EP0705808A1 - Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat - Google Patents

Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat Download PDF

Info

Publication number
EP0705808A1
EP0705808A1 EP95112989A EP95112989A EP0705808A1 EP 0705808 A1 EP0705808 A1 EP 0705808A1 EP 95112989 A EP95112989 A EP 95112989A EP 95112989 A EP95112989 A EP 95112989A EP 0705808 A1 EP0705808 A1 EP 0705808A1
Authority
EP
European Patent Office
Prior art keywords
mass
solid fuel
fuel according
combustion
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95112989A
Other languages
English (en)
French (fr)
Other versions
EP0705808B1 (de
Inventor
Klaus Dr. Menke
Jutta Dr. Böhnlein-Mauss
Helmut Schmid
Klaus Martin Dr. Bucerius
Walther Dr. Engel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0705808A1 publication Critical patent/EP0705808A1/de
Application granted granted Critical
Publication of EP0705808B1 publication Critical patent/EP0705808B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/30Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with vegetable matter; with resin; with rubber

Definitions

  • the invention relates to a solid fuel for rocket engines or gas generators, which contains phase-stabilized ammonium nitrate as an oxidizer.
  • Solid fuels of the type mentioned generally have a low burning rate and a high pressure exponent.
  • the burning rate can be increased by adding solid energetic substances, such as octogen (HMX) or hexogen (RDX), or metals with high heat of combustion, such as aluminum or boron.
  • Combinations with high-energy binders serve the same goal. These include isocyanate-bound glycidyl azidopolymer (GAP), polymers containing nitrate esters, such as polyglycidyl nitrate and polynitratomethylethyloxetane, or nitroamino-substituted polymers. Even if this can increase the rate of combustion, the pressure exponent and the temperature coefficient are not or only slightly reduced. Additions of ammonium perchlorate, which increase the Burning rate lead to lower the pressure exponent at higher doses, but lead to the formation of hydrochloric acid in the exhaust gas and thus to strong smoke formation at high air humidity.
  • the burning behavior can be influenced favorably by adding lead and copper salts or oxides in combination with soot, but these additives can only be used to a limited extent with fuels containing ammonium nitrate.
  • the invention has for its object to improve the combustion behavior of solid fuels based on phase-stabilized ammonium nitrate.
  • such a solid fuel consists of 35 to 80% by mass ammonium nitrate (AN) with an average grain size of 5 to 200 ⁇ m, which is phase-stabilized by chemical reaction with CuO or ZnO (PSAN), 15 to 50% by mass of a binder system made of a binder polymer and an energy-rich plasticizer and 0.2 to 5.0 mass% of a combustion moderator made of vanadium / molybdenum oxide as an oxide mixture or mixed oxide.
  • AN ammonium nitrate
  • PSAN phase-stabilized by chemical reaction with CuO or ZnO
  • Solid fuels of this formulation show a very favorable burning behavior. Depending on the composition, burning rates of over 8mm / s at normal temperature and a combustion chamber pressure of 10 MPa are achieved. The pressure exponent in the range from 4 to 25 MPa, possibly 7 to 25 MPa, reaches values of n 3 ⁇ 4 0.6, in the best case n 3 ⁇ 4 0.5. This combustion behavior makes the solid fuel composed according to the invention particularly suitable for use in missiles for tactical or strategic missile defense.
  • the solid propellants according to the invention are initially characterized by the phase-stabilized ammonium nitrate reacted with copper oxide or zinc oxide as the oxidizer, the metal oxides preferably being used in a quantity of 1 to 7% by mass. They stabilize the crystal phases of the AN and suppress larger volume changes in the grain in the temperature range from -40 to + 70 ° C.
  • the incorporation into the crystal matrix of the AN takes place via a chemical reaction of copper or zinc oxide with the melt of the pure ammonium nitrate with elimination of water .
  • the most favorable particle shape for the production of the fuel can then be obtained by spraying the melt and rapid cooling in a cold, cyclone-like air flow.
  • the combustion behavior is significantly influenced by the grain size of the phase-stabilized ammonium nitrate.
  • a finely crystalline form with an average grain size of 5 to 200 ⁇ m with a proportion of 35 to 80 mass% in the fuel is preferred.
  • Particularly favorable burn-up values result when the AN fraction is predominantly in a smaller grain size of 5 to 80 ⁇ m and less in an average grain size of 100 to 160 ⁇ m.
  • the solid propellant according to the invention may also contain high-energy substances, in particular nitramines, such as hexogen (RDX) or octogen (HMX) with an average grain size of 2 to 20 ⁇ m with a proportion of 1 to 20% by mass.
