EP0724021B1 - Procédé de préparation d'un cermet électroconducteur - Google Patents

Procédé de préparation d'un cermet électroconducteur Download PDF

Info

Publication number
EP0724021B1
EP0724021B1 EP95113512A EP95113512A EP0724021B1 EP 0724021 B1 EP0724021 B1 EP 0724021B1 EP 95113512 A EP95113512 A EP 95113512A EP 95113512 A EP95113512 A EP 95113512A EP 0724021 B1 EP0724021 B1 EP 0724021B1
Authority
EP
European Patent Office
Prior art keywords
powder
volume
noble metal
ceramic
decrease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95113512A
Other languages
German (de)
English (en)
Other versions
EP0724021A1 (fr
Inventor
David Francis Dr. Lupton
Jörg Schielke
Hans-Joachim Graf
Arno Dr. Reckziegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of EP0724021A1 publication Critical patent/EP0724021A1/fr
Application granted granted Critical
Publication of EP0724021B1 publication Critical patent/EP0724021B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof

Definitions

  • the present invention relates to a method for producing an electrically conductive Cermets with a precious metal content of less than 35% by volume by mixing powders a high temperature resistant ceramic and a noble metal, forming a green body the powder mixture and sintering of the green body to form a dense ceramic phase and a contiguous network of metallic phase having cermets.
  • precious metal here are gold, silver, and the group The platinum metals platinum, palladium, rhodium, iridium, osmium and ruthenium meant.
  • Cermets are intimate mixtures of ceramic and metallic components designated. They combine the corrosion resistance and the hardness of ceramic with the electrical conductivity and the strength of metals. They are used for example for electrical feedthroughs for discharge lamps, in spark plugs or for the manufacture used by sensor elements in electrical Massen shedflußmessem.
  • a generic method for producing such a cermet is known from DE-A1 26 58 647 known. Therein it is proposed, first a dispersion of alumina powder with the addition of chromium nitrate, which is a bonding agent between the ceramic phase and the metal phase to produce. After evaporation of the Dispersion are the individual particles produced with a coating of precious metal, For example, provide platinum by adding a solution of chloroplatinic acid or tetramine-platinum chloride be exposed under the presence of a reducing agent, from which then Platinum on the The green body at approx. 1400 ° C becomes a cermet with good electrical conductivity receive. The electrical conductivity is based on the generated, cohesive, skeletal structure of the metallic phase. The volume fraction of platinum metal is at the known cermet, for example, about 12.5%.
  • the present invention is therefore based on the object to provide a method which the production of cermets based on high temperature resistant materials with good electrical properties Conductivity and high density with low precious metal content allows.
  • a noble metal powder which at sintering temperature to form the metallic phase an increase in volume, a decrease in volume or no change in volume that a ceramic powder is used, which at sintering temperature to form the ceramic Phase has a volume decrease, and that in the case that the noble metal powder has a volume decrease, the decrease in volume of the ceramic powder is greater than the decrease in volume of the noble metal powder.
  • the term "precious metal” is understood to mean gold, silver, ruthenium, rhodium, palladium, osmium, iridium or platinum.
  • the reduction in the sintering activity of the noble metal is accomplished by a variety of known means, such as crystal growth inhibiting additives, a narrow particle size distribution of the noble metal powder, a morphology of the individual grains of the powder, which involves low surface energy, or a low specific surface area of the powder as a whole , to reach.
  • the ceramic powder used has a high sintering activity.
  • the volume decrease of the powder used for the formation of the green body is determined by means of dilatometer measurements determined.
  • appropriate dilatometer samples are obtained by cold pressing made of precious metal and ceramic powder. These measurements will be under certain In the case of the precious metal powder, an increase in volume on heating has even been observed.
  • the volume increase can be, for example, by relaxation processes of the pre-consolidated Explain samples. In this regard, under the main claim as "small" designated Volume decrease during sintering of the precious metal powder also increases the volume understand.
