EP0710301B1 - Spinnvorrichtung und steuer- sowie regeleinrichtung für die spinnvorrichtung - Google Patents

Spinnvorrichtung und steuer- sowie regeleinrichtung für die spinnvorrichtung Download PDF

Info

Publication number
EP0710301B1
EP0710301B1 EP94918737A EP94918737A EP0710301B1 EP 0710301 B1 EP0710301 B1 EP 0710301B1 EP 94918737 A EP94918737 A EP 94918737A EP 94918737 A EP94918737 A EP 94918737A EP 0710301 B1 EP0710301 B1 EP 0710301B1
Authority
EP
European Patent Office
Prior art keywords
thread
rotationally symmetrical
bobbin
spindle
spinning apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94918737A
Other languages
English (en)
French (fr)
Other versions
EP0710301A1 (de
Inventor
Karl Boden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0710301A1 publication Critical patent/EP0710301A1/de
Application granted granted Critical
Publication of EP0710301B1 publication Critical patent/EP0710301B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H7/00Spinning or twisting arrangements
    • D01H7/02Spinning or twisting arrangements for imparting permanent twist
    • D01H7/66Cap arrangements
    • D01H7/68Cap constructions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H1/00Spinning or twisting machines in which the product is wound-up continuously
    • D01H1/14Details
    • D01H1/42Guards or protectors for yarns or threads, e.g. separator plates, anti-ballooning devices
    • D01H1/427Anti-ballooning cylinders, e.g. for two-for-one twist machine