  • nitramines such as hexogen (RDX) or octogen (HMX) with an average grain size of 2 to 20 ⁇ m with a proportion of 1 to 20% by mass.
  • metals such as aluminum, magnesium or boron can be part of the fuel with 0.5 to 20% by mass.
  • a grain size of 0.1 to 50 ⁇ m is recommended.
  • stabilizers which act as nitrogen oxide and acid scavengers.
  • These are preferably diphenylamine, 2-nitrodiphenylamine, N-methylnitroaniline, which are used alone or in combination with one another in concentrations of 0.4 to 2% by mass. These can be combined, in particular in the case of fuels containing nitric acid, with small amounts in the range of 0.5% by mass of the magnesium oxide acting in the same sense.
  • the combustion moderators are preferably used as mixed oxides, in which molybdenum of the oxidation level + VI and vanadium of the oxidation level + IV and + V are present.
  • exemplary compositions of the mixed oxides are V6Mo4O25 and V6Mo15O60.
  • the combustion moderators can also have Crom III or Titan IV oxides as the carrier material.
  • combustion moderators used according to the invention with 0.2 to 5.0 mass% are advantageously added to the fraction of the combustion moderator with carbon black or graphite in a proportion of 5 to 50 mass%.
  • binder system consisting of a binder polymer and an energy-rich plasticizer.
  • the binder polymer itself can be inert, preferably isocyanate-curing, bi- or trifunctional Hydroxy-substituted polyester or polyether prepolymers.
  • high-energy polymers preferably isocyanate-curing, di- or trifunctional hydroxy-substituted glycidyl azidopolymer, can also be used.
  • the high-energy plasticizers are preferably selected from the group of chemically stable nitrate esters, nitro, nitroamino or azido plasticizers.
  • TMETN Trimethylolethane trinitrate
  • BTTN butanetriol trinitrate
  • DEGDN diethylene glycol dinitrate
  • a 1: 1 mixture of bisdinitropropyl formal / acetal may be mentioned as an example of a nitro softener, while a 1: 1 mixture of N-ethyl and N-methylnitratoethylnitroamine (EtNENA or MeNENA) or Nn-butyl- N-nitratoethylnitroamine (BuNENA) or N, N'-dinitratoethylnitroamine (DINA) is suitable.
  • EtNENA or MeNENA N-methylnitratoethylnitroamine
  • BuNENA N-butyl- N-nitratoethylnitroamine
  • DINA N, N'-dinitratoethylnitroamine
  • GAP-A bisazido-terminated GAP oligomers
  • DANPE 5-diazido-3-nitroaminopentane
  • the polymer / plasticizer ratio is 1: 3 to 20: 1 mass%.
  • the binder polymers can of course also be used in pure form.
  • 0.1 to 1% by mass of its anti-caking agent fraction for example ultrafine (grain size about 0.02 ⁇ m) silica gel, sodium lauryl sulfonate, tricalcium phosphate or other surfactants are preferably added to the phase-stabilized ammonium nitrate.
  • the vanadium / molybdenum oxide combustion moderators can be ideally combined with copper salts, oxides or complexes, which brings about a further increase in the combustion rate, especially in the low pressure range, combined with a further reduction in the pressure exponent.
  • ammonium nitrate stabilized with copper oxide in combination with vanadium / molybdenum oxides therefore has a particularly favorable effect on the combustion behavior.
  • the addition of 2 to 7% by mass of the phase-stabilizing CuO provided according to the invention results in significantly higher burn-up rates and low pressure exponents. This favorable combustion behavior can be seen above all in solid fuels whose binders contain up to 50% azido compounds in the form of energetic polymers and / or plasticizers.
  • the combustion moderators have a grain size in the range from 1 to 60 ⁇ m, preferably 1 to 10 ⁇ m, and a high internal surface area of 5 to 100 m2 / g, preferably 20 to 60 m2 / g.
  • Metal-free solid fuels of the type described are suitable for use in rocket engines due to their energy content, their low-smoke, hydrochloric acid-free combustion and their comparatively low, mechanical and detonative sensitivity, while lower-energy formulations with a higher proportion of binder are suitable for use as gas generator propellants.
  • high-melting metal carbides or nitrates preferably silicon and / or zirconium carbide, with a concentration of 0.1 to 1 mass% are advantageously added as further additives.
  • these additives suppress unstable oscillations in the combustion behavior.
  • Table 1 shows five different formulations of ammonium nitrate, which is phase-stabilized with copper oxide or zinc oxide (PSAN).
  • the burning rate r (mm / s) at 20 ° C and at three different combustion chamber pressures is given in the lower part of the table for the individual formulations. Below this is the pressure exponent n for various pressure ranges given in brackets.

