4937299A (en) * | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
US4840744A (en) * | 1984-07-20 | 1989-06-20 | Chevron Research Company | Modified succinimides and lubricating oil compositions containing the same |
US4665208A (en) * | 1985-07-11 | 1987-05-12 | Exxon Chemical Patents Inc. | Process for the preparation of alumoxanes |
US4713188A (en) * | 1986-01-10 | 1987-12-15 | Chevron Research Company | Carbonate treated hydrocarbyl-substituted amides |
US4732942A (en) * | 1986-09-02 | 1988-03-22 | Texaco Inc. | Hydrocarbon compositions containing polyolefin graft polymers |
US5241025A (en) * | 1987-01-30 | 1993-08-31 | Exxon Chemical Patents Inc. | Catalyst system of enhanced productivity |
IL85097A (en) * | 1987-01-30 | 1992-02-16 | Exxon Chemical Patents Inc | Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes |
US5055438A (en) * | 1989-09-13 | 1991-10-08 | Exxon Chemical Patents, Inc. | Olefin polymerization catalysts |
PL276385A1 (en) * | 1987-01-30 | 1989-07-24 | Exxon Chemical Patents Inc | Method for polymerization of olefines,diolefins and acetylene unsaturated compounds |
US5198401A (en) * | 1987-01-30 | 1993-03-30 | Exxon Chemical Patents Inc. | Ionic metallocene catalyst compositions |
US5153157A (en) * | 1987-01-30 | 1992-10-06 | Exxon Chemical Patents Inc. | Catalyst system of enhanced productivity |
US4927551A (en) * | 1987-12-30 | 1990-05-22 | Chevron Research Company | Lubricating oil compositions containing a combination of a modified succinimide and a Group II metal overbased sulfurized alkylphenol |
US5120867A (en) * | 1988-03-21 | 1992-06-09 | Welborn Jr Howard C | Silicon-bridged transition metal compounds |
US5017714A (en) * | 1988-03-21 | 1991-05-21 | Exxon Chemical Patents Inc. | Silicon-bridged transition metal compounds |
US4871705A (en) * | 1988-06-16 | 1989-10-03 | Exxon Chemical Patents Inc. | Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst |
US4938881A (en) * | 1988-08-01 | 1990-07-03 | The Lubrizol Corporation | Lubricating oil compositions and concentrates |
US5277833A (en) * | 1988-08-01 | 1994-01-11 | Exxon Chemical Patents Inc. | Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid lubricant dispersant additives |
US4952739A (en) * | 1988-10-26 | 1990-08-28 | Exxon Chemical Patents Inc. | Organo-Al-chloride catalyzed poly-n-butenes process |
US5164101A (en) * | 1988-11-09 | 1992-11-17 | Exxon Research And Engineering Co. | Method for reducing piston deposits |
US5114435A (en) * | 1988-12-30 | 1992-05-19 | Mobil Oil Corporation | Polyalkylene succinimide deposit control additives and fuel compositions containing same |
US5227440A (en) * | 1989-09-13 | 1993-07-13 | Exxon Chemical Patents Inc. | Mono-Cp heteroatom containing Group IVB transition metal complexes with MAO: supported catalysts for olefin polymerization |
US5057475A (en) * | 1989-09-13 | 1991-10-15 | Exxon Chemical Patents Inc. | Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization |
US5064802A (en) * | 1989-09-14 | 1991-11-12 | The Dow Chemical Company | Metal complex compounds |
EP0451380B2 (en) * | 1990-04-10 | 1997-07-30 | Ethyl Petroleum Additives Limited | Succinimide compositions |
US5137980A (en) * | 1990-05-17 | 1992-08-11 | Ethyl Petroleum Additives, Inc. | Ashless dispersants formed from substituted acylating agents and their production and use |
US5241003A (en) * | 1990-05-17 | 1993-08-31 | Ethyl Petroleum Additives, Inc. | Ashless dispersants formed from substituted acylating agents and their production and use |
PL166690B1 (pl) * | 1990-06-04 | 1995-06-30 | Exxon Chemical Patents Inc | Sposób wytwarzania polimerów olefin PL |
CA2085581C (en) * | 1990-06-22 | 2002-07-30 | Joann Marie Canich | Aluminum-free monocyclopentadienyl metallocene catalysts for olefin polymerization |
US5232616A (en) * | 1990-08-21 | 1993-08-03 | Chevron Research And Technology Company | Lubricating compositions |
US5721185A (en) * | 1991-06-24 | 1998-02-24 | The Dow Chemical Company | Homogeneous olefin polymerization catalyst by abstraction with lewis acids |
US5278272A (en) * | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
JP3341117B2 (ja) * | 1991-10-15 | 2002-11-05 | ザ ダウ ケミカル カンパニー | 金属配位錯体の製造 |
WO1993024539A1 (en) * | 1992-05-26 | 1993-12-09 | Amoco Corporation | Reactive, low molecular weight, viscous poly(1-olefins) and copoly(1-olefins) and their method of manufacture |
US5356552A (en) * | 1993-03-09 | 1994-10-18 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Chlorine-free lubricating oils having modified high molecular weight succinimides |
US5334321A (en) * | 1993-03-09 | 1994-08-02 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Modified high molecular weight succinimides |
JPH10501576A (ja) * | 1994-06-17 | 1998-02-10 | エクソン・ケミカル・パテンツ・インク | 重質ポリアミンから誘導された潤滑油分散剤 |
