EP0681158B1 - Chaíne pyrotechnique - Google Patents

Chaíne pyrotechnique Download PDF

Info

Publication number
EP0681158B1
EP0681158B1 EP95105373A EP95105373A EP0681158B1 EP 0681158 B1 EP0681158 B1 EP 0681158B1 EP 95105373 A EP95105373 A EP 95105373A EP 95105373 A EP95105373 A EP 95105373A EP 0681158 B1 EP0681158 B1 EP 0681158B1
Authority
EP
European Patent Office
Prior art keywords
detonator
stage
semiconductor switch
explosive
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95105373A
Other languages
German (de)
English (en)
Other versions
EP0681158A1 (fr
Inventor
Heinz Dipl.-Phys. Ritter
Wolf Dipl.-Ing. Steinbichler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Europe AG
Original Assignee
Euro Matsushita Electric Works AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro Matsushita Electric Works AG filed Critical Euro Matsushita Electric Works AG
Priority to EP97120954A priority Critical patent/EP0845652A3/fr
Publication of EP0681158A1 publication Critical patent/EP0681158A1/fr
Application granted granted Critical
Publication of EP0681158B1 publication Critical patent/EP0681158B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting

Definitions

  • the invention relates to an explosive chain with a variety from the ignition stages to be controlled, each of which Explosives are assigned.
  • Such explosive chains are used in particular in mining, with the mine for example a hundred or more holes drilled in each used an explosive device with an associated detonator and the drill holes are closed with plugs.
  • the interval between successive firings is typically between 30 and 50 ms.
  • each ignition level one detonator and one in series with it contains lying thyristor switch, its control electrode with the tap of the detonator of the previous one Stage containing voltage divider is connected.
  • the previous igniter activated its resistance changes from an initially low value to practically infinite, whereby the thyristor switch of the following stage turns on and the next current pulse with him in series trigger detonator.
  • each ignition level except the actual igniter has one Oscillator, a frequency divider and two driver stages contains.
  • the one coming from the previous ignition level Trigger pulse actuates the first driver stage, which in turn a switch for driving the oscillator, the Frequency divider and the second driver stage closes.
  • the first driver stage which in turn a switch for driving the oscillator, the Frequency divider and the second driver stage closes.
  • the second Driver stage operated another switch, via which the Igniter is activated.
  • Each ignition stage also contains one Capacitor for storing all the necessary for ignition Energy.
  • DE-B-1 287 495 is an explosive chain with each Features specified in the first part of claims 1 and 2 known in which the transfer of the control signal from a Ignition level to the next simply by changing the switching state of the semiconductor switch provided in each stage is effected.
  • This explosive chain therefore remains functional even if individual detonators are missing or not working properly become high impedance. Because every semiconductor switch only then Become conductive and activate the ignition device assigned to it can if the semiconductor switch of the previous Has switched stage, the intended firing order is inevitable adhered to. Faulty assembly of the explosive chain cannot cause when turning on the power source the explosive chain at about two different places at the same time starts to ignite.
  • This circuit also needs its own, the first ignition stage upstream switching element for initiation the chain so that it is - at least on the side of the first Ignition level - do not lengthen or shorten as you like leaves.
  • An object of the invention is an explosive chain specify, on the one hand, has the advantage that it works properly even at individual points an igniter is not provided or is faulty, in particular does not immediately become high-resistance when activated, on the other hand one Execution in integrated circuit technology favors.
  • Claims 4 to 7 relate to various Possibilities in the first stage firing order with a Start pulse. Thereby is the measure of the claim 5 advantageous in that it allows minimal Circuit effort of the explosive chain all ignition levels the same build up. An explosive chain for a desired number of Accordingly, detonations can easily be from a longer or continuously cut assembly or be generated by piecing shorter lengths.
  • the design according to claim 8 is useful in so far than the explosive chain links, each surrounded by a housing are the same and incorrect wiring of each Ignition levels is avoided.
  • the individual ignition stages S1 , S2 ,... Lie parallel to one another and in each case between two supply lines A and 0 , which are connected at the right end in FIG. 1 to a DC power source (not shown).
  • the DC power source produces an output voltage of 50 V on line A compared to the earthed line 0 .