Abstract

Ein Festtreibstoff für Raketenantriebe oder Gasgeneratoren besteht aus 35 bis 80 Massen-% Ammoniumnitrat (AN) mit einer mittleren Korngröße von 5 bis 200 µm, das druch chemische Umsetzung mit CuO oder ZnO phasenstabilisiert ist (PSAN), 15 bis 50 Massen-% eines Bindersystems aus einem Binderpolymer und einem energiereichen Weichmacher sowie 0,2 bis 5,0 Massen-% eines Abbrandmoderators aus Vanadium/Molybdänoxid als Oxidmischung oder Mischoxid.

Description

  • Die Erfindung betrifft einen Festtreibstoff für Raketenantriebe oder Gasgeneratoren, der als Oxidator phasenstabilisiertes Ammoniumnitrat enthält.
  • Festtreibstoffe der genannten Art weisen in der Regel eine niedrige Abbrandgeschwindigkeit und einen hohen Druckexponenten auf. Die Abbrandgeschwindigkeit läßt sich durch Zusatz von festen energetischen Stoffen, wie Oktogen (HMX) oder Hexogen (RDX), oder von Metallen mit hoher Verbrennungswärme, wie Aluminium oder Bor steigern. Dem gleichen Ziel dienen auch Kombinationen mit energiereichen Bindern. Hierzu zählen isocyanat-gebundenes Glycidylazidopolymer (GAP), nitratesterhaltige Polymere, wie Polyglycidylnitrat und Polynitratomethylethyloxetan oder nitroamino-substituierte Polymere. Auch wenn sich hierdurch die Abbrandgeschwindigkeit steigern läßt, werden der Druckexponent und der Temperaturkoeffizient nicht oder nur wenig erniedrigt. Zusätze von Ammoniumperchlorat, die zu einer Steigerung der Abbrandgeschwindigkeit führen, senken zwar bei höherer Dosierung den Druckexponenten, führen jedoch zur Bildung von Salzsäure im Abgas und damit zu starker Rauchbildung bei hoher Luftfeuchtigkeit.
  • Bei Doublebase- und Composit Doublebase-Festtreibstoffen läßt sich das Abbrandverhalten durch Zusatz von Blei- und Kupfersalzen oder -oxiden in Verbindung mit Ruß günstig beeinflußen, doch lassen sich diese Zusätze bei ammoniumnitrathaltigen Treibstoffen nur in begrenzten Maß einsetzen. Die genannten Salze und Oxide wirken wiederum vornehmlich im Sinne einer Steigerung der Abbrandgeschwindigkeit, können jedoch den Druckexponenten nicht ausreichend absenken.
  • Der Erfindung liegt die Aufgabe zugrunde, daß Abbrandverhalten von Festtreibstoffen auf der Basis von phasenstabilisiertem Ammoniumnitrat zu verbessern.
  • Erfindungsgemäß besteht ein solcher Festtreibstoff aus 35 bis 80 Massen-% Ammoniumnitrat (AN) mit einer mittleren Korngröße von 5 bis 200µm, das durch chemische Umsetzung mit CuO oder ZnO phasenstabilisiert ist (PSAN), 15 bis 50 Massen-% eines Bindersystems aus einem Binderpolymer und einem energiereichen Weichmacher sowie 0,2 bis 5,0 Massen-% eines Abbrandmoderators aus Vanadium/Molybdänoxid als Oxidmischung oder Mischoxid.
  • Festtreibstoffe dieser Formulierung zeigen ein sehr günstiges Abbrandverhalten. Es werden je nach Zusammensetzung Abbrandgeschwindigkeiten über 8mm/s bei Normaltemperatur und einem Brennkammerdruck von 10 MPa erreicht. Der Druckexponent erreicht im Bereich von 4 bis 25 MPa, gegebenenfalls 7 bis 25 MPa, Werte von n ¾ 0,6, im günstigen Fall n ¾ 0,5. Dieses Abbrandverhalten verleiht dem erfindungsgemäß zusammengesetzten Festtreibstoff besondere Eignung zum Einsatz in Flugkörpern der taktischen oder strategischen Raketenabwehr.
  • Die erfindungsgemäßen Festtreibstoffe zeichnen sich zunächst durch das mit Kupferoxid oder Zinkoxid umgesetzte, phasenstabilisierte Ammoniumnitrat als Oxidator aus, wobei die Metalloxide vorzugsweise mit 1 bis 7 Massen-% eingesetzt werden. Sie stabilisieren die Kristallphasen des AN und unterdrücken größere Volumenänderungen des Korns im Temperaturbereich von -40 bis +70° C. Der Einbau in die Kristallmatrix des AN geschieht über eine chemische Reaktion von Kupfer- oder Zinkoxid mit der Schmelze des reinen Ammoniumnitrats unter Abspaltung von Wasser. Die für die Herstellung des Treibstoffs günstigste Partikelform kann dann durch Versprühen der Schmelze und schnelles Abkühlen im kalten, zyklonartig geführten Luftstrom erhalten werden.
