EP0686712B1 - Flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad und deren Herstellungsverfahren - Google Patents

Flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad und deren Herstellungsverfahren Download PDF

Info

Publication number
EP0686712B1
EP0686712B1 EP95104358A EP95104358A EP0686712B1 EP 0686712 B1 EP0686712 B1 EP 0686712B1 EP 95104358 A EP95104358 A EP 95104358A EP 95104358 A EP95104358 A EP 95104358A EP 0686712 B1 EP0686712 B1 EP 0686712B1
Authority
EP
European Patent Office
Prior art keywords
spinning
mass
cellulose
tex
additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95104358A
Other languages
English (en)
French (fr)
Other versions
EP0686712A2 (de
EP0686712A3 (de
Inventor
Peter Dr. Weigel
Konrad Dr. Frigge
Wolfgang Dr. Wagenknecht
Albrecht Dr. Habil. Bauer
Jürgen Dr. Gensrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0686712A2 publication Critical patent/EP0686712A2/de
Publication of EP0686712A3 publication Critical patent/EP0686712A3/de
Application granted granted Critical
Publication of EP0686712B1 publication Critical patent/EP0686712B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof

Definitions

  • the invention relates to flexible cellulose fibers with a reduced modulus and a reduced degree of NMR order for predominant use in such textile areas where flexible moldings, e.g. textile fibers and filament yarn are produced and required, hereinafter called fibers, and those that are more environmentally friendly than the viscose process N-methylmorpholine-N-oxide (NMMNO) spinning process can be produced, and a Process for their production.
  • flexible moldings e.g. textile fibers and filament yarn are produced and required
  • NMMNO N-methylmorpholine-N-oxide
  • NMMNO and caprolactam derivatives also has good solubility properties for cellulose (US Pat. No. 5,362,867, TW 210359).
  • a special feature of this process is the instability of the solvent under certain conditions at temperatures just above the processing temperature of the spinning solutions, which can lead to an uncontrolled chain reaction.
  • additives are added to the spinning solution with the aim of stabilizing the spinning solution, in particular preventing or at least limiting the breakdown of the cellulose and the decomposition of the NMMNO (DD 201 703, DD 229 708, DD158 656) .
  • a number of substances such as amines, gallates, ascorbic acid, hydroquinone and urea are mentioned by various authors. Propyl gallate has proven to be particularly effective even at low concentrations.
  • the amounts used for stabilization are in a range below 1% based on cellulose.
  • Additives are also used to prevent the threads from sticking during the process Spinning process recommended (DD 218 121) e.g. Polyethylene glycol, or as useful for that Increased tear strength and the modulus of the threads detected (Chanzy, H. et al .: polymer 31: 400-405 (1990).
  • the fibers produced by the NMMNO process are compared to viscose fibers characteristic of high strengths and moduli.
  • the tensile strengths are in general in an approximate range of approx. 20 to 50 cN / tex, where cN / tex centi Newtons per tex means, and the initial moduli in a range above about 1500 cN / tex. It means that the strengths are pleasantly high, but often higher than necessary and the moduli significantly high for an advantageous application in the area of flexible fibers with good textile usage properties in which e.g. the usual, for textile use in clothing proven viscose fibers with initial moduli well below 1500 cN / tex will.
  • the fibers produced with it also have some other disadvantages compared to those which are produced using the conventional viscose process. Among other things, they show brittleness and fibrillation resistance. The values achieved for the elongation at break cannot be satisfactory either, so that Krisoninin et al. (SU 1 224 362) and Romanov et al. (Fiber Chemistry, 21, 4 (1990), 317-320) correct this defect in place of the most commonly used Falling bath from an aqueous NMMNO solution, a solution of NMMNO in isopropanol or amyl alcohol has been described. It also proves to be disadvantageous that the range of variation of the textile-physical characteristic values is small when the production conditions change.
  • the fibers have a relatively high degree of order, which can be seen in the high-resolution 13 C-NMR solid-state spectrum at C-1, C-4 and to a certain extent also at C-6. From the ratio of the line heights (distance of the maximum of the respective line from the baseline of the spectrum) at C-4 at approx. 88 and 85 ppm, a relatively easily accessible measure, it can be seen, for example, that this ratio has a value ⁇ 1 for flexible viscose fibers , 0, while for NMMNO fibers it is above one, for example 1.35.
  • the object of the present invention is to provide such flexible cellulose fibers, all Do not have disadvantages of the prior art to specify.
  • Another procedural object of the invention is that it is proposed Process for producing the flexible cellulose fibers of the type mentioned lower Investment costs required and less polluting than the viscose process.
  • An additional object of the invention is that this to be proposed on the Process based on the NMMNO process with regard to the range of variation textile-physical parameters about changes in manufacturing conditions allows great scope.
  • the tasks on the cellulose fiber side are solved with a flexible cellulose fiber with a reduced module and a reduced degree of NMR order, especially for textile use, which is achieved by pressing solutions of cellulose in water-containing NMMNO (N-methylmorpholine-N-oxide) through spinnerets over an air gap in an NMMNO-containing aqueous and / or alcoholic precipitation bath, as well as by conventional rinsing, post-treatment and drying with strengths between 15 and 50 cN / tex.