  • Each of the identical ignition stages S1 , S2 , ... contains a series circuit between a supply line A , 0 , consisting of a thyristor T and an ignition device ZE , which has two detonators Z1 , Z2 connected in series. Each detonator Z1 , Z2 is used to trigger an explosive charge (not shown). In the circuits described here, detonators with a built-in delay of 0.5 to 1.5 s are used.
  • the control electrode of the thyristor T is connected via a Zener diode ZD (Zener voltage: 35 V) at the connection point P between a resistor R1 (2.2 K ⁇ ), which has its other end connected to the supply line A , and a capacitor belonging to the preceding ignition stage S1 C (22 ⁇ F), whose other electrode is connected to supply line 0 .
  • the connection point P is also connected via a diode D to the connection point between the thyristor T and the ignition device ZE of the previous ignition stage.
  • a resistor R2 (100 ⁇ ) is connected between the control electrode and the cathode of the thyristor T.
  • Another resistor R3 lies between the connection point of the cathodes of the thyristor T and the diode D on the one hand and the ignition device ZE .
  • a fourth resistor R4 (470 ⁇ ) bridges the ignition device ZE .
  • the resistors R1 and R4 are dimensioned such that when the voltage of 50 V is applied to line A, the potential at connection point P is not sufficient to switch through thyristor T of stage S2 . Only when the thyristor T of the preceding stage S1 conducts does the point P reach a potential (50 V minus the voltage drop across the thyristor T and across the diode D ) at which the capacitor C rises to such a high level via the resistor R1 Value can charge that the ignition voltage for the thyristor T of stage S2 is reached. Taking into account the Zener voltage (35 V) of the Zener diode ZD, this value is approximately 15 V, which is sufficient for switching the thyristor T.
  • the delay with which the thyristor T of stage S2 becomes conductive after the thyristor T of stage S1 has been switched on depends on the time constant of the RC element formed by resistor R1 and capacitor C.
  • the required delay of 30 to 50 ms can be achieved by appropriate dimensioning.
  • the transmission of the trigger pulse from stage to stage with the specified delay time is independent of the ignition device ZE . This means that the circuit works properly even if one or several ignition stages has been forgotten to insert an ignition device.
  • the circuit according to FIG. 2 differs from that according to FIG. 1 in that a current source is used which alternately gives current pulses on two channels to which the supply lines A and B are connected, which preferably do not overlap one another.
  • the ignition stages are alternately connected to the supply lines A and B.
  • the ignition delay from one stage to the next is thus predetermined by the pulse current source.
  • the individual ignition stages S1 , S2 , ... therefore do without an RC element, and the resistor R1 present in FIG. 1 can be omitted.
  • the Zener diode ZD provided in FIG. 1 is replaced in the circuit according to FIG. 2 by a resistor R5 (1 K ⁇ ).
  • each ignition stage is only activated in FIG. 2 when the thyristor T has become conductive due to a corresponding signal on its control electrode and a pulse is present on the supply line A or B , it is not necessary to provide a series connection of two detonators as the ignition device . Even if the individual detonator does not become properly high-resistance when activated, the current consumption is limited to the short time interval (for example 10 to 20 ms) during which the current pulse is present on the supply line A , B.
  • the capacitor C (4.7 ⁇ F) only charges when the thyristor T of the previous ignition stage is conductive. At a certain potential of the capacitor C , the ignition voltage for the thyristor T is reached, so that the latter is switched through by the subsequent current pulse on the associated supply line A , B.
  • a resistor R1 is shown in the first ignition stage S1 , which is connected to the same supply line A as the thyristor T of the first ignition stage S1 .
  • This resistor R1 is used in connection with a corresponding overvoltage pulse (80 ⁇ 100 V / 1 ms) on the supply line A for the initial ignition of the explosive chain.
  • an identical resistor R1 can be provided for all ignition stages S1 , S3 , ... which are connected to the same supply line ( A ).
  • Such a resistor R1 (which is not required for the function of the circuit) is shown in dashed lines in the ignition stage S3 in FIG.
  • the circuit according to FIG. 3 is largely similar to that according to FIG. 2, but differs in that a common capacitor is provided for two successive ignition stages. In FIG. 3, this is the capacitor C (4.7 ⁇ F) located in the ignition stage S1 , which is used to generate the control voltages for the thyristors T of the ignition stages S2 and S3 . Otherwise, the circuit of FIG. 3 is the same as that of FIG. 2, the diode D being replaced by a resistor R6 (2.2 K ⁇ ).