  • Das Abbrandverhalten wird maßgeblich durch die Korngröße des phasenstabilisierten Ammoniumnitrats beeinflußt. Bevorzugt wird eine feinkristalline Form mit einer mittleren Korngröße von 5 bis 200 µm bei einem Anteil von 35 bis 80 Massen-% im Treibstoff. Besonders günstige Abbrandwerte ergeben sich dann, wenn die AN-Fraktion überwiegend in kleinerer Korngröße von 5 bis 80 µm und weniger in mittlerer Korngröße von 100 bis 160 µm vorliegt.
  • Der erfindungsgemäße Festtreibstoff kann ferner energiereiche Stoffe, insbesondere Nitramine enthalten, wie Hexogen (RDX) oder Oktogen (HMX) mit einer mittleren Korngröße von 2 bis 20 µm bei einem Anteil von 1 bis 20 Massen-%.
  • Weiterhin können Metalle, wie Aluminium, Magnesium oder Bor mit 0,5 bis 20 Massen-% Bestandteil des Treibstoffs sein. Hierbei empfiehlt sich eine Korngröße von 0,1 bis 50 µm.
  • Um dem Treibstoff eine ausreichende chemische Stabilität zu verleihen, werden ihm mit Vorteil Stabilisatoren zugesetzt, die als Stickoxid- und Säurefänger wirken. Hierbei handelt es sich vorzugsweise um Diphenylamin, 2-Nitrodiphenylamin, N-Methylnitroanilin, die jeweils allein oder in Kombination miteinander in Konzentrationen von 0,4 bis 2 Massen-% zum Einsatz kommen. Diese lassen sich insbesondere bei salpetersäurehaltigen Treibstoffen mit geringen Mengen im Bereich von 0,5 Massen % des im gleichen Sinne wirkenden Magnesiumoxids kombinieren.
  • Die Abbrandmoderatoren werden vorzugsweise als Mischoxide eingesetzt, in denen Molybdän der Oxidationsstufe +VI und Vanadium der Oxidationsstufe +IV und +V vorliegen. Beispielhafte Zusammensetzungen der Mischoxide sind V₆Mo₄O₂₅ und V₆Mo₁₅O₆₀.
  • Die Abbrandmoderatoren können ferner als Trägermaterial Crom III- oder Titan IV-Oxide aufweisen.
  • Die erfindungsgemäß mit 0,2 bis 5,0 Massen-% eingesetzten Abbrandmoderatoren werden vorteilhafterweise mit Ruß oder Graphit mit einem Anteil von 5 bis 50 Massen-% der Fraktion des Abbrandmoderators zugesetzt.
  • Weiterer wesentlicher Bestandteil in Konzentrationen von 15 bis 50 Massen-% ist ein Bindersystem, bestehend aus einem Binderpolymer und einem energiereichen Weichmacher. Das Binderpolymer selbst kann inert sein, wobei es sich vorzugsweise um isocyanathärtende, bi- oder trifunktionell hydroxisubstituierte Polyester- oder Polyetherpräpolymere handelt. Stattdessen können auch energiereiche Polymere, vorzugsweise isocyanathärtendes, di- oder trifunktionelles hydroxisubstituiertes Glycidylazidopolymer eingesetzt werden.
  • Die energiereichen Weichmacher werden vorzugsweise aus der Gruppe der chemisch stabilen Nitratester, Nitro-, Nitroamino- oder Azidoweichmacher ausgewählt.
  • Als Nitratester kommen vor allem Trimethylolethantrinitrat (TMETN), Butantrioltrinitrat (BTTN) oder Diethylenglykoldinitrat (DEGDN) in Frage.
  • Als Beispiel für einen Nitroweichmacher sei ein 1:1 Gemisch von Bisdinitropropylformal/acetal (BDNPF/A) erwähnt, während als Nitroaminoweichmacher ein 1:1 Gemisch von N-Ethyl- und N- Methylnitratoethylnitroamin (EtNENA bzw. MeNENA) oder N-n-Butyl- N-nitratoethylnitroamin (BuNENA) oder N, N'-Dinitratoethylnitroamin (DINA) geeignet ist.
  • Als Azidoweichmacher kommen insbesondere kurzkettige, bisazidoterminierte GAP-Oligomere (GAP-A) oder das 1, 5-Diazido-3-nitroaminopentan (DANPE) in Frage.
  • Je nach Art, Verträglichkeit und Energie der Binderkomponenten beträgt das Verhältnis Polymer/Weichmacher 1:3 bis 20:1 Massen-%. Selbstverständlich können die Binderpolymere auch in reiner Form verwendet werden.
  • Dem phasenstabilisierten Ammoniumnitrat werden vorzugsweise 0,1 bis 1 Massen-% seiner Fraktion Antibackmittel, z.B. ultrafeines (Korngröße etwa 0,02 µm) Silicagel, Natriumlaurylsulfonat, Tricalciumphosphat oder andere Tenside zugesetzt.
  • Erfindungsgemäß lassen sich die Vanadium/Molybdänoxid-Abbrandmoderatoren in idealer Weise mit Kupfersalzen, -oxiden, oder -komplexen verbinden, was eine weitere Steigerung der Abbrandgeschwindigkeit vor allem im niedrigen Druckbereich, verbunden mit einer weiteren Senkung des Druckexponenten mit sich bringt.
  • Besonders günstig wirkt sich deshalb der Einsatz des mit Kupferoxid stabilisierten Ammoniumnitrats in Kombination mit Vanadium/Molybdänoxiden auf das Abbrandverhalten aus. Bei dem erfindungsgemäß vorgesehenen Zusatz von 2 bis 7 Massen-% der phasenstabilisierenden CuO ergeben sich deutlich höhere Abbrandgeschwindigkeiten und niedrige Druckexponenten. Dieses günstige Abbrandverhalten ist vor allem Festtreibstoffen festzustellen, deren Binder bis zu 50% Azidoverbindungen in Gestalt energetischer Polymere und/oder Weichmacher enthält.
