EP0701389B1 - Verfahren zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen - Google Patents

Verfahren zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen Download PDF

Info

Publication number
EP0701389B1
EP0701389B1 EP95114670A EP95114670A EP0701389B1 EP 0701389 B1 EP0701389 B1 EP 0701389B1 EP 95114670 A EP95114670 A EP 95114670A EP 95114670 A EP95114670 A EP 95114670A EP 0701389 B1 EP0701389 B1 EP 0701389B1
Authority
EP
European Patent Office
Prior art keywords
circuit
lamp
voltage
ignition
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95114670A
Other languages
English (en)
French (fr)
Other versions
EP0701389A3 (de
EP0701389A2 (de
Inventor
Siegfried Luger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonicatco GmbH and Co KG
Original Assignee
Tridonic Bauelemente GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6419851&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0701389(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tridonic Bauelemente GmbH filed Critical Tridonic Bauelemente GmbH
Publication of EP0701389A2 publication Critical patent/EP0701389A2/de
Publication of EP0701389A3 publication Critical patent/EP0701389A3/de
Application granted granted Critical
Publication of EP0701389B1 publication Critical patent/EP0701389B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3922Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations and measurement of the incident light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2827Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2983Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal power supply conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission

Definitions

  • the invention relates to a method for controlling the brightness of Fluorescent lamps via an electronic ballast, which one with its Output frequency variable AC voltage generator, the one AC rectifier circuit and one of them Has alternating voltage-fed load circuit, which has at least one Friction resonant circuit and contains at least one fluorescent lamp, in which Ignite the fluorescent lamp the output frequency of the AC voltage generator is set to an ignition frequency in the vicinity of the series resonant circuit, and when the fluorescent lamp is ignited, the output voltage of the Alternating voltage generator to a corresponding dimming value Dimming frequency is shifted.
  • a ballast for fluorescent lamps is also known, at which the ignition process is monitored. If after some unsuccessful If no ignition attempts are made, the output frequency of the AC generator shifted to a higher idle frequency. On Dimming is not provided here.
  • EP 0 306 086 is a circuit arrangement for starting High-pressure gas discharge lamps are known in which the lamp burning voltage is detected to determine ignition of the lamp.
  • One of the The lamp voltage generates a proportional signal which is generated after the lamp has been ignited the starting duty cycle of an alternating voltage generator to the operating duty cycle
  • the lamp is also used to ignite high-voltage ignition pulses supplied, which are switched off after a detected ignition.
  • the shutdown is supposed to but not immediately at the first glow-arc transition.
  • the invention is based on the object, such light pulses in Avoiding dimming values associated with low brightness levels.
  • the object is achieved in that an ignition detection is carried out and that after the ignition detection the frequency shift so takes place that the glow phase between the ignition and the stationary phase is artificial is extended.
  • the solution according to the invention is to be understood in that the Frequency shift must occur within the glow phase, since it ends no longer influenced, i.e. can be extended.
  • the solution according to the invention prevents the lamp from being adjusted of the brightness level corresponding to the dimming frequency initially with maximum Brightness lights up. Instead, the one belonging to the ignition process is first Run through the dimming phase and then immediately the one corresponding to the dimming frequency lower brightness level set.
  • the solution according to the invention allows for the life of the fluorescent lamp keep harmful glow phase short for high brightness levels.
  • An extension the glow phase is only accepted for low brightness levels, since only these are critical to the flash problem.
  • the mains voltage U N is supplied to the input circuit 20 (rectifier circuit), possibly via a switch S1. This generates the intermediate circuit voltage U 0 , U dc , which is fed to the alternating voltage generator 30 (inverter).
  • the AC voltage generator 30 outputs its high-frequency output voltage U HF to an output load circuit 40 which contains one or more fluorescent lamps LA1, LA2.
  • a plurality of system measured values can be taken from both the AC voltage generator 30 and the load circuit 40. Together, the measured values are fed to a control and regulating circuit 17, which in turn generates the digital control signals for the inverter 30.
  • control and regulating device 17 is also assigned a transmitting and receiving device 10, which is connected via a bus line 12 to other electronic ballasts and / or to a central control device 50.
  • a plurality of electronic ballasts 60-1, 60-2, 60-3, ..., 60-i are connected to a common bus line 12. All ECGs are connected via this bus line to the central control device 50, to which a display unit 51 is assigned. Via bus line 12, it is now possible to control one or more of the aforementioned ECGs and to transmit commands to them, such as switching off, switching on, igniting or the like. Brightness values can also be preset and, in return, error information can be queried from the individual devices. The control unit 50 is thus informed of the overall system status at all times, which means that a high degree of operational reliability can be guaranteed and accelerated maintenance of the decentralized ECGs or for their fluorescent lamps is possible.
  • FIG. 3 shows the control and regulating device 17 as an integrated circuit.
  • the plurality of measured values m which correspond to the process signals of FIG. 1 are fed to it. It emits two digital control signals for the output stage transistors of the inverter 30, which are amplified and potential-shifted via a driver circuit 31.
  • control and regulating device 17 In addition to the m measured values, the control and regulating device 17 also receives n target values fed. These influence the predeterminable control behavior. Furthermore is as part of the control and regulating circuit 17 or separately a transmission and Receiving device 10 provided directly or by means of a coupling circuit is connected to the bus line 12. It forms the serial interface that it Control and regulating device enables error and operating status information to be transmitted to the central control unit 50.
  • n target values can also be transmitted and received by this transmitting and receiving device 10 are fed to the control circuit after appropriate preparation 17 passes on.
  • Setpoints can be, for example, the emergency lighting level (NOT), the minimum brightness level (MIN) and the maximum brightness level (MAX), within the latter two the predefined brightness level (DIMM) in the Moving operations.
  • Each decentralized ECGs are assigned an address that enables individual ECGs to be to address the address of the transmitting and receiving device 10 and information to query them or give them orders.
  • the bidirectional way of working the bus line 12 enables problem-free and low-effort cabling Large number of decentralized ECGs with a central control unit (50).
  • FIG. 4 shows a basic circuit diagram of an input circuit as can be used for supplying the alternating voltage generator 30 from a supply network with the voltage U N.
  • the input circuit consists of capacitive input filters and possibly a harmonic choke.
  • the Y-circuit capacitors are used for radio interference suppression.
  • a surge arrester or a VDR is connected in parallel. This is followed by a full-wave rectifier, which can be omitted if the device is operated with direct voltage.
  • Downstream of the rectifier is an intermediate circuit capacitor C4, which charges up to approx. 300 V with a residual ripple of approx. 10% at 220 V mains voltage.
  • the intermediate circuit voltage U 0 should be smoothed well.
  • a voltage divider R18, R28 is connected to the intermediate circuit capacitor C4 a measurement signal proportional to the intermediate circuit voltage can be tapped.
  • a signal proportional to the supply voltage is detected and just like the DC link voltage-dependent measurement signal of the control and Control device 17 supplied. Both measurement signals are used for supply voltage monitoring and thus the operational security of the TOE.
  • FIG. 5 shows an exemplary embodiment of a load circuit 40 according to the invention with a heat exchanger L5 for preheating the filaments of the fluorescent lamp LA1.
  • the exemplary embodiment of the invention has a pair of these branches, that is to say two fluorescent lamps LA1, LA2 at an AC voltage output which emits the high-frequency AC voltage U HF between the series-connected power switching transistors V21 and V28.
  • the AC voltage generator is supplied with an intermediate circuit voltage U dc from the input circuit 20 shown in FIG. 4. Since the fluorescent lamps have a negative internal resistance during operation, they must be supplied with high voltage peaks during the ignition process (ZÜND) and with appropriate heating energy when heating the filaments.
  • a series resonance circuit L2, C15 leads via a balancing element TR1, which will be explained later, to the discharge path H2, H4 of the fluorescent lamp. Furthermore, a measuring resistor R32 is connected in series with the fluorescent tube, at which a voltage proportional to the lamp current I L1 is tapped and fed to the control and regulating circuit 17.
  • An ignition capacitor C17 is connected to ground (ZERO) between coil L2 and capacitor C15.
  • Parallel to the ignition capacitor C17 is also the primary winding of the heat exchanger L5 and in series with this a Zener diode V15 and a measuring resistor R10.
  • a voltage proportional to the heating coil current I W1 is tapped from the latter and fed to the control and regulating circuit 17 as a further system measurement variable. Since the inverter 30 impresses an output voltage and the heat exchanger is essentially parallel to the fluorescent lamp LA1, a voltage is impressed on its secondary windings via the heat exchanger. The two secondary windings each supply one of the two heating coils H1, H2 and H3, H4 potential-free. The sum of the heating coil currents I W1 is thus measured at the primary-side measuring resistor R10.
  • the Zener diode V15 which is still connected in series, generates a DC component in the primary winding of L5, which, however, is not transmitted, but is missing in the lamp current I L1 and thus supplies the discharge of the lamp with an additional DC component in the order of approximately 1% of the actual discharge current , This prevents the effect of the "running layers” that occur when the lamps are dimmed.
  • the "running layers” consist in particular of light / dark zones which occur during dimming and run along the tube at a predetermined speed. A superimposition of low direct current accelerates this running effect in such a way that it no longer has a disturbing effect.
  • the inverter 30 is operated at a high frequency f max , so that an AC voltage occurs at C17 which is not suitable for igniting the lamp LA1.
  • the filaments of the lamp are heated via L5, the lamp absorbing a high and then a lower heating current due to the thermistor effect of the filaments.
  • the ignition (IGNITION) of the lamp is initiated.
  • the series resonance circuit L2, C15 or L3, C16 is strongly damped. On the one hand, this causes a shift in the resonance frequencies f 0 and, on the other hand, an immediate drop in the AC voltage applied to the respective lamp. The decrease is detected by the control and regulating circuit 17 via the voltage divider R27, R25 connected in parallel to the lamp. This then initiates the actual operating phase (DIMM) of the lamps.
  • DIMM actual operating phase
  • the frequency f of the inverter 30 is regulated so that the lamp output corresponds to the predetermined target value, ie the desired brightness level.
  • the operating frequency of the alternating voltage generator 30 can also be shifted to values which are in the order of magnitude of the heating frequency or above.
  • an output frequency can also be set which is below the ignition frequency but still above the resonance frequency of the series resonance circuit L2, C15.
  • the operating state of the lamp circuit 14 can vary greatly depending on the lamp used, for example argon or krypton lamps, or depending on the lamp power selected.
  • the combination of the capacitor C24 and the diodes V30, V31 causes a frequency-dependent Damping of the output circuit in the event of a voltage surge. It is in front important when high frequencies and high impedances occur, e.g. if there is no lamp or if the filament is already warm.
  • the wiring This type helps the voltage surge when the lamp is not ignited or missing then limit if it is undesirable.
  • C24 is selected so that the damping remains small enough at the time of ignition.
  • Fig. 6 shows the output circuit of Fig. 5 for the two-lamp - two fluorescent lamps on an inverter - operation.
  • the symmetry transformer TR1 is also shown here in full. Each winding is traversed by one of the two lamp currents. This happens in opposite directions, so that in the event of a deviation in the current amplitude, a resulting magnetization occurs, which induces a voltage in the inductive element which has a symmetrical effect.
  • Such a transformer is advantageous if the two lamps would burn differently bright in the dimmed state due to component tolerances and lamp tolerances as well as different temperature conditions.
  • the symmetry element TR1 avoids this in the case of two-lamp luminaires. If several pairs of lamps are operated at an AC voltage output, such a balancing element TR1 must be provided for each pair.
  • a signal proportional to the lamp current is obtained from them, which signal can be multiplied in the control and regulating circuit 17 by the aforementioned lamp voltage signal. In this way it is ensured that at any time of the actual lamp power is P or E brightness proportional signal is available, which can be preset to a precise brightness control as the feedback.
  • FIG. 7 shows the inverter 30 in more detail with its output power transistors V28, V21. Between them, the high-frequency AC voltage U HF is output to the load circuit 40 explained above.