  • the end of the capacitor C facing away from the supply line 0 is connected, as in FIG. 2, to the control electrode of the thyristor T of stage S2 via a resistor R5 (1 K ⁇ ).
  • the same electrode of the capacitor C is also connected via a resistor R7 (4.7 K ⁇ ) and the resistor R5 (1 K ⁇ ) to the control electrode T of the ignition stage S3 .
  • resistor R1 If resistor R1 is not provided, the two series resistors R7 and R5 could also be combined to form a resistor (5.7 K ⁇ ).
  • the embodiment shown in FIG. 3 was chosen for the reasons described above for the equality of all the links in a chain, again the resistance R1 (5 KQ) shown in broken lines in stage S3 is not required for the function.
  • the capacitor C charges up to about 15 V via the resistor R6 . This value is sufficient to ignite the thyristor T of stage S2 . If the thyristor T of stage S2 switches on at the next current pulse on the supply line B , the capacitor C is further charged to about 34 V via the resistor R2 (100 ⁇ ) and the resistor R5 (1 K ⁇ ), which now takes into account the resistors R7 and R5 are sufficient to ignite the thyristor T of the ignition stage S3 , which then switches on when the next pulse occurs on the supply line A.
  • two ignition units connected in parallel can be provided in each ignition stage.
  • the initial ignition of the first stage S1 can take place via the resistor R1 provided there and an initial overvoltage pulse on the supply line A.
  • the circuit according to FIG. 1 works with a capacitor in order to achieve the desired delay of 50 ms between the successive ignition stages.
  • the timer consists of the resistor R1 and the capacitor C , and the switching threshold (35 V) is determined by the Zener diode ZD .
  • circuits of Figures 1 and 2 use a capacitor to pass the switching pulse from one stage to the next and to store (about 1 to 2 ms) during the gap between successive pulses on lines A and B.
  • this memory function is taken over by the thyristor itself.
  • the circuit according to FIG. 4 is identical to that according to FIG. 2, the diode of FIG. 2 being replaced by a resistor R6 (2.2 K ⁇ ) similar to FIG. 3 and a resistor R8 (1 K ⁇ ) being provided instead of the capacitor C.
  • a further difference from the circuits according to FIGS. 2 and 3 is that the pulses supplied by the current source via the supply lines A , B connect directly to one another in time and each pulse according to FIG. 5 has an initial interval of reduced voltage which corresponds to the previous pulse on the respective other supply line overlaps.
  • a further resistor R1 (10 K ⁇ ) is also present in the circuit according to FIG. 4 in the first stage S1 , which is used in conjunction with the first overvoltage pulse shown in FIG. 5 for the initial ignition of the explosive chain.
  • the same resistor R1 is not required for the function of the circuit in the other stages with the exception of the first ignition stage S1 and is therefore only shown in broken lines. As above, it can be provided in order to be able to construct the entire ignition chain from identical links. Likewise, two igniters connected in parallel can also be provided in the circuit according to FIG. 4 in the ignition stage.
  • FIG. 6 shows a variant for the first ignition stage S1 of an explosive chain, which is otherwise constructed in accordance with FIG. 2. The same variant is also suitable for the circuits according to FIGS. 3 and 4.
  • the resistor R1 shown in FIG. 1 is replaced by a parallel circuit consisting of a resistor R1 '(> 100 K ⁇ ) and a capacitor C2 (1 ⁇ F). This ensures that only the first pulse of 50 V applied to supply line A can ignite while capacitor C2 is still empty in thyristor T of first stage S1 .
  • the resistor R1 ' causes the capacitor C2 to discharge so slowly that all further pulses on the supply line A no longer reach the control electrode of the thyristor T.
  • the first ignition stage S1 of the explosive chain has a special configuration; this means that the explosive chain begins to work as soon as the pulse current source is switched on without an overvoltage initial pulse being required; on the other hand, it is no longer possible to produce a functional explosive chain simply by cutting off a longer, prefabricated explosive chain.
  • the thyristor T of the first stage S1 can also be ignited without an initial overvoltage pulse.