  • In weiterhin bevorzugter Ausgestaltung ist vorgesehen, daß die Abbrandmoderatoren eine Korngröße im Bereich von 1 bis 60 µm, vorzugsweise 1 bis 10 µm, und eine hohe innere Oberfläche von 5 bis 100m²/g, vorzugsweise 20 bis 60m²/g aufweisen.
  • Metallfreie Festtreibstoffe der beschriebenen Art eignen sich durch ihren Energieinhalt, ihren raucharmen, salzsäurefreien Abbrand und ihre vergleichsweise geringe, mechanische und detonative Empfindlichkeit für den Einsatz in Raketenmotoren, während energieärmere Formulierungen mit höherem Binderanteil für die Anwendung als Gasgeneratortreibsätze geeignet sind.
  • Beim Einsatz der beschriebenen Festtreibstoffe in Raketenmotoren werden als weitere Additive mit Vorteil hochschmelzende Metallkarbide oder -nitrate, vorzugsweise Silicium- und/oder Zirkonkarbid mit einer Konzentration von 0,1 bis 1 Massen-% zugesetzt. Diese Additive sorgen in der erfindungsgemäßen Formulierung ohne Metallzusatz für die Unterdrückung instabiler Oszillationen im Abbrandverhalten.
  • Beispiel
  • Tabelle 1 zeigt in ihrem oberen Teil fünf verschiedene Formulierungen von Ammoniumnitrat, das mit Kupferoxid bzw. Zinkoxid phasenstabilisiert ist (PSAN). Im unteren Teil der Tabelle ist zu den einzelnen Formulierungen die Abbrandgeschwindigkeit r (mm/s) bei 20° C und bei drei verschiedenen Brennkammerdrucken angegeben. Darunter findet sich der Druckexponent n für verschiedene, in Klammern angegebene Druckbereiche.
  • Der Vergleich der Formulierung Cu1 und Cu2 zeigt, wie mit kleiner werdender Korngröße die Wirkung des Abbrandmoderators im Sinne einer Steigerung der Abbrandgeschwindigkeit und einer Senkung des Druckexponenten deutlich verbessert wird. Hingegen verschlechtern sich die Verhältnisse, wenn, wie bei Cu3, der Anteil energetischer Nitratesterweichmacher den GAP-Anteil des Binders übersteigt. Dies ist insbesondere beim Druckexponenten auffällig. Cu4 veranschaulicht die abbrandsteigernde Wirkung von zusätzlich zugegebenem Kupferoxid. Schließlich zeigt Zn1 bei gleicher Korngröße des PSAN, daß mit Vanadium/Molybdänoxid Abbrandmoderatoren auch ohne Kupferverbindungen Druckexponenten n ¾ 0,6 und Abbrandgeschwindigkeiten r > 8 mm/s bei 10 MPa Brennkammerdruck erreicht werden können.
  • In dem Diagramm gemäß Abbildung 1 ist das Abbrandverhalten der Formulierungen Cu1, Cu2 und Zn1 als Funktion lgr = f(lgp)
    Figure imgb0001
    für einen Treibstoff mit 68% Feststoffanteil, ein Ammoniumnitrat mit einem Korngrößenverhältnis 160/55 µm von 4:6 und einem Bindersystem GAP (Glycidylazidopolymer/Pl (Platicizer-Weichmacher) aufgezeigt. Hier wird einerseits deutlich der die Abbrandgeschwindigkeit begünstigende Einfluß der kleineren Korngröße (Cu2 gegenüber Cu1) bei gleichzeitiger Absenkung des Druckexponenten von n = 0,56 auf n = 0,49. Ferner ist bei Zn1 mit einem Druckexponenten, der immer noch unter 0,6 liegt, eine gleichwohl noch passable Abbrandgeschwindigkeit ersichtlich.
  • Im Diagramm gemäß Abbildung 2 sind die gleichen Abhängigkeiten für Cu3 mit hohem und Cu4 mit niedrigem Anteil an Nitratester-Weichmacher gezeigt; die günstigeren Werte bei Cu4 sowohl hinsichtlich Abbrandgeschwindigkeit als auch Druckexponent sind augenfällig. Tabelle 1
    Treibstofformulierungen und Abbrandeigenschaften
    Cu1 Cu2 Cu3 Cu4 Zn1
    Cu PSAN 3% CuO 160µm 42 22 22 22 -
    Cu PSAN 3% CuO 55µm 18 33 33 33 -
    Zn PSAN 3% ZnO 160µm - - - - 22
    Zn PSAN 3% ZnO 55µm - - - - 33
    RDX 5 µm 10 10 10 10 10
    GAP/N100 16,5 16 10 16 16
    TMETN 10 15,5 7,5 15,5 15,5
    BTTN - - 14 - -
    DPA 0,5 0,5 0,5 0,5 0,5
    Cu-oxid - - - 1 -
    V/Mo-oxid 2,5 2,5 2,5 1,5 2,5
    Ruß 0,5 0,5 0,5 0,5 0,5
    Abbrandgeschw. bei 20°C (mm/s)
    r2MPA 2,8 3,5 3,4 4,3 2,7
    r7MPa 7,6 8,3 7,7 8,6 6,9
    r10MPa 9,2 9,6 9,6 10,0 8,3
    Druckexponenten n (Bereich MPa) 0,57 0,48 0,62 0,51 0,59
    (4-25) (4-25) (4-18) (4-18) (4-25)
    0,95 0,80 0,90
    (2-4) (2-4) (2-4)

Claims (23)

  1. Festtreibstoff für Raketenantriebe oder Gasgeneratoren, bestehend aus 35 bis 80 Massen-% Ammoniumnitrat (AN) mit einer mittleren Korngröße von 5 bis 200µm, das durch chemische Umsetzung mit CuO oder ZnO phasenstabilisiert ist (PSAN), 15 bis 50 Massen-% eines Bindersystems aus einem Binderpolymer und einem energiereichen Weichmacher sowie 0,2 bis 5,0 Massen-% eines Abbrandmoderators aus Vanadiumoxid /Molybdänoxid als Oxidmischung oder Mischoxid.
  2. Festtreibstoff nach Anspruch 1, bei dem der Anteil an phasenstabilisierendem CuO oder ZnO 1 bis 7 Massen-% der Ammoniumnitratfraktion beträgt und durch chemische Reaktion mit der AN-Schmelze unter Abspaltung von Wasser in die Kristallmatrix von AN eingebaut ist.
  3. Festtreibstoff nach Anspruch 1 oder 2 mit einem weiteren Anteil von 1 bis 20 Massen % energiereicher Nitramine, ausgewählt unter Hexogen und Oktogen, mit einer mittleren Korngröße von 1-20µm.
  4. Festtreibstoff nach einem der Ansprüche 1 bis 3, mit einem weiteren Anteil von 0,5 bis 20 Massen-% Metalle, ausgewählt unter Aluminium, Magnesium und Bor, mit einer Korngröße von 0,1 bis 50µm.
  5. Festtreibstoff nach einem der Ansprüche 1 bis 4 mit einem weiteren Anteil von 0,4 bis 2 Massen-% eines als Stickoxid- und Säurefänger wirkenden Stabilisators, aus Diphenylamin, 2-Nitrodiphenylamin oder N-Methylnitroanilin oder einer Kombination derselben.
  6. Festtreibstoff nach einem der Ansprüche 1 bis 5 mit einem Zusatz von Ruß oder Graphit mit 5 bis 50 % Massen-% der Fraktion des Abbrandmoderators.
  7. Festtreibstoff nach einem der Ansprüche 1 bis 6, bei dem das Binderpolymer ein isocyanathärtendes bi- oder trifunktionelles hydroxysubstituiertes Polyester- oder Polyetherprepolymer ist.
  8. Festtreibstoff nach einem der Ansprüche 1 bis 6, bei dem das Binderpolymer ein energiereiches Polymer ist.
  9. Festtreibstoff nach Anspruch 8, bei dem das energiereiche Polymer ein isocyanathärtendes, bi- oder trifunktionelles, hydroxysubstituiertes Glycidylazidopolymer (GAP) ist.
  10. Festtreibstoff nach einem der Ansprüche 1 bis 9, bei dem der energiereiche Weichmacher aus der Gruppe der chemisch stabilen Nitratester, Nitro-, Nitroamino- oder Azidoweichmacher ausgewählt ist.
  11. Festtreibstoff nach Anspruch 10, bei dem der Nitratester ein Trimethylolethantrinitrat (TMETN), Butantrioltrinitrat (BTTN) oder Diethylenglykoldinitrat (DEGDN) ist.
  12. Festtreibstoff nach Anspruch 10, bei dem der Nitroweichmacher ein 1:1 Gemisch von Bisdinitropropylformal/Bisdinitropropylacetal (BDNPF/BDNPA) ist.
  13. Festtreibstoff nach Anspruch 10, bei dem der Nitroaminoweichmacher ein 1:1 Gemisch von N-Ethyl- und N-Methylnitratoethylnitroamin (EtNENA und MeNENA) oder N-n-Butyl-N-nitratoethylnitroamin (BuNENA) oder N, N' Dinitratoethylnitroamin (DINA) ist.
  14. Festtreibstoff nach Anspruch 10, bei dem der Azidoweichmacher aus kurzkettigen GAP-Oligomeren (GAP-A) mit endständigen Bisazido-Gruppen oder aus 1,5 Diazido-3-nitroaminopentan (DANPE) besteht.
  15. Festtreibstoff nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Binderpolymere und die Weichmacher in Abhängigkeit von Art, Verträglichkeit und Energieinhalt im Bindersystem in einem Verhältnis von 1:3 bis 3:1 Massen-% vorliegen.
  16. Festtreibstoff nach einem der Ansprüche 1 bis 15, wobei die mittlere Korngröße des PSAN zwischen 5 und 80µm liegt.
  17. Festtreibstoff nach einem der Ansprüche 1 bis 16, wobei dem PSAN 0,1 bis 1 Massen-% seiner Fraktion an ultrafeinem Silicagel (Korngröße etwa 0,02µm), Natriumlaurylsulfonat, Tricalciumphosphat oder anderen Tensiden als Antibackmittel zugesetzt sind.
  18. Festtreibstoff nach einem der Ansprüche 1 bis 17, bei dem die Vanadiumoxid /Molybdänoxid-Abbrandmoderatoren in Verbindung mit Cu-Salzen, Oxiden oder Komplexen eingesetzt sind.
  19. Festtreibstoff nach einem der Ansprüche 1 bis 18, wobei die Abbrandmoderatoren Mischoxide von Molybdän der Oxidationsstufe +VI und Vanadium der Oxidationsstufen +IV und +V enthalten.
  20. Festtreibstoff nach einem der Ansprüche 1 bis 19, wobei die Abbrandmoderatoren als Trägermaterial Chrom (III)- oder Titan (IV)-Oxide aufweisen.
  21. Festtreibstoff nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß die Abbrandmoderatoren eine Korngröße von 1 bis 60 µm, vorzugsweise 1 bis 10 µm, und eine große innere Oberfläche von 5 bis 100m²/g, vorzugsweise 20 bis 60 m²/g aufweisen.
  22. Festtreibstoff nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß dieser bei Verwendung in Raketenmotoren 0,1 bis 1% Massen-% an hochschmelzenden Metallcarbiden oder -nitriden als Additive zur Unterdrückung eines instabilen, oszillierenden Abbrandverhalten enthalten.
  23. Festtreibstoff nach Anspruch 22, dadurch gekennzeichnet, daß die Additive Silicium- und/oder Zirkoniumcarbid sind.
EP95112989A 1994-10-05 1995-08-18 Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat Expired - Lifetime EP0705808B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4435523A DE4435523C1 (de) 1994-10-05 1994-10-05 Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat
DE4435523 1994-10-05

Publications (2)

Publication Number Publication Date
EP0705808A1 true EP0705808A1 (de) 1996-04-10
EP0705808B1 EP0705808B1 (de) 1997-10-29

Family

ID=6529972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95112989A Expired - Lifetime EP0705808B1 (de) 1994-10-05 1995-08-18 Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat

Country Status (5)

Country Link
US (1) US5589661A (de)
EP (1) EP0705808B1 (de)
DE (2) DE4435523C1 (de)
ES (1) ES2110285T3 (de)
NO (1) NO303983B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042639A1 (de) * 1997-03-26 1998-10-01 Basf Aktiengesellschaft Abbrandmoderatoren für gaserzeugende mischungen
CN103191748A (zh) * 2013-04-11 2013-07-10 北京科技大学 一种剑麻状CuO-ZnO复合氧化物的制备方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019422A1 (fr) 1994-12-21 1996-06-27 Daicel Chemical Industries, Ltd. Composition generatrice de gaz
DE19742203A1 (de) * 1997-09-24 1999-03-25 Trw Airbag Sys Gmbh Partikelfreies gaserzeugendes Gemisch
US6019861A (en) * 1997-10-07 2000-02-01 Breed Automotive Technology, Inc. Gas generating compositions containing phase stabilized ammonium nitrate
US6143103A (en) * 1998-01-27 2000-11-07 Trw Inc. Gas generating material for vehicle occupant protection device
WO1999038725A2 (en) * 1998-02-03 1999-08-05 Talley Defense Systems, Inc. Thin inflator and azide polymer composition thereof
US6143104A (en) * 1998-02-20 2000-11-07 Trw Inc. Cool burning gas generating composition
US6231702B1 (en) * 1998-02-20 2001-05-15 Trw Inc. Cool burning ammonium nitrate based gas generating composition
US6136113A (en) * 1998-08-07 2000-10-24 Atlantic Research Corporation Gas generating composition
US6066213A (en) * 1998-09-18 2000-05-23 Atlantic Research Corporation Minimum smoke propellant composition
US6126763A (en) * 1998-12-01 2000-10-03 Atlantic Research Corporation Minimum smoke propellant composition
US6103030A (en) * 1998-12-28 2000-08-15 Autoliv Asp, Inc. Burn rate-enhanced high gas yield non-azide gas generants
US6592691B2 (en) * 1999-05-06 2003-07-15 Autoliv Asp, Inc. Gas generant compositions containing copper ethylenediamine dinitrate
US6149746A (en) * 1999-08-06 2000-11-21 Trw Inc. Ammonium nitrate gas generating composition
WO2001025169A1 (fr) 1999-10-06 2001-04-12 Nof Corporation Composition generatrice de gaz
US6136112A (en) * 1999-10-26 2000-10-24 Trw Inc. Smokeless gas generating composition for an inflatable vehicle occupant protection device
US6156137A (en) * 1999-11-05 2000-12-05 Atlantic Research Corporation Gas generative compositions
US6372191B1 (en) 1999-12-03 2002-04-16 Autoliv Asp, Inc. Phase stabilized ammonium nitrate and method of making the same
US6224697B1 (en) 1999-12-03 2001-05-01 Autoliv Development Ab Gas generant manufacture
US6802533B1 (en) * 2000-04-19 2004-10-12 Trw Inc. Gas generating material for vehicle occupant protection device
US6436211B1 (en) 2000-07-18 2002-08-20 Autoliv Asp, Inc. Gas generant manufacture
US6652682B1 (en) * 2001-10-17 2003-11-25 The United States Of America As Represented By The Secretary Of The Navy Propellant composition comprising nano-sized boron particles
DE10224859A1 (de) * 2002-06-05 2003-12-24 Fraunhofer Ges Forschung Verfahren zur Herstellung von rieselfähigem Perchlorat und Zusammensetzung mit solchem Perchlorat
US6872265B2 (en) 2003-01-30 2005-03-29 Autoliv Asp, Inc. Phase-stabilized ammonium nitrate
CN101468935B (zh) * 2007-12-24 2012-05-09 南京理工大学 聚合物改性相稳定硝酸铵的制备方法
CN101642709B (zh) * 2008-08-04 2011-07-20 深圳大学 一种CuO-PbO/碳纳米管复合粉体及其制备方法
RU2580735C2 (ru) * 2014-09-09 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Твердотопливная металлизированная композиция на основе нитрата аммония
US10415938B2 (en) 2017-01-16 2019-09-17 Spectre Enterprises, Inc. Propellant
US11112222B2 (en) 2019-01-21 2021-09-07 Spectre Materials Sciences, Inc. Propellant with pattern-controlled burn rate
CN114539012A (zh) * 2020-11-25 2022-05-27 北京理工大学 一种适用于gap基浇注炸药及推进剂的复合含能增塑剂及其制法和应用
CA3211117A1 (en) 2021-02-16 2022-08-25 Spectre Materials Sciences, Inc. Primer for firearms and other munitions
CN113376208B (zh) * 2021-06-09 2023-04-25 四川弘博新材科技股份有限公司 钼在提升含硼的含能材料反应性能中的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949352A (en) * 1956-10-01 1960-08-16 North American Aviation Inc Propellant composition
GB862289A (en) * 1956-03-26 1961-03-08 Phillips Petroleum Co Solid propellants
US3027282A (en) * 1958-12-29 1962-03-27 Phillips Petroleum Co Composite propellants containing modifying agents
US4158583A (en) * 1977-12-16 1979-06-19 Nasa High performance ammonium nitrate propellant
DE3642850C1 (de) * 1986-12-16 1988-02-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von partikelfoermigem Ammoniumnitrat fuer feste Treib- oder Explosivstoffe
GB2200903A (en) * 1987-02-12 1988-08-17 Bayern Chemie Gmbh Flugchemie A composite solid propellant
US5074938A (en) * 1990-05-25 1991-12-24 Thiokol Corporation Low pressure exponent propellants containing boron
US5076868A (en) * 1990-06-01 1991-12-31 Thiokol Corporation High performance, low cost solid propellant compositions producing halogen free exhaust
EP0553476A1 (de) * 1991-12-27 1993-08-04 Hercules Incorporated Chlorfreier Raketenkomposittreibstoff
EP0576326A1 (de) * 1992-06-12 1993-12-29 S.N.C. Livbag Pyrotechnische, ein nichttoxisches heisses Gas erzeugende Zusammensetzung und ihre Anwendung in einer Schutzeinrichtung für Insassin eines Kraftfahrzeuges

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822154A (en) * 1962-10-01 1974-07-02 Aerojet General Co Suppression of unstable burning using finely divided metal oxides
US3340111A (en) * 1963-03-26 1967-09-05 Aerojet General Co Solid propellant catalyzed with copper-chromium complex
US3609115A (en) * 1963-09-30 1971-09-28 North American Rockwell Propellant binder
US3629019A (en) * 1964-08-11 1971-12-21 Aerojet General Co Solid propellant composition containing polyesters and an inorganic oxide burning rate catalyst
US4318270A (en) * 1968-04-11 1982-03-09 The United States Of America As Represented By The Secretary Of The Navy Additives for suppressing the radar attenuation of rocket propellant exhaust plumes
US4166045A (en) * 1973-05-02 1979-08-28 United Technologies Corporation Purification of combustion catalysts and solid propellant compositions containing the same
US3924405A (en) * 1973-06-07 1975-12-09 Aerojet General Co Solid propellants with stability enhanced additives of particulate refractory carbides or oxides
DE2644211B2 (de) * 1976-09-30 1978-12-07 Bayern-Chemie Gesellschaft Fuer Flugchemische Antriebe Mbh, 8261 Aschau Composit-Festtreibstoff
US4411717A (en) * 1983-02-02 1983-10-25 The United States Of America As Represented By The Secretary Of The Air Force Solid rocket propellants comprising guignet's green pigment
DE3523953A1 (de) * 1985-07-04 1987-01-15 Fraunhofer Ges Forschung Verfahren und vorrichtung zur herstellung von festtreibstoffen
EP0584899A3 (de) * 1992-08-05 1995-08-02 Morton Int Inc Verfahren zur Regulierung der Brenngeschwindigkeit und des Schmelzpunktes der Schlacke durch Inkorporation von Zusätzen zu Azid enthaltenden gaserzeugenden Zusammensetzungen.
US5292387A (en) * 1993-01-28 1994-03-08 Thiokol Corporation Phase-stabilized ammonium nitrate and method of making same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB862289A (en) * 1956-03-26 1961-03-08 Phillips Petroleum Co Solid propellants
US2949352A (en) * 1956-10-01 1960-08-16 North American Aviation Inc Propellant composition
US3027282A (en) * 1958-12-29 1962-03-27 Phillips Petroleum Co Composite propellants containing modifying agents
US4158583A (en) * 1977-12-16 1979-06-19 Nasa High performance ammonium nitrate propellant
DE3642850C1 (de) * 1986-12-16 1988-02-18 Fraunhofer Ges Forschung Verfahren zur Herstellung von partikelfoermigem Ammoniumnitrat fuer feste Treib- oder Explosivstoffe
GB2200903A (en) * 1987-02-12 1988-08-17 Bayern Chemie Gmbh Flugchemie A composite solid propellant
US5074938A (en) * 1990-05-25 1991-12-24 Thiokol Corporation Low pressure exponent propellants containing boron
US5076868A (en) * 1990-06-01 1991-12-31 Thiokol Corporation High performance, low cost solid propellant compositions producing halogen free exhaust
EP0553476A1 (de) * 1991-12-27 1993-08-04 Hercules Incorporated Chlorfreier Raketenkomposittreibstoff
EP0576326A1 (de) * 1992-06-12 1993-12-29 S.N.C. Livbag Pyrotechnische, ein nichttoxisches heisses Gas erzeugende Zusammensetzung und ihre Anwendung in einer Schutzeinrichtung für Insassin eines Kraftfahrzeuges

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042639A1 (de) * 1997-03-26 1998-10-01 Basf Aktiengesellschaft Abbrandmoderatoren für gaserzeugende mischungen
CN103191748A (zh) * 2013-04-11 2013-07-10 北京科技大学 一种剑麻状CuO-ZnO复合氧化物的制备方法
CN103191748B (zh) * 2013-04-11 2014-10-15 北京科技大学 一种剑麻状CuO-ZnO复合氧化物的制备方法

Also Published As

Publication number Publication date
US5589661A (en) 1996-12-31
NO953922L (no) 1996-04-09
NO953922D0 (no) 1995-10-03
EP0705808B1 (de) 1997-10-29
DE59500909D1 (de) 1997-12-04
NO303983B1 (no) 1998-10-05
ES2110285T3 (es) 1998-02-01
DE4435523C1 (de) 1996-06-05

Similar Documents

Publication Publication Date Title
EP0705808B1 (de) Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat
EP0705809B1 (de) Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat
DE3835854C2 (de)
EP0666248B1 (de) Gaserzeugende Mischung
US5741998A (en) Propellant formulations based on dinitramide salts and energetic binders
DE4026465C2 (de) Feste Treibstoffe mit einem Bindemittel aus nicht-kristallinem Polyester/inertem Weichmacher
DE3131445A1 (de) Verbesserte treibmittel mit einem gehalt an triaminoguanidinnitrat
DE4002157A1 (de) Polymergebundene energetische Materialien
EP1932817A1 (de) Nitratoethylnitroamin Treibmittel für Automobilsicherheitssysteme
DE2263860C3 (de) Feststoff-Projektiltreibladung
DE2900020C2 (de) Verfahren zur Herstellung eines mehrbasigen Treibladungspulvers
US6168677B1 (en) Minimum signature isocyanate cured propellants containing bismuth compounds as ballistic modifiers
DE10027413B4 (de) Verfahren zum Herstellen einer Treibmittelzusammensetzung unter Anwendung eines Trockenmischverfahrens
EP0528392A1 (de) Verwendung von polymodalem beta-Oktogen
EP3939952A1 (de) Schnellbrennender festtreibstoff mit einem oxidator, einem energetischen binder und einem metallischen abbrandmodifikator sowie verfahren zu dessen herstellung
DE102004004529B4 (de) Weichmacher für einen Treibsatz mit umgebungstemperaturunabhängigem Abbrand
DE3513622C2 (de) Verwendung eines Kupfer (II)-Komplexes einer unverzweigten, aliphatischen Monocarbonsäure als ballistisches Modifizierungsmittel
DE69921816T2 (de) Hochleistungsfesttreibstoff auf basis von hydrazin-nitroform
DE2754855C2 (de) Verfahren zur Verbesserung der Druckabhängigkeit des Abbrandverhaltens von Festtreiboder Rohrwaffentreibmittel und Verwendung der nach dem Verfahren hergestellten Treibmittel
DE3244444C1 (de) Zweibasige Propergolblöcke mit erhöhtem Nitramingehalt und Verfahren zu ihrer Herstellung
DE3316676A1 (de) Treibstoffzusammensetzungen
DE102011100113B4 (de) Gasgenerator-Treibstoffzusammensetzung, Verfahrenzu ihrer Herstellung und deren Verwendung
US3996080A (en) Ballistic modifiers
DE3723118C2 (de) Nitrocellulose-Treibstoffgemisch
DE3215477C1 (de) Zweibasige Propergolblöcke mit erhöhtem Nitramingehalt und Gießverfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB NL

17P Request for examination filed

Effective date: 19960725

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961106

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971031

REF Corresponds to:

Ref document number: 59500909

Country of ref document: DE

Date of ref document: 19971204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2110285

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050803

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050818

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050819

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050829

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060818

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071029

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303