  • NMMNO N-methylmorpholine-N-oxide
  • these flexible cellulose fibers which can be produced in this way are characterized in that they have an initial modulus of less than 1500 cN / tex and in the high-resolution 13 C-NMR solid-state spectrum the ratio of the heights of the lines at 88 ppm and 85 ppm (C-4 range ) above the spectrum baseline is ⁇ 1.
  • the initial module and the NMR order of the cellulose fibers precipitated from cellulose NMMNO water spinning solutions then drastically lower when both the cellulose spinning solution hydrophilic, low molecular weight, organic, soluble in the polymer solution
  • Additives can be added.
  • Amines and amides are suitable as additives for this or other substances containing amino groups, which is one of the nitrogen groups have a neighboring oxygen-containing group.
  • the concentration of additives in the spinning solution, based on the cellulose content of the solution should be at least 1% by mass, amount to a maximum of 200% by mass.
  • a proportion of the additives in the precipitation bath is at least 0.1 mass% and at most 20 mass%, based on the amount of Total fall bath, cheap.
  • Additives are preferably used in which the oxygen-containing group is a Is carbonyl group.
  • the oxygen-containing group is a Is carbonyl group.
  • Urea e.g. Urea, caprolactam, Aminopropanol and / or aminocarboxylic acid used.
  • Several additives can be used as individual components or as Introduce mixture.
  • the concentration of the additives in the spinning solution should be at least 10% by mass and at most 100% by mass. So it is advantageous here, for example, if the concentration of the additives in the spinning solution, based on the cellulose content of the solution at least 4% by mass, at most 75% by mass, preferably at least 10% by mass, at most 50% by mass. Against it in the precipitation bath a proportion of the additives of at least 1% by mass and at most 10% by mass, based on the amount of total precipitation bath preferred.
  • the desired effect also occurs when the water in the precipitation bath partially or completely, preferably completely, by alcohols, in particular is replaced by isopropanol or amyl alcohol, the additives up to their maximum Saturation concentration can be contained in the precipitation bath.
  • the fibers spun in a conventional manner from a nozzle through an air gap into the precipitation bath and aftertreated and dried in the usual way have an initial modulus derived in a known manner from the force / elongation diagram of well below 1500 cN / tex, preferably even below 1200 cN / tex, and / or an NMR order of magnitude of ⁇ 1 characterized by the height ratio in the maximum of the lines at 88 ppm and 85 ppm above the baseline of the high-resolution 13 C-NMR solid-state spectrum in the C-4 range.
  • a spinning solution of 9.5% cellulose in NMMNO monohydrate with 0.1% by mass, based on cellulose, propyl gallate as stabilizing agent was spun in a laboratory extruder with a 20-hole nozzle at a temperature of 90 ° C., being the spinning bath (Precipitation bath) a 10% solution of NMMNO in water was used.
  • the fiber has the following parameters: Titer: 4.1 tex Tensile strength, dry: 34.3 cN / tex wet: 23.2 cN / tex Elongation at break, dry: 5.1% wet: 8.1% Initial module, dry: 2117 cN / tex wet: 311 cN / tex
  • the ratio of the heights of the NMR lines at 88 and 85 ppm is 1.35.
  • the fiber has the following parameters: Titer: 4.1 tex Tensile strength, dry: 35.6 cN / tex wet: 10.5 cN / tex Elongation at break, dry: 10.0% wet: 18.1% Initial module, dry: 1922 cN / tex wet: 131 cN / tex
  • the ratio of the heights of the NMR lines at 88 and 85 ppm is 1.0.
  • Example 2 using a precipitation bath consisting of a 6% aqueous urea solution.
  • the fiber has the following parameters: Titer: 4.1 tex Tensile strength, dry: 33.1 cN / tex wet: 12.2 cN / tex Elongation at break, dry: 11.5% wet: 17.0% Initial module, dry: 1430 cN / tex wet: 120 cN / tex
  • the ratio of the heights of the NMR lines at 88 and 85 ppm is 1.0.
  • the fiber has the following parameters: Titer: 4.0 tex Tensile strength, dry: 28.0 cN / tex wet: 13.2 cN / tex Elongation at break, dry: 13.9% wet: 19.9% Initial module, dry: 446 cN / tex wet: 126 cN / tex
  • the ratio of the heights of the NMR lines at 88 and 85 ppm is 0.96.
  • the ratio of the heights of the NMR lines at 88 and 85 ppm is 0.98.
  • caprolactam As example 1 with an addition of 25% caprolactam, based on the cellulose content, but additionally in the spinning solution using a spinning bath (precipitation bath) consisting of a 10% aqueous caprolactam solution.
  • the fiber has the following parameters: Titer: 4.0 tex Tensile strength, dry: 31.0 cN / tex wet: 10.9 cN / tex Elongation at break, dry: 12.3% wet: 18.4% Initial module, dry: 1255 cN / tex wet: 110 cN / tex
  • the ratio of the heights of the NMR lines at 88 and 85 ppm is 0.95.
  • the fiber has the following parameters: Titer: 4.2 tex Tensile strength, dry: 25.4 cN / tex wet: 10.1 cN / tex Elongation at break, dry: 7.1% wet: 11.9% Initial module, dry: 1580 cN / tex wet: 278 cN / tex
  • the ratio of the heights of the NMR lines at 88 and 85 ppm is 0.98.
  • the fiber has the following parameters: Titer: 3.9 tex Tensile strength, dry: 18.3 cN / tex wet: 5.7 cN / tex Elongation at break, dry: 6.1% wet: 23.4% Initial module, dry: 760 cN / tex wet: 63 cN / tex
  • the ratio of the heights of the NMR lines at 88 and 85 ppm is 0.96.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