Definitions

  • the invention relates to a spinning device with a spool attached to a rotating spindle, as specified in the preamble of claim 1 is.
  • the invention further relates to a control and a control device for such a spinning device.
  • Spinning devices of the type mentioned are known from DE-OS 41 03 369, which shows the closest state of the art.
  • the thread is guided inside the spinning or twisting ring is so that it doubles as a balloon restrictor serves.
  • the lower area Forehead provided an eyelet-like thread guide, the can be an inwardly projecting component.
  • the spinning or twisting ring moves to a larger axial Length of the coil extends and to stabilize it via two axially spaced magnetic bearings is kept floating, with both Magnetic bearings are radially active magnetic bearings.
  • DE-A-24 20 825 generally known magnetic bearings of rotors
  • the object of the invention also relates to a control device and a regulating device, that allow to take advantage of Optimal use of the spinning device according to the invention.
  • the radially active, axially passive magnetic bearing that rotationally symmetrical element on its lower part includes, for example, a magnetic bearing, the at least partially made of ferromagnetic material existing element in its axial direction by means of a axially magnetized permanent magnets surrounding it holds floating and in the radial direction by means of electromagnetic ring arranged around it Medium stabilized.
  • electromagnetic means can be excited by means of an electronic control device, which is connected to sensors, the radial deviations of the rotationally symmetrical element.
  • the radially stable, axially unstable magnetic bearing can on the other hand, from two ring-shaped, concentric to the axis the coil arranged permanent magnets consist of which one is attached to the collar and thus with rotates with the element and the other, opposite the first, is firmly attached from the outside.
  • the rotationally symmetrical element is thus axial Directionally suspended in the axially unstable magnetic bearing.
  • the interplay gives it its axial stability of the two magnetic bearings.
  • the sensors for detecting the axial deviations of the rotationally symmetrical element serve in connection with the downstream electronic device Measurement of thread tension.
  • the collar at the top of the rotationally symmetrical Element serves on the one hand to attach the upper one Magnetic bearing, but also leads to one Calming the air circulation inside the element, which has an energy-saving effect.
  • the energy saving effect is even more pronounced with one very advantageous embodiment of the spinning device, the one facing the incoming thread Front of the rotationally symmetrical element through the collar is closed except for the recess.
  • the centrally arranged thread guide through the central one Cutout formed and therefore rotates with the element With.
  • the friction of the thread on the thread guide such as it occurs with a fixed thread guide, and the not only negatively affect the rewinding process, but also on the process of spinning (it arises disruptive torque on the thread), does not apply this version of the element according to the invention. It remains only that from the longitudinal movement of the thread resulting friction.
  • the twist of the thread resulting from the winding now plants itself unadulterated in the spinning zone away. This results in a high yarn tenacity in the spinning zone with a low thread tension level, higher Yarn stretch, less hairiness and finally also lower thread break counts.
  • this is rotationally symmetrical element, tapering upwards, conical.
  • the aim is to To include the spindle with the smallest possible distance. Of the achieved smaller, mean diameter of the Element acts due to the lower moment of inertia energy saving.
  • a very advantageous embodiment of the spinning device is designed according to claim 4 such that the axial relative movement between rotationally symmetrical Element and spindle is made so that the spindle when winding the yarn into the rotationally symmetrical Element is inserted.
  • the winding process starts at the bottom Part of the coil, and element and coil move in such a way that the winding process continues upwards.
  • the growing coil is outside of the rotationally symmetrical element, which has the consequence that the aerodynamic losses increase with length and the diameter of the coil increases significantly.
  • the protective tube is on the end face facing the incoming thread with is provided with an inward collar to which the radially stable, axially unstable magnetic bearing is attached is.
  • the air gap between rotationally symmetrical Element and protective tube a width of no more than 2 - 10 mm.
  • the thread Since the thread is on the inside of the rotationally symmetrical element and at the same time on the Inner edge of the central recess acting as a thread guide is present, has an embodiment as Proven to be useful for recording the inside of the thread guided between the Thread guides extending, on the inner wall of the Element arranged tube is provided.
  • This Embodiment allows the yarn end to be sucked through the tube to facilitate the piecing process. It goes without saying that the rotationally symmetrical Element that additionally has the tube, is to be balanced.
  • Thread guide which leads the thread to the bobbin, firmly on Element arranged and either only shows the element or just the coil of a drive, so it will other part pulled along when threading the thread and thus also brought to rotation.
  • the piecing phase occurs an additional, undesirable Traction on the thread.
  • An embodiment can be used to avoid this thread load serve, in which the most rotationally symmetrical Element arranged and leading the thread to the bobbin Thread guide as the circumferential on the inner circumference of the element Runner is trained.
  • This embodiment is particularly suitable for measuring the thread tension by means of the sensors and the downstream electronic device.
  • a relative movement between Runner and rotationally symmetrical element occurs with this version only during the piecing phase. Because of its low inertia, the runner becomes the Follow rotation of the driven part very quickly but at the same rotational speed two parts relative to the rotationally symmetrical element don't move anymore. The situation after the piecing phase is thus the same as that of a fixed element Thread guide, so that during spinning no difference to the embodiment of the element results with a fixed thread guide.
  • the longitudinal extent of the rotationally symmetrical element allows this with an electric motor Drive. Its sole use - and not also the drive of the spindle - is included to the extent that the spindle is advantageous because of its smaller scope and weight a lower moment of inertia has as the rotationally symmetrical element, so that the thread tension in the piecing phase is lower is than with the sole drive of the spindle.
  • the control program contains the sensors Measurement of the thread tension gained knowledge of the usual during piecing and during the spinning phase (Here, for example, due to the changing torque the bobbin) changing thread tension, the by changing the drive torque accordingly Spindle and / or rotationally symmetrical element low can be held.
  • the control device is expediently the same as the control device used in a spinning device with magnetically mounted spindle, in which both the spindle as well as the element an electromotive Have drive.
  • an electronic device is provided for Stabilization and, if necessary, change the thread tension Measuring signals from the sensors for measuring the thread tension as a reference variable and accordingly the drive torques of spindle and / or rotationally symmetrical Element changed.
  • Embodiments of the spinning device according to the invention are shown schematically in the drawing and explained in more detail below.
  • the pot (or the rotationally symmetrical element) 3 Floating magnetically supported without drive:
  • the lower one, comprising the rotationally symmetrical element, radially stable, axially unstable magnetic bearings 9 consists of rings arranged around the element electromagnetic means. These are by means of a electronic control device (not in the drawing shown) excitable, which are connected to sensors, the radial deviations of the rotationally symmetrical Capture element.
  • the rotationally symmetrical element consists in its lower part 10 of ferromagnetic Material.
  • the bearing stator unit is on the Pot bank 11 attached. This magnetic bearing corresponds the storage described in DE-PS 24 20 825.
  • Foot bearing 7 or pot bench 11 (and thus the one with the pot bench firmly connected parts) are in the vertical direction movable.
  • the upper magnetic bearing consists of the concentric Combination of an annular, on the collar of the pot 3 attached permanent magnet 12, a fixed, also annular permanent magnets 13 and one Damping element 14 made of non-ferromagnetic, electrical good conductive material, which works on the principle of Eddy current damping radial movements of the pot end dampens.
  • Damping element 14 is in the air gap between the preferably magnetized in the axial direction Magnets 12 and 13 arranged and fixed with the latter connected. Both (permanent magnet 13 and damping element 14) are about one - not in the drawing shown - mechanical connection with the lower Magnetic bearing 9 or the pot bank 11 connected.
  • the so-called fuse 15 is used as the starting material of the spinning process from drafting system 16 with constant delivery speed to the spinning zone 17 transported.
  • the spun material e.g. cotton
  • the fuse have been prepared.
  • this causes the rotating Pot 3 exerted on the yarn 5 (indicated by the arrow ) Torque the desired twisting of the fibers to a solid yarn 5.
  • This yarn is made with the the pot with rotating thread guide 6 on the Axis of rotation guided and moves in the interior of the Pot to the deflection eyelet 4 (thread guide 4).
  • the pot 3 is driven by thread forces which from the thread between the bobbin 2 and thread guide 4 the pot will be transferred.
  • the speed of the pot sets itself automatically relative to the speed of the coil and is smaller than due to the yarn transport the speed of the coil or spindle. The speed difference increases with increasing delivery speed and decreases with increasing coil diameter.
  • the yarn 5 is controlled on the bobbin by axial Relative movement between the coil and pot stored in layers. This movement can be done either axially Move the foot bearing 7 with the pot 3 stationary or by moving the pot bench 11 axially stationary foot rest 7. Also an overlay of both Transport movements are possible.
  • the first variant is preferred because here the thread length between the co-rotating thread guide 6 and the fixed drafting system 16 remains constant. The other two Variants this thread length changes periodically what unwanted periodic fluctuations in the quality of the thread has the consequence.
  • FIG 2 shows an embodiment of the Spinning device, which is opposite to that in FIG represented only by the additional Protective tube 18 differs.
  • the protective tube 18 is closed, the pot outside surrounding housing designed. In addition to the Protective function a reduction in noise level and Air friction on the rotating pot. It can also be found in a variant not shown in the drawing Inclusion of emergency bearings for the Topt 3 can be used.
  • This variant allows the suction of the End of yarn through the tube 19 to facilitate Piecing process.
  • the collar at the top of element 3 is up directed and forms the top with the centrally arranged thread guide 6.
  • the execution of the upper magnetic bearing corresponds to the version Figure 2.
  • FIG 4 shows an embodiment of the Spinning device in which the rotationally symmetrical Element 3, as in Figure 3, in diameter to the diameter of Spindle 2 is approximated.
  • Element 3 also exists made of steel, so that the separate permanent magnet 12 (the is replaced by the upper part of element 3) not applicable.
  • the variant shown in Figure 5 goes from the embodiment variants shown in FIG Spinning device.
  • the rotationally symmetrical Element 3 is also a rotor for an electromagnetic Drive stator 20. Both drives are common Generator 21 operated.
  • One of the motors is a synchronous drive, the other an asynchronous drive, so that the to wind up the Thread 5 required on the bobbin 2 Can set the speed difference casually.
  • the drive motor for the spindle 1 can also dropped.
  • the sole drive of the pot as Rotor of the drive stator 20, which can be designed can that with a hysteresis motor asynchronous start-up is sufficient to carry out the Spinning process.
  • the pot then rotates with it constant speed.
  • the yarn experiences this correspondingly smooth rotation.
  • the coil 2 will dragged through the yarn and hurries towards it Pot 3 in front.
  • the thread forces are in this variant relatively small when piecing due to the relative small moment of inertia of spindle and empty Kitchen sink.
  • FIG. 5 In the embodiment variants shown in FIG. 5 is on the protective tube 18, a pipe socket 22 for connection shown a pump. Through this facility the air pressure in the annular gap between element 3 and Protective tube 18 and thus the air friction losses be lowered.
  • FIG. 6 shows the spinning device with a measuring device to determine the thread tension.
  • This measuring device consists of sensors 23 for detection the axial deviations of the rotationally symmetrical Element from its target position and the connected one electronic device 24.
  • the sensors 23 are on an edge of the ferromagnetic material Part 10 of the rotationally symmetrical element appropriate.
  • the electronic device Part of the electronics of the magnetic bearing also serves the signals of the sensors 23.
  • the In this case, the bearing sensor system has one Dual function.
  • Figure 7 shows the embodiment of the spinning device 5 additionally with the measuring device according to FIG Figure 6.
  • the signals supplied by the sensors 23 are in an electronic device 25, the part the measuring device, but also the control device, as Reference variable used for the control and serves the thread tension by changing the drive torque of the drives 8 and / or 20 and thus from Spindle 1 and / or rotationally symmetrical element 3 minimize.
  • FIG. 8 shows an embodiment of the spinning device, which - apart from the missing protective tube 18 - differs from the variant shown in FIG. 5 in that that instead of the separate electromotive Drive the magnetic bearing system forms the drive system.
  • Figure 9 shows an embodiment of the Spinning device, which differs from that in FIG represented variant by another Relative movement of rotationally symmetrical element 3 and spindle 1 during the winding process differs.
  • the yarn is on the spindle, at the starting the upper part, wound up and the spindle pushed into the rotationally symmetrical element.

Description

Die Erfindung bezieht sich auf eine Spinnvorrichtung mit einer an einer drehbaren Spindel befestigten Spule, wie sie im Oberbegriff des Patentanspruches 1 angegeben ist. Die Erfindung bezieht sich ferner auf eine Steuer- und eine Regeleinrichtung für eine solche Spinnvorrichtung.
Spinnvorrichtungen der eingangs bezeichneten Art sind aus DE-OS 41 03 369 bekannt, die den am nachsten kommenden Stand der Technik aufzeigt. Bei einer speziellen Ausführungsform wird vorgesehen, daß der Faden innen in dem Spinn- oder Zwirnring geführt ist, so daß dieser gleichzeitig als ein Ballonbegrenzer dient. In diesem Falle wird dann im Bereich des unteren Stirnendes ein ösenartiger Fadenführer vorgesehen, der ein nach innen ragendes Bauteil sein kann. Es wird ferner eine weitere Ausführungsform angegeben, bei der sich der Spinn- oder Zwirnring auf eine größere axiale Länge der Spule erstreckt und zur Stabilisierung desselben über zwei in axialem Abstand angeordnete Magnetlager schwebend gehalten wird, wobei es sich bei beiden Magnetlagern um radial aktive Magnetlager handelt.
Darüber hinaus sind durch die DE-A-24 20 825 allgemein magnetische Lagerungen von Rotoren bekannt geworden
Mit dieser bekannten Spinnvorrichtung kann ein Teil der Probleme als gelöst angesehen werden, die allgemein beim Ringspinnen auftreten. Die Probleme ergeben sich im wesentlichen aus der Reibung zwischen Ring und dem üblicherweise verwendeten Läufer, der Belastung des Garnes durch kurzfristige Spannungsspitzen sowie Fadenzugkräfte im Ballon (C.M. Bringer: "Rotierende Ringe beim Ringspinnen" / Fortschrittsberichte der VDI-Zeitschriften, Reihe 3, Nr. 93; D'dorf: VDI-Verlag 1984). So wird beispielsweise durch den Einsatz des magnetisch gelagerten Ringes (des rotationssymmetrischen Elementes) mit Fadenführer die Gleitreibung zwischen Ring und Läufer vermieden. Die Ausbildungsform mit dem zweifach gelagerten Spinn- oder Zwirnring verhindert zwar ein Verkanten des Ringes, ist jedoch aufwendig und teuer.
Es ist Aufgabe der Erfindung, eine Spinnvorrichtung zu schaffen, die preisgünstig in der Herstellung und energiesparend im Betrieb ist sowie eine bessere Faden-bzw. Garnqualität ermöglicht. Die Aufgabe der Erfindung bezieht sich ferner auf Steuereinrichtung und eine Regeleinrichtung, die es erlauben, die Vorteile der Spinnvorrichtung gemäß der Erfindung optimal zu nutzen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das rotationssymmetrische Element
  • auf der dem ankommenden Faden zugewandten Stirnseite außerhalb des Bereichs der Spule mit einem nach innen gerichteten Kragen versehen ist, der eine zentrale, runde Aussparung zur Ausbildung des zentrischen Fadenführers aufweist, und
  • Sensoren zur Erfassung der axialen Abweichungen des rotationssymmetrischen Elementes von seiner Soll-Lage als Maß für die sich verändernde Fadenzugkraft in Verbindung mit einer den Sensoren nachgeschalteten elektronischen Einrichtung , die die Signale der Sensoren aufnimmt, verstärkt und weiterleitet.
Das radial aktive, axial passive Magnetlager, das das rotationssymmetrische Element an seinem unteren Teil umfaßt, kann beispielsweise ein Magnetlager sein, das das wenigstens teilweise aus ferromagnetischem Material bestehende Element in seiner Axialrichtung mittels eines ihn umgebenden, axial magnetisierten Permanentmagneten schwebend hält und in radialer Richtung mittels ringförmig um es herum angeordneter elektromagnetischer Mittel stabilisiert. Diese elektromagnetischen Mittel sind mittels einer elektronischen Regeleinrichtung erregbar, die mit Sensoren verbunden ist, die radiale Abweichungen des rotationssymmetrischen Elementes erfassen. Derartige Magnetlager werden in den oben genannten Druckschriften beschrieben.
Das radial stabile, axial instabile Magnetlager kann dagegen aus zwei ringförmigen, konzentrisch zur Achse der Spule angeordneten Permanentmagneten bestehen, von denen der eine am Kragen angebracht ist und somit mit dem Element mit rotiert und der andere, dem ersten gegenüberliegend, von außen fest angebracht ist.
Das rotationssymmetrische Element ist somit in axialer Richtung im axial instabilen Magnetlager federnd aufgehängt. Seine axiale Stabilität erhält es durch das Zusammenspiel der beiden Magnetlager.
Die Sensoren zur Erfassung der axialen Abweichungen des rotationssymmetrischen Elementes dienen in Verbindung mit der nachgeschalteten elektronischen Einrichtung der Messung der Fadenzugkraft.
Der Kragen am oberen Teil des rotationssymmetrischen Elementes dient einerseits der Anbringung des oberen Magnetlagers, führt darüber hinaus aber auch zu einer Beruhigung der Luftzirkulation im Inneren des Elementes, was sich energiesparend auswirkt.
Der Energiespareffekt wird noch verstärkt bei einer sehr vorteilhaften Ausführungsform der Spinnvorrichtung, bei der die dem ankommenden Faden zugewandte Stirnseite des rotationssymmetrischen Elementes durch den Kragen bis auf die Aussparung geschlossen ist. Bei dieser topfformartigen Ausbildung des Elementes wird der zentrisch angeordnete Fadenführer durch die zentrale Aussparung gebildet und rotiert daher mit dem Element mit. Die Reibung des Fadens am Fadenführer, wie sie bei feststehendem Fadenführer auftritt, und die sich nicht nur negativ auf den Aufwickelvorgang, sondern auch auf den Vorgang des Spinnens (es entsteht ein störendes Drehmoment am Faden) auswirkt, entfällt bei dieser erfindungsgemäßen Version des Elementes. Es verbleibt lediglich die aus der Längsbewegung des Fadens resultierende Reibung.
Die Drehung des Fadens, die sich aus dem Aufwickeln ergibt, pflanzt sich nunmehr unverfälscht in die Spinnzone fort. Daraus resultieren eine hohe Garnfestigkeit in der Spinnzone bei kleinem Garnspannungsniveau, höhere Garndehnung, geringere Haarigkeit des Haares und schließlich auch geringere Fadenbruchzahlen.
Bei einer zweckmäßigen Ausführungsform ist das rotationssymmetrische Element, sich nach oben verjüngend, konisch gestaltet. Dabei wird angestrebt, die Spindel mit möglichst geringem Abstand zu umfassen. Der dadurch erzielte geringere, mittlere Durchmesser des Elementes wirkt sich infolge des geringeren Trägheitsmomentes energiesparend aus.