  • the two power transistors are controlled via a control circuit 31, which receives its control signals from the control and regulating circuit 17. Possibly. unbalanced turn-off / turn-on delays come into consideration for the respective transistors, so that a common conduction of both transistors V21, V28 can be avoided in principle.
  • the upper transistor is supplied via a bootstrap circuit (not shown), the lower transistor and the system controller 10, 17, 31 receive their drive voltage via a series resistor and a smoothing capacitor C5 from the intermediate circuit voltage U 0 .
  • the current that can be supplied to the smoothing capacitor C5 through the series resistor or a current source I q is sufficient to supply the IC31 and the control and regulating circuit 17 in the switched-off mode (SLEEP).
  • the load circuit 40 of the inverter 30 is in an impermissible capacitive range. It represents a danger to the controlling inverter.
  • a phase angle analysis can also be used, in which the load current I L1 is set in relation to the inverter branch current I max and from this the relative phase of both currents Detection of the operating state is used.
  • the control circuit detects an inadmissible capacitive operating behavior 17 with an increase in the operating frequency f of the inverter 30 answered, with which the load circuit 40 is again operated inductively.
  • the aforementioned capacitive mode of operation mainly occurs with a low supply voltage. With the Branch current detection can reliably avoid the destruction of components.
  • the digital interface 10 shows the transmitting and receiving device 10 and the coupling filter connected upstream of it, with which the bus coupling to the control line 12 takes place.
  • the digital interface 10 is given the setpoints for minimum, maximum and emergency lighting brightness (U NOT , U MIN , U MAX ).
  • a digital input DAT is provided, via which both the control signals arrive from a central control device to the decentralized ECG and the error signals are transmitted from the decentralized ECG to the central control device.
  • the serial interface enables remote control of the electronic ballast by means of a digital command signal or command word.
  • An 8 bit data word is provided as such a digital signal.
  • FIG. 8c An advantageous further development of this circuit is shown in FIG. 8c.
  • the circuit is protected against polarity reversal by using a secondary winding with center tap.
  • Optical coupling can also be used, but this has an increased power consumption.
  • Control signal "OFF" represented by the binary word "zero” is possible.
  • SLEEP power-saving shutdown mode
  • the inverter 30 and the control circuit 31 are shut down and, if necessary, after a few more Time delay also the main components of the control and regulating circuit 17.
  • Only the receiving circuit of the transmitting and receiving device 10 and the Monitoring circuit for the detection of an emergency operation (EMERGENCY) remain activated.
  • the total circuit power drops below 1 W.
  • the control circuit 17 immediately takes the Switch-on sequence before that with preheating and ignition process (IGNITION) in the stationary Operation transferred and there is an immediate adjustment of the desired Brightness value (DIMM).
  • control and regulating circuit 17 In addition to controlling the brightness and the emergency lighting mode as well as the switch-off mode (SLEEP mode), the control and regulating circuit 17 also has the task of to take all the aforementioned process variables the information that for Monitoring and control of the TOE are important.
  • the various operating states of the fluorescent tube can also be distinguished by the measured variables.
  • the measured process variables which are used for checking, are summarized below: Supply voltage U ac , U N , Undervoltage / overvoltage U Nmin , U Nmax , Battery voltage U B , DC link voltage U 0 , U dc , Lamp current / operating current I L1 , I L2 , Lamp voltage U L1 , U L2 , Output voltage U HF , Output current I HF , Spiral current I W1 , I W2 , AC generator branch current I chap .
  • control and regulating circuit 17 switches all functions if the voltage becomes too high and can only be restored The function goes once the voltage has been switched off and on again.
  • An emergency mode switchover to a predeterminable emergency lighting brightness takes place, for example, when a DC voltage U N is detected by the control circuit 17 via the usual AC supply input of the switch-on circuit 20 and via the sensors R21, C25 (FIG. 4).
  • a counter logic is used for this purpose, which initiates emergency operation if the specified threshold value is not exceeded or not reached. This can happen after a specified dead time that bridges individual, possibly missing, half-waves.
  • an emergency voltage supply U B which is obtained from batteries or a generator, is placed on the mains voltage line.
  • the ECGs recognize this automatically.
  • the brightness of the fluorescent lamps is no longer specified by the digitally specified brightness value DIMM, but by a trim value that can be specified locally on the device and can be specified via the input U NOT .
  • the ECG is in switch-off mode (SLEEP) when this emergency operation occurs, ie the lamp and inverter are switched off, it will first carry out the normal ignition process (IGNIT) in order to subsequently switch to the emergency operating brightness.
  • SLEEP switch-off mode
  • the ECG When the end of the emergency operating state is recognized, the ECG returns to the previous state back, this can be the OFF state if the TOE was previously there. This However, it can also be the original brightness value (DIMM), if this is required of the emergency operation.
  • DIMM original brightness value
  • the detection of the filament current detects whether either a lamp is not inserted or one of the two filaments is broken.
  • the inverter 30 is operated at its maximum frequency f max , which on the one hand results in the heating current still flowing when the defective lamp has been replaced and on the other hand reduces the voltage on the defective lamp to the smallest possible extent , This is important to comply with the safety regulations according to VDE.
  • the inductive part of the series resonance circuit in the output becomes so high at the above-mentioned high frequency f max with respect to the capacitive resistance of the ignition capacitor C17 that the voltage at the output is limited to harmless values and there is no danger for the maintenance personnel.
  • the internal sequence control in the control and regulating circuit 17 also continues to limit the number of start attempts to two and sets (sends) whenever one There is an error if e.g. B. the lamp is missing if a filament break or a There is a gas defect, an error signal via the transmitting and receiving device 10 the bidirectional bus 12. This also applies in emergency mode because the lamp is defective emergency operation cannot be maintained.
  • Wiring errors that lead to a short circuit in the discharge path of the lamp can be detected on the basis of the process signals when the lamp voltages be monitored for a predetermined minimum value. One leads Falling below this specified value, as in the case of mains overvoltage monitoring to switch off the entire ECG.
  • the unwillingness to ignite the lamp is from the control and Control circuit 17 detected. If the lamp is within a predetermined ignition timing cannot be ignited, d. H. when there is a drop in voltage across the ignition capacitor C17 does not occur within this period, the lock mentioned applies on.
  • a repeat time can also be waited for after which a new attempt to start and start is made. If no ignition success is achieved here either, the control and regulating circuit 17 reacts as in the case of a broken heating coil and sets the frequency of the inverter 30 to the maximum value f max .
  • the following is explained for the brightness control of the fluorescent lamps.
  • a real brightness control is used, since this guarantees the same lamp outputs regardless of the lamp type - with essentially the same lamp efficiency.
  • the measured values determining the actual value, lamp current and lamp voltage are multiplied and compared in analog or digital form with the setpoints predetermined by remote control via the transmitting and receiving device 10.
  • the comparison result controls the frequency f of the alternating voltage generator 30 directly or via a controller. If a more precise gradation of brightness is desired, a logarithmic setpoint adjustment can take place. Exponential actual value weighting can be carried out in the same way. In addition to the independence of the lamp type, compensation is also achieved for lamp age, the existing operating temperature and also the possibly fluctuating mains voltage U N.
  • FIG. 9 shows a brightness-time diagram in which the brightness of the lamp controlled by the electronic ballast according to FIG. 1 is varied as a function of time.
  • maximum brightness is provided, followed by a switch-off cycle specified via the bus line 12 and the digital interface 10.
  • the brightness is acc. a predetermined slope reduced to zero, then the inverter 30, its driver circuit 31 and essential parts of the control IC 17 turn off to save electricity.
  • a subsequent emergency lighting state leads - despite the system being switched off - to controlled ignition and a build-up of the brightness of the lamp to the preset emergency lighting brightness (EMERGENCY). This can be changed via the setpoint specification U NOT for each decentralized ECG.
  • the maximum and minimum brightness value (MIN, MAX) shown in FIG. 9 can be set or adjusted via a corresponding setpoint value.
  • Fig. 10 is a programmatically controlled "soft start” as a brightness-time diagram shown schematically.
  • the ECG 60 is initially in the switched-off state (OUT).
  • the "Softstart” command now either leads to an automatic one slope-controlled increase in lamp brightness - after ignition - or closed a program-controlled incremental increase in lamp brightness levels. in the the latter case are determined by the central control device 50 Periods of incrementally increasing brightness values are sent.
  • the decentralized ECGs follow the requirements almost instantaneously. This will make a rate of change-controlled (regulated) rise and fall of the decentralized light sources possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Steuerung der Helligkeit von Leuchtstofflampen über ein elektronisches Vorschaltgerät, welches einen mit seiner Ausgangsfrequenz variierbaren Wechselsspannungsgenerator, eine den Wechselspannungsgenerator speisende Gleichrichterschaltung und einen von dem Wechselspannungsgenerator gespeisten Lastkreis aufweist, der mindestens einen Reibenschwingkreis und mindestens eine Leuchtstofflampe enthält, bei dem zum Zünden der Leuchtstofflampe die Ausgangsfrequenz des Wechselspannungsgenerators auf eine in der Nähe des Reihenschwingkreises liegende Zündfrequenz gesetzt wird, und bei dem nach Zünden der Leuchtstofflampe die Ausgangsspannung des Wechselspannungsgenerators auf eine einem eingestellten Dimmwert entsprechende Dimmfrequenz verschoben wird.
Ein derartiges Verfahren ist nach der EP 0 244 777 A2 bekannt. Diese Druckschrift beschreibt lediglich, daß dem Vorschaltgerät nach erfolgter Zündung ein digitaler Dimmwert zugeführt wird, welcher eine Änderung der Ausgangsfrequenz des Wechselspannungsgenerators zu Folge hat, wodurch sich ein entsprechender Helligkeitspegel einstellt.
Nach der EP 0 338 109 B1 ist ferner ein Vorschaltgerät für Leuchtstofflampen bekannt, bei welchem der Zündvorgang überwacht wird. Wenn nach einigen vergeblichen Zündversuchen keine Zündung erfolgt, so wird die Ausgangsfrequenz des Wechselspannungsgenerators auf eine höhere Leerlauffrequenz verschoben. Ein Dimmen ist hier nicht vorgesehen.
Nach der EP 0 306 086 ist eine Schaltungsanordnung zum Starten von Hochdruckgasentladungslampen bekannt, bei welcher die Lampenbrennspannung detektiert wird, um ein Zünden der Lampe festzustellen. Dabei wird ein der Lampenspannung proportionales Signal erzeugt, welches nach dem Zünden der Lampe das Starttastverhältnis eines Wechselspannungsgenerators auf das Betriebstastverhältnis herabsetzt Der Lampe werden zusätzlich zum Zünden Hochspannungs-Zündimpulse zugeführt, die nach detektierter Zündung abgeschaltet werden. Die Abschaltung soll jedoch nicht sofort beim ersten Glimm-Bogen-Übergang erfolgen.
Wenn Leuchtstofflampen nach einem Verfahren der eingangs beschriebenen Art gezündet und gedimmt werden, so bestand bisher das Problem, daß jedenfalls dann störende Lichtimpulse auftraten, wenn die Umgebung der Leuchtstofflampe relativ dunkel war und wenn der nach dem Zünden einzustellende Dimmwert einem relativ geringen Helligkeitspegel entsprach. Dies deshalb, weil die Frequenzverschiebung auf die Dimmfrequenz erst erfolgte, nachdem die Glimmphase bereits durchlaufen und eine stationäre Gasentladung bei dem der Zündfrequenz entsprechenden maximalen Helligkeitspegel eingetreten war.
Der Erfindung liegt nunmehr die Aufgabe zugrunde, derartige Lichtimpulse in Verbindung mit geringen Helligkeitspegeln entsprechenden Dimmwerten zu vermeiden.
Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß eine Zünderkennung durchgeführt wird und daß nach der Zünderkennung die Frequenzverschiebung so erfolgt, daß die Glimmphase zwischen dem Zünden und der stationären Phase künstlich verlängert wird.
Die erfindungsgemäße Lösung ist dahingehend zu verstehen, daß die Frequenzverschiebung innerhalb der Glimmphase erfolgen muß, da sie nach deren Ende nicht mehr beeinflußt, d.h. verlängert werden kann.
Durch die erfindungsgemäße Lösung wird vermieden, daß die Lampe vor Einstellung des der Dimmfrequenz entsprechenden Helligkeitspegels zunächst mit maximaler Helligkeit aufleuchtet. Statt dessen wird zunächst die zum Zündvorgang gehörende Dimmphase durchlaufen und danach wird sofort der der Dimmfrequenz entsprechende geringere Helligkeitspegel eingestellt.
Die erfindungsgemäße Lösung erlaubt es, die für die Lebensdauer der Leuchtstofflampe schädliche Glimmphase für hohe Helligkeitspegel kurz zu halten. Eine Verlängerung der Glimmphase wird nur für niedrige Helligkeitspegel in Kauf genommen, da nur diese für das Lichtblitz-Problem kritisch sind.
Weitere vorteilhafte Aspekte und Ausführungsformen des erfindungsgemäßen Arbeitsverfahrens sind in den Unteransprüchen näher ausgeführt. Gestützt auf die Zeichnung werden nachfolgend Ausführungsbeispiele der Erfindung näher erläutert. Es zeigen
  • Fig. 1 ein Blockschaltbild eines erfindungsgemäßen EVG,
  • Fig. 2 ein Blockschaltbild eines erfindungsgemäßen Systemgedankens, bei dem mehrere dezentrale EVGs mit einem zentralen Steuergerät über eine Busleitung 12 verbunden sind,
  • Fig. 3 ein Blockschaltbild eines Ausführungsbeispiels der erfindungsgemäßen Steuerund Regeleinrichtung als integrierte Schaltung 17,