  • the noble metal powder has a lower sintering activity than the ceramic powder.
  • the comparison The sintering activities of precious metal powder and ceramic powder is carried out by heating cold pre-pressed samples of the respective powder while observing the grain growth. the one Powder has the higher sintering activity at which grain growth occurs at the lower temperature starts.
  • the sintering activity is particularly low due to the low surface energy. Structures and networks in the green body produced with such a powder therefore also remain during sintering at temperatures above 1500 ° C.
  • noble metal powder of which 50% by weight. a grain size of less than 20 microns, preferably less than 15 microns, and of the 10 wt .-% have a particle size of at least 2 microns, preferably at least 4 microns.
  • Such a powder has a relatively narrow particle size distribution and one for a slow one Sintering cheap average grain size.
  • Very small grains are avoided as possible due to their small radii they have a high surface energy and thus a high sintering activity exhibit.
  • Very large starting grains besides smaller grains can be a fortified Grain growth, a so-called giant grain growth, experienced in which the areas around the Impoverish "giant grains” of precious metal. This precious metal depletion can lead to separations in lead the filigree, metallic network structure.
  • a narrow particle size distribution is reduced the sintering speed in addition.
  • the specific Surface measured by the BET method, is larger by at least a factor of 20 as the specific surface of the noble metal powder.
  • the specific surface is a measure of the sintering activity. For a ceramic powder with a relatively large specific surface area in comparison to the noble metal powder, a higher sintering activity is expected. This is an early one Volume decrease of the ceramic phase ensured.
  • a ceramic powder with a medium Grain size which is at least ten times smaller than that of the noble metal powder use, wherein at least 90 wt .-% of the ceramic powder has a grain size of not more than 5 have ⁇ m.
  • noble metal powder has proven to be particularly favorable, in which the volume decrease the metallic phase in the densification of the green body by at least 5%, preferably 10% less than that of the ceramic phase. As it is only on the difference the specific volume shrinkage arrives, the selection of suitable starting materials be turned off on the ceramic powder instead of the precious metal powder. As at the beginning already explained, under some circumstances, the observed with the noble metal powder Volume shrinkage will be zero or even negative.
  • a ceramic powder is used, in which the volume decrease of the ceramic Phase at a lower temperature than the volume decrease in the metallic Phase. This ensures that the metallic phase at any time during dense sintering, a relative volume within the green body is available is greater than its relative initial volume. The tearing of fine ramifications the metallic phase is thus prevented.
  • the cermet according to the prior art according to FIG. 1 contains about 40% by volume of platinum.
  • the ceramic phase consists essentially of Al 2 O 3 and is densely sintered.
  • the sintering temperature of this cermet should therefore have been above 1650 ° C.
  • a striking feature of the microsection is the broad size distribution of the cut surfaces of the metallic one Phase.
  • some very large areas can be seen. These big contiguous Areas of metallic phase have very many pores.
  • the individual areas of metallic phase with a plurality of sharp edges, or very small radii are provided.
  • the high sintering activity could for example, to the concentration of metallic phase in the mentioned very large Areas.
  • These areas contribute to the electrical conductivity of the cermet not essential. On the contrary, they degrade the given platinum content Conductivity, because in them, the conductive material is concentrated and accordingly to others Job is missing.
  • the uneven distribution of the apparent from FIG metallic phase because of differences in the thermal expansion coefficient of Ceramic and metal also stress within the cermet and therefore leads to a Strength reduction.
  • the cermet the micrograph of which is shown in binary form in Figure 2 , has a platinum content of 30% by volume; the remainder consists essentially of alumina.
  • the green body mixed and molded from the starting powders was densely sintered at 1700 ° C.
  • the binary image of FIG. 2 shows the more uniform distribution of the metallic phase in the ceramic phase.
  • the cut surfaces of the metallic phase as shown in the micrograph of Figure 2, an area of at most 1000 .mu.m 2 , preferably less than 800 .mu.m 2 and if the curve of Area distribution drops very steeply from its maximum to larger values.
  • Such a narrow size distribution of the cut surfaces of metallic areas in the sectional image is an indication of a homogeneous distribution and a finely branched structure of the metallic areas in the cermet.
  • FIG. 3 shows the result of a statistical image analysis on the distribution of the metallic phase of the micrograph shown in FIG. 2 on the basis of a histogram.
  • the Y axis denotes the absolute frequency of the respective length classes.
  • the maximum of the frequency is at a circumferential length of about 16 microns, the frequency distribution decreases slightly slower in the direction of the smaller lengths and slightly slower in the direction of the longer lengths. Overall, however, the frequency distribution is relatively narrow.
  • the mean value of the frequency curve is 32 ⁇ m. From the information below the diagram shown, the frequencies in the respective length classes are listed in detail.
  • FIG. 4 also shows, in the form of a histogram, the area fraction of metallic phase in a total of 9 statistically selected image sections.
  • the histogram illustrates impressively that in all selected image sections the area covered by the metallic phase is almost constant at 29%. This too is an indication of the uniform distribution of the metallic phase.
  • a further frequency distribution likewise in the form of a histogram, is shown.
  • the X-axis denotes the distance of adjacent areas with metallic phase in ⁇ m and the Y-axis the absolute frequency of the respective distance classes.
  • the maximum frequency for a distance class is in the range from 289 to 394 ⁇ m.
  • the mean distance is given as 260 ⁇ m.
  • the frequency distribution drops steeply at greater distances and flatter at shorter intervals. Overall, however, the frequency distribution is very narrow.
  • the statistical image analyzes shown in FIGS. 3 to 5 prove the uniform distribution of the metallic phase in the cermet according to the invention.
  • FIG. 6 shows the result of a dilatometric measurement of Al 2 O 3 powder and platinum powder used to produce a cermet according to the invention.
  • compacts were produced from the powders by cold pressing.
  • the length of the Al 2 O 3 powder compact was 39.31 mm, that of the platinum powder compact 23.48 mm.
  • the time in minutes is plotted on the x-axis of the diagram shown in FIG. 6, the temperature in ° C. on the left y-axis, and the length changes measured on the compacts on the right-hand y-axis.
  • a first rapid heating phase with phase 1 a subsequent slower heating phase with phase 2 and a constant high temperature region at about 1600 ° C. are designated phase 3.
  • the corresponding temperature profile is indicated by the reference numeral 4 in the diagram.
  • the extension trace 5 of the platinum powder compact shows no decrease in length increasing temperature. On the contrary, it became around 1580 despite high temperature sintering ° C detected an irreversible increase in length of about 6%. It follows that also at the maximum temperature of the dilatometer measurement in the platinum powder used no sintering has, as in this case a length decrease of the sample should have been observed.
  • a platinum starting powder was used, which had a BET surface area of 0.06 m 2 / g. Its average grain size was 10 microns. About 80% by weight of the platinum powder was in the particle size range between 4 ⁇ m and 20 ⁇ m. Overall, the platinum powder is characterized by a very low sintering activity. The structure obtained with it once in the green body therefore essentially remains even when sintered at 1700 ° C.
  • the Al 2 O 3 starting powder used had an average particle size of about 1 ⁇ m. 90% by weight of the starting Al 2 O 3 powder had a particle size of less than 3 ⁇ m. Its BET surface area is 4 m 2 / g.
  • the Al 2 O 3 starting powder is characterized by a significantly higher sintering activity compared to platinum powder. It has also been found that during dense sintering, the ceramic phase formed from the Al 2 O 3 starting powder experiences a substantially greater volume decrease than the metallic phase formed from the platinum powder. In this case, a noticeable decrease in volume occurs at the ceramic phase at a temperature of about 1400 ° C, while no change in volume is observed in the metallic phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Claims (8)

  1. Procédé de préparation d'un cernet électroconducteur avec un pourcentage de métal précieux inférieur à 35 % vol par mélange de poudres d'une céramique résistante aux températures élevées et d'un métal précieux, moulage d'un comprimé cru à partir du mélange de poudres et frittage du comprimé cru avec formation d'un cernet présentant une phase céramique épaisse et un réseau cohérent à partir d'une phase métallique, une poudre de métal précieux étant mise en oeuvre, laquelle présente lors du frittage une activité de frittage moindre que la poudre céramique et présente une augmentation de volume, une réduction de volume ou ne présente pas de modification de volume lors de la formation de la phase métallique, et une poudre céramique étant mise en oeuvre, laquelle présente une réduction de volume lors de la formation de la phase céramique lors du frittage et, dans le cas où la poudre de métal précieux présente une réduction de volume, la réduction de volume de la poudre céramique étant supérieure à la réduction de volume de la poudre de métal précieux.
  2. Procédé selon la revendication 1, caractérisé en ce qu'est mise en oeuvre une poudre de métal précieux avec une surface spécifique, mesurée selon le procédé BET, inférieure à 1 m2/g, et de préférence inférieure à 0,1 m2/g.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'est mise en oeuvre une poudre de métal précieux ayant une grosseur de grain moyenne d'au moins 10 µm, et de préférence d'au moins 20 µm, 10 % en poids de la poudre de métal précieux au maximum présentant une grosseur de grain inférieure à 2 µm.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'est mise en oeuvre une poudre céramique dont la surface spécifique, mesurée selon le procédé BET, est supérieure d'au moins le facteur 20 à la surface spécifique de la poudre de métal précieux.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'est mise en oeuvre une poudre céramique ayant une grosseur de grain moyenne qui est inférieure d'au moins dix fois à celle de la poudre de métal précieux, 90 % en poids de la poudre céramique au moins ayant une grosseur de grain de 5 µm au maximum.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'est mise en oeuvre une poudre de métal précieux dans laquelle la réduction de volume lors du frittage est inférieure d'au moins 5 % et de préférence d'au moins 10 % à la réduction de volume correspondante de la poudre céramique lors de la formation de la phase céramique.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'est mise en oeuvre une poudre céramique dans laquelle la réduction de volume commence à une température inférieure à celle à laquelle commence la réduction de volume de la poudre de métal précieux.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'est mise en oeuvre, en tant que poudre de métal précieux, une poudre de platine, en ce que la céramique résistante aux températures élevées contient de l'oxyde d'aluminium et en ce que le frittage a lieu à des températures comprises entre 1500 °C et 1750 °C, et de préférence juste en dessous du point de fusion du platine.
EP95113512A 1995-01-25 1995-08-29 Procédé de préparation d'un cermet électroconducteur Expired - Lifetime EP0724021B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19502129A DE19502129C2 (de) 1995-01-25 1995-01-25 Verfahren zur Herstellung eines elektrisch leitenden Cermets
DE19502129 1995-01-25

Publications (2)

Publication Number Publication Date
EP0724021A1 EP0724021A1 (fr) 1996-07-31
EP0724021B1 true EP0724021B1 (fr) 2005-03-30

Family

ID=7752217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95113512A Expired - Lifetime EP0724021B1 (fr) 1995-01-25 1995-08-29 Procédé de préparation d'un cermet électroconducteur

Country Status (4)

Country Link
US (1) US5796019A (fr)
EP (1) EP0724021B1 (fr)
JP (1) JPH08269592A (fr)
DE (2) DE19502129C2 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108047A1 (en) * 2005-11-16 2007-05-17 Fenglian Chang Sensing element and method of making the same
US8436520B2 (en) 2010-07-29 2013-05-07 Federal-Mogul Ignition Company Electrode material for use with a spark plug
US8471451B2 (en) 2011-01-05 2013-06-25 Federal-Mogul Ignition Company Ruthenium-based electrode material for a spark plug
DE112012000600B4 (de) 2011-01-27 2018-12-13 Federal-Mogul Ignition Company Zündkerzenelektrode für eine Zündkerze, Zündkerze und Verfahren zum Herstellen einer Zündkerzenelektrode
DE102011009865B4 (de) 2011-01-31 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Kopfteil für eine medizinisch implantierbare Vorrichtung
DE102011009858B8 (de) 2011-01-31 2013-11-07 Heraeus Precious Metals Gmbh & Co. Kg Cermethaltige Durchführung für eine medizinisch inplantierbare Vorrichtung mit Verbindungsschicht
DE102011009855B8 (de) 2011-01-31 2013-01-03 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung mit induktivem Filter
DE102011009860B4 (de) 2011-01-31 2013-03-07 Heraeus Precious Metals Gmbh & Co. Kg Implantierbare Vorrichtung mit integrierter Keramikdurchführung
DE102011009857B8 (de) 2011-01-31 2013-01-17 Heraeus Precious Metals Gmbh & Co. Kg Elektrische Durchführung mit cermethaltigem Verbindungselement für eine aktive, implantierbare, medizinische Vorrichtung
DE102011009863B9 (de) * 2011-01-31 2020-08-13 Heraeus Deutschland GmbH & Co. KG Keramikdurchführung mit Leitungselementen hoher Leitfähigkeit
DE102011009859B4 (de) 2011-01-31 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung mit Filter
DE102011009867B4 (de) 2011-01-31 2013-09-05 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung für eine medizinisch implantierbare Vorrichtung
US8760044B2 (en) 2011-02-22 2014-06-24 Federal-Mogul Ignition Company Electrode material for a spark plug
WO2013003325A2 (fr) 2011-06-28 2013-01-03 Federal-Mogul Ignition Company Matériau d'électrode pour une bougie d'allumage
US8841558B2 (en) 2011-08-02 2014-09-23 Medtronic Inc. Hermetic feedthrough
DE102011119125B4 (de) 2011-11-23 2014-01-23 Heraeus Precious Metals Gmbh & Co. Kg Kontaktierungsanordnung mit Durchführung und Filterstruktur
US10044172B2 (en) 2012-04-27 2018-08-07 Federal-Mogul Ignition Company Electrode for spark plug comprising ruthenium-based material
US8890399B2 (en) 2012-05-22 2014-11-18 Federal-Mogul Ignition Company Method of making ruthenium-based material for spark plug electrode
US8979606B2 (en) 2012-06-26 2015-03-17 Federal-Mogul Ignition Company Method of manufacturing a ruthenium-based spark plug electrode material into a desired form and a ruthenium-based material for use in a spark plug
US9231380B2 (en) 2012-07-16 2016-01-05 Federal-Mogul Ignition Company Electrode material for a spark plug
US9478959B2 (en) 2013-03-14 2016-10-25 Heraeus Deutschland GmbH & Co. KG Laser welding a feedthrough
US9431801B2 (en) 2013-05-24 2016-08-30 Heraeus Deutschland GmbH & Co. KG Method of coupling a feedthrough assembly for an implantable medical device
US9403023B2 (en) 2013-08-07 2016-08-02 Heraeus Deutschland GmbH & Co. KG Method of forming feedthrough with integrated brazeless ferrule
US9610452B2 (en) 2013-12-12 2017-04-04 Heraeus Deutschland GmbH & Co. KG Direct integration of feedthrough to implantable medical device housing by sintering
US9504841B2 (en) 2013-12-12 2016-11-29 Heraeus Deutschland GmbH & Co. KG Direct integration of feedthrough to implantable medical device housing with ultrasonic welding
US9610451B2 (en) 2013-12-12 2017-04-04 Heraeus Deutschland GmbH & Co. KG Direct integration of feedthrough to implantable medical device housing using a gold alloy
EP3284513B8 (fr) 2016-08-17 2020-03-11 Heraeus Deutschland GmbH & Co. KG Traversée de cermet dans un corps multicouche en céramique
EP3900782B1 (fr) 2020-02-21 2023-08-09 Heraeus Medical Components, LLC Ferrule dotée d'une entretoise de réduction des contraintes pour dispositif médical implantable
EP3900783B1 (fr) 2020-02-21 2023-08-16 Heraeus Medical Components, LLC Ferrule pour boîtier de dispositif médical non planaire
CN113814395B (zh) * 2021-10-08 2023-05-23 中南大学湘雅医院 金属锡强化纳米TiO2光固化3D打印陶瓷浆料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901717A (en) * 1971-12-10 1975-08-26 Far Fab Assortiments Reunies Hard precious material
US4183746A (en) * 1975-12-24 1980-01-15 Johnson, Matthey & Co., Limited Cermets
US4234338A (en) * 1978-12-28 1980-11-18 The United States Of America As Represented By The United States Department Of Energy Thermal shock resistance ceramic insulator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB981792A (en) * 1962-05-07 1965-01-27 Mond Nickel Co Ltd Improvements relating to precious metals and alloys thereof
US3208848A (en) * 1964-02-25 1965-09-28 Jr Ralph P Levey Alumina-cobalt-gold composition
US3623849A (en) * 1969-08-25 1971-11-30 Int Nickel Co Sintered refractory articles of manufacture
EP0376981A4 (en) * 1987-08-14 1990-12-12 The Ohio State University Machine workable, thermally conductive, high strength, ceramic superconducting composite
DE4029066A1 (de) * 1990-09-13 1992-03-19 Friedrichsfeld Ag Keramischer formkoerper
WO1993017969A1 (fr) * 1992-03-02 1993-09-16 The University Of Kansas Supraconducteurs presentant des matrices continues de metal elementaire et de ceramique
DE4335697C2 (de) * 1993-10-20 1997-04-30 Friatec Keramik Kunststoff Verfahren zur Herstellung einer hochvakuumdichten, aber spannungsarmen Fügestelle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901717A (en) * 1971-12-10 1975-08-26 Far Fab Assortiments Reunies Hard precious material
US4183746A (en) * 1975-12-24 1980-01-15 Johnson, Matthey & Co., Limited Cermets
US4234338A (en) * 1978-12-28 1980-11-18 The United States Of America As Represented By The United States Department Of Energy Thermal shock resistance ceramic insulator

Also Published As

Publication number Publication date
DE19502129C2 (de) 2003-03-20
DE19502129A1 (de) 1996-08-01
JPH08269592A (ja) 1996-10-15
EP0724021A1 (fr) 1996-07-31
DE59510995D1 (de) 2005-05-04
US5796019A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
EP0724021B1 (fr) Procédé de préparation d'un cermet électroconducteur
DE60221643T2 (de) Gesinterter presskörper aus titanpulver
DE3336516C2 (de) Auskleidung und Belegung für Hohl-, Flach- und Projektilladungen
DE2940290C2 (fr)
EP3468939B1 (fr) Zircone ceramique, corps cellulaire de celui-ci et procédé de fabrication de la ceramique en zircone
DE112012000947B4 (de) Verfahren zum Herstellen eines Elektrodenmaterials für einen Zündkerze
DE1805372A1 (de) Tantalpulver fuer gesinterte Kondensatoren
DE102017003444A1 (de) Thermistorelement und Herstellungsverfahren für ein solches
DE602004000821T2 (de) Oberflächenbehandeltes ultrafeines Metallpulver
EP1915765B1 (fr) Materiau a base de carbone-argent, et procede pour le produire
DE102016221300B4 (de) Auf Aluminium basierendes Kompositmaterial und Verfahren zu dessen Herstellung
DE4401749B4 (de) Sauerstoffkonzentrationssensor
DE2846888A1 (de) Keramikkondensator mit heterogener phase und verfahren zu seiner herstellung
DE2749215C2 (de) Verfahren zur Herstellung eines kupferhaltigen Eisenpulvers
DE69912890T2 (de) Keramischer Sinterkörper für Zündkerze, sein Herstellungsverfahren und Zündkerze
DE2549298C2 (de) Verfahren zur Herstellung einer gesinterten Silber-Cadmiumoxyd-Legierung
EP3657516B1 (fr) Pâtes de métaux précieux améliorées pour structures d'électrodes sérigraphiées
DE69918034T2 (de) Heizwiderstand für keramische Heizelemente, keramische Heizelemente und Verfahren zum Herstellen keramischer Heizelemente
EP0736217B1 (fr) Materiau fritte de contact, son procede de production et plots de contact en ce materiau
EP3427866A2 (fr) Procédé de fabrication d'un matériau résistant au fluage
DE3625463A1 (de) Dielektrische keramische zusammensetzung
DE4100105C2 (fr)
DE3206502C2 (fr)
DE2807602C2 (de) Pulvermischung für weichmagnetische Sinterkörper
DE2657434A1 (de) Gesinterter, elektrisch leitender gegenstand und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRIATEC AG