Eine sehr vorteilhafte Ausführungsform der Spinnvorrichtung ist gemäß Anspruch 4 derart gestaltet, daß die axiale Relativbewegung zwischen rotationssymmetrischem Element und Spindel derart erfolgt, daß die Spindel beim Aufwickeln des Garnes in das rotationssymmetrische Element hineingeschoben wird.
Üblicherweise beginnt der Aufwickelvorgang am unteren Teil der Spule, und Element und Spule bewegen sich derart, daß sich der Aufwickelvorgang nach oben fortsetzt. Die dabei wachsende Spule befindet sich außerhalb des rotationssymmetrischen Elementes, was zur Folge hat, daß die aerodynamischen Verluste mit zunehmender Länge und Durchmesser der Spule stark anwachsen.
Bei der Spinnvorrichtung gemäß Anspruch 4 dagegen entsteht die beim Aufwickelvorgang in Durchmesser und Länge wachsende Spule innerhalb des rotationssymmetrischen Elementes. Da Element und Spule in gleicher Drehrichtung mit nahezu gleicher Drehzahl rotieren, werden die aerodynamischen Verluste der Spule - im Vergleich zur üblichen Transportbewegung von Spule und Element während des Aufwickelvorganges - klein gehalten.
Zwar ist bereits dadurch, daß der Faden an der Innenseite des rotationssymmetrischen Elementes geführt wird und das Element als Ballonbegrenzter wirkt, die Reibung insgesamt verringert worden, da die Luftreibung an der Elementaußenseite kleiner ist als die Reibung eines ausgeprägten Fadenballons. Bei einer weiteren Ausführungsform der Spinnvorrichtung gemäß der Erfindung, bei der das rotationssymmetrische Element von einem feststehenden Schutzrohr umgeben ist, werden die Luftreibungsverluste jedoch noch weiter gesenkt.
Dabei ist es zweckmäßig, daß auch das Schutzrohr auf der dem ankommenden Faden zugewandten Stirnseite mit einem nach innen gerichteten Kragen versehen ist, an dem das radial stabile, axial instabile Magnetlager befestigt ist.
Zweckmäßig ist ferner, daß der Luftspalt zwischen rotationssymmetrischem Element und Schutzrohr eine Breite von nicht mehr als 2 - 10 mm aufweist.
Einer weiteren Verringerung der Luftreibung dient eine Version, bei der am Schutzrohr ein Anschlußstutzen für eine Absaugeinrichtung angebracht ist. Durch die Erzeugung von Unterdruck im Zwischenraum zwischen Element und Schutzrohr werden die Luftreibungsverluste weiter gesenkt.
Da der Faden während des Spinnens an der Innenseite des rotationssymmetrischen Elementes und zugleich an der Innenkante der als Fadenführer wirkenden zentralen Aussparung anliegt, hat sich eine Ausführungsform als zweckmäßig erwiesen, bei der zur Aufnahme des innerhalb des Elementes geführten Fadens ein zwischen den Fadenführern sich erstreckendes, an der Innenwand des Elementes angeordnetes Röhrchen vorgesehen ist. Diese Ausführungsform ermöglicht das Ansaugen des Garnendes durch das Röhrchen zur Erleichterung des Anspinnprozesses. Es versteht sich von selbst, daß das rotationssymmetrische Element, das zusätzlich das Röhrchen aufweist, auszuwuchten ist.
Während die Ausführungsform des rotationssymmetrischen Elementes mit dem Innenröhrchen ein leichtes Einfädeln des Fadens ermöglicht, berücksichtigt eine andere Alternative den Vorgang des Anspinnens selbst: Ist der Fadenführer, der den Faden zur Spule führt, fest am Element angeordnet und weist entweder nur das Element oder nur die Spule einen Antrieb auf, so wird das jeweils andere Teil beim Anspinnen über den Faden mitgezogen und so ebenfalls zur Rotation gebracht. In dieser Anspinnphase tritt eine zusätzliche, nicht erwünschte Zugkraft am Faden auf.
Zur Vermeidung dieser Fadenbelastung kann eine Ausführungsform dienen, bei der der am rotationssymmetrischen Element angeordnete und den Faden zur Spule führende Fadenführer als am Innenumfang des Elementes umlaufender Läufer ausgebildet ist. Diese Ausführungsform eignet sich besonders für die Messung der Fadenzugkraft mittels der Sensoren und der nachgeschalteten elektronischen Einrichtung. Eine Relativbewegung zwischen Läufer und rotationssymmetrischem Element tritt bei dieser Version nur während der Anspinnphase auf. Aufgrund seiner geringen Trägheit wird der Läufer der Rotation des angetriebenen Teils sehr schnell folgen, sich jedoch bei gleicher Rotationsgeschwindigkeit der beiden Teile relativ zum rotationssymmetrischen Element nicht mehr bewegen. Die Situation nach der Anspinnphase ist somit die gleiche wie bei einem am Element fest angeordneten Fadenführer, so daß sich während des Spinnens kein Unterschied zu der Ausführungsform des Elementes mit fest angeordnetem Fadenführer ergibt.
Die Längsausdehnung des rotationssymmetrischen Elementes ermöglicht es, dieses mit einem elektromotorischen Antrieb zu versehen. Dessen alleiniger Einsatz - und nicht zusätzlich auch der Antrieb der Spindel - ist dabei insofern von Vorteil, als die Spindel wegen ihres geringeren Umfanges und Gewichtes ein geringeres Trägheitsmoment hat als das rotationssymmetrische Element, so daß die Fadenzugkraft in der Anspinnphase geringer ist als beim alleinigen Antrieb der Spindel.
Die mittels der Sensoren gewonnene Kenntnis der Dynamik der Fadenzugkraft während des Betriebs der Spinnvorrichtung ermöglicht eine Minimierung der Fadenbelastung insbesondere dann, wenn auch, also zusätzlich zum Antrieb der Spindel, ein elektromotorischer Antrieb für das rotationssymmetrische Element vorgesehen ist.
Für eine Spinnvorrichtung mit magnetisch gelagerter Spindel werden mittels einer Steuereinrichtung, die technische Mittel zur Durchführung eines Programmes aufweist, das die üblicherweise während eines Betriebszyklusses eintretende Änderung der Fadenzugkraft berücksichtigt, dementsprechend sich verändernde Antriebsmomente von rotationssymmetrischem Element und Spindel bewirkt.
Das Steuerprogramm enthält die mittels der Sensoren zur Messung der Fadenzugkraft erlangte Kenntnis der üblicherweise beim Anspinnen und während der Spinnphase (hier beispielsweise durch das sich verändernde Drehmoment der Spule) sich verändernden Fadenzugkräfte, die durch entsprechende Veränderung der Antriebsmomente von Spindel und/oder rotationssymmetrischem Element gering gehalten werden können.
Die Regeleinrichtung wird zweckmäßigerweise ebenso wie die Steuereinrichtung eingesetzt bei einer Spinnvorrichtung mit magnetisch gelagerter Spindel, bei der sowohl die Spindel als auch das Element einen elektromotorischen Antrieb aufweisen. Für die Regeleinrichtung ist eine elektronische Einrichtung vorgesehen, die zur Stabilisierung und ggf. Änderung der Fadenzugkraft die Meßsignale der Sensoren zur Messung der Fadenzugkraft als Führungsgröße einsetzt und dementsprechend die Antriebsmomente von Spindel und/oder rotationssymmetrischem Element verändert.
Ausführungsformen der Spinnvorrichtung gemäß der Erfindung werden in der Zeichnung schematisch dargestellt und im folgenden näher erläutert.
Es zeigen:
Figur 1
eine Spinnvorrichtung mit magnetisch gelagertem rotationssymmetrischen Element und mitrotierendem, zentrisch angeordneten Fadenführer;
Figur 2
eine Spinnvorrichtung gemäß Bild 1 mit Schutzrohr;
Figur 3
eine Spinnvorrichtung mit magnetisch gelagertem rotationssymmetrischen Element mit innerem Röhrchen;
Figur 4
eine Spinnvorrichtung mit an den Durchmesser der Spindel angepaßtem rotationssymmetrischem Element aus Stahl;
Figur 5
eine Spinnvorrichtung gemäß Bild 2 mit Schutzrohr und zusätzlichem elektromotorischem Antrieb des rotationssymmetrischen Elementes;
Figur 6
eine Spinnvorrichtung mit Meßeinrichtung zur Ermittlung der Fadenzugkraft (bestehend aus Sensoren und nachgeschalteter elektronischer Einrichtung);
Figur 7
eine Spinnvorrichtung gemäß Bild 1 mit elektromotorischem Antrieb von rotationssymmetrischem Element und Spindel sowie Schutzrohr und mit Regeleinrichtung;
Figur 8
eine Spinnvorrichtung gemäß Bild 1 mit zusätzlichem elektromotorischem Antrieb des rotationssymmetrischen Elementes durch das Elektromagnetsystem der Radialstabilisierungseinrichtung des radial aktiven Magnetlagers;
Figur 9
eine Spinnvorrichtung gemäß Bild 1, bei der die axiale Relativbewegung zwischen rotationssymmetrischem Element und Spindel derart erfolgt, daß die Spindel beim Aufwickeln des Garnes in das Element hineingeschoben wird.
Wie aus Figur 1 hervorgeht, ist die an der Spindel 1 befestigte Spule 2 von dem topfförmig ausgestalteten rotationssymmetrischen Element 3 konzentrisch umgeben. An der unteren, offenen Stirnseite des Topfes 3 ist der Fadenführer 4 befestigt, der den Faden 5 zur Spule 2 führt. Dieser Fadenführer kann als Umlenköse die Form eines Hakens haben oder eine Bohrung sein. Die obere Stirnseite des Topfes 3 ist bis auf die zentrale Aussparung 6, die den zentrisch angeordneten Fadenführer bildet, geschlossen.
Spindel 1 ist in einem konzentrisch zur Mittelachse angeordneten Fußlager 7 gelagert und mit einem elektromotorischen Antrieb 8 versehen.
Der Topf (bzw. das rotationssymmetrische Element) 3 ist ohne Antrieb frei schwebend magnetisch gelagert: Das untere, das rotationssymmetrische Element umfassende, radial stabile, axial instabile Magnetlager 9 besteht aus ringförmig um das Element angeordneten elektromagnetischen Mitteln. Diese sind mittels einer elektronischen Regeleinrichtung (in der Zeichnung nicht dargestellt) erregbar, die mit Sensoren verbunden sind, die radiale Abweichungen des rotationssymmetrischen Elementes erfassen. Das rotationssymmetrische Element besteht hierzu in seinem unteren Teil 10 aus ferromagnetischem Material. Die Lagerstatoreinheit ist auf der Topfbank 11 befestigt. Dieses Magnetlager entspricht der in der DE-PS 24 20 825 beschriebenen Lagerung.
Fußlager 7 oder Topfbank 11 (und damit die mit der Topfbank fest verbundenen Teile) sind in vertikaler Richtung bewegbar.
Das obere Magnetlager besteht aus der konzentrischen Kombination eines ringförmigen, am Kragen des Topfes 3 befestigten Permanentmagneten 12, einem feststehenden, ebenfalls ringförmigen Permanentmagneten 13 und einem Dämpfelement 14 aus nichtferromagnetischem, elektrisch gut leitendem Material, welches nach dem Prinzip der Wirbelstromdämpfung radiale Bewegungen des Topfendes dämpft. Dämpfelement 14 ist im Luftspalt zwischen den vorzugsweise in axialer Richtung magnetisierten Magneten 12 und 13 angeordnet und mit letzterem fest verbunden. Beide (Permanentmagnet 13 und Dämpfelement 14) sind über eine - in der Zeichnung nicht dargestellte - mechanische Verbindung mit dem unteren Magnetlager 9 bzw. der Topfbank 11 verbunden.
Beim Spinnen des Garnes wird die sog. Lunte 15 als Ausgangsmaterial des Spinnprozesses vom Streckwerk 16 mit konstanter Liefergeschwindigkeit zur Spinnzone 17 transportiert. In vorhergehenden Arbeitsschritten war das Spinngut (z.B. Baumwolle) gesäubert und zu einem Faserband konstanten Querschnitts mit vorzugsweise parallel liegenden Fasern, der Lunte, präpariert worden. In der Spinnzone 17 bewirkt das vom rotierenden Topf 3 auf das Garn 5 ausgeübte (mit dem Pfeil angegebene ) Drehmoment die erwünschte Verdrehung der Fasern zu einem festen Garn 5. Dieses Garn wird durch den mit dem Topf mit rotierenden Fadenführer 6 auf die Drehachse geführt und bewegt sich im Innenraum des Topfes zur Umlenköse 4 (Fadenführer 4). Diese lenkt das Garn von der Kreisbahn um die Mittelachse tangential auf die Spule 2, auf welcher das Garn aufgewickelt wird, wobei die Wickelgeschwindigkeit im Mittel den gleichen Betrag wie die Liefergeschwindigkeit hat. Die Spindel wird dabei - wie allgemein üblich - während des Aufwickelns des Fadens aus dem rotationssymmetrischen Element herausgezogen.
Der Antrieb des Topfes 3 erfolgt durch Fadenkräfte, die vom Garnstück zwischen Spule 2 und Fadenführer 4 auf den Topf übertragen werden. Die Drehzahl des Topfes stellt sich relativ zur Drehzahl der Spule automatisch ein und ist aufgrund des Garntransportes kleiner als die Drehzahl von Spule bzw. Spindel. Die Drehzahldifferenz steigt mit zunehmender Liefergeschwindigkeit und sinkt mit wachsendem Spulendurchmesser.