  • Fig. 4 ein Prinzipschaltbild eines Eingangskreises 20 mit zwei Meßwerterfassungen,
  • Fig. 5 ein Ausführungsbeispiel der transformatorgekoppelten Wendelbeheizung einer Leuchtstofflampe mit drei Meßfühlern,
  • Fig. 6 ein Ausführungsbeispiel eines erfindungsgemäßen Ausgangskreises 40 mit Symmetrierelement TR1 für zwei Leuchtstofflampen,
  • Fig. 7 ein Prinzipschaltbild des Wechselspannungsgenerators mit ihn ansteuernder Treiberschaltung 31,
  • Fig. 8a-c jeweils ein Blockschaltbild der Sende- und Empfangseinrichtung 10 mit verschieden ausgestalteten Koppelschaltungen zur Busleitung 12,
  • Fig. 9 ein Helligkeits-Zeitdiagramm zur Erläuterung des Abschalt- und des Notbeleuchtungsbetriebes,
  • Fig. 10 ein Helligkeits-Zeitdiagramm zur Erläuterung der Softstart- bzw. Softstop-Funktion bei einer Systemkonfiguration gem. Fig. 2.
  • Fig. 1 zeigt zunächst ein Blockschaltbild eines Ausführungsbeispiels eines erfindungsgemäßen EVGs. Die Netzspannung UN wird - ggf. über einen Schalter S1 - dem Eingangsschaltkreis 20 (Gleichrichterschaltkreis) zugeführt. Dieser erzeugt die Zwischenkreisspannung U0,Udc, die dem Wechselspannungsgenerator 30 (Wechselrichter) zugeführt wird. Der Wechselspannungsgenerator 30 gibt seine hochfrequente Ausgangsspannung UHF an einen Ausgangs-Lastkreis 40 ab, der eine oder mehrere Leuchtstofflampen LA1,LA2 enthält. Sowohl dem Wechselspannungsgenerator 30 als auch dem Lastkreis 40 sind eine Mehrzahl von System-Meßwerten (Prozeßgrößen) entnehmbar. Gemeinsam werden die Meßwerte einer Steuer- und Regelschaltung 17 zugeführt, die ihrerseits die digitalen Ansteuersignale für den Wechselrichter 30 erzeugt. Diese werden über eine Treiberschaltung 31 potentialverschoben und den Ausgangs-MOS-FETs des Wechselrichters zugeführt. Der Steuer- und Regeleinrichtung 17 ist außerdem eine Sende- und Empfangseinrichtung 10 zugeordnet, die über eine Busleitung 12 mit anderen EVGs und/oder mit einem zentralen Steuergerät 50 verbunden ist.
    Letzteres wird von Fig. 2 gezeigt. Dort sind eine Mehrzahl von EVGs 60-1,60-2,60-3,...,60-i an einer gemeinsamen Busleitung 12 angeschlossen. Alle EVGs sind über diese Busleitung mit dem zentralen Steuergerät 50 verbunden, dem eine Anzeigeeinheit 51 zugeordnet ist. Über die Busleitung 12 wird es nun möglich, einzelne oder mehrere der genannten EVGs anzusteuern und ihnen Befehle zu übertragen, wie Ausschalten, Einschalten, Zünden o. ä. Auch können Helligkeitswerte voreingestellt werden und im Gegenzug Fehlerinformationen von den einzelnen Geräten abgefragt werden. So ist das Steuergerät 50 jederzeit über den Gesamt-Systemzustand informiert, wodurch ein hohes Maß an Betriebssicherheit gewährt werden kann und eine beschleunigte Wartung der dezentralen EVGs, bzw. für deren Leuchtstofflampen, möglich wird.
    Die in Fig. 1 gezeigten Funktionsblöcke 20,30,40,10,17 werden anhand der folgenden Figuren nun näher erläutert.
    Fig. 3 zeigt hierzu die Steuer- und Regeleinrichtung 17 als integrierte Schaltung. Ihr werden die Vielzahl von Meßwerten m, welche den Prozeßsignalen der Fig. 1 entsprechen, zugeführt. Sie gibt zwei digitale Ansteuersignale für die Endstufen-Transistoren des Wechselrichters 30 ab, die über eine Treiberschaltung 31 noch verstärkt und potentialverschoben werden.
    Neben den m Meßwerten werden der Steuer- und Regeleinrichtung 17 auch n Sollwerte zugeführt. Diese beeinflussen das vorgebbare Steuer- und Regelverhalten. Weiterhin ist als Teil der Steuer- und Regelschaltung 17 oder separat eine Sende- und Empfangseinrichtung 10 vorgesehen, die direkt oder mittels eines Koppelschaltkreises mit der Busleitung 12 verbunden ist. Sie bildet die serielle Schnittstelle, die es der Steuer- und Regeleinrichtung ermöglicht, Fehler- und Betriebszustandsinformationen dem zentralen Steuergerät 50 zu übermitteln.
    Die zuvor genannten n Sollwerte können auch dieser Sende- und Empfangseinrichtung 10 zugeführt werden, die sie nach entsprechender Aufbereitung an die Steuer- und Regelschaltung 17 weitergibt. Sollwerte können beispielsweise sein der Notbeleuchtungspegel (NOT), der minimale Helligkeitspegel (MIN) und der maximale Helligkeitspegel (MAX), innerhalb letzterer beider kann sich der vorgebbare Helligkeitspegel (DIMM) im Betrieb bewegen.
    Als Befehls- und Datenworte sowie als Fehlerinformationsworte werden serielle digitale Datenworte verwendet, deren Länge 8 bit ist. Andere Wertlängen sind möglich. Jedem dezentralen EVG wird eine Adresse zugeordnet, die es ermöglicht, einzelne EVGs über die Adresse der Sende- und Empfangseinrichtung 10 anzusprechen und Informationen von ihnen abzufragen oder ihnen Befehle zu erteilen. Die bidirektionelle Arbeitsweise der Busleitung 12 ermöglicht ein problemloses und aufwandsarmes Verkabeln einer Vielzahl von dezentraler EVGs mit einem zentralen Steuergerät (50).
    Fig. 4 zeigt ein Prinzipschaltbild eines Eingangskreises, wie er zur Speisung des Wechselspannungsgenerators 30 aus einem Versorgungsnetz mit der Spannung UN verwendbar ist. Der Eingangskreis besteht aus kapazitiven Eingangsfiltern sowie ggf. aus einer Oberwellendrossel. Die Kondensatoren in Y-Schaltung dienen der Funkentstörung. Ihnen ist ein Überspannungsableiter oder ein VDR parallel geschaltet. Es schließt sich ein Vollwellengleichrichter an, der dann entfallen kann, wenn das Gerät betriebsmäßig mit Gleichspannung betrieben wird. Dem Gleichrichter nachgeschaltet ist ein Zwischenkreiskondensator C4, der sich bei 220 V Netzspannung auf ca. 300 V mit einer Restwelligkeit von ca. 10 % auflädt.
    Aufgrund eines niedrig zu haltenden Crestfaktors sollte die Zwischenkreisspannung U0 gut geglättet sein.
    Parallel zum Zwischenkreiskondensator C4 liegt ein Spannungsteiler R18,R28, an dem ein der Zwischenkreis-Spannung proportionales Meßsignal abgreifbar ist. An einem Tiefpaß R21,C25 wird ein der Versorgungsspannung proportionales Signal erfaßt und ebenso, wie das zwischenkreisspannungs-abhängige Meßsignal der Steuer- und Regeleinrichtung 17 zugeführt. Beide Meßsignale dienen der Versorgungsspannungs-Überwachung und damit der Betriebssicherheit des EVG.
    Fig. 5 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Lastkreises 40 mit einem Heizübertrager L5 für die Vorheizung der Wendeln der Leuchtstofflampe LA1. In Fig. 5 ist lediglich einer von einem Paar von Lampenkreisen gezeigt. Das Ausführungsbeispiel der Erfindung weist ein Paar dieser Zweige auf, d. h. zwei Leuchtstofflampen LA1,LA2 an einem Wechselspannungsgenerator-Ausgang, der die hochfrequente Wechselspannung UHF zwischen den in Serie geschalteten Leistungs-Schalttransistoren V21 und V28 abgibt. Der Wechselspannungsgenerator wird aus der in Fig. 4 gezeigten Eingangsschaltung 20 mit einer Zwischenkreisspannung Udc versorgt. Da die Leuchtstofflampen einen negativen Innenwiderstand bei Betrieb besitzen, müssen sie beim Zündvorgang (ZÜND) mit hohen Spannungsspitzen und beim Heizen der Wendeln mit entsprechender Heizenergie versorgt werden. Ausgehend von dem Ausgangsanschluß des Wechselrichters 30 führt ein Serienresonanzkreis L2,C15 über ein Symmetrierelement TR1, welches später erläutert wird, auf die Entladungsstrecke H2,H4 der Leuchtstofflampe. Weiterhin ist zu der Leuchtstoffröhre ein Meßwiderstand R32 in Serie geschaltet, an welchem eine dem Lampenstrom IL1 proportionale Spannung abgegriffen und der Steuer- und Regelschaltung 17 zugeführt wird. Zwischen Spule L2 und Kondensator C15 ist ein Zündkondensator C17 gegen Erde (NULL) geschaltet. Mit Hilfe dieser Anordnung kann die Dimmerkennlinie der Entladungslampe vergleichmäßigt werden, da bei steigender Frequenz der Widerstand des Kondensators C15 abnimmt und der Widerstand der Entladungslampe zunimmt. Parallel zu dem Zündkondensator C17 liegt auch die Primärwicklung des Heizübertragers L5 sowie in Serie zu dieser weiterhin eine Zenerdiode V15 und ein Meßwiderstand R10. An letzterem wird eine dem Heizwendelstrom IW1 proportionale Spannung abgegriffen und dem Steuer- und Regelschaltkreis 17 als weitere Systemmeßgröße zugeführt. Da der Wechselrichter 30 eine Ausgangsspannung einprägt und der Heizübertrager im wesentlichen parallel zur Leuchtstofflampe LA1 liegt, wird über den Heizübertrager auf seine Sekundärwicklungen eine Spannung eingeprägt. Die beiden Sekundärwicklungen versorgen je potentialfrei eine der beiden Heizwendeln H1,H2 und H3,H4. An dem primärseitigen Meßwiderstand R10 wird so die Summe der Heizwendelströme IW1 gemessen.
    Die weiterhin in Serie geschaltete Zenerdiode V15 erzeugt in der Primärwicklung von L5 eine Gleichstromkomponente, die aber nicht übertragen wird, sondern im Lampenstrom IL1 fehlt und damit die Entladung der Lampe mit einem zusätzlichen Gleichstromanteil in der Größenanordnung von ca. 1 % des tatsächlichen Entladungsstromes versorgt. Dies verhindert den Effekt der "laufenden Schichten", die bei Dimmung der Lampen auftreten. Die "laufenden Schichten" bestehen aus insbesondere beim Dimmen auftretenden Hell-/Dunkelzonen, die mit einer vorgegebenen Geschwindigkeit längs der Röhre laufen. Ein Überlagern von geringem Gleichstrom beschleunigt diesen Laufeffekt derart, daß er nicht mehr störend wirkt.
    Zum Heizen wird der Wechselrichter 30 mit einer hohen Frequenz fmax betrieben, so daß an C17 eine Wechselspannung auftritt, die nicht zum Zünden der Lampe LA1 geeignet ist. Über L5 werden in diesem Betriebszustand die Wendeln der Lampe beheizt, wobei, bedingt durch den Kaltleitereffekt der Wendeln, die Lampe zuerst einen hohen und dann einen geringeren Heizstrom aufnimmt. Nach ca. 750 msec Vorheizzeit wird die Zündung (ZÜND) der Lampe eingeleitet.
    Beim Zünden der Leuchtstofflampe wird die Frequenz f des Wechselrichters 30 reduziert, sodaß sie näher an die Resonanzfrequenz f des Ausgangs-Serienresonanzkreises L2,C15 herankommt. Dadurch entsteht an C17 eine Spannungsüberhöhung, die in der Größenordnung von ca. 750 V (Spitze) liegt. Hierdurch wird eine funktionsfähige Lampe gezündet.
    Sobald die Lampe LA1 oder LA2 gezündet hat, wird der Serienresonanzkreis L2,C15 oder L3,C16 stark bedämpft. Dies bewirkt einerseits eine Verschiebung der Resonanzfrequenzen f0 und andererseits ein sofortiges Absinken der an der jeweiligen Lampe liegenden Wechselspannung. Das Absinken wird über den parallel zur Lampe geschalteten Spannungsteiler R27,R25 von dem Steuer- und Regelschaltkreis 17 erkannt. Dieser leitet daraufhin die eigentliche Betriebsphase (DIMM) der Lampen ein.
    Zum effektiven Betrieb der Lampe wird die Frequenz f des Wechselrichters 30 so geregelt, daß die Leistung der Lampe dem vorgegebenen Sollwert, d. h. dem gewünschten Helligkeitsniveau, entspricht. Je höher die Frequenz im Betriebszustand wird, desto geringer wird die Lampenhelligkeit. Die Betriebsfrequenz des Wechselspannungsgenerators 30 kann dabei durchaus auch auf Werte verschoben werden, die in der Größenordnung der Heizfrequenz oder darüber liegen. Auch kann bei einer maximalen Leistung (MAX) eine Ausgangsfrequenz eingestellt werden, die unterhalb der Zündfrequenz, aber noch oberhalb der Resonanzfrequenz des Serienresonanzkreises L2,C15 liegt.
    Der Betriebszustand des Lampenkreises 14 kann abhängig von der eingesetzten Lampe, beispielsweise Argon-, Krypton-Lampe, oder abhängig von der gewählten Lampenleistung, stark variieren.
    Die Kombination aus dem Kondensator C24 und den Dioden V30, V31 bewirkt eine frequenzabhängige Bedämpfüng des Ausgangskreises bei Spannungsüberhöhung. Sie ist vor allem dann wichtig, wenn hohe Frequenzen und hohe Impedanzen vorkommen, also z.B. bei fehlender Lampe oder beim Vorheizen bei bereits warmer Wendel. Die Beschaltung dieser Art hilft, die Spannungsüberhöhung bei nicht gezündeter oder fehlender Lampe dann zu begrenzen, wenn sie unerwünscht ist. C24 ist so gewählt, daß die Bedämpfung zum Zündzeitpunkt klein genug bleibt.
    Fig. 6 zeigt den Ausgangskreis der Fig. 5 für den zweiflammigen - zwei Leuchtstofflampen an einem Wechselrichter - Betrieb. Hier ist auch der Symmetieübertrager TR1 vollständig eingezeichnet. Jede Wicklung wird von einem der beide Lampenströme durchflossen. Dies geschieht gegensinnig, so daß bei Stromamplituden-Abweichung eine resultierende Magnetisierung entsteht, die in dem induktiven Element eine Spannung induziert, welche symmetrierend wirkt. Ein solcher Übertrager ist vorteilhaft, wenn durch Bauteiltoleranzen und Lampentoleranzen sowie unterschiedlichen Temperaturbedingungen die beiden Lampen im gedimmten Zustand unterschiedlich hell brennen würden. Durch das Symmetrieelement TR1 wird dies bei zweilampigen Leuchten vermieden. Werden mehrere Paare von Lampen an einem Wechselspannungsgenerator-Ausgang betrieben, so ist für jeweils ein Paar ein solches Symmetrierelement TR1 vorzusehen.
    Aus Fig. 6 ist weiterhin ersichtlich, daß jeder Leuchtstofflampe ein individueller Serienresonanzkreis vorgeschaltet ist sowie ein individueller Zündkondensator C17,C18 parallelgeschaltet ist. Dies ermöglicht eine relativ unabhängige Zündphase sowie einem Gleichlauf im Dimmbetrieb. Parallel zu den Zündkondensatoren C17,C18 liegt jeweis ein Spannungsteiler R25-R28, die ein der Ausgangs-Wechselspannung proportionales Signal an die Steuer- und Regeleinrichtung 17 führen. In gleicher Weise ist es auch möglich, die Spannungsteiler direkt parallel zur Leuchtstofflampe zu schalten, d. h. hinter das Symmetierelemente TR1. In Serie zu den Lampen, dies war anhand von Fig. 5 bereits für einen Lampenkreis erläutert, findet sich je ein Strommeß-Shunt R31,R32. An ihnen wird ein dem Lampenstrom proportionales Signal gewonnen, welches im Steuer- und Regelschaltkreis 17 mit dem vorgenannten Lampenspannungssignal multiplizierbar ist. Auf diese Weise wird sichergestellt, daß jederzeit ein der tatsächlichen Lampenleistung Pist bzw. der Helligkeit E proportionales Signal zur Verfügung steht, das einer genauen Helligkeitsregelung als Istwert vorgebbar ist.
    Fig. 7 zeigt detaillierter den Wechselrichter 30 mit seinen Ausgangs-Leistungstransistoren V28,V21. Zwischen ihnen wird die hochfrequente Wechselspannung UHF an den zuvor erläuterten Lastkreis 40 abgeben. Angesteuert werden die beiden Leistungstransistoren über einen Ansteuer-Schaltkreis 31, der seine Steuersignale von dem Steuer- und Regelschaltkreis 17 erhält. Ggf. kommen unsymmetrische Abschalt-/Einschaltverzögerungen für die jeweiligen Transistoren in Betracht, so daß ein gemeinsames Leiten beider Transistoren V21,V28 grundsätzlich vermieden werden kann. Der obere Transistor wird über eine (nicht eingezeichnete) Bootstrap-Schaltung versorgt, der untere Transistor und die Systemsteuerung 10,17,31 erhalten ihre Ansteuerspannung über einen Vorwiderstand und einen Glättungskondensator C5 aus der Zwischenkreisspannung U0. Neben der genannten Stromversorgung aus dem Zwischenkreis findet auch eine verlustarme Wechselspannungskopplung aus dem schwingenden Wechselrichter 30 über einen Koppelkondensator C21, die Dioden V12,V7 und die Induktivität L7 in die Speicherkapazität C5 statt.