WO1995035330A1 (en) * | 1994-06-17 | 1995-12-28 | Exxon Chemical Patents Inc. | Amidation of ester functionalized hydrocarbon polymers |
-
1995
- 1995-07-11 WO PCT/US1995/008623 patent/WO1996001854A1/en active IP Right Grant
- 1995-07-11 EP EP95925596A patent/EP0770098B2/en not_active Expired - Lifetime
- 1995-07-11 JP JP50445496A patent/JP4083796B2/ja not_active Expired - Lifetime
- 1995-07-11 DE DE69505981T patent/DE69505981T3/de not_active Expired - Lifetime
- 1995-07-11 CN CNB951940635A patent/CN1203097C/zh not_active Expired - Lifetime
- 1995-07-11 ES ES95925596T patent/ES2124002T3/es not_active Expired - Lifetime
- 1995-07-11 AU AU29674/95A patent/AU712427B2/en not_active Ceased
- 1995-07-11 CA CA002191483A patent/CA2191483C/en not_active Expired - Lifetime
- 1995-07-11 BR BR9508269A patent/BR9508269A/pt not_active Application Discontinuation
-
1997
- 1997-07-16 US US08/895,156 patent/US5792730A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3259578A (en) † | 1960-08-04 | 1966-07-05 | Petrolite Corp | Lubricating compositions |
US4234435A (en) † | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US5053152A (en) † | 1985-03-14 | 1991-10-01 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
Also Published As
Publication number | Publication date |
---|---|
JP4083796B2 (ja) | 2008-04-30 |
MX9700294A (es) | 1998-03-31 |
CA2191483C (en) | 2003-02-25 |
CA2191483A1 (en) | 1996-01-25 |
AU2967495A (en) | 1996-02-09 |
CN1203097C (zh) | 2005-05-25 |
EP0770098B1 (en) | 1998-11-11 |
ES2124002T3 (es) | 1999-01-16 |
CN1152926A (zh) | 1997-06-25 |
BR9508269A (pt) | 1999-06-01 |
US5792730A (en) | 1998-08-11 |
WO1996001854A1 (en) | 1996-01-25 |
JPH10502864A (ja) | 1998-03-17 |
DE69505981T2 (de) | 1999-04-29 |
AU712427B2 (en) | 1999-11-04 |
EP0770098A1 (en) | 1997-05-02 |
DE69505981T3 (de) | 2010-10-28 |
DE69505981D1 (de) | 1998-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0770098B2 (en) | Dispersants based on succinimide additives derived from heavy polyamine used for lubricating oil | |
US5565128A (en) | Lubricating oil mannich base dispersants derived from heavy polyamine | |
EP0441548B1 (en) | Process for producing ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives | |
AU673448B2 (en) | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives | |
EP0674691B1 (en) | Gel-free alpha-olefin dispersant additives useful in oleaginous compositions | |
EP0674671B1 (en) | Gel-free ethylene interpolymer dispersant additives useful in oleaginous compositions | |
EP0764176B1 (en) | Trisubstituted unsaturated polymers | |
US5580484A (en) | Lubricating oil dispersants derived from hydroxy aromatic succinimide Mannich base condensates of heavy polyamine | |
CA2198143C (en) | Adducts of quinone compounds and amine-containing polymers for use in lubricating oils and in fuels | |
MXPA97000294A (en) | Succinimide dispersants derived from heavy polyamine for lubricated oil | |
CA2201778A1 (en) | Lubricating oil dispersants derived from hydroxy aromatic succinimide mannich base condensates of heavy polyamine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19961202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19970602 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69505981 Country of ref document: DE Date of ref document: 19981217 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2124002 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19990708 Year of fee payment: 5 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: THE LUBRIZOL CORPORATION Effective date: 19990810 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: THE LUBRIZOL CORPORATION |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000712 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: EXXONMOBIL CHEMICAL PATENTS INC. |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: EXXONMOBIL CHEMICAL PATENTS INC. |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20010810 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20100303 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE ES FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20000712 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100709 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100717 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100714 Year of fee payment: 16 |
|
BERE | Be: lapsed |
Owner name: *EXXON CHEMICAL PATENTS INC. Effective date: 20110731 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20120201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110711 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140624 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140731 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140624 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69505981 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20150710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150710 |