Das Garn 5 wird auf der Spule durch gesteuerte axiale Relativbewegung zwischen Spule und Topf lagenweise abgelegt. Diese Bewequng kann entweder durch axiales Bewegen des Fußlager 7 bei feststehendem Topf 3 erfolgen oder durch axiales Bewegen der Topfbank 11 bei stillstehendem Fußlager 7. Auch eine Überlagerung beider Transportbewegungen ist möglich. Die erste Variante wird bevorzugt, weil hier die Fadenlänge zwischen dem mitrotierenden Fadenführer 6 und dem feststehenden streckwerk 16 konstant bleibt. Bei den beiden anderen Varianten ändert sich diese Fadenlänge periodisch, was unerwünschte periodische Qualitätsschwankungen des Fadens zur Folge hat.
Figur 2 zeigt eine Ausführungsvariante der Spinnvorrichtung, die sich gegenüber der in Figur 1 dargestellten lediglich durch das zusätzliche Schutzrohr 18 unterscheidet.
Das Schutzrohr 18 ist als geschlossenes, den Topf außen umgebendes Gehäuse gestaltet. Es bewirkt neben der Schutzfunktion eine Senkung des Lärmpegels und der Luftreibung am rotierenden Topf. Es kann ferner in einer nicht zeichnerisch dargestellten Variante zur Aufnahme von Notlauflagern für den Topt 3 genutzt werden.
Bei der in Figur 3 dargestellten Ausführungsvariante ist an der Innenwand des rotationssymmetrischen Elementes 3 ein Röhrchen 19 angebracht, in dem der Faden vom Fadenführer 6 bis zum Ende des Röhrchens, das dem Fadenführer 4 gemäß Figur 1 oder 2 entspricht, und von diesem tangential zur Spule 2 geführt wird. Die Spindel 1 wird, wie bei der in Figur 1 dargestellten Ausführungsform durch den Elektromotor 8 angetrieben, wobei der im Röhrchen 19 geführte Faden den Topf 3 mitnimmt.
Diese Ausführungsvariante ermöglicht das Ansaugen des Garnendes durch das Röhrchen 19 zur Erleichterung des Anspinnprozesses.
Der Kragen am oberen Ende des Elementes 3 ist nach oben gerichtet und bildet mit seinem oberen Abschluß den zentrisch angeordneten Fadenführer 6. Die Ausführung des oberen Magnetlagers entspricht der Ausführung gemäß Figur 2.
Figur 4 zeigt eine Ausführungsform der Spinnvorrichtung, bei der das rotationssymmetrische Element 3, ebenso wie in Figur 3, in seinem Durchmesser an den Durchmesser der Spindel 2 angenähert ist. Außerdem besteht Element 3 aus Stahl, so daß der separate Permanentmagnet 12 (der durch den oberen Teil des Elementes 3 ersetzt wird) entfällt.
Die in Figur 5 dargestellte Ausführungsvariante geht von der in Figur 2 dargestellten Ausführungsvarianten der Spinnvorrichtung aus. Zusätzlich ist auch für das rotationssymmetrische Element 3, das aus diesem Grunde ganz aus ferromagnetischem Material besteht, ein elektromagnetischer Antrieb vorgesehen. Das rotationssymmetrische Element 3 ist zugleich Rotor für einen elektromagnetischen Antriebsstator 20. Beide Antriebe werden über einen gemeinsamen Generator 21 betrieben.
Eine derartige Magnetlagervariante ist in "K. Boden: "Wide-Gap, Electro-Permanentmagnetic Bearing System with Radial Transmission of Radial and Axial Forces" in "Magnetic Bearings", Proc. of the First Internat. Symp., ETH Zürich, 6.-8. Juni 1988, ed. G. Schweitzer, pp. 41-52, Springer Verlag Berlin - Heidelberg 1989" beschrieben.
Einer der Motoren ist ein Synchronantrieb, der andere ein Asynchronantrieb, so daß sich die zum Aufwinden des Fadens 5 auf die Spule 2 erforderliche Drehzahldifferenz zwanglos einstellen kann.
In einer in der Zeichnung nicht dargestellten Ausführungsform kann der Antriebsmotors für die Spindel 1 auch entfallen. Der alleinige Antrieb des Topfes als Rotor des Antriebsstators 20, der so gestaltet sein kann, daß er nach Art eines Hysterese-Motors mit asynchronem Anlauf wirkt, reicht zur Durchführung des Spinnprozesses aus. Der Topf rotiert dann mit konstanter Drehzahl. Das Garn erfährt so eine entsprechend gleichmäßige Drehung. Die Spule 2 wird durch das Garn mitgeschleppt und eilt gegenüber dem Topf 3 vor. In dieser Variante sind die Fadenkräfte beim Anspinnvorgang relativ klein aufgrund des relativ kleinen Massenträgheitsmomentes von Spindel und leerer Spule.
Bei der in Figur 5 dargestellten Ausführungsvarianten ist am Schutzrohr 18 ein Rohrstutzen 22 zum Anschluß an eine Pumpe dargestellt. Durch diese Einrichtung kann der Luftdruck im Ringspalt zwischen Element 3 und Schutzrohr 18 und damit die Luftreibungsverluste gesenkt werden.
Figur 6 zeigt die Spinnvorrichtung mit einer Meßeinrichtung zur Ermittlung der Fadenzugkraft. Diese Meßeinrichtung besteht aus den Sensoren 23 zur Erfassung der axialen Abweichungen des rotationssymmetrischen Elementes von seiner Soll-Lage und der angeschlossenen elektronischen Einrichtung 24. Die Sensoren 23 sind an einer Kante des aus ferromagnetischem Material bestehenden Teils 10 des rotationssymmetrischen Elementes angebracht.
Im vorliegenden Falle ist die elektronische Einrichtung Teil der Elektronik des Magnetlagers, das sich ebenfalls der Signale der Sensoren 23 bedient. Das Lagersensorsystem hat damit in diesem Falle eine Doppelfunktion.
Figur 7 zeigt die Ausführungsform der Spinnvorrichtung gemäß Figur 5 zusätzlich mit der Meßeinrichtung gemäß Figur 6. Die von den Sensoren 23 gelieferten Signale werden in einer elektronischen Einrichtung 25, die Teil der Meßeinrichtung, aber auch Regeleinrichtung ist, als Führungsgröße für die Regelung eingesetzt und dient dazu, die Fadenzugkraft durch Änderung des Antriebsdrehmomentes der Antriebe 8 und/oder 20 und damit von Spindel 1 und/oder rotationssymmetrischem Element 3 zu minimieren.
Figur 8 zeigt eine Ausführungsform der Spinnvorrichtung, die sich - abgesehen von dem fehlenden Schutzrohr 18 - von der in Figur 5 dargestellten Variante darin unterscheidet, daß anstelle des separaten elektromotorischen Antriebs das Magnetlagersystem das Antriebsystem bildet.
Figur 9 zeigt eine Ausführungsform der Spinnvorrichtung, die sich von der im Figur 1 dargestellten Variante durch eine andere Relativbewegung von rotationssymmetrischem Element 3 und Spindel 1 während des Aufwickelvorganges unterscheidet. Das Garn wird auf die Spindel, an deren oberen Teil beginnend, aufgewickelt und die Spindel dabei in das rotationssymmetrische Element hineingeschoben.

Claims (13)

  1. Spinnvorrichtung mit einer an einer drehbaren Spindel (1) befestigten Spule (2) zur Aufnahme des Fadens (5), mit einem, den ankommenden Faden erfassenden, zentrisch zur Spule angeordneten Fadenführer (6), mit einem die Spule konzentrisch umgebenden, frei schwebend magnetisch gelagerten, rohrförmigen rotationssymmetrischen Element (3) und mit einer mit dem Element rotierenden, zweiten Fadenführung (4), die am rotationssymmetrischen Element (3) so angeordnet ist, daß sie den während der Rotation innen am Element anliegenden Faden (5) von innerhalb des rotationssymmetrischen Elements erfaßt, zur Spule (2) führt und aufgrund der Relativbewegung zwischen Spule und Element auf diese aufwickelt, wobei das rotationssymmetrische Element (3) an seinem die Spule (2) umfassenden Teil mittels eines das Element umgebenden, radial aktiven, axial passiven Magnetlager (9) gehalten ist und auf der dem ankommenden Faden (5) zugewandten Stirnseite am Kragen mittels eines radial stabilen, axial instabilen Magnetlagers (12, 13, 14) gehalten wird,
    dadurch gekennzeichnet,
    daß das rotationssymmetrische Element (3) auf der dem ankommenden Faden (5) zugewandten Stirnseite außerhalb des Bereichs der Spule (2) mit einem nach innen gerichteten Kragen versehen ist, der eine zentrale runde Aussparung (6) zur Ausbildung des zentrischen Fadenführers aufweist, und Sensoren (23) zur Erfassung der axialen Abweichungen des rotationssymmetrischen Elementes (3) von seiner Soll-Lage als Maß für die sich verändernde Fadenzugkraft in Verbindung mit einer den Sensoren nachgeschalteten elektronischen Einrichtung (24, 25), die die Signale der Sensoren aufnimmt, verstärkt und weiterleitet.
  2. Spinnvorrichtung nach Anspruch,
    dadurch gekennzeichnet,
    daß die dem ankommenden Faden (5) zugewandte Stirnseite des rotationssymmetrischen Elementes (3) durch den Kragen bis auf die Aussparung (6) geschlossen ist.
  3. Spinnvorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß das rotationssymmetrische Element (3), sich nach oben verjüngend, konisch gestaltet ist.
  4. Spinnvorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß die axiale Relativbewegung zwischen rotationssymmetrischem Element (3) und Spindel (1) derart erfolgt, daß die Spindel beim Aufwickeln des Garnes in das rotationssymmetrische Element hineingeschoben wird.
  5. Spinnvorrichtung nach Anspruch 1, 2, 3 oder 4,
    dadurch gekennzeichnet,
    daß das rotationssymmetrische Element (3) von einem feststehenden Schutzrohr (18) umgeben ist.
  6. Spinnvorrichtung nach Anspruch 5,
    dadurch gekennzeichnet,
    daß das Schutzrohr (18) auf der dem ankommenden Faden (5) zugewandten Stirnseite mit einem nach innen gerichteten Kragen versehen ist, an dem das radial stabile, axial instabile Magnetlager (12, 13, 14) befestigt ist.
  7. Spinnvorrichtung nach Anspruch 5 oder 6,
    dadurch gekennzeichnet,
    daß sich zwischen rotationssymmetrischem Element (3) und Schutzrohr (18) ein Luftspalt einer Breite von 2 - 10 mm befindet.
  8. Spinnvorrichtung nach einem der Ansprüche 5 bis 7,
    dadurch gekennzeichnet,
    daß am Schutzrohr (18) ein Anschlußstutzen (22) für eine Absaugeinrichtung angebracht ist.
  9. Spinnvorrichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    daß zur Aufnahme des innerhalb des Elementes (3) geführten Fadens (5) ein zwischen den Fadenführern (4 und 6) sich erstreckendes, an der Innenwandung des Elementes angeordnetes Röhrchen (19) vorgesehen ist.
  10. Spinnvorrichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    daß der am rotationssymmetrischen Element (3) angeordnete und den Faden (5) zur Spule (2) führende Fadenführer (6) als am Innenumfang des Elementes umlaufender Läufer ausgebildet ist.
  11. Spinnvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß ein elektromotorischer Antrieb (20) für das rotationssymmetrische Element (3) vorgesehen ist.
  12. Steuereinrichtung für eine Spinnvorrichtung mit einer drehbaren Spindel (1), die elektromotorisch angetrieben wird und eine Spule (2) zur Aufnahme des Fadens (5) trägt, mit einem die Spule umgebenden rohrförmigen, freischwebend magnetisch gelagerten Element (3), das einen zweiten Fadenführer (6) zur Zuleitung des Fadens zur Spule (2) aufweist,
    dadurch gekennzeichnet,
    daß das Element (3) von einem weiteren elektromotorischen Antrieb (20) mit einer von der Spindel (1) verschiedenen Rotationsgeschwindigkeit rotierend angetrieben wird, und daß technische Mittel zur Durchführung eines Programms vorgesehen sind, das die üblicherweise während eines Betriebszyklusses eintretende Änderung der Fadenzugkraft aus der axialen Abweichung des rotationssymmetrischen Elements von seiner Sollage berücksichtigt und dementsprechend sich verändernde Antriebsmomente von rotationssymmetrischem Element (3) und Spindel (2) bewirkt.
  13. Regeleinrichtung für eine Spinnvorrichtung mit einer drehbaren Spindel (1), die elektromotorisch angetrieben wird und eine Spule (2) zur Aufnahme des Fadens (5) trägt, mit einem die Spule umgebenden rohrförmigen, freischwebend magnetisch gelagerten Element (3), das einen zweiten Fadenführer (6) zur Zuleitung des Fadens zur Spule (2) aufweist,
    dadurch gekennzeichnet,
    daß das Element (3) von einem weiteren elektromotorischen Antrieb (20) mit einer von der Spindel (1) verschiedenen Rotationsgeschwindigkeit rotierend angetrieben wird, und daß eine elektronische Einrichtung (25) vorgesehen ist, die zur Stabilisierung und ggf. Änderung der Fadenzugkraft die Meßsignale der Sensoren zur Messung der Fadenzugkraft (22 und 24) als Führungsgröße einsetzt und dementsprechend die Antriebsmomente von Spindel (2) und/oder rotationssymmetrischem Element (3) verändert.
EP94918737A 1993-06-30 1994-06-24 Spinnvorrichtung und steuer- sowie regeleinrichtung für die spinnvorrichtung Expired - Lifetime EP0710301B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4321757 1993-06-30
DE4321757 1993-06-30
DE4328710 1993-08-26
DE4328710 1993-08-26
PCT/DE1994/000729 WO1995001472A1 (de) 1993-06-30 1994-06-24 Spinnvorrichtung und steuer- sowie regeleinrichtung für die spinnvorrichtung