  • the circuit according to FIG. 7 assumes that a current pulse is briefly generated on both lines A, B for initial ignition, which current is added via the two resistors R1 , R1 "(10 K ⁇ each) provided here. to build the entire explosive chain from identical links and thus to obtain a functional explosive chain by simply cutting off a greater length, provided that the resistances R1 , R1 "are doubled at every (or every other) ignition stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)
  • Electronic Switches (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Claims (10)

  1. Chaíne explosive à étages d'amorçage déclenchés successivement (S1, S2, S3, ...), chaque étage d'amorçage (S1, S2, S3, ...) comportant un dispositif d'amorçage (ZE) qui, pour amorcer au moins une charge explosive, est connecté en série au circuit de sortie d'un commutateur à semi-conducteurs (T), les circuits en série ainsi formés étant connectés en parallèle entre des lignes d'alimentation (A, B, O) reliées à une source de courant, et l'entrée de commande du commutateur à semi-conducteurs (T) de chaque étage d'amorçage (S2, S3, ...) étant connectée au point de jonction entre le commutateur à semi-conducteurs (T) et le dispositif d'amorçage (ZE) de l'étage d'amorçage précédent (S1, S2, ...), caractérisée en ce que les lignes d'alimentation (A, B, O) sont divisées en deux canaux (A, O ; B, O) alimentés alternativement en impulsions par la source de courant et les étages d'amorçage successifs (S1, S2, S3, ...) sont connectés alternativement à l'un et à l'autre canal, et en ce que chaque impulsion située sur l'un des canaux présente un intervalle initial (t1~t3) de moindre tension qui chevauche l'impulsion précédente située sur l'autre canal.
  2. Chaíne explosive à étages d'amorçage déclenchés successivement (S1, S2, S3, ...), chaque étage d'amorçage (S1, S2, S3, ... ) comportant un dispositif d'amorçage (ZE) qui, pour amorcer au moins une charge explosive, est connecté en série au circuit de sortie d'un commutateur à semi-conducteurs (T), les circuits en série ainsi formés étant connectés en parallèle entre des lignes d'alimentation (A, B, O) reliées à une source de courant, et le signal de commande destiné au commutateur à semi-conducteurs (T) de chaque étage d'amorçage (S2, S3, ...) étant la tension d'un condensateur (C) qui peut être rechargé par l'intermédiaire du commutateur à semi-conducteurs (T) de l'étage d'amorçage précédent (S1, S2, ...), caractérisée en ce que les lignes d'alimentation (A, B, O) sont divisées en deux canaux (A, O ; B, O) alimentés alternativement par la source de courant, et les étages d'amorçage successifs (S1, S2, S3, ) sont connectés alternativement à l'un et à l'autre canal, et en ce qu'il est prévu, pour chaque paire d'étages d'amorçage successifs (S1, S2), un condensateur commun (C) qui peut être rechargé, par l'intermédiaire du commutateur à semi-conducteurs (T) de l'étage d'amorçage précédant ladite paire, à une première valeur et, par l'intermédiaire du commutateur à semi-conducteurs (T) du premier étage d'amorçage (S1) de ladite paire, à une seconde valeur supérieure.
  3. Chaíne explosive selon la revendication 2, le condensateur (C) étant connecté à l'entrée de commande du commutateur à semi-conducteurs (T) du premier étage d'amorçage (S1) de la paire par l'intermédiaire d'une première résistance (R5) et à l'entrée de commande du commutateur à semi-conducteurs (T) du second étage d'amorçage (S2) de ladite paire par une première résistance (R7) qui est supérieure à la première résistance (R5).
  4. Chaíne explosive selon l'une des revendications 1 à 3, l'entrée de commande et le circuit de sortie du commutateur à semi-conducteurs (T) étant, dans le cas du premier étage d'amorçage (S1) de la séquence d'amorçage, connectés au même canal.
  5. Chaíne explosive selon la revendication 4, la source de courant fournissant une impulsion de surtension pour déclencher le premier étage d'amorçage (S1) de la séquence d'amorçage.
  6. Chaíne explosive selon la revendication 4, l'entrée de commande du commutateur à semi-conducteurs (T) étant, dans le cas du premier étage d'amorçage (S1) de la séquence d'amorçage, reliée au canal correspondant par un circuit RC (R1', C2).
  7. Chaíne explosive selon la revendication 4, l'entrée de commande du commutateur à semi-conducteurs (T) étant, dans le cas du premier étage d'amorçage (S1) de la séquence d'amorçage, reliée aux deux canaux et la source de courant générant une impulsion sