EP0716432A1 - Planare Induktivität - Google Patents

Planare Induktivität Download PDF

Info

Publication number
EP0716432A1
EP0716432A1 EP95203290A EP95203290A EP0716432A1 EP 0716432 A1 EP0716432 A1 EP 0716432A1 EP 95203290 A EP95203290 A EP 95203290A EP 95203290 A EP95203290 A EP 95203290A EP 0716432 A1 EP0716432 A1 EP 0716432A1
Authority
EP
European Patent Office
Prior art keywords
carrier
ferromagnetic
inductance
planar
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95203290A
Other languages
English (en)
French (fr)
Other versions
EP0716432B1 (de
Inventor
Ulrich c/o Philips Rittner
Heiner c/o Philips Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0716432A1 publication Critical patent/EP0716432A1/de
Application granted granted Critical
Publication of EP0716432B1 publication Critical patent/EP0716432B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/06Variable inductances or transformers of the signal type continuously variable, e.g. variometers by movement of core or part of core relative to the windings as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0046Printed inductances with a conductive path having a bridge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0086Printed inductances on semiconductor substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core

Definitions

  • the invention relates to a planar inductor with at least one essentially spiral coil applied to a flat carrier and with an essentially layered, ferromagnetic material arranged on this carrier.
  • EP-OS 310 396 discloses a planar inductance with spiral conductors which are used in a so-called sandwich construction between ferromagnetic layers with insulating layers arranged between them.
  • the spiral-shaped conductors form two coils of the same contour, which are aligned and close to each other. Furthermore, the two spiral coils are electrically connected to one another in such a way that currents flow in different directions through the individual coils.
  • the ferromagnetic layers have a planar extent which is greater than the sum of the areas of the two conductor coils. Such an arrangement is intended to prevent a reduction in the inductance when the individual parts are put together and to increase the inductance value per unit volume.
  • the inductors shown in this document are composed of numerous layers or cuboid insulating pieces or ferromagnetic components in a relatively complicated manner. On the one hand, this considerably increases the cost of production and, on the other hand, there is no possibility of varying the magnetic coupling during production, i.e. also not for a comparison.
  • the object of the invention is to design a planar inductor in such a way that its inductance value can be precisely adjusted or adjusted with simple means during manufacture and / or that the magnetic coupling of several coils or windings of an inductor can be set accordingly simply and precisely.
  • Planar inductors of the type according to the invention can advantageously be used in hybrid technology or multichip module technology, in which a plurality of electronic ones Components, which in turn can be integrated circuits, are arranged on a flat carrier, for example a circuit board.
  • This flat support is provided with a conductive layer, from which predetermined conductor structures have preferably been worked out by etching technology.
  • These (electrically conductive) conductor structures serve for the electrical connection of the components arranged on the carrier. They can also preferably be used to form planar inductors that are simple, precise and robust to manufacture.
  • a protective layer is finally applied in a so-called coating process, consisting of a curable covering compound through which the components and their connections are encased.
  • insulating material windows are then applied beforehand, e.g. glued on, which, like a frame, delimit the partial surfaces of the carrier equipped with components. The covering compound is then introduced into this insulating material window in the coating process.
  • an insulating material window is also arranged above the coil or coils. This can delimit the entire planar inductance, but only partially overlap it. Also the height of the insulating material window perpendicular to The surface of the carrier can be chosen differently; however, a height is preferably used for this, as is also used for covering the other components mentioned, so that simplification and standardization is achieved during production.
  • the inductance value or the coupling between several coils of the planar inductor can be set by the dimensions of the insulating window parallel to the surface of the carrier and by the positioning of the insulating material window over a more or less large portion of the total area of the carrier covered by the planar inductor.
  • the insulating material window is filled with ferromagnetic material in the coating process.
  • the same manufacturing steps and systems are used as for covering the components mentioned above, which greatly simplifies manufacturing. Largely the same masking compound is used; only a ferromagnetic admixture is added to increase the magnetic coupling or the inductance values.
  • the ferromagnetic material can thus be obtained in a very simple manner from the covering compound, which is also referred to as coating material, the mixing ratio of the ferromagnetic admixture to the coating material and the amount of material applied in the respective insulating material window being selectable for setting the coupling or inductances.
  • These parameters can preferably be determined in such a way that the size, shape and position of the insulating material window and the composition of the ferromagnetic material are predetermined for a specific planar inductance to be manufactured.