Publications (2)

Publication Number Publication Date
EP0710301A1 EP0710301A1 (de) 1996-05-08
EP0710301B1 true EP0710301B1 (de) 1998-04-15

Family

ID=25927262

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94918737A Expired - Lifetime EP0710301B1 (de) 1993-06-30 1994-06-24 Spinnvorrichtung und steuer- sowie regeleinrichtung für die spinnvorrichtung

Country Status (5)

Country Link
US (1) US5590515A (de)
EP (1) EP0710301B1 (de)
JP (1) JP3515574B2 (de)
DE (2) DE59405725D1 (de)
WO (1) WO1995001472A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601541A1 (de) * 1995-01-27 1996-08-01 Seiko Seiki Kk In einer Vakuumumgebung einsetzbares Vertikaltransfersystem sowie dazugehöriges Absperrventilsystem
DE59705546D1 (de) * 1996-02-28 2002-01-10 Vyzk Ustav Bavlnarsky Spindelspinn- oder spindelzwirnverfahren und die arbeitseinheit zur durchführung des verfahrens
DE19637270A1 (de) 1996-09-13 1998-03-19 Schlafhorst & Co W Topfspinnvorrichtung
DE10306475A1 (de) * 2003-02-14 2004-08-26 Deutsche Institute für Textil- und Faserforschung Fadenführervorrichtung für Ringspindel
CZ2003588A3 (en) * 2003-02-28 2004-10-13 Výzkumnýáústavábavlnářskýááa@Ás Device for spinning or twisting loops
DE102004029207A1 (de) * 2003-07-22 2005-03-10 Rieter Ag Maschf Textilmaschine mit rotierenden Ringen und Hülsen
CH697668B1 (de) * 2004-09-23 2009-01-15 Rieter Ag Maschf Spindel mit Abschirmelement.
CZ20041160A3 (cs) * 2004-12-01 2006-07-12 VÚB a. s. Zarízení pro smyckové predení nebo skaní
CZ306702B6 (cs) * 2006-03-23 2017-05-17 Technická univerzita v Liberci Zařízení pro vřetenové předení nebo skaní
JP5098428B2 (ja) * 2007-05-11 2012-12-12 株式会社豊田自動織機 繊維束配列装置
DE102008029482A1 (de) 2008-06-20 2009-12-24 Schaeffler Kg Magnetische Lagerung, insbesondere Lagerung einer Faden-führungsrolle
JP5746069B2 (ja) * 2012-02-22 2015-07-08 株式会社豊田自動織機 リングを有する紡機
US11053752B2 (en) 2018-01-29 2021-07-06 Baker Hughes, A Ge Company, Llc Coiled tubing power cable with varying inner diameter
DE102021101435A1 (de) * 2021-01-22 2022-07-28 Saurer Spinning Solutions Gmbh & Co. Kg Spinneinrichtung mit schwebendem Spinnring und Ballonbegrenzerhülse
EP4089213B1 (de) * 2021-05-15 2024-01-31 Sanko Tekstil Isletmeleri San. Tic. A.S. Vorrichtung und verfahren zum aufspulen und verdrillen von fasermaterial in ringspinn- oder ringzwirnmaschinen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117409A (en) * 1960-12-06 1964-01-14 Shino Masakazu Method and apparatus for spinning frame
JPS5343215B2 (de) * 1972-08-19 1978-11-17
DE2420825C3 (de) * 1974-04-30 1980-04-17 Padana Ag, Zug (Schweiz) Magnetische Lagerung eines Rotors
DE3400327A1 (de) * 1984-01-07 1985-07-18 Zinser Textilmaschinen Gmbh, 7333 Ebersbach Glockenspinnvorrichtung
IT1221716B (it) * 1987-08-10 1990-07-12 Cerit Spa Perfezionamenti ad un sistema di filatura a limitatore di ballon rotante
DE3741432A1 (de) * 1987-12-08 1989-06-22 Zinser Textilmaschinen Gmbh Spinnvorrichtung
JPH03152222A (ja) * 1989-11-10 1991-06-28 Murata Mach Ltd 精紡機
DE4103369A1 (de) * 1990-03-03 1991-09-05 Stahlecker Fritz Magnetlagerung
DE59104643D1 (de) * 1990-03-22 1995-03-30 Rieter Ag Maschf Einrichtung für die Begrenzung eines rotierenden Spinnballons und Verfahren zum Ansetzen oder Anspinnen eines Fadens.
CH681630A5 (de) * 1990-05-22 1993-04-30 Rieter Ag Maschf
DE4018541A1 (de) * 1990-06-09 1991-12-12 Stahlecker Fritz Magnetlagerung fuer einen rotor

Also Published As

Publication number Publication date
DE59405725D1 (de) 1998-05-20
DE4422420A1 (de) 1995-01-12
US5590515A (en) 1997-01-07
DE4422420C2 (de) 1997-01-09
EP0710301A1 (de) 1996-05-08
WO1995001472A1 (de) 1995-01-12
JP3515574B2 (ja) 2004-04-05
JPH08512100A (ja) 1996-12-17

Similar Documents

Publication Publication Date Title
EP0710301B1 (de) Spinnvorrichtung und steuer- sowie regeleinrichtung für die spinnvorrichtung
WO2017178196A1 (de) Aufspul- und dralleinrichtung einer ringspinn- oder ringzwirnmaschine sowie ringspinn- und ringzwirnverfahren
DE1964478A1 (de) Vorrichtung zum Aufwickeln,insbesondere textiler Faeden
DE10022736A1 (de) Magnetlageranordnung für eine Offenend-Spinnvorrichtung
DE102012022377A1 (de) Doppeldrahtspinnvorrichtung
EP0192836A2 (de) Verwendung einer magnetischen Lageranordnung
EP0925391B1 (de) Topfspinnvorrichtung
DE19900626A1 (de) Spannfutterdämpfung
DE3916969C2 (de) Fadenführungsvorrichtung für eine Doppeldrahtzwirnmaschine
DE4139583C2 (de) Schußfadenzuführer für Webmaschinen
EP2784194A1 (de) Fadenführeinrichtung für eine Textilmaschine, insbesondere für eine Ringspinnmaschine
DE69933638T2 (de) Zwirneinheit
DE3310438C2 (de) Vorrichtung zur Veränderung des Durchmessers einer Ablaufhilfe für den Überkopfabzug eines auf eine Aufwickelspule aufzuwickelnden Fadens von einer Vorlagespule
DE4018541A1 (de) Magnetlagerung fuer einen rotor
DE4103369A1 (de) Magnetlagerung
DE102005040902B4 (de) Spindel mit Abschirmelement
WO2004072339A1 (de) Fadenführervorrichtung für ringspindel
DE6950418U (de) Doppeldrahtzwirnspindel.
EP0852564B1 (de) Liefervorrichtung für fadenartiges wickelmaterial
EP0959158A1 (de) Spindel-Spinnvorrichtung
DE19817501C1 (de) Vorrichtung zur Steuerung und Regelung der Zugkräfte von strangförmigen Materialien in Verseil- oder Kabelumspinnmaschinen
DE1086158B (de) Doppeldrahtzwirnspindel, insbesondere fuer schwere Zwirne, mit durch Magnete gehaltenem Spulentraegerkoerper
DE3741432C2 (de)
DE4411342A1 (de) Offenend-Rotorspinnvorrichtung
EP3611295B1 (de) Garnspeicher für eine spinn- oder spulmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

17Q First examination report despatched

Effective date: 19960826

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59405725

Country of ref document: DE

Date of ref document: 19980520

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070531

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070625

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070618

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070626

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080624

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080624