    Der durch den Vorwiderstand oder eine Stromquelle Iq dem Glättungskondensator C5 zuführbare Strom ist ausreichend, um das IC31 und die Steuer- und Regelschaltung 17 im abgeschalteten Betrieb (SLEEP) zu versorgen.
    Bei Betrieb des Wechselrichters reicht die über einen Kondensator C21 ausgekoppelte, über die genannten Bauteile V12,V7,L7 gleichgerichtete und über C5 geglätte lasteingekoppelte Versorgung aus. Diese Versorgungsspannungsgewinnung ist nahezu verlustfrei, da lediglich reaktive Elemente zur Strombegrenzung eingesetzt werden. Mittels der in den unteren Wechselrichter-Halbzweig des Transistors V21 eingeschalteten antiparallelen Dioden V14,V15 und dem diesen parallel geschalteten Widerstand R34 wird eine dem Zweigstrom Imax proportionales Spannungssignal UKap gewonnen. Dieses wird, wie die anderen Prozeßsignale dem Steuer- und Regelschaltkreis 17 zugeführt. Er kann hieraus die Stromrichtung des durch den Wechselrichter im Moment vor dem Öffnen von V21 fließenden Stromes feststellen. Ist dieser Strom negativ, so befindet sich der Lastkreis 40 des Wechselrichters 30 in einem unzulässigen kapazitiven Bereich. Er stellt hierbei eine Gefahr für den steuernden Wechselrichter dar. Neben der reinen Amplituden-Detektion kann auch eine Phasenlagen-Betrachtung herangezogen werden, bei der der Laststrom IL1 in Bezug zum Wechselrichter-Zweigstrom Imax gesetzt wird und hieraus die relative Phase beider Ströme zur Detektion des Betriebszustandes herangezogen wird.
    Eine Erkennung eines unzulässigen kapazitiven Betriebsverhaltens wird von der Steuerschaltung 17 mit einer Erhöhung der Betriebsfrequenz f des Wechselrichters 30 beantwortet, womit der Lastkreis 40 wieder induktiv betrieben wird. Die vorgenannte kapazitive Betriebsweise tritt vorwiegend bei geringer Versorgungsspannung auf. Mit der Zweigstromerfassung kann ein Zerstören von Bauelementen sicher vermieden werden.
    Fig. 8 zeigt die Sende- und Empfangseinrichtung 10 sowie das ihr vorgeschaltete Koppelfilter, mit dem die Busankopplung zu der Steuerleitung 12 erfolgt. Der Digitalschnittstelle 10 sind in diesem Beispiel die Sollwerte für minimale-, maximale- und Notbeleuchtungshelligkeit (UNOT,UMIN,UMAX) vorgegeben. Weiterhin ist ein Digitaleingang DAT vorgesehen, über den sowohl die Steuersignale von einem zentralen Steuergerät zum dezentralen EVG gelangen, als auch die Fehlersignale von dem dezentralen EVG zu dem zentralen Steuergerät übermittelt werden. Das serielle Interface ermöglicht die Fernsteuerung des elektronischen Vorschaltgerätes durch ein digitales Befehlssignal oder Befehlswort. Als solches digitales Signal ist ein 8 bit-Datenwort vorgesehen. Es wird von den beiden Kondensatoren C22,C23 differenziert, sodann um die Hälfte der Versorgungsspannung des Regelschaltkreises 17 bzw. des Sende- und Empfangsschaltkreises 10 potentialverschoben und dann über einen Dämpfungskondensator C12 dem Digitaleingang DAT der Schnittstelle 10 zugeführt. Hierdurch können sowohl die 50 Hz-Netzfrequenz unterdrückt, als auch die Eingangsströme jeder Schnittstelle geringgehalten werden. Fig. 8b zeigt eine weitere Ausgestaltung der Busankopplung. Hierbei sind die beiden Busleitungen 12 mit dem Dateneingang der Digitalschnittstelle induktiv gekoppelt. Werden EVGs mit dem in Fig. 8a dargestellten Koppelfilter an verschiedenen Phasen des Drehstromnetzes betrieben, können Ausgleichsströme fließen, die die Datenübertragung störend beeinflußen. Diese Ausgleichsströme können zwar in der Schaltung gemäß Fig. 8b ebenfalls fließen, sie heben sich allerdings auf, da keine primärseitige Masseverbindung existiert. Eine vorteilhafte Weiterbildung dieser Schaltung zeigt Fig. 8c. Durch die Verwendung einer Sekundärwicklung mit Mittelanzapfung wird die Schaltung verpolungssicher. Anwendbar ist auch eine optische Kopplung, jedoch weist diese einen erhöhten Stromverbrauch auf.
    Als Stellsignale werden 255 (entsprechend 8 bit) Helligkeitswerte vorgesehen. Auch das Steuersigal "AUS", dargestellt durch das binäre Wort "Null" ist möglich. Durch das vorgenannte Signal AUS versetzt sich das Gesamt-EVG sofort oder nach einer geringen Zeitspanne in einen stromsparenden Abschaltmodus (SLEEP). In ihm wird der Meßstromverbrauch des gesamten Vorschaltgerätes minimal. Der Wechselrichter 30 und die Ansteuerschaltung 31 werden stillgelegt und ggf. nach geringer weiterer Zeitverzögerung auch die wesentlichen Baugruppen des Steuer- und Regelschaltkreises 17. Lediglich die Empfangsschaltung der Sende- und Empfangseinrichtung 10 und die Überwachungsschaltung für die Erkennung eines Notbetriebes (NOT) bleiben aktiviert. Die Gesamtkreisleistung sinkt damit unter 1 W. Trifft jedoch in einem solchen Zustand ein neues Stellsignal ein, so nimmt die Steuer- und Regelschaltung 17 sofort die Einschaltsequenz vor, die mit Vorheizen und Zündvorgang (ZÜND) in den stationären Betrieb überleitet und dort wird für eine sofortige Einstellung des gewünschten Helligkeitswertes (DIMM) gesorgt.
    Neben der Steuerung der Helligkeit und des Notbeleuchtungsmodus sowie des Abschalt-Modus (SLEEP-Mode) obliegt dem Steuer- und Regelschaltkreis 17 auch die Aufgabe, sämtlichen vorgenannten Prozeßgrößen die Informationen zu entnehmen, die zur Überwachung und Steuerung des EVG von Wichtigkeit sind.
    Dies sind die Spannungsüberwachung, die Notbetriebs-Aufrechterhaltung und die Überwachung der Leuchtstofflampen hinsichtlich Wendelbruch oder Gasdefekt. Auch werden durch die Meßgrößen die verschiedenen Betriebszustände der Leuchtstoffröhre, wie Zünden, Vorheizen und stationärer Betrieb unterscheidbar. Nachfolgend sollen die gemessenen und zur Überprüfung herangezogenen Prozeßgrößen zusammengefaßt werden: Versorgungsspannung Uac, UN,
    Unter-/Überspannung UNmin, UNmax,
    Batteriespannung UB,
    Zwischenkreisspannung U0,Udc,
    Lampenstrom/Betriebsstrom IL1,IL2,
    Lampenspannung UL1, UL2,
    Ausgangsspannung UHF,
    Ausgangsstrom IHF,
    Wendelstrom IW1, IW2,
    Wechselspannungsgenerator-Zweigstrom IKap.
    Anhand der aufgeführten Größen werden Überspannung und Unterspannung im Zwischenkreis und im Versorgungskreis erfaßt. Die Steuer- und Regelschaltung 17 schaltet dabei alle Funktionen ab, wenn die Spannung zu hoch wird, und kann erst wieder in Funktion gehen, wenn die Spannung einmal ab- und wieder zugeschaltet wurde.
    Das Auftreten von Unterspannung - welches zu einem gefährdenden kapazitiven Betrieb des Wechselrichters führt - wird damit beantwortet, daß die Ansteuerschaltung 31 gesperrt wird. Solange die Netzversorgung nicht die notwendige Spannung hat, um den Heizvorgang der Wendeln zu garantierten und den kapazitiven Betrieb zu vermeiden, nimmt die Steuer- und Regeleinrichtung 17 keine Zündung vor. Erst nach Überschreiten eines vorgebbaren Schwellenwertes wird der Zündvorgang ausgelöst. Dieses geschieht automatisch.
    Eine Notbetriebsumschaltung auf eine vorgebbare Notbeleuchtungs-Helligkeit erfolgt beispielsweise dann, wenn über den üblichen Wechselspannungs-Versorgungseingang des Einschaltkreises 20 und über den Meßfühler R21,C25 (Fig. 4) eine Gleichspannung UN von dem Regelschaltkreis 17 erkannt wird. Hierzu dient eine Zähllogik, die bei Ausbleiben der Über- oder Unterschreitung eines vorgegebenen Schwellenwertes den Notbetrieb einleitet. Dies kann nach einer vorgebenen Totzeit geschehen, die einzelne, möglicherweise fehlende, Halbwellen, überbrückt.
    Fällt in einem Leuchtensystem die normal speisende Wechselspannung Uac, UN aus, so wird eine Notspannungsversorgung UB, die aus Batterien oder einem Generator gewonnen wird, auf die Netzspannungsleitung gelegt. Dies erkennen die EVGs automatisch.
    Im Notbetrieb wird die Helligkeit der Leuchtstofflampen nicht mehr durch den digital vorgegebenen Helligkeitswert DIMM vorgegeben, sondern durch einen dezentral am Gerät vorgebbaren Trimmwert, der über den Eingang UNOT vorgebbar ist. Sollte sich das EVG beim Eintreten dieses Notbetriebes im Abschalt-Modus (SLEEP) befinden, d. h. Lampe und Wechselrichter abgeschaltet, so führt es zuerst den normalen Zündvorgang (ZÜND) durch, um nachher auf die Notbetriebshelligkeit zu stellen.
    Bei erkanntem Ende des Notbetriebszustandes geht das EVG in den vorherigen Zustand zurück, dies kann der AUS-Zustand sein, wenn sich das EVG vorher dort befand. Dies kann jedoch auch der ursprüngliche Helligkeitswert (DIMM) sein, sofern dieser vor Anforderung des Notbetriebes vorlag.
    Über die Erfassung des Wendelstromes erfolgt eine Erkennung, ob entweder eine Lampe nicht eingesetzt ist oder eine der beiden Wendeln gebrochen ist. In einem dieser Fehler-Fälle wird der Wechselrichter 30 an seiner maximalen Frequenz fmax betrieben, was einerseits einen nach wie vor fließenden Heizstrom zur Folge hat, wenn die defekte Lampe ausgetauscht worden ist und andererseits die Spannung an der defekten Lampe auf das kleinstmögliche Maß heruntersetzt. Dies ist zur Einhaltung der Sicherheitsbestimmung nach VDE wichtig. Der induktive Teil des Serienresonanzkreises im Ausgang wird bei der genannten hohen Frequenz fmax gegenüber dem kapazitiven Widerstand des Zündkondensators C17 so hoch, daß die Spannung am Ausgang auf ungefährliche Werte beschränkt wird und keine Gefahr für das Wartungspersonal besteht.
    Bei Einsetzen einer funktionsfähigen Lampe wird ohne weitere Maßnahmen nach Abwarten der Vorheizdauer der Zündvorgang (ZÜND) eingeleitet.
    Die interne Ablaufsteuerung im Steuer- und Regelschaltkreis 17 begrenzt weiterhin auch die Anzahl der Startversuche auf zwei und setzt (sendet) immer dann, wenn ein Fehlerfall vorliegt, wenn z. B. die Lampe fehlt, wenn ein Wendelbruch oder ein Gasdefekt vorliegt, ein Fehlersignal über die Sende- und Empfangseinrichtung 10 auf dem bidirektionalen Bus 12 ab. Dies gilt auch im Notbetrieb, da beim Defekt der Lampe der Notbetrieb nicht eingehalten werden kann.
    Verdrahtungsfehler, die zu einem Kurzschluß der Entladungsstrecke der Lampe führen, können aufgrund der Prozeßsignale dann erfaßt werden, wenn die Lampenspannungen auf einen vorgegebenen minimalen Wert hin überwacht werden. Dabei führt eine Unterschreitung dieses vorgegebenen Wertes, wie bei der Netzüberspannungs-Überwachung zu einem Abschalten des gesamten EVG.
    Auch die Zündunwilligkeit der Lampe, z. B. durch Gasdefekt, wird von dem Steuer- und Regelschaltkreis 17 erkannt. Wenn die Lampe innerhalb einer vorgegebenen Zündvorgabezeit nicht gezündet werden kann, d. h. wenn ein Abfallen der Spannung an dem Zündkondensator C17 innerhalb dieser Zeitspanne nicht eintritt, greift die genannte Sperre ein.
    Neben einem vollständigen Abschalten und einer Fehlermeldung kann auch eine Wiederholzeit abgewartet werden, nach der ein erneuter Zünd- und Starversuch unternommen wird. Wird auch hierbei kein Zünderfolg bewirkt, so reagiert die Steuer- und Regelschaltung 17 wie bei Heizwendelbruch und setzt die Frequenz des Wechselrichters 30 auf maximalen Wert fmax.
    Bei Austauschen der Lampe, was der Steuer- und Regelschaltkreis 17 an einem Ansteigen der Lampenspannung oder an einem Verändern des Heizwendelstromes erkennt, erfolgt nach Wiedereinsetzen einer neuen Lampe neuerlich ein Zündversuch.
    Zur Helligkeitsregelung der Leuchtstofflampen sei folgendes erläutert. Es findet eine echte Helligkeitsregelung Anwendung, da diese lampentypunabhängig gleiche Lampenleistungen - bei im wesentlichen gleichem Lampenwirkungsgrad - gewährleistet. Die istwertbestimmenden Meßgrößen Lampenstrom, Lampenspannung werden multipliziert und analog oder digital mit den über die Sende- und Empfangseinrichtung 10 ferngesteuert vorgegebenen Sollwerten verglichen. Das Vergleichsergebnis steuert unmittelbar oder über einen Regler die Frequenz f des Wechselspannungsgenerators 30. Wird eine genauere Helligkeitsabstufung gewünscht, so kann eine logarithmische Sollwertanpassung erfolgen. Auf gleiche Weise kann eine exponentielle Istwertgewichtung durchgeführt werden. Neben der Lampentypunabhängigkeit wird auch eine Kompensation von Lampenalter, von der bestehenden Betriebstemperatur und auch von der möglicherweise schwankenden Netzspannung UN erreicht.
    Mit der prozeßsignalgesteuerten Betriebszustandsüberwachung wird es auch möglich, das Zünden der Lampen auf kleine Helligkeitswerte durchzuführen, wobei der normalerweise auftretende Lichtimpuls vermieden werden kann. Letzterer ist bedingt durch die sich im Ausgangskreis durch den Zündvorgang speichernde Energie, die dann nach Zünden schlagartig in die Lampe entladen wird. Zur Unterdrückung bzw. Beseitigung wird eine schnelle Zünderkennung - über die Änderung der Lampenbrennspannung UL1,UL2-vorgesehen, sowie eine schnelle Reduktion des Lampenstroms nach dem Zünden ausgeführt. Letzteres durch augenblickliche Verschiebung der Wechselrichter-Ausgangsfrequenz in Richtung zu höheren Frequenzen hin. Hierdurch wird der Glimmbereich zwischen dem Zünden und der stationären Gasentladung künstlich verlängert. Hierdurch würde unter normalen Umständen eine Reduktion der Lampenlebensdauer auftreten. Dies wird gem. dem Ausführungsbeispiel jedoch vermieden, da die Verlängerung der Glimmphase nur für die kritischen niedrigen Helligkeitswerte eingesetzt wird. Für große Helligkeitswerte wird der Strom auf einem höheren Pegel gehalten, wodurch die Glimmphase verkürzt wird. Dies kann über digitale Steuerworte und die Sende- und Empfangseinrichtung 10 per Software eingestellt werden.
    In Fig. 9 ist ein Helligkeits-Zeitdiagramm dargestellt, in welchem die Helligkeit der von dem EVG gemäß Fig. 1 gesteuerten Lampe zeitabhängig variiert wird. Zunächst ist maximale Helligkeit vorgesehen, es folgt ein über die Busleitung 12 und die Digitalschnittstelle 10 vorgegebener Abschalt-Zyklus. Die Helligkeit wird gem. einer vorgegebenen Steigung bis auf Null reduziert, sodann schalten sich der Wechselrichter 30, seine Treiberschaltung 31 und wesentliche Teile des Steuer-ICs 17 zur Stromersparnis ab. Ein daraufhin folgender Notbeleuchtungs-Zustand führt - trotz abgeschaltetem System - zu einem gesteuerten Zünden sowie einem Aufbau der Helligkeit der Lampe auf die voreingestellte Notbeleuchtungshelligkeit (NOT). Diese ist über die Sollwert-Vorgabe UNOT für jedes dezentrale EVG veränderbar. Ebenso ist der in Fig. 9 eingezeichnete maximale und minimale Helligkeitswert (MIN,MAX) über eine entsprechende Sollwertvorgabe einstellbar oder abgleichbar.
    In Fig. 10 ist ein programmtechnisch gesteuerter "Softstart" als Helligkeits-Zeitdiagramm schematisch dargestellt. Das EVG 60 befindet sich zunächst in abgeschaltetem Zustand (AUS). Der Befehl "Softstart" führt nun entweder auf ein automatisches steigungsgeregeltes Ansteigen der Lampenhelligkeit - nach deren Zündung - oder zu einem programmgesteuerten inkrementalen Anwachsen der Lampenhelligkeitsstufen. Im letzteren Fall werden von dem zentralen Steuergerät 50 aus in bestimmten Zeitabschnitten inkremental wachsende Helligkeitswerte gesendet. Die dezentralen EVGs folgen den Anforderungen nahezu verzögerungslos. Hierdurch wird ein änderungsgeschwindigkeits-gesteuertes (geregeltes) Ansteigen und Abfallen der dezentralen Lichtquellen möglich.

    Claims (1)

    1. Verfahren zur Steuerung der Helligkeit von Leuchtstofflampen über ein elektronisches Vorschaltgerät, welches einen mit seiner Ausgangsfrequenz variierbaren Wechselsspannungsgenerator, eine den Wechselspannungsgenerator speisende Gleichrichterschaltung und einen von dem Wechselspannungsgenerator gespeisten Lastkreis aufweist, der mindestens einen Reihenschwingkreis und mindestens eine Leuchtstofflampe enthält,
      bei dem zum Zünden der Leuchtstofflampe die Ausgangsfrequenz des Wechselspannungsgenerators auf eine in der Naher der Resonanzfrequenz des Reihenschwingkreises liegende Zündfrequenz gesetzt wird, und bei dem nach Zünden der Leuchtstofflampe die Ausgangsspannung des Wechselspannungsgenerators auf eine einem eingestellten Dimmwert entsprechende Dimmfrequenz verschoben wird,
      dadurch gekennzeichnet, daß eine Zünderkennung durchgeführt wird,
      und daß nach der Zünderkennung die Frequenzverschiebung so erfolgt, daß die Glimmphase zwischen dem Zünden und der stationären Phase künstlich verlängert wird.
    EP95114670A 1990-12-07 1991-12-09 Verfahren zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen Expired - Lifetime EP0701389B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4039161A DE4039161C2 (de) 1990-12-07 1990-12-07 System zur Steuerung der Helligkeit und des Betriebsverhaltens von Leuchtstofflampen
    DE4039161 1990-12-07
    EP91121150A EP0490329B1 (de) 1990-12-07 1991-12-09 System zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen

    Related Parent Applications (2)

    Application Number Title Priority Date Filing Date
    EP91121150A Division EP0490329B1 (de) 1990-12-07 1991-12-09 System zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP91121150.6 Division 1991-12-09

    Publications (3)

    Publication Number Publication Date
    EP0701389A2 EP0701389A2 (de) 1996-03-13
    EP0701389A3 EP0701389A3 (de) 1998-08-26
    EP0701389B1 true EP0701389B1 (de) 2002-04-03

    Family

    ID=6419851

    Family Applications (9)

    Application Number Title Priority Date Filing Date
    EP95114483A Withdrawn EP0689373A3 (de) 1990-12-07 1991-12-09 Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP91121150A Revoked EP0490329B1 (de) 1990-12-07 1991-12-09 System zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP95114759A Withdrawn EP0706307A3 (de) 1990-12-07 1991-12-09 Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP95114340A Withdrawn EP0688153A3 (de) 1990-12-07 1991-12-09 Verfahren und Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP99126075A Ceased EP0989787A3 (de) 1990-12-07 1991-12-09 Verfahren und Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP99126074A Expired - Lifetime EP0989786B1 (de) 1990-12-07 1991-12-09 Verfahren und Schaltungsanordnung zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP95114670A Expired - Lifetime EP0701389B1 (de) 1990-12-07 1991-12-09 Verfahren zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP91121151A Expired - Lifetime EP0490330B1 (de) 1990-12-07 1991-12-09 Schaltungsanordnung zur Steuerung von Gasentladungslampen
    EP95114571A Withdrawn EP0701390A3 (de) 1990-12-07 1991-12-09 Verfahren und Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen

    Family Applications Before (6)

    Application Number Title Priority Date Filing Date
    EP95114483A Withdrawn EP0689373A3 (de) 1990-12-07 1991-12-09 Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP91121150A Revoked EP0490329B1 (de) 1990-12-07 1991-12-09 System zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP95114759A Withdrawn EP0706307A3 (de) 1990-12-07 1991-12-09 Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP95114340A Withdrawn EP0688153A3 (de) 1990-12-07 1991-12-09 Verfahren und Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP99126075A Ceased EP0989787A3 (de) 1990-12-07 1991-12-09 Verfahren und Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    EP99126074A Expired - Lifetime EP0989786B1 (de) 1990-12-07 1991-12-09 Verfahren und Schaltungsanordnung zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen

    Family Applications After (2)

    Application Number Title Priority Date Filing Date
    EP91121151A Expired - Lifetime EP0490330B1 (de) 1990-12-07 1991-12-09 Schaltungsanordnung zur Steuerung von Gasentladungslampen
    EP95114571A Withdrawn EP0701390A3 (de) 1990-12-07 1991-12-09 Verfahren und Schaltungsanordnungen zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen

    Country Status (6)

    Country Link
    EP (9) EP0689373A3 (de)
    AT (4) ATE137078T1 (de)
    DE (5) DE4039161C2 (de)
    ES (1) ES2087222T3 (de)
    FI (1) FI117464B (de)
    NO (1) NO300750B1 (de)

    Families Citing this family (69)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5287040A (en) * 1992-07-06 1994-02-15 Lestician Ballast, Inc. Variable control, current sensing ballast
    ATE147926T1 (de) * 1992-09-24 1997-02-15 Knobel Lichttech Schaltungsanordnung zum betrieb einer leuchtstofflampe und zur messung des lampenstroms
    WO1994013078A1 (de) * 1992-11-24 1994-06-09 Tridonic Bauelemente Gmbh Schaltungsanordnung zum steuern einer mehrzahl von verbrauchern, insbesondere vorschaltgeräten von lampen
    DE4330114B4 (de) * 1992-11-24 2004-05-06 Tridonicatco Gmbh & Co. Kg Schaltungsanordnung zum Steuern einer Mehrzahl von Verbrauchern, insbesondere Vorschaltgerät von Lampen
    DE4243955B4 (de) * 1992-12-23 2010-11-18 Tridonicatco Gmbh & Co. Kg Vorschaltgerät für mindestens ein parallel betriebenes Gasentladungslampen-Paar
    DE4245092B4 (de) * 1992-12-23 2012-07-26 Tridonic Gmbh & Co Kg Vorschaltgerät für mindestens ein parallel betriebenes Gasentladungslampen-Paar
    AT499U1 (de) * 1992-12-23 1995-11-27 Tridonic Bauelemente Schaltungsanordnung zur spannungsversorgung und helligkeitssteuerung einer niedervolt-halogenlampe
    JPH06283283A (ja) * 1993-03-26 1994-10-07 Toshiba Lighting & Technol Corp 放電灯点灯装置
    DE4330942C2 (de) * 1993-09-08 1997-05-22 Smi Syst Microelect Innovat Verfahren zum Erkennen einer defekten Leuchtstofflampe bei Betrieb mit höherfrequenter Spannung
    BE1007869A3 (nl) * 1993-12-13 1995-11-07 Koninkl Philips Electronics Nv Schakelinrichting.
    JP2745379B2 (ja) * 1994-02-24 1998-04-28 株式会社遠藤照明 蛍光灯照明調光システム
    DE4421736C2 (de) * 1994-06-22 1998-06-18 Wolfgang Nuetzel Steuerbare Lichtanlage
    DE4425890A1 (de) * 1994-07-11 1996-01-18 Priamos Licht Ind & Dienstleis Schaltungsanordnung für den Betrieb einer Entladungslampe
    US5656891A (en) * 1994-10-13 1997-08-12 Tridonic Bauelemente Gmbh Gas discharge lamp ballast with heating control circuit and method of operating same
    DE19501695B4 (de) * 1994-10-13 2008-10-02 Tridonicatco Gmbh & Co. Kg Vorschaltgerät für mindestens eine Gasentladungslampe mit vorheizbaren Lampenwendeln
    FI95985C (fi) * 1994-11-24 1996-04-10 Helvar Oy Menetelmä ja piirijärjestely valaistusteknisen elektroniikkalaitteen ohjaamiseksi
    EP0722263B1 (de) * 1995-01-13 1999-06-30 Siemens Aktiengesellschaft Schaltungsanordnung zur Wendelvorheizung von Leuchstofflampen
    US5633564A (en) * 1995-06-01 1997-05-27 Edwards; M. Larry Modular uninterruptible lighting system
    BE1009717A3 (nl) * 1995-10-20 1997-07-01 Philips Electronics Nv Schakelinrichting.
    EP0773708A1 (de) * 1995-11-09 1997-05-14 MAGNETEK S.p.A. Anpassungsteil für eine elektrische Anlage, mit eingebauter Steuerungsschaltung
    GB2307321A (en) * 1995-11-15 1997-05-21 Delmatic Ltd Failed light detector
    DE29617553U1 (de) * 1996-10-09 1997-01-02 Gövert, Ulrich, 48167 Münster Schaltung für Tastdimmer
    DE19705985A1 (de) * 1997-02-17 1998-07-02 Bosch Gmbh Robert Anordnung zum Betrieb und zur Steuerung von mit Steuergeräten versehenen Gasentladungslampen
    DE29724657U1 (de) * 1997-03-04 2002-09-05 TridonicAtco GmbH & Co. KG, Dornbirn Elektronisches Vorschaltgerät
    DE19708792A1 (de) * 1997-03-04 1998-09-10 Tridonic Bauelemente Verfahren und Vorrichtung zum Erfassen des in einer Gasentladungslampe auftretenden Gleichrichteffekts
    DE19708791C5 (de) * 1997-03-04 2004-12-30 Tridonicatco Gmbh & Co. Kg Steuerschaltung und elektronisches Vorschaltgerät mit einer derartigen Steuerschaltung
    US6094016A (en) * 1997-03-04 2000-07-25 Tridonic Bauelemente Gmbh Electronic ballast
    DE19715028B4 (de) * 1997-04-11 2008-07-03 Insta Elektro Gmbh Busfähige Dimmer, elektronische Transformatoren und Vorschaltgeräte zur Helligkeitssteuerung von Leuchten
    US7161313B2 (en) 1997-08-26 2007-01-09 Color Kinetics Incorporated Light emitting diode based products
    US20030133292A1 (en) 1999-11-18 2003-07-17 Mueller George G. Methods and apparatus for generating and modulating white light illumination conditions
    ATE254386T1 (de) * 1997-09-18 2003-11-15 Ceag Sicherheitstechnik Gmbh Beleuchtungssystem
    EP0903966B1 (de) * 1997-09-18 2003-04-16 CEAG Sicherheitstechnik GmbH Beleuchtungssystem
    DE19748007A1 (de) * 1997-10-30 1999-05-12 Tridonic Bauelemente Schnittstelle für ein Lampenbetriebsgerät
    US6069455A (en) * 1998-04-15 2000-05-30 Electro-Mag International, Inc. Ballast having a selectively resonant circuit
    US6157093A (en) * 1999-09-27 2000-12-05 Philips Electronics North America Corporation Modular master-slave power supply controller
    US20020176259A1 (en) 1999-11-18 2002-11-28 Ducharme Alfred D. Systems and methods for converting illumination
    DE10006408A1 (de) * 2000-02-14 2001-08-16 Zumtobel Staff Gmbh Beleuchtungssystem
    DE10011306A1 (de) 2000-03-10 2001-09-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Vorrichtung zur Steuerung von Lichtquellen mit Vorschaltgerät
    DE10013279A1 (de) * 2000-03-17 2001-09-27 Trilux Lenze Gmbh & Co Kg Verfahren zur Überwachung der Eingangsspannung eines elektronischen Vorschaltgerätes zum Betrieb von Leuchtstofflampen
    DE10049842A1 (de) 2000-10-09 2002-04-11 Tridonic Bauelemente Schaltungsanordnung zum Betreiben von mehreren Gasentladungslampen
    DE10052826A1 (de) * 2000-10-24 2002-04-25 Wittenstein Gmbh & Co Kg Schaltung und Verfahren zur Ansteuerung von zwei oder mehreren elektrischen Verbrauchern
    WO2002067636A1 (en) * 2001-02-20 2002-08-29 Noontek Limited A digital lamp controller for low frequency operation
    DE10127135B4 (de) * 2001-06-02 2006-07-06 Insta Elektro Gmbh Dimmbares elektronisches Vorschaltgerät
    DE10145766A1 (de) 2001-09-17 2003-04-03 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Vorrichtung und Verfahren zum Vorheizen der Wendelelektroden einer Leuchtstofflampe
    DE10163957A1 (de) * 2001-12-23 2003-07-03 Der Kluth Decke Und Licht Gmbh Elektronisches Vorschaltgerät
    DE10206731B4 (de) * 2002-02-18 2016-12-22 Tridonic Gmbh & Co Kg Lampensensor für ein Vorschaltgerät zum Betrieb einer Gasentladunslampe
    WO2005072026A1 (en) * 2004-01-20 2005-08-04 Koninklijke Philips Electronics, N.V. Electronic ballast with multi-slope current feedback
    US7619539B2 (en) 2004-02-13 2009-11-17 Lutron Electronics Co., Inc. Multiple-input electronic ballast with processor
    ITVI20040062A1 (it) * 2004-03-19 2004-06-19 Beghelli Spa Sistema integrato di diagnosi e gestione di lampade fluorescenti
    ZA200701563B (en) * 2004-07-23 2009-03-25 Tridonicatco Gmbh & Co Kg Interface circuit for transmission of digital signals
    DE102004040947A1 (de) * 2004-07-23 2006-03-16 Tridonicatco Gmbh & Co. Kg Schnittstellenschaltung zur Übertragung von digitalen Signalen
    US7245224B2 (en) * 2004-08-13 2007-07-17 Dell Products Lp Methods and systems for diagnosing projection device failure
    DE102004051162B4 (de) 2004-10-20 2019-07-18 Tridonic Gmbh & Co Kg Modulation eines PFC bei DC-Betrieb
    US7369060B2 (en) 2004-12-14 2008-05-06 Lutron Electronics Co., Inc. Distributed intelligence ballast system and extended lighting control protocol
    DE102005018775A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Parametrisierbarer digitaler PFC
    DE102005018763A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Betriebsgeräte mit Auswertung der Lampentemperatur bei der Lampenregelung
    DE102005018774A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Einstellbare digitale Leuchtmittelleistungsregelung
    DE102005045618B4 (de) 2005-09-23 2019-02-07 Osram Gmbh Notstromleuchte mit einem elektronischen Vorschaltgerät für die Ansteuerung eines Notstromleuchtmittels, sowie Notstromanlage mit derartigen Notstromleuchten
    DE102006042954A1 (de) * 2006-09-13 2008-03-27 Tridonicatco Gmbh & Co. Kg Zündung von Gasentladungslampen unter variablen Umgebungsbedingungen
    EP2080423A1 (de) * 2006-11-07 2009-07-22 Pantec Engineering AG Verfahren zum betrieb einer uv - lampe
    WO2008116496A1 (de) * 2007-03-27 2008-10-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Betriebsgerät und beleuchtungssystem für niederdruck-entladungslampen mit temperaturabhängiger leistungsrückregelung
    ES2364440T3 (es) 2008-02-04 2011-09-02 Uviterno Ag Procedimiento para el funcionamiento de una lámpara uv.
    CN101603648B (zh) * 2008-06-10 2012-05-30 矽诚科技股份有限公司 并联式单线寻址灯光装置
    CN101640967B (zh) * 2008-07-30 2013-01-02 普诚科技股份有限公司 荧光灯驱动电路、荧光灯调光电路及方法
    DE102008056814A1 (de) * 2008-11-11 2010-05-27 HÜCO Lightronic GmbH Elektronisches Vorschaltgerät, Beleuchtungsgerät und Verfahren zum Betrieb dieser
    DE102010039154A1 (de) 2010-08-10 2012-02-16 Tridonic Gmbh & Co. Kg Modulation eines PFC bei DC-Betrieb
    EP2468746A1 (de) 2010-12-23 2012-06-27 The University of Queensland Benzothiazinon Verbindungen und deren Verwendung gegen Tuberkulose
    DE102013107872B3 (de) * 2013-08-07 2014-12-11 Vossloh-Schwabe Deutschland Gmbh Vorrichtung und Verfahren zum Betreiben einer Leuchtmittelanordnung
    US10154563B2 (en) 2014-09-17 2018-12-11 Eaton Protection Systems Ip Gmbh & Co. Kg Electronic ballast and method for controlling a load