Owner name: W.C. HERAEUS GMBH & CO. KG

17Q First examination report despatched

Effective date: 20000418

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAD Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFNE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: W.C. HERAEUS GMBH & CO. KG

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: W.C. HERAEUS GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59510995

Country of ref document: DE

Date of ref document: 20050504

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: W.C. HERAEUS GMBH

Free format text: W.C. HERAEUS GMBH#HERAEUSSTRASSE 12 - 14#63450 HANAU (DE) -TRANSFER TO- W.C. HERAEUS GMBH#HERAEUSSTRASSE 12 - 14#63450 HANAU (DE)

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed

Effective date: 20060102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050330

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20111102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510995

Country of ref document: DE

Representative=s name: HANS-CHRISTIAN KUEHN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510995

Country of ref document: DE

Representative=s name: KUEHN, HANS-CHRISTIAN, DE

Effective date: 20111219

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510995

Country of ref document: DE

Representative=s name: KUEHN, HANS-CHRISTIAN, DE

Effective date: 20120123

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510995

Country of ref document: DE

Representative=s name: HANS-CHRISTIAN KUEHN, DE

Effective date: 20120123

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510995

Country of ref document: DE

Representative=s name: HANS-CHRISTIAN KUEHN, DE

Effective date: 20111219

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510995

Country of ref document: DE

Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG, DE

Free format text: FORMER OWNER: HERAEUS MATERIALS TECHNOLOGY GMBH & CO. KG, 63450 HANAU, DE

Effective date: 20120123

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510995

Country of ref document: DE

Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG, DE

Free format text: FORMER OWNER: W.C. HERAEUS GMBH, 63450 HANAU, DE

Effective date: 20111219

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510995

Country of ref document: DE

Owner name: HERAEUS PRECIOUS METALS GMBH & CO. KG, DE

Free format text: FORMER OWNER: W.C. HERAEUS GMBH, 63450 HANAU, DE

Effective date: 20111219

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510995

Country of ref document: DE

Owner name: HERAEUS PRECIOUS METALS GMBH & CO. KG, DE

Free format text: FORMER OWNER: HERAEUS MATERIALS TECHNOLOGY GMBH & CO. KG, 63450 HANAU, DE

Effective date: 20120123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140820

Year of fee payment: 20

Ref country code: DE

Payment date: 20140821

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510995

Country of ref document: DE

Representative=s name: KUEHN, HANS-CHRISTIAN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510995

Country of ref document: DE

Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG, DE

Free format text: FORMER OWNER: HERAEUS PRECIOUS METALS GMBH & CO. KG, 63450 HANAU, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59510995

Country of ref document: DE

Representative=s name: KUEHN, HANS-CHRISTIAN, DE

Effective date: 20150609

Ref country code: DE

Ref legal event code: R081

Ref document number: 59510995

Country of ref document: DE

Owner name: HERAEUS DEUTSCHLAND GMBH & CO. KG, DE

Free format text: FORMER OWNER: HERAEUS PRECIOUS METALS GMBH & CO. KG, 63450 HANAU, DE

Effective date: 20150609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59510995

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20150829