  • the exact setting to the desired values for the inductances or the coupling can then be made by metering the amount of the ferromagnetic material when it is applied to the carrier within the insulating window take place, possibly in the form of an adjustment during electrical measurement taking place during the application of the ferromagnetic material.
  • the manufacturing process is mechanically very easy to control through the insulating material window, ie very narrow tolerances can be maintained with little effort.
  • the inventive configuration of the planar inductance means that mechanical protection of the conductor structures, in particular of connecting wires, can be obtained with the ferromagnetic material, in particular when the coil (s) are completely covered. Since the ferromagnetic material is preferably non-conductive, adjacent electronic components for mechanical protection can also be covered in one work step in addition to the planar inductance. The influence of the ferromagnetic material on the conductor structures and their transmission properties must then be taken into account accordingly.
  • the reference symbol denotes a section from a flat carrier, as is preferably used in hybrid technology or multichip module technology.
  • Two flat, essentially spiral coils 2 and 3 are arranged on this flat support, which are preferably applied to the flat support in the form of a so-called printed conductor structure.
  • Bond wires 4 and 5 form connecting bridges between connection surfaces 6, 7 and 8, 9 and thus establish a conductive connection between the coil ends in the centers of the spirals and conductor structures 10 and 11 arranged outside the spirals.
  • On the flat carrier 1 - not shown in FIG. 1 - further components, including integrated circuits in the form of doped semiconductor bodies, are arranged, the electrical connections of which are made via conductor structures that correspond to those of the coils 2 or 3 or the conductor structures 10, 11 correspond and can be produced in the same production process.
  • An insulating material window 12 is applied to the flat carrier 1 - partially covering the coils 2 and 3 - and glued to the carrier 1.
  • the assembly of this insulating material window 12 can preferably be carried out in the assembly step of the other mentioned, not shown Components are included.
  • the part of the surface of the carrier 1 which is bordered by the insulating material window 12 is covered with a ferromagnetic material 13, a mixture of a covering compound (coating material) with ferromagnetic admixture, which can be introduced into the insulating material window in the liquid state and then hardens in the latter.
  • FIG. 2 shows the planar inductance on the flat carrier in a longitudinal section along the section line Z - Z. This illustration also shows the material thicknesses only schematically.
  • the ferromagnetic material 13 In the exemplary embodiment according to FIG. 2, only a part of the planar inductance is covered by the ferromagnetic material 13; in particular, the bond wires 4, 5 remain unprotected.
  • the dimensions of the insulating material window 12 it is advantageous for the dimensions of the insulating material window 12 to be such that, as far as possible, the entire planar inductor, including the associated bonding wires and connections, is surrounded and can be covered with ferromagnetic material.
  • FIG. 3 Such an arrangement is shown schematically in FIG. 3, for example, in top view, in which a modified shape with spiral coils nested one inside the other is also selected. In this case, a first coil 20 between connection areas A and B surrounds a second coil 21 between connection areas C and D.
  • Bonding wires 22, 23 connect the connection areas B and C or D to conductor structures 24 for connecting the inner coil connections of the planar inductance to outside, in Fig. 3 parts of a circuit arrangement not shown on the carrier 1.
  • the ferromagnetic material 13 then covers the entire planar inductance.
  • the arrangement of the coils 20 and 21 can be used for different functions or dimensions.
  • a coiled series connection of the coils 20, 21 or an oppositely coiled series connection of the coils 20, 21 can form the desired inductance. If the geometry of the planar inductors remains unchanged, this can therefore only have different dimensions with differently guided bond wires for different applications, which means that larger value ranges for the inductance values can be developed in cooperation with the ferromagnetic material.
  • the arrangement of the bond wires 22, 23 shown in FIG. 3 shows a further possibility of connecting the coils 20, 21, namely a transformer.
  • the connection areas A to D can preferably be connected separately from one another to external components, in particular to electronic switches, by means of which these different interconnections can optionally be carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Beschrieben wird eine planare Induktivität mit wenigstens einer auf einem flächigen Träger (1) aufgebrachten, im wesentlichen spiralförmigen Spule (23;20,21) und mit einem auf diesem Träger (1) angeordneten, im wesentlichen schichtförmigen, ferromagnetischen Material (13). Erfindungsgemäß wird dabei der Induktivitätswert mit einfachen Mitteln während der Fertigung präzise abgleichbar bzw. einstellbar und/oder wird die magnetische Kopplung mehrerer Spulen bzw. Wicklungen einer Induktivität entsprechend einfach und genau einstellbar dadurch, daß das ferromagnetische Material (13) innerhalb eines auf dem Träger (1) befestigten Isolierstoffensters (12) im Coatingverfahren auf dem Träger (1) aufgebracht ist. <IMAGE>