    Family Cites Families (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2747173B2 (de) * 1977-10-20 1979-11-15 Praezisa Industrieelektronik Gmbh, 4300 Essen Notleuchte mit Lichtstromsteuerung
    FR2417876A1 (fr) * 1978-02-16 1979-09-14 Aglo Sa Dispositif de commande d'un eclairage de secours
    DE3025249A1 (de) * 1980-07-03 1982-01-28 Helmut Ulrich Apparatebau, 8000 München Schaltung zur helligkeitssteurung von leuchtstofflampen
    US4346332A (en) * 1980-08-14 1982-08-24 General Electric Company Frequency shift inverter for variable power control
    EP0059064B1 (de) * 1981-02-21 1985-10-02 THORN EMI plc Anordnung zum Starten und Betreiben von Lampen
    US4396872A (en) * 1981-03-30 1983-08-02 General Mills, Inc. Ballast circuit and method for optimizing the operation of high intensity discharge lamps in the growing of plants
    US4484190A (en) * 1981-05-26 1984-11-20 General Electric Company System for load output level control
    US4695769A (en) * 1981-11-27 1987-09-22 Wide-Lite International Logarithmic-to-linear photocontrol apparatus for a lighting system
    ZA83299B (en) * 1982-01-15 1983-10-26 Minitronics Pty Ltd Electronic high frequency controlled device for operating gas discharge lamps
    US4441054A (en) * 1982-04-12 1984-04-03 Gte Products Corporation Stabilized dimming circuit for lamp ballasts
    FI65524C (fi) * 1982-04-21 1984-05-10 Helvar Oy Foerfarande och anordning foer matning av hoegfrekvent vaexelstroem till en fluorescenslampa
    US4523128A (en) * 1982-12-10 1985-06-11 Honeywell Inc. Remote control of dimmable electronic gas discharge lamp ballasts
    DE3524681A1 (de) * 1985-07-11 1987-01-22 Trilux Lenze Gmbh & Co Kg Dimmerschaltung fuer ein elektronisches leuchtstofflampen-vorschaltgeraet
    US4704563A (en) * 1986-05-09 1987-11-03 General Electric Company Fluorescent lamp operating circuit
    US4870327A (en) * 1987-07-27 1989-09-26 Avtech Corporation High frequency, electronic fluorescent lamp ballast
    DE3729383A1 (de) * 1987-09-03 1989-03-16 Philips Patentverwaltung Schaltungsanordnung zum starten einer hochdruckgasentladungslampe
    GB2212995A (en) * 1987-10-23 1989-08-02 Rockwell International Corp Fluorescent lamp dimmer
    ES2054726T3 (es) * 1988-04-20 1994-08-16 Zumtobel Ag Convertidor para una lampara de descarga.
    US4904905A (en) * 1988-08-05 1990-02-27 American Sterilizer Company Dual resonant frequency arc lamp power supply
    NL8900703A (nl) * 1989-03-22 1990-10-16 Nedap Nv Hoogfrequent voorschakelapparaat.
    DE3910738A1 (de) * 1989-04-03 1990-10-04 Zumtobel Ag Vorschaltgeraet fuer eine direkt geheizte entladungslampe
    ES2075136T3 (es) * 1989-07-10 1995-10-01 Philips Electronics Na Disposicion de circuito.
    US5027034A (en) * 1989-10-12 1991-06-25 Honeywell Inc. Alternating cathode florescent lamp dimmer
    NL8902811A (nl) * 1989-11-14 1991-06-03 Arkalite B V Verlichtingssysteem.
    US5099176A (en) * 1990-04-06 1992-03-24 North American Philips Corporation Fluorescent lamp ballast operable from two different power supplies
    DE4021131A1 (de) * 1990-07-03 1992-01-09 Zumtobel Ag Schaltungsanordnung und verfahren zum annaehern einer nichtlinearen uebertragungsfunktion

    Also Published As

    Publication number Publication date
    EP0989786A2 (de) 2000-03-29
    EP0688153A2 (de) 1995-12-20
    ATE137078T1 (de) 1996-05-15
    EP0989787A3 (de) 2000-05-24
    EP0989786B1 (de) 2004-03-24
    EP0490330B1 (de) 1995-08-30
    EP0490329B1 (de) 1996-04-17
    ES2087222T3 (es) 1996-07-16
    EP0989786A3 (de) 2000-08-23
    NO914820L (no) 1992-06-09
    EP0490330A1 (de) 1992-06-17
    EP0688153A3 (de) 1997-02-26
    EP0701389A3 (de) 1998-08-26
    EP0689373A2 (de) 1995-12-27
    EP0989787A2 (de) 2000-03-29
    EP0701390A3 (de) 1996-06-05
    ATE262774T1 (de) 2004-04-15
    EP0706307A3 (de) 1996-07-10
    FI117464B (fi) 2006-10-13
    EP0490329A1 (de) 1992-06-17
    ATE127312T1 (de) 1995-09-15
    DE4039161A1 (de) 1992-06-11
    NO300750B1 (no) 1997-07-14
    NO914820D0 (no) 1991-12-06
    DE59109260D1 (de) 2004-04-29
    DE59106372D1 (de) 1995-10-05
    DE4039161C2 (de) 2001-05-31
    EP0701389A2 (de) 1996-03-13
    EP0701390A2 (de) 1996-03-13
    FI915757A0 (fi) 1991-12-05
    DE59107686D1 (de) 1996-05-23
    EP0689373A3 (de) 1997-05-07
    EP0706307A2 (de) 1996-04-10
    FI915757A (fi) 1992-06-08
    ATE215770T1 (de) 2002-04-15
    DE59109232D1 (de) 2002-05-08

    Similar Documents

    Publication Publication Date Title
    EP0701389B1 (de) Verfahren zur Steuerung der Helligkeit und des Betriebsverhaltens von Gasentladungslampen
    DE69628739T2 (de) Steuerung und überwachung von dimmbaren vorschaltgeräten mit breitem beleuchtungshub
    DE69626603T2 (de) Vorschaltgerät
    DE60122727T2 (de) Intregrierte schaltung zur lampenerwärmung und dimmersteuerung
    DE69828484T2 (de) Entladungslampe und beleuchtungsvorrichtung
    EP0264765B1 (de) Schaltungsanordnung zum Betrieb von Niedervolt-Halogenglühlampen
    EP0801881B1 (de) Verfahren zum betreiben mindestens einer leuchtstofflampe mit einem elektronischen vorschaltgerät sowie vorschaltgerät dafür
    DE69019862T2 (de) Anordnung zur Versorgung einer Entladungslampe.
    EP0669789B1 (de) Schaltungsanordnung zum Betrieb mindestens einer Niederdruckentladungslampe
    EP0957662B1 (de) Schaltungsanordnung zum Betreiben elektrischer Lampen
    DE19923945A1 (de) Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
    EP0707438A2 (de) Vorschaltgerät für mindestens eine Gasentladungslampe
    DE3829388A1 (de) Schaltungsanordnung zum betrieb einer last
    EP0439240B1 (de) Elektronisches Vorschaltgerät
    DE3235197C2 (de)
    EP1635620B1 (de) Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden
    EP0862844B1 (de) Elektronischer transformator
    EP1860925B1 (de) Elektronisches Lampenvorschaltgerät mit Heizschaltung
    EP0165893B2 (de) Einrichtung zur Steuerung der Helligkeit von Leuchtstofflampen
    DE102011000441B4 (de) Betriebssteuergerät und Verfahren zum Dimmen eines Leuchtmittels über die Versorgungsspannung und die Spannungsfrequenz
    EP2468078B1 (de) Elektronisches vorschaltgerät und verfahren zum betreiben mindestens einer entladungslampe
    DE102004009583A1 (de) Vorschaltgerät mit verbesserter Notstrombetriebsumschaltung
    DE19501695A1 (de) Vorschaltgerät für mindestens eine Gasentladungslampe
    DE102012215786A1 (de) Schaltungsanordnung zum betreiben mindestens einer led und system aus einem vorschaltgerät und einer retrofit-lampe
    EP1784062A1 (de) Elektronisches Vorschaltgerät und entsprechendes Einstellverfahren

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AC Divisional application: reference to earlier application

    Ref document number: 490329

    Country of ref document: EP

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

    17P Request for examination filed

    Effective date: 19981110

    17Q First examination report despatched

    Effective date: 20000301

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 7H 05B 41/292 A, 7H 05B 41/38 B, 7H 05B 41/392 B

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AC Divisional application: reference to earlier application

    Ref document number: 490329

    Country of ref document: EP

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

    REF Corresponds to:

    Ref document number: 215770

    Country of ref document: AT

    Date of ref document: 20020415

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

    Ref country code: CH

    Ref legal event code: EP

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: TRIDONICATCO GMBH & CO. KG

    REF Corresponds to:

    Ref document number: 59109232

    Country of ref document: DE

    Date of ref document: 20020508

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: TRIDONICATCO GMBH & CO. KG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020703

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020703

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020626

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021030

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021209

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030106

    BERE Be: lapsed

    Owner name: *TRIDONIC BAUELEMENTE G.M.B.H.

    Effective date: 20021231

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20061215

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20061218

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20061222

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20061227

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20061231

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20070227

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: TRIDONICATCO GMBH & CO. KG

    Free format text: TRIDONICATCO GMBH & CO. KG#FAERBERGASSE 15#6851 DORNBIRN (AT) -TRANSFER TO- TRIDONICATCO GMBH & CO. KG#FAERBERGASSE 15#6851 DORNBIRN (AT)

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071209

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20080701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071231

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080701

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071231

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20081020

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071209

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20101221

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20111208

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20111208