Die Erfindung betrifft flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad für einen überwiegenden Einsatz auf solchen textilen Gebieten, bei denen flexible Formkörper, z.B. textile Fasern und Filamentgame hergestellt und benötigt werden, im folgenden Fasern genannt, und die nach dem gegenüber dem Viskoseverfahren umweltfreundlicheren N-Methylmorpholin-N-Oxid (NMMNO)-Spinnprozeß hergestellt werden, und ein Verfahren zu ihrer Herstellung.
Wegen hoher Investitionskosten und insbesondere wegen der hohen Umweltbelastung besteht ein erhebliches Interesse daran, Alternativen zum Vikoseverfahren, nach dem gegenwärtig der überwiegende Teil der Celluloseregeneratfasern hergestellt wird, zu finden. Zu den aussichtsreichsten Verfahren gehört das Verspinnen von Lösungen der Cellulose in Aminoxiden, vorzugsweise in N-Methylmorpholin-N-Oxid (NMMNO), nicht zuletzt deshalb, weil damit der umständliche Weg über eine Derivatisierung der Cellulose vermieden wird. Es ist bekannt, daß Cellulose in einem NMMNO-Wasser-System löslich ist und durch Spinnen in eine meist wäßrige NMMNO-Lösung zu textilen Fasern verarbeitet werden kann (US-PS 3 767 756, DE-PS 2 830 685, DD-PS 142 898). Es ist weiter bekannt, daß ein Gemisch aus NMMNO und Caprolactamderivaten ebenfalls gute Löslichkeitseigenschaften für Cellulose besitzt (US 5 362 867, TW 210359).
Eine Besonderheit dieses Prozesses ist die unter bestimmten Bedingungen bestehende Instabilität des Lösungsmittels bei nur wenig oberhalb der Verarbeitungstemperatur der Spinnlösungen liegenden Temperaturen, die bis zur unkontrollierten Kettenreaktion gehen kann. Zum Stand der Technik gehört es deshalb, daß der Spinnlösung Additive hinzugefügt werden mit dem Ziel der Stabilisierung der Spinnlösung, insbesondere der Verhinderung oder zumindest der Begrenzung des Abbaus der Cellulose und der Zersetzung des NMMNO (DD 201 703, DD 229 708, DD158 656). Zu diesem Zwecke wird von verschiedenen Autoren eine ganze Reihe von Substanzen wie z.B. Amine, Gallate, Ascorbinsäure, Hydrochinon und Harnstoff genannt. Als besonders wirkungsvoll schon bei geringen Konzentrationen hat sich Propylgallat erwiesen. Die Einsatzmengen zur Stabilisierung bewegen sich in einem Bereich unter 1 % bezogen auf Cellulose.
Additive werden aber auch für die Verhinderung des Verklebens der Fäden während des Spinnprozesses empfohlen (DD 218 121) z.B. Polyethylenglykol, bzw. als nützlich für die Erhöhung der Reißfestigkeit und des Moduls der Fäden erkannt (Chanzy, H. u.a.: Polymer 31 (1990), 400 - 405).
Für die nach dem NMMNO-Verfahren erzeugten Fasern sind im Vergleich zu Viskosefasern hohe Festigkeiten und Moduli kennzeichnend. So liegen die Reißfestigkeiten im allgemeinen in einem ungefähren Bereich von ca. 20 bis 50 cN/tex, wobei cN/tex centi Newton pro tex bedeutet, und die Anfangsmoduli in einem Bereich über ca. 1500 cN/tex. Das bedeutet, daß die Festigkeiten erfreulich hoch, aber oft höher als erforderlich und die Moduli deutlich zu hoch für eine vorteilhafte Anwendung im Bereich flexibler Fasern mit guten textilen Gebrauchseigenschaften liegen, in dem z.B. die üblichen, für den textilen Gebrauch in der Bekleidung bewährten Viskosefasern mit Anfangsmoduli deutlich unter 1500 cN/tex eingesetzt werden.
Obwohl das NMMNO-Verfahren bereits großtechnisch angewandt wird, besitzen die damit erzeugten Fasern noch zusätzlich einige andere Nachteile gegenüber denen, die nach dem herkömmlichen Viskoseverfahren entstehen. Sie zeigen u.a. Sprödigkeit und Fibrilliemei gung. Auch können die erreichten Werte für die Bruchdehnung nicht befriedigen, so daß von Krutschinin u.a. (SU 1 224 362) sowie von Romanov u.a. (Fibre Chemistry, 21, 4 (1990), 317-320) zur Behebung dieses Mangels an Stelle des meist eingesetzten Fällbades aus einer wäßrigen NMMNO-Lösung eine Lösung von NMMNO in Isopropanol bzw. Amylalkohol beschrieben wurde. Als nachteilig erweist sich auch, daß die Variationsbreite der textilphysikalischen Kennwerte bei Änderung der Herstellungs-bedingungen gering ist. Des weiteren weisen die Fasern einen relativ hohen Ordnungsgrad auf, der im hochaufgelösten 13C-NMR-Festkörper-Spektrum an C-1, C-4 und bedingt auch an C-6 erkennbar ist. Am Verhältnis der Linienhöhen (Abstand des Maximums der jeweiligen Linie von der Grundlinie des Spektrums) an C-4 bei ca. 88 und 85 ppm, einer relativ leicht zugänglichen Maßzahl, ist so z.B. erkennbar, daß bei flexiblen Viskosefasern dieses Verhältnis einen Wert ≤ 1,0 aufweist, während es bei NMMNO-Fasern über eins, z.B. bei 1,35, liegt.
Eine Möglichkeit zur Beeinflussung des Moduls der Fasern zeigten Chanzy u.a. (s. Polymer 31 (1990), 400 - 405) durch Hinzufügen von anorganischen Salzen, wie z.B. Ammoniumchlorid oder Calciumchlorid, zur NMMNO-Spinnlösung der Cellulose auf. Damit wird aber eine deutliche Erhöhung von Festigkeit und Modul erreicht. Die Fasern neigen noch stärker zu Sprödigkeit und Fibrillierung. Die Folge ist ein Aufsplittern der Fasern bei Biege- und Knickbeanspruchung. Derartige Fasern, die das typische Verhalten hochfester, hochmoduliger Fasern zeigen, sind zwar für viele technische Zwecke, insbesondere in Form von Verbunden in fester Matrix, hervorragend geeignet, im textilen Bereich jedoch kaum einsetzbar.
Trotz der Vielzahl der bereits beschriebenen Additive für die Zugabe zu Cellulose-NMMNO-Spinnlösungen wurde bisher keine Möglichkeit gegeben, um flexible Cellulosefasern mit deutlich reduziertem Modul und vermindertem Ordnungsgrad erzeugen zu können.
Somit besteht weiterhin ein allgemeines Interesse daran, flexible Cellulosefasern mit reduziertem Modul aus NMMNO-Lösungen bereitzustellen und den Spinnprozeß so zu beeinflussen, daß damit auch flexible, mit niedrigem Modul versehene und damit für den textilen Einsatzbereich geeignetere Fasern mit geringem Ordnungsgrad hergestellt werden können.
Aufgabe der vorliegenden Erfindung ist es, solche flexiblen Cellulosefasern, die sämtliche Nachteile des Standes der Technik nicht aufweisen, anzugeben.
Es ist somit Aufgabe der Erfindung, flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad nach dem NMMNO-Verfahren bereitzustellen, die für den textilen Gebrauch einsetzbar sind.
Darüber hinaus ist es Aufgabe der Erfindung, flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad vorzustellen, die keine hohe Sprödigkeit und Fibrillierneigung zeigen.
Desweiteren ist es Aufgabe der Erfindung, ein Verfahren zur Herstellung der flexiblen Cellulosefasern der genannten Art anzugeben.
Eine weitere verfahrensseitige Aufgabe der Erfindung besteht darin, daß dieses vorzuschlagende Verfahren zur Herstellung der flexiblen Cellulosefasern der genannten Art geringere Investitionskosten erfordert und weniger umweltbelastend als das Viskoseverfahren ist.
Es ist deshalb Aufgabe der Erfindung, eine Lösung aufzuzeigen, wie mit dem NMMNO-Verfahren flexible Cellulosefasern der genannten Art hergestellt werden können.
Eine zusätzliche Aufgabe der Erfindung besteht darin, daß dieses vorzuschlagende, auf der Grundlage des NMMNO-Prozesses basierende Verfahren hinsichtlich Variationsbreite der textilphysikalischen Kennwerte über Änderungen der Herstellungsbedingungen einen großen Spielraum zuläßt.
Erfindungsgemäß werden diese Aufgaben hinsichtlich der flexiblen Cellulosefasern der genannten Art mit einer flexiblen Cellulosefaser, wie sie im Anspruch 1 dargestellt ist, und verfahrensseitig mit einem Verfahren gemäß einem oder mehrerer der Ansprüche 2 bis 13 gelöst.
Die cellulosefaserseitigen Aufgaben werden mit einer flexiblen Cellulosefaser mit reduziertem Modul und vermindertem NMR-Ordnungsgrad, insbesondere für den textilen Einsatz, gelöst, die durch Auspressen von Lösungen der Cellulose in wasserhaltigem NMMNO (N-Methylmorpholin-N-Oxid) durch Spinndüsen über eine Luftstrecke in ein NMMNO-haltiges wässriges und/oder alkoholisches Fällbad, sowie durch herkömmliches Spülen, Nachbehandeln und Trocknen mit Festigkeiten zwischen 15 und 50 cN/tex erhalten werden kann. Erfindungsgemäß sind diese so herstellbaren, flexiblen Cellulosefasern dadurch gekennzeichnet, daß sie einen Anfangsmodul von kleiner als 1500 cN/tex besitzen und im hochaufgelösten 13C-NMR-Festkörperspektrum das Verhältnis der Höhen der Linien bei 88 ppm und 85 ppm (C-4-Bereich) über der Spektrumsgrundlinie ≤ 1 beträgt.
Diese erfindungsgemäßen flexiblen Cellulosefasern gemäß Anspruch 1 mit reduziertem Modul und vermindertem NMR-Ordnungsgrad sind verfahrensseitig durch Auspressen einer Lösung von Cellulose in wasserhaltigem NMMNO durch eine Spinndüse über eine Luftstrecke in ein NMMNO-haltiges, wässriges und/oder alkoholisches Fällbad und anschließendem, herkömmlichen Waschen, Nachbehandeln und Trocknen herstellbar.
Es wurde überraschend festgestellt, daß es trotz der großen Zahl bereits im Stand der Technik vorgeschlagener Additive erfindungsgemäß möglich ist, den Anfangsmodul und den NMR-Ordnungsgrad der aus Cellulose-NMMNO-Wasser-Spinnlösungen gefällten Cellulosefasern dann drastisch abzusenken, wenn sowohl der Spinnlösung der Cellulose als auch dem Fällbad bestimmte hydrophile, in der Polymerlösung lösliche, niedermolekulare, organische Additive hinzugefügt werden. Als Additive kommen hierfür in Frage Amine, Amide oder andere Amino-Gruppen enthaltende Substanzen, die eine der Stickstoffgruppierung benachbarte sauerstoffenthaltende Gruppe aufweisen. Die Konzentration der Additive in der Spinnlösung, bezogen auf den Celluloseanteil der Lösung, sollte mindestens 1 Masse%, höchstens 200 Masse-% betragen. Dagegen ist im Fällbad ein Anteil der Additive von mindestens 0,1 Masse-% und höchstens 20 Masse-%, bezogen auf die Menge des Gesamtfällbades, günstig.
Bevorzugt werden Additive eingesetzt, bei denen die sauerstoffenthaltende Gruppe eine Carbonylgruppe ist. Vorteilhafterweise werden als Additive z.B. Harnstoff, Caprolactam, Aminopropanol und/oder Aminocarbonsäure eingesetzt. Im Falle des gleichzeitigen Einsatzes mehrerer Additive besteht die Möglichkeit, diese als Einzelkomponenten oder als Gemisch einzubringen.
Ob es vorteilhafter ist, die Additive als Einzelkomponenten oder als Gemisch einzusetzen, wird vom konkreten Anwendungsfall bestimmt.
Überraschenderweise wurde darüber hinaus gefunden, daß der gewünschte Effekt am größten ist, wenn das bzw. die dem Fällbad zugesetzte(n) Additiv(e) dem bzw. den in der Spinnlösung enthaltenen Additiv(en) entsprechen. Das bedeutet, daß die besten Ergebnisse erzielt wurden, wenn das im Fällbad neben dem NMMNO-gelöste Additiv bzw. Additivgemisch bzw. die im Fällbad gelösten Additive denen gleich sind, die in der Spinnlösung vorhanden sind.
Vorteilhafterweise soll die Konzentration der Additive in der Spinnlösung, bezogen auf den Celluloseanteil der Lösung mindestens 10 Masse-%, höchstens 100 Masse-% betragen. So ist es beispielsweise hier günstig, wenn die Konzentration der Additive in der Spinnlösung, bezogen auf den Celluloseanteil der Lösung mindestens 4 Masse-%, höchstens 75 Masse%, vorzugsweise mindestens 10 Masse-%, höchstens 50 Masse-%, betragen. Dagegen ist im Fällbad ein Anteil der Additive von mindestens 1 Masse-% und höchstens 10 Masse-%, bezogen auf die Menge des Gesamtfällbades bevorzugt.
Weiterhin wurde festgestellt, daß der gewünschte Effekt auch dann eintritt, wenn das Wasser im Fällbad teilweise oder vollständig, vorzugsweise vollständig, durch Alkohole, insbesondere durch Isopropanol oder Amylalkohol ersetzt ist, wobei die Additive maximal bis zu ihrer Sättigungskonzentration im Fällbad enthalten sein können.
Die so auf fast herkömmliche Weise aus einer Düse durch eine Luftstrecke in das Fällbad ersponnenen und auf übliche Weise nachbehandelten und getrockneten Fasern besitzen einen auf bekannte Weise aus dem Kraft/Dehnungsdiagramm abgeleiteten Anfangsmodul von deutlich unter 1500 cN/tex, vorzugsweise sogar unter 1200 cN/tex, und/oder einen durch das Höhenverhältnis im Maximum der Linien bei 88 ppm und 85 ppm über der Grundlinie des hochaufgelösten 13C-NMR-Festkörperspektrums im C-4-Bereich charakterisierten NMR-Ordnungsgrad von ≤ 1.
Mit den erfindungsgemäßen Cellulosefasern der genannten Art und dem erfindungsgemäßen Verfahren zu ihrer Herstellung konnten sämtliche Nachteile des Standes der Technik beseitigt und die gestellten Aufgaben gelöst werden.
Die Erfindung soll durch die nachfolgend aufgeführten Beispiele näher erläutert werden.
Beispiel 1 (Vergleichsbeispiel nach dem Stand der Technik):
Eine Spinnlösung von 9,5 % Cellulose in NMMNO-Monohydrat mit 0,1 Masse-%, bezogen auf Cellulose, Propylgallat als Stabilisierungsmittel wurde in einem Laborextruder mit einer 20-Loch-Düse bei einer Temperatur von 90°C versponnen, wobei als Spinnbad (Fällbad) eine 10 %-ige Lösung von NMMNO in Wasser verwendet wurde. Die Faser besitzt die folgenden Parameter:
Titer: 4,1 tex
Reißfestigkeit, trocken: 34,3 cN/tex
naß: 23,2 cN/tex
Reißdehnung, trocken: 5,1 %
naß: 8,1 %
Anfangsmodul, trocken: 2117 cN/tex
naß: 311 cN/tex
Das Verhältnis der Höhen der NMR-Linien bei 88 und 85 ppm beträgt 1,35.
Beispiel 2 (Vergleichsbeispiel)
Wie Beispiel 1 mit einem Zusatz von 25 % Harnstoff, bezogen auf den Celluloseanteil, in der Spinnlösung. Die Faser besitzt die folgenden Parameter:
Titer: 4,1 tex
Reißfestigkeit, trocken: 35,6 cN/tex
naß: 10,5 cN/tex
Reißdehnung, trocken: 10,0 %
naß: 18,1 %
Anfangsmodul, trocken: 1922 cN/tex
naß: 131 cN/tex
Das Verhältnis der Höhen der NMR-Linien bei 88 und 85 ppm beträgt 1,0.
Beispiel 3
Wie unter Beispiel 2 unter Verwendung eines Fällbades, bestehend aus einer 6 %-igen wäßrigen Harnstofflösung. Die Faser besitzt die folgenden Parameter:
Titer: 4,1 tex
Reißfestigkeit, trocken: 33,1 cN/tex
naß: 12,2 cN/tex
Reißdehnung, trocken: 11,5 %
naß: 17,0 %
Anfangsmodul, trocken: 1430 cN/tex
naß: 120 cN/tex
Das Verhältnis der Höhen der NMR-Linien bei 88 und 85 ppm beträgt 1,0.
Beispiel 4
Wie Beispiel 2 unter Verwendung eines Fällbades, bestehend aus einer 10 %-igen wäßrigen Harnstofflösung. Die Faser besitzt die folgenden Parameter:
Titer: 4,0 tex
Reißfestigkeit, trocken: 28,0 cN/tex
naß: 13,2 cN/tex
Reißdehnung, trocken: 13,9 %
naß: 19,9 %
Anfangsmodul, trocken: 446 cN/tex
naß: 126 cN/tex
Das Verhältnis der Höhen der NMR-Linien bei 88 und 85 ppm, beträgt 0,96.
Beispiel 5
Wie Beispiel 1 mit einem Zusatz von 15 % Harnstoff, bezogen auf den Celluloseanteil, in der Spinnlösung und unter Verwendung eines Fällbades (Spinnbad), bestehend aus einer 10 %-igen Harnstofflösung. Die Faser besitzt die folgenden Parameter:
Titer: 4,0 tex
Reißfestigkeit, trocken: 31,0 cN/tex
naß: 10,9 cN/tex
Reißdehnung, trocken: 12,3 %
naß: 18,4 %
Anfangsmodul, trocken: 1255 cN/tex
naß: 110 cN/tex
Das Verhältnis der Höhen der NMR-Linien bei 88 und 85 ppm beträgt 0,98.
Beispiel 6
Wie Beispiel 1 mit einem Zusatz von 25 % Caprolactam, bezogen auf den Celluloseanteil, in der Spinnlösung aber zusätzlich unter Verwendung eines Spinnbades (Fällbad), bestehend aus einer 10 %-igen wäßrigen Caprolactamlösung. Die Faser besitzt die folgenden Parameter:
Titer: 4,0 tex
Reißfestigkeit, trocken: 31,0 cN/tex
naß: 10,9 cN/tex
Reißdehnung, trocken: 12,3 %
naß: 18,4 %
Anfangsmodul, trocken: 1255 cN/tex
naß: 110 cN/tex
Das Verhältnis der Höhen der NMR-Linien bei 88 und 85 ppm beträgt 0,95.
Beispiel 7 (Vergleichsbeispiel)
Wie Beispiel 1 mit einem Zusatz von 25 % Aminocapronsäure, bezogen auf den Celluloseanteil, in der Spinnlösung. Die Faser besitzt die folgenden Parameter:
Titer: 4,2 tex
Reißfestigkeit, trocken: 25,4 cN/tex
naß: 10,1 cN/tex
Reißdehnung, trocken: 7,1 %
naß: 11,9 %
Anfangsmodul, trocken: 1580 cN/tex
naß: 278 cN/tex
Das Verhältnis der Höhen der NMR-Linien bei 88 und 85 ppm beträgt 0,98.
Beispiel 8
Wie Beispiel 7, aber zusätzlich unter Verwendung eines Spinnbades (Fällbad), bestehend aus einer 10 %-igen wäßrigen Aminocapronsäurelösung. Die Faser besitzt die folgenden Parameter:
Titer: 3,9 tex
Reißfestigkeit, trocken: 18,3 cN/tex
naß: 5,7 cN/tex
Reißdehnung, trocken: 6,1 %
naß: 23,4 %
Anfangsmodul, trocken: 760 cN/tex
naß: 63 cN/tex
Das Verhältnis der Höhen der NMR-Linien bei 88 und 85 ppm beträgt 0,96.

Claims (13)

  1. Flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad, insbesondere für den textilen Einsatz, die durch Auspressen von Lösungen der Cellulose in wasserhaltigem N-Methyl-Morpholin-N-Oxid (NMMNO) durch Spinndüsen über eine Luftstrecke in ein NMMNO-haltiges wässriges und/oder alkoholisches Fällbad, sowie durch herkömmliches Spülen, Nachbehandeln und Trocknen mit Reißfestigkeiten zwischen 15 und 50 cN/tex erhalten werden, dadurch gekennzeichnet , daß sie im trockenen Zustand einen Anfangsmodul von kleiner als 1500 cN/tex besitzen und daß im hochaufgelösten 13C-NMR-Festkörperspektrum das Verhältnis der Höhen der Linien bei 88 ppm und 85 ppm (C-4-Bereich) über der Spektrumsgrundlinie ≤ 1 ist.
  2. Verfahren zur Herstellung von flexiblen Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad gemäß Anspruch 1 durch Auspressen einer Lösung von Cellulose in wasserhaltigem NMMNO durch eine Spinndüse über eine Luftstrecke in ein NMMNO-haltiges wässriges und/oder alkoholisches Fällbad und anschließendes Waschen, Nachbehandeln und Trocknen auf herkömmliche Weise dadurch gekennzeichnet , daß sowohl der Spinnlösung der Cellulose als auch dem Fällbad hydrophile, in der Polymerlösung lösliche, niedermolekulare, organische Additive hinzugefügt werden, daß die Additive Amine, Amide oder andere Amino- Gruppen enthaltende Substanzen, bei denen die stickstoffenthaltende Gruppierung einer sauerstoffenthaltenden Gruppe benachbart ist, darstellen, daß die Konzentration der Additive in der Spinnlösung, bezogen auf den Celluloseanteil der Spinnlösung, mindestens 1 Masse-% und höchstens 200 Masse-% entspricht und daß der Masseanteil der Additive am Fällbad mindestens 0,1 Masse-% und höchstens 20 Masse-% beträgt.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet , daß die sauerstofftragenden Gruppen Carbonylgruppen sind.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet , daß als Additive Hamstoff, Caprolactam und/oder Aminocapronsäure eingesetzt werden.
  5. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet ,daß als Additiv Aminopropanol eingesetzt wird.
  6. Verfahren nach einem oder mehreren der Ansprüche 2 bis 5, dadurch gekennzeichnet , daß die Additive als Gemische miteinander eingesetzt werden, wenn mehrere Additive zum Einsatz kommen.
  7. Verfahren nach einem oder mehreren der Ansprüche 2 bis 5, dadurch gekennzeichnet , daß die Additive als Einzelkomponenten eingesetzt werden, auch wenn mehrere Additive zum Einsatz kommen.
  8. Verfahren nach einem oder mehreren der Ansprüche 2 bis 7, dadurch gekennzeichnet , daß das bzw. die dem Fällbad zugesetzte(n) Additiv(e) dem bzw. den in der Spinnlösung enthaltenen Additiv(en) entsprechen.
  9. Verfahren nach Anspruch 2, dadurch gekennzeichnet , daß die Mengen, in denen die Additive zur Spinnlösung hinzugefügt werden, einer Konzentration der Additive in der Spinnlösung, bezogen auf den Celluloseanteil der Spinnlösung, von mindestens 10 Masse-% und höchstens 100 Masse-% entsprechen.
  10. Verfahren nach Anspruch 2, dadurch gekennzeichnet , daß der Masseanteil der Additive am Fällbad mindestens 1 Masse-% und höchstens 10 Masse-% beträgt.
  11. Verfahren nach einem oder mehreren der Ansprüche 2 bis 10, dadurch gekennzeichnet , daß das Wasser im Fällbad teilweise oder vollständig durch Alkohole ersetzt ist.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet , daß das Wasser im Fällbad vollständig durch Alkohole ersetzt ist.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet , daß als Alkohole Isopropanol und/oder Amylalkohol eingesetzt werden.
EP95104358A 1994-06-10 1995-03-24 Flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad und deren Herstellungsverfahren Expired - Lifetime EP0686712B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4420304 1994-06-10
DE4420304A DE4420304C1 (de) 1994-06-10 1994-06-10 Flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad und deren Herstellung

Publications (3)

Publication Number Publication Date
EP0686712A2 EP0686712A2 (de) 1995-12-13
EP0686712A3 EP0686712A3 (de) 1996-05-01
EP0686712B1 true EP0686712B1 (de) 1998-09-09

Family

ID=6520270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95104358A Expired - Lifetime EP0686712B1 (de) 1994-06-10 1995-03-24 Flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad und deren Herstellungsverfahren

Country Status (4)

Country Link
US (1) US5618483A (de)
EP (1) EP0686712B1 (de)
AT (1) ATE170938T1 (de)
DE (2) DE4420304C1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19600572B4 (de) * 1996-01-09 2005-03-10 Fraunhofer Ges Forschung Verfahren zur Herstellung von Cellulosefasern und die mit diesem Verfahren hergestellten Fasern
US6471727B2 (en) 1996-08-23 2002-10-29 Weyerhaeuser Company Lyocell fibers, and compositions for making the same
US6331354B1 (en) 1996-08-23 2001-12-18 Weyerhaeuser Company Alkaline pulp having low average degree of polymerization values and method of producing the same
US6210801B1 (en) 1996-08-23 2001-04-03 Weyerhaeuser Company Lyocell fibers, and compositions for making same
US6306334B1 (en) 1996-08-23 2001-10-23 The Weyerhaeuser Company Process for melt blowing continuous lyocell fibers
US6235392B1 (en) 1996-08-23 2001-05-22 Weyerhaeuser Company Lyocell fibers and process for their preparation
DE19737113A1 (de) * 1997-08-27 1999-03-04 Kalle Nalo Gmbh Verfahren und Vorrichtung zur Herstellung eines nahtlosen Folienschlauches auf Cellulosebasis durch Extrudieren
DE19753190B4 (de) * 1997-11-21 2004-02-26 Gerking, Lüder, Dr.-Ing. LYOCELL-Fasern mit verringerter Neigung zum Fibrillieren
US6143884A (en) * 1998-05-09 2000-11-07 Acelon Chemicals & Fiber Corporation Manufacturing process of cellulose viscose with low viscosity
GB9810778D0 (en) * 1998-05-19 1998-07-15 Courtaulds Plc Cellulosic solutions and their uses
US6773648B2 (en) 1998-11-03 2004-08-10 Weyerhaeuser Company Meltblown process with mechanical attenuation
DE10016307C2 (de) * 2000-03-31 2002-05-08 Thueringisches Inst Textil Verfahren zur Herstellung und Verarbeitung einer Celluloselösung
DE10019628A1 (de) * 2000-04-19 2001-10-31 Fraunhofer Ges Forschung Verfahren zur Verringerung des Ordnungsgrades von Cellulose
US6749721B2 (en) 2000-12-22 2004-06-15 Kimberly-Clark Worldwide, Inc. Process for incorporating poorly substantive paper modifying agents into a paper sheet via wet end addition
US6916402B2 (en) * 2002-12-23 2005-07-12 Kimberly-Clark Worldwide, Inc. Process for bonding chemical additives on to substrates containing cellulosic materials and products thereof
AT413287B (de) * 2003-11-25 2006-01-15 Chemiefaser Lenzing Ag Verfahren zur herstellung cellulosischer fasern
US7670459B2 (en) * 2004-12-29 2010-03-02 Kimberly-Clark Worldwide, Inc. Soft and durable tissue products containing a softening agent
TWI667378B (zh) 2014-01-03 2019-08-01 奧地利商蘭精股份有限公司 纖維素纖維