Description

  • Die Erfindung bezieht sich auf eine planare Induktivität mit wenigstens einer auf einem flächigen Träger aufgebrachten, im wesentlichen spiralförmigen Spule und mit einem auf diesem Träger angeordneten, im wesentlichen schichtförmigen, ferromagnetischen Material.
  • Aus der DE-OS 24 41 317 ist ein Verfahren zum Induktivitätsabgleich von Flachspulen bekannt, die in Schichttechnik hergestellt sind. Bei diesem Verfahren wird je nach der Abweichung des Induktivitäsistwertes vom Sollwert ein mehr oder minder großer Teil der Flachspule mit einer Paste, bestehend aus einem mit einem Bindemittel vermengten magnetisierbaren Pulver, bedeckt bzw. die Dicke der aufgetragenen Paste erhöht wird. Dabei wird zum Abgleich der Induktivität der Flachspule ein durch einen Bedeckungswinkel definierter Teil der Spulenoberfläche mit der Paste bedeckt. Der Bedeckungswinkel soll linear mit der Änderung der Induktivität verknüpft sein; die Schichtdicke der Paste weist jedoch einen nichtlinearen Einfluß auf die Änderung der Induktivität auf. Der durch das Bestreichen der Flachspule mit der Paste vorgenommene Abgleichvorgang für die Induktivität ist dabei als automatisierbar angegeben.
  • Aus der EP-OS 310 396 ist eine planare Induktivität mit spiralförmigen Leitern bekannt, die in sogenannter Sandwichbauweise zwischen ferromagnetischen Schichten mit dazwischen angeordneten Isolierschichten eingesetzt sind. Die spiralförmigen Leiter bilden zwei Spulen der gleichen Kontur, die fluchtend zueinander und dicht nebeneinander angeordnet sind. Ferner sind die beiden spiralförmigen Spulen derart elektrisch miteinander verbunden, daß Ströme unterschiedlicher Richtungen durch die einzelnen Spulen fließen. Weiterhin weisen die ferromagnetischen Schichten eine flächige Ausdehnung auf, die größer ist als die Summe der Flächen der beiden Leiterspulen. Durch eine solche Anordnung soll eine Verringerung der Induktivität bei der Zusammenfügung der einzelnen Teile verhindert und eine Vergrößerung des Induktivitätswertes je Volumeneinheit erzielt werden.
  • Die in dieser Druckschrift dargestellten Induktivitäten sind jedoch aus zahlreichen schicht- oder quaderförmigen Isolierstoffstücken oder ferromagnetischen Bauteilen in verhältnismäßig komplizierter Weise zusammengesetzt. Dies verteuert einerseits die Herstellung beträchtlich und gibt andererseits keine Möglichkeit zu einer Variation der magnetischen Kopplung während der Fertigung, d.h. auch nicht für einen Abgleich.
  • Die Erfindung hat die Aufgabe, eine planare Induktivität derart auszugestalten, daß ihr Induktivitätswert mit einfachen Mitteln während der Fertigung präzise abgleichbar bzw. einstellbar ist und/oder daß die magnetische Kopplung mehrerer Spulen bzw. Wicklungen einer Induktivität entsprechend einfach und genau eingestellt werden kann.
  • Diese Aufgabe wird bei einer planaren Induktivität der gattungsgemäßen Art dadurch gelöst, daß das ferromagnetische Material innerhalb eines auf dem Träger befestigten Isolierstoffensters im Coatingverfahren auf dem Träger aufgebracht ist.
  • Planare Induktivitäten der erfindungsgemäßen Art sind vorteilhaft in der Hybridtechnik oder der Multichip-Modultechnik einsetzbar, bei der eine Mehrzahl von elektronischen Bauelementen, die ihrerseits integrierte Schaltkreise sein können, auf einem flächigen Träger, beispielsweise einer Platine, angordnet sind. Dieser flächige Träger ist mit einer leitenden Schicht versehen, aus der vorzugsweise durch Ätztechnik vorbestimmte Leiterstrukturen herausgearbeitet worden sind. Diese (elektrisch leitenden) Leiterstrukturen dienen der elektrischen Verbindung der auf dem Träger angeordneten Baulemente. Aus ihnen können darüber hinaus vorzugsweise auch planare Induktivitäten geformt werden, die einfach, präzise und robust herstellbar sind. Zum mechanischen Schutz derartiger, flächiger, mit Bauelementen bestückter Träger wird abschließend in einem sogenannten Coatingverfahren eine Schutzschicht aufgebracht, bestehend aus einer aushärtbaren Abdeckmasse, durch die die Bauelemente und ihre Anschlüsse eingehüllt werden.
  • Werden bei bestimmter Ausbildung einer derart hergestellten elektronischen Schaltungsanordnung nur einzelne Bereiche des Trägers mit Bauelementen bestückt, wohingegen andere Bereiche des Trägers allenfalls Leiterstrukturen (Leiterbahnen) tragen, ist es vorteilhaft, nur die mit Bauelementen bestückten Bereiche des Trägers mit einer Abdeckmasse zu überziehen. Für ein definiertes Aufbringen dieser Abdeckmasse werden dann zuvor auf den Träger Isolierstoffenster aufgebracht, z.B. aufgeklebt, die wie ein Rahmen die mit Bauelementen bestückten Teilflächen des Trägers umgrenzen. In diese Isolierstoffenster wird dann im Coatingverfahren die Abdeckmasse eingebracht.
  • Bei der erfindungsgemäßen planaren Induktivität wird über der Spule bzw. den Spulen ebenfalls ein Isolierstoffenster angeordnet. Dieses kann die gesamte planare Induktivität umgrenzen, jedoch auch diese nur teilweise überlappen. Auch die Höhe des Isolierstoffensters senkrecht zur Oberfläche des Trägers kann unterschiedlich gewählt werden; vorzugsweise wird hierfür jedoch eine Höhe verwendet, wie sie auch für die Abdeckung der übrigen, genannten Bauelemente verwendet wird, so daß eine Vereinfachung und Vereinheitlichung bei der Fertigung erzielt wird. Durch die Abmessungen des Isolierfensters parallel zur Oberfläche des Trägers und durch die Positionierung des Isolierstoffensters über einem mehr oder weniger großen Anteil der insgesamt von der planaren Induktivität bedeckten Fläche des Trägers kann der Induktivitätswert bzw. die Kopplung zwischen mehreren Spulen der planaren Induktivität eingestellt werden. Das Isolierstoffenster wird im Coatingverfahren mit ferromagnetischem Material aufgefüllt. Dabei werden prinzipiell dieselben Fertigungsschritte und -anlagen wie bei der Abdeckung der im vorstehenden genannten Bauteile verwendet, wodurch die Fertigung sehr vereinfacht wird. Auch wird weitgehend dieselbe Abdeckmasse verwendet; lediglich wird ihr zur Erhöhung der magnetischen Kopplung bzw. der Induktivitätswerte eine ferromagnetische Beimengung hinzugefügt. Somit läßt sich das ferromagnetische Material in sehr einfacher Weise aus der Abdeckmasse, die auch als Coatingmaterial bezeichnet wird, gewinnen, wobei zur Einstellung der Kopplung bzw. Induktivitäten das Mischungsverhältnis der ferromagnetischen Beimengung zum Coatingmaterial und die Menge des im jeweiligen Isolierstoffenster aufgebrachten Materials wählbar sind. Vorzugsweise können diese Parameter derart bestimmt werden, daß für eine bestimmte zu fertigende planare Induktivität Größe, Form und Lage des Isolierstoffensters sowie die Zusammensetzung des ferromagnetischen Materials fest vorgegeben werden. Durch Dosierung der Menge des ferromagnetischen Materials beim Aufbringen auf den Träger innerhalb des Isolierstofffensters kann dann die genaue Einstellung auf die gewünschten Werte für die Induktivitäten bzw. die Kopplung erfolgen, ggf. in Form eines Abgleichs bei während des Aufbringens des ferromagnetischen Materials erfolgender elektrischer Messung. Durch das Isolierstoffenster wird dabei der Fertigungsvorgang mechanisch sehr einfach beherrschbar, d.h. mit geringem Aufwand werden sehr enge Toleranzen einhaltbar.
  • Die Unteransprüche zeigen vorteilhafte Ausgestaltungen der erfindungsgemäßen planaren Induktivität.
  • Durch die erfindungsgemäße Ausgestaltung der planaren Induktivität kann - insbesondere bei vollständiger Abdeckung der Spule(n) - mit dem ferromagnetischen Material zugleich ein mechanischer Schutz der Leiterstrukturen, insbesondere von Anschlußdrähten, erhalten werden. Da das ferromagnetische Material bevorzugt nichtleitend ist, können ggf. damit in einem Arbeitsgang außer der planaren Induktivität auch benachbarte elektronische Bauelemente zum mechanischen Schutz mit abgedeckt werden. Der Einfluß des ferromagnetischen Materials auf die Leiterstrukturen und deren Übertragungseigenschaften muß dann entsprechend berücksichtigt werden.
  • Mit den derzeit bekannten Abdeckmassen und ferromagnetischen Beimengungen ist bei einer planaren Induktivität der erfindungsgemäßen Art außer einer Einstellung und insbesondere Erhöhung der magnetischen Kopplung bzw. der Induktivitätswerte bei unveränderter kompakter Leiterstruktur auch eine Steigerung der Güte der Induktivitäten, d.h. der Verhältnisse der Induktivitätswerte zu den ohmschen Widerstandswerten der Leiterstrukturen, erzielbar. Bei einem Einsatz z.B. in frequenzselektiven Schaltungsanordnungen für die Nachrichtentechnik kann dies zu einer Verbesserung des Übertragungsverhaltens der Schaltungsanordnung beitragen.
  • In der Zeichnung, in der im übrigen übereinstimmende Elemente mit denselben Bezugszeichen versehen sind, zeigen
    • Fig. 1 ein erstes Ausführungsbeispiel einer erfindungsgemäßen planaren Induktivität in der Draufsicht,
    • Fig. 2 einen Schnitt durch die planare Induktivität nach Fig. 1 und
    • Fig. 3 ein zweites Ausführungsbeispiel einer erfindungsgemäßen planaren Induktivität.
  • In der schematischen Darstellung nach Fig. 1 ist mit dem Bezugszeichen ein Ausschnitt aus einem flächigen Träger bezeichnet, wie er bevorzugt in der Hybridtechnik oder Multichip-Modultechnik verwendet wird. Auf diesem flächigen Träger sind zwei flächige, im wesentlichen spiralförmige Spulen 2 und 3 angeordnet, die vorzugsweise in Form einer sogenannten gedruckten Leiterstruktur auf den flächigen Träger aufgebracht sind. Bonddrähte 4 bzw. 5 bilden Anschlußbrücken zwischen Anschlußflächen 6, 7 bzw. 8, 9 und stellen so eine leitende Verbindung zwischen den Spulenenden in den Zentren der Spiralen und außerhalb der Spiralen angeordneten Leiterstrukturen 10 bzw. 11 her. Auf dem flächigen Träger 1 sind - in Fig. 1 nicht dargestellt - weitere Bauelemente, auch integrierte Schaltungen in Form von dotierten Halbleiterkörpern, angeordnet, deren elektrische Anschlüsse über Leiterstrukturen hergestellt werden, die denjenigen der Spulen 2 bzw. 3 oder den Leiterstrukturen 10, 11 entsprechen und im selben Fertigungsgang herstellbar sind.
  • Auf dem flächigen Träger 1 ist - die Spulen 2 und 3 teilweise überdeckend - ein Isolierstoffenster 12 aufgebracht und mit dem Träger 1 verklebt. Die Montage dieses Isolierstoffensters 12 kann bevorzugt in den Arbeitsschritt der Montage der genannten übrigen, nicht dargestellten Bauelemente einbezogen werden. Der vom Isolierstoffenster 12 berandete Teil der Oberfläche des Trägers 1 ist mit einem ferromagnetischen Material 13 bedeckt, einem Gemisch aus einer Abdeckmasse (Coatingmaterial) mit ferromagnetischer Beimengung, welches in flüssigem Zustand in das Isolierstoffenster einbringbar ist und dann in diesem aushärtet.
  • Fig. 2 zeigt die planare Induktivität auf dem flächigen Träger im Längsschnitt entlang der Schnittlinie Z - Z. Auch diese Darstellung gibt insbesondere die Materialstärken nur schematisch wieder.
  • Bei dem Ausführungsbeispiel gemäß Fig. 2 wird vom ferromagnetischen Material 13 nur ein Teil der planaren Induktivität überdeckt; insbesondere bleiben die Bonddrähte 4, 5 ungeschützt. Zu ihrem mechanischen Schutz ist es vorteilhaft, daß Isolierstoffenster 12 in seinen Abmessungen derart auszubilden, daß möglichst die gesamte planare Induktivität einschließlich der zugehörigen Bonddrähte und Anschlüsse umgeben ist und mit ferromagnetischem Material abgedeckt werden kann. Eine solche Anordnung zeigt beispielsweise die Fig. 3 schematisch in Draufsicht, in der ferner eine veränderte Form mit ineinander verschachtelten spiralförmigen Spulen gewählt ist. Dabei umgibt eine erste Spule 20 zwischen Anschlußflächen A und B eine zweite Spule 21 zwischen Anschlußflächen C und D. Bonddrähte 22, 23 verbinden die Anschlußflächen B und C bzw. D mit Leiterstrukturen 24 zum Anschluß der inneren Spulenanschlüsse der planaren Induktivität an außerhalb gelegene, in Fig. 3 nicht dargestellte Teile einer auf dem Träger 1 befindlichen Schaltungsanordnung. Das ferromagnetische Material 13 überdeckt dann die gesamte planare Induktivität.
  • Insbesondere kann beim Ausführungsbeispiel gemäß Fig. 3 die Anordnung der Spulen 20 und 21 für unterschiedliche Funktionen bzw. Dimensionierungen herangezogen werden. Durch entsprechende Veränderung der Bonddrähte 22, 23 können dabei wahlweise die erste Spule 20 bzw. die zweite Spule 21 allein, eine gleichsinnig gewendelte Reihenschaltung der Spulen 20, 21 oder eine gegensinnig gewendelte Reihenschaltung der Spulen 20, 21 die gewünschte Induktivität bilden. Diese kann daher bei unveränderter Geometrie der planaren Induktivitäten nur mit unterschiedlich geführten Bonddrähten für unterschiedliche Anwendungen verschiedene Dimensionierungen erfahren, wodurch im Zusammenwirken mit dem ferromagnetischen Material größere Wertebereiche für die Induktivitätswerte erschlossen werden können. Die in Fig. 3 dargestellte Anordnung der Bonddrähte 22, 23 zeigt eine weitere Möglichkeit der Beschaltung der Spulen 20, 21, nämlich einen Übertrager. Vorzugsweise können die Anschlußflächen A bis D getrennt voneinander mit externen Bauelementen verbunden sein, insbesondere mit elektronischen Schaltern, durch die diese unterschiedlichen Zusammenschaltungen wahlweise vorgenommen werden können.
  • Die in den Figuren dargestellten Beispiele können in vielerlei Hinsicht abgewandelt werden. So können auf der Rückseite des Trägers 1 weitere Leiterstrukturen oder Bauelemente angeordnet werden. Es können auch flächige Träger zum Einsatz kommen, die einen mehrschichtigen Aufbau aus wechselweise einer Leiterstruktur und einer Isolierschicht aufweisen. Die Flächen des Trägers 1 außerhalb der Isolierstoffenster 12 können mit Abdeckmasse bzw. Coatingmaterial bedeckt werden, welches keine ferromagnetische Beimengung enthält. In jedem Fall sind selbst komplizierte Schaltungsanordnungen mit einfachen Fertigungsschritten herstellbar. Dabei werden zusätzlich zu den für die Hybridtechnik bzw. die Multichip-Modultechnik bereits eingesetzten Fertigungsanordnungen keine weiteren Maschinen, Geräte oder Vorrichtungen benötigt, da Herstellung und Abgleich der erfindungsgemäßen planaren Induktivitäten unmittelbar innerhalb der üblichen Fertigungsschritte für die Hybridtechnik bzw. die Multichip-Modultechnik erfolgen können.

Claims (5)

  1. Planare Induktivität mit wenigstens einer auf einem flächigen Träger (1) aufgebrachten, im wesentlichen spiralförmigen Spule (23;20,21) und mit einem auf diesem Träger (1) angeordneten, im wesentlichen schichtförmigen, ferromagnetischen Material (13),
    dadurch gekennzeichnet, daß das ferromagnetische Material (13) innerhalb eines auf dem Träger (1) befestigten Isolierstofffensters (12) im Coatingverfahren auf dem Träger (1) aufgebracht ist.
  2. Planare Induktivität nach Anspruch 1,
    dadurch gekennzeichnet, daß das Isolierstoffenster (12) mit dem Träger (1) verklebt ist.
  3. Planare Induktivität nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß das ferromagnetische Material (13) im wesentlichen aus einem mit einer ferromagnetischen Beimengung versetzten Coatingmaterial besteht.
  4. Planare Induktivität nach Anspruch 3,
    dadurch gekennzeichnet, daß die ferromagnetische Beimengung im wesentlichen aus einem Ferritpulver besteht.
  5. Planare Induktivität nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die Größe des (der) Induktivitätswerte(s) der Spule(n) (2,3; 20,21) und/oder die Kopplung zwischen den Spulen (2,3; 20,21) durch die Ausrichtung und/oder die Kontur des Isolierstoffensters (12) und/oder durch die Schichthöhe und/oder die Zusammensetzung des ferromagnetischen Materials (13) bestimmt ist.
EP95203290A 1994-12-02 1995-11-29 Planare Induktivität Expired - Lifetime EP0716432B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4442994A DE4442994A1 (de) 1994-12-02 1994-12-02 Planare Induktivität
DE4442994 1994-12-02

Publications (2)

Publication Number Publication Date
EP0716432A1 true EP0716432A1 (de) 1996-06-12
EP0716432B1 EP0716432B1 (de) 2000-02-23

Family

ID=6534783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95203290A Expired - Lifetime EP0716432B1 (de) 1994-12-02 1995-11-29 Planare Induktivität

Country Status (4)

Country Link
US (2) US6600403B1 (de)
EP (1) EP0716432B1 (de)
JP (1) JP3548643B2 (de)
DE (2) DE4442994A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639650A1 (de) * 1996-09-26 1998-04-02 Sican Gmbh Integrierte Schaltung mit einem induktiven Bauelement und Verfahren zur Herstellung hierzu
DE19730694A1 (de) * 1997-07-17 1999-01-21 Meto International Gmbh Sicherungselement für die elektronische Artikelsicherung
DE19854234C1 (de) * 1998-11-24 2000-06-21 Bosch Gmbh Robert Induktives Bauelement mit planarer Leitungsstruktur und Verfahren zur Herstellung desselben
JP4789348B2 (ja) * 2001-05-31 2011-10-12 リンテック株式会社 面状コイル部品、面状コイル部品の特性調整方法、idタグ、及び、idタグの共振周波数の調整方法
WO2003001334A2 (en) * 2001-06-22 2003-01-03 Wonderware Corporation Remotely monitoring / diagnosing distributed components of a supervisory process control and manufacturing information application from a central location
KR100469248B1 (ko) * 2001-12-24 2005-02-02 엘지전자 주식회사 무선통신 모듈용 마이크로 인덕터
US20050077992A1 (en) * 2002-09-20 2005-04-14 Gopal Raghavan Symmetric planar inductor
DE10318350C5 (de) * 2003-04-23 2010-08-19 Werner Turck Gmbh & Co. Kg Induktiver Näherungsschalter
JP4802697B2 (ja) * 2005-12-16 2011-10-26 カシオ計算機株式会社 半導体装置
JP5658429B2 (ja) * 2008-07-03 2015-01-28 ルネサスエレクトロニクス株式会社 回路装置
NL1036082C (nl) * 2008-10-16 2010-04-19 Cooeperatieve Vereniging Easymeasure U A Werkwijze en inrichting voor een regelbare spoel en/of condensator en/of kring en/of transformator.
JP2010160142A (ja) * 2008-12-09 2010-07-22 Renesas Electronics Corp 信号送受信方法、半導体装置の製造方法、半導体装置、およびテスタ装置
US20110109415A1 (en) * 2009-11-12 2011-05-12 Jenq-Gong Duh Inductor structure
US9793352B1 (en) 2011-06-02 2017-10-17 Ixys Corporation IGBT assembly having saturable inductor for soft landing a diode recovery current
US8717136B2 (en) 2012-01-10 2014-05-06 International Business Machines Corporation Inductor with laminated yoke
US9064628B2 (en) 2012-05-22 2015-06-23 International Business Machines Corporation Inductor with stacked conductors
JP6503264B2 (ja) * 2015-08-27 2019-04-17 ルネサスエレクトロニクス株式会社 半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798059A (en) * 1970-04-20 1974-03-19 Rca Corp Thick film inductor with ferromagnetic core
DE2441317A1 (de) 1974-08-29 1976-03-11 Siemens Ag Verfahren zum induktivitaetsabgleich von flachspulen
JPS5696811A (en) * 1980-01-07 1981-08-05 Hitachi Ltd Film-shaped coil and manufacture thereof
GB2079066A (en) * 1980-06-23 1982-01-13 Hull Corp Trimmable electrical inductors
JPS61100910A (ja) * 1984-10-23 1986-05-19 Hiroe Yamada 永久磁石の製造方法
EP0310396A1 (de) 1987-09-29 1989-04-05 Kabushiki Kaisha Toshiba Planarspule

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE132226C (de) *
DE1564910A1 (de) * 1966-09-30 1969-12-18 Telefunken Patent Induktives Bauelement fuer die Nachrichtentechnik mit geschlossenem ferromagnetischem Kern,insbesondere fuer Hochfrequenz
US3614554A (en) * 1968-10-24 1971-10-19 Texas Instruments Inc Miniaturized thin film inductors for use in integrated circuits
JPS4863268A (de) * 1971-12-09 1973-09-03
US3881244A (en) * 1972-06-02 1975-05-06 Texas Instruments Inc Method of making a solid state inductor
US3858138A (en) * 1973-03-05 1974-12-31 Rca Corp Tuneable thin film inductor
US3861244A (en) * 1973-05-16 1975-01-21 Warren Earl Macdonald Torque multiplier wrench
JPS5846417U (ja) * 1981-09-24 1983-03-29 株式会社村田製作所 インダクタ
JPS59175108A (ja) * 1983-03-24 1984-10-03 Omron Tateisi Electronics Co 扁平コイル
JP2577583B2 (ja) * 1987-11-11 1997-02-05 ティーディーケイ株式会社 積層応用部品
JPH01167011U (de) * 1988-05-13 1989-11-22
JPH03261115A (ja) * 1990-03-12 1991-11-21 Toshiba Lighting & Technol Corp インダクタンス素子
JP3441082B2 (ja) * 1990-05-31 2003-08-25 株式会社東芝 平面型磁気素子
JPH0479305A (ja) * 1990-07-23 1992-03-12 Nec Corp インダクタンス素子
JPH0484404A (ja) * 1990-07-27 1992-03-17 Mitsubishi Electric Corp 集積回路用インダクタおよびトランス
GB2252208B (en) * 1991-01-24 1995-05-03 Burr Brown Corp Hybrid integrated circuit planar transformer
US5349743A (en) * 1991-05-02 1994-09-27 At&T Bell Laboratories Method of making a multilayer monolithic magnet component
JPH0567526A (ja) * 1991-09-06 1993-03-19 Tdk Corp 薄膜インダクタ
US6118351A (en) * 1997-06-10 2000-09-12 Lucent Technologies Inc. Micromagnetic device for power processing applications and method of manufacture therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798059A (en) * 1970-04-20 1974-03-19 Rca Corp Thick film inductor with ferromagnetic core
DE2441317A1 (de) 1974-08-29 1976-03-11 Siemens Ag Verfahren zum induktivitaetsabgleich von flachspulen
JPS5696811A (en) * 1980-01-07 1981-08-05 Hitachi Ltd Film-shaped coil and manufacture thereof
GB2079066A (en) * 1980-06-23 1982-01-13 Hull Corp Trimmable electrical inductors
JPS61100910A (ja) * 1984-10-23 1986-05-19 Hiroe Yamada 永久磁石の製造方法
EP0310396A1 (de) 1987-09-29 1989-04-05 Kabushiki Kaisha Toshiba Planarspule

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 005, no. 167 (E - 079) 24 October 1981 (1981-10-24) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 279 (E - 439) 20 September 1986 (1986-09-20) *

Also Published As

Publication number Publication date
JP3548643B2 (ja) 2004-07-28
DE59507840D1 (de) 2000-03-30
US6600403B1 (en) 2003-07-29
US20040004525A1 (en) 2004-01-08
EP0716432B1 (de) 2000-02-23
US6722017B2 (en) 2004-04-20
JPH08222437A (ja) 1996-08-30
DE4442994A1 (de) 1996-06-05

Similar Documents

Publication Publication Date Title
EP0716432B1 (de) Planare Induktivität
DE2825854C2 (de)
DE2118430A1 (de) Dickschicht Induktor mit feitomag netischem Kern
DE10121337A1 (de) Magnetischer Dünnfilm, diesen enthaltende magnetische Komponente, Verfahren zu ihrer Herstellung und Energiewandler (Umformer)
DE69936827T2 (de) Baugruppe und verfahren zur herstellung
DE10019461A1 (de) Entstörfilter
DE3145585C2 (de)
DE19724473A1 (de) Entstörfilteranordnung für Stromrichter und Verfahren zu ihrer Herstellung
WO1998056016A1 (de) Induktives bauelement
DE3144026A1 (de) &#34;transformator&#34;
DE2915240A1 (de) Gedruckte schaltung
WO2017215880A1 (de) Induktives bauelement, stromkompensierte drossel und verfahren zum herstellen eines induktiven bauelementes
EP0522475A1 (de) Induktives Bauelement und Verfahren zu seiner Herstellung
DE10117291B4 (de) Variabler Induktor
DE69815473T2 (de) Planare wicklungsstruktur und flaches magnetisches bauteil mit reduzierten abmessungen und verbesserten thermischen eigenschaften
DE69729127T2 (de) Induktives bauelement und verfahren zur herstellung eines solchen bauelements
DE19645034C2 (de) Ebene elektrische Schaltung und Verfahren zur Herstellung derselben
DE2917388C2 (de)
WO1997000526A1 (de) Induktives bauelement
DE3045585A1 (de) Trimmbare elektrische induktivitaetsspulen und verfahren zu ihrer herstellung
DE60219742T2 (de) Abschirmvorrichtung für Rogowski-Strommessanordnung
DE2549670A1 (de) Duennfilmtransformator
DE2514011C2 (de) Gehäuse für ein Halbleiterelement
EP1085537A2 (de) Planartransformator und Verfahren zur Herstellung seiner Wicklung sowie eine kompakte elektrische Vorrichtung mit einem solchen Planartransformator
DE10062400C2 (de) Flexible Induktive Bauelemente für Leiterfolien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19961212

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990203

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59507840

Country of ref document: DE

Date of ref document: 20000330

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000330

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20020917

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091126

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091125

Year of fee payment: 15

Ref country code: FR

Payment date: 20091123

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59507840

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 59507840

Country of ref document: DE

Effective date: 20110531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101129