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE142898C (de) *
DE218121C (de) *
DE201703C (de) *
DE229708C (de) *
US3767756A (en) * 1972-06-30 1973-10-23 Du Pont Dry jet wet spinning process
US4142913A (en) * 1977-07-26 1979-03-06 Akzona Incorporated Process for making a precursor of a solution of cellulose
US4144080A (en) * 1977-07-26 1979-03-13 Akzona Incorporated Process for making amine oxide solution of cellulose
DD158656A1 (de) * 1981-04-27 1983-01-26 Birgitte Lukanoff Verfahren zur verringerung des celluloseabbaus in aminoxidhaltigen celluloseloesungen
SU1224362A1 (ru) * 1984-06-29 1986-04-15 Предприятие П/Я А-3844 Способ получени целлюлозных волокон
TW210359B (en) * 1992-01-22 1993-08-01 Formosa Chemicals Fibre Corp A spinning method by using spinning solution prepared from pulp cellulose which is dissolved by N-methyl morpholine N-oxide and recycled caprolactam as solvents
US5362867A (en) * 1992-05-27 1994-11-08 Formosa Chemicals & Fibre Corporation Method of making cellulose yarn solution

Also Published As

Publication number Publication date
DE59503497D1 (de) 1998-10-15
EP0686712A2 (de) 1995-12-13
ATE170938T1 (de) 1998-09-15
EP0686712A3 (de) 1996-05-01
DE4420304C1 (de) 1995-09-21
US5618483A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
EP0686712B1 (de) Flexible Cellulosefasern mit reduziertem Modul und vermindertem NMR-Ordnungsgrad und deren Herstellungsverfahren
EP0797694B1 (de) Lösungsmittelgesponnene cellulosische filamente
EP0659219B1 (de) Cellulosefaser
DE4308524C1 (de) Verfahren zur Herstellung von Cellulosefasern und -filamenten nach dem Trocken-Naßextrusionsverfahren
EP0683827B1 (de) Verfahren zur herstellung cellulosischer formkörper
DE19537726C2 (de) Verfahren zur Herstellung von mechanisch stabilen polyfilen Filamentbündeln aus Cellulose mit einem sehr hohen Anteil von Zusatzstoffen
DE3151179A1 (de) Acrylfaser, die zur herstellung einer voroxidierten faser oder kohlenstoffaser geeignet ist, und verfahren zu deren herstellung
DE69721791T2 (de) Verwendung von linearen syntethischen polymeren zur verbesserung der eigenschaften von cellulosischen formkörpern hergestellt nach dem tertiären-aminoxid-verfahren
EP3414374A1 (de) Verfahren zur herstellung von carbonfasern aus mit sulfonsäuresalzen behandelten cellulosefasern
EP0726974B1 (de) Verfahren zur herstellung cellulosischer formkörper
DE102008018743A1 (de) Cellulosecarbamat-Spinnlösung, Cellulosecarbamatfaser sowie Verfahren zu deren Herstellung und Verwendungszwecke
DE2752743A1 (de) Verfahren zur erzielung von verformten erzeugnissen aus cellulose
DE3336584A1 (de) Verfahren zur herstellung von kohlenstoffasern oder grafitfasern
AT393841B (de) Stabile form- bzw. spinnmasse
EP0283831B1 (de) Verfahren zur Herstellung von Garnen durch das Schmelzspinnen von Polyethylenterephthalat
DE4446491C2 (de) Verfahren zur Herstellung von Cellulosefasern sowie Cellulosefasern mit reduzierter Fibrillierneigung
DE3726211A1 (de) Verfahren zur herstellung von acrylnitril-faserstraengen
DE102004007616A1 (de) Verfahren zur Herstellung von Fasern und anderen Formkörpern aus Cellulosecarbamat und/oder regenerierter Cellulose
DE2732187C2 (de) Verformbare Celluloselösungen und Verfahren zu ihrer Herstellung
DE1234916B (de) Verfahren zur Herstellung von aus regenerierter Cellulose bestehenden Faeden, Fasernoder Folien
DE1570259A1 (de) Verfahren zum Herstellen von Polyamiden
DE1795063A1 (de) Verfahren zur Erzeugung spinnbarer Polyamide,die eine hohe Faerbegleichmaessigkeit und ein hohes Bindevermoegen fuer saure Farbstoffe besitzen
DE19948401C1 (de) Verfahren zur Herstellung von Cellulose-Formkörpern
DE1669547A1 (de) Verfahren zum Spinnen von Viscosereyonfaeden
EP0888467B1 (de) Verfahren zur herstellung von cellulosischen fasern mit verringerter fibrillierungsneigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB NL

17P Request for examination filed

Effective date: 19960417

17Q First examination report despatched

Effective date: 19970610

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980909

REF Corresponds to:

Ref document number: 170938

Country of ref document: AT

Date of ref document: 19980915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59503497

Country of ref document: DE

Date of ref document: 19981015

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981202

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060323

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060324

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070324

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070324

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100521

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59503497

Country of ref document: DE

Effective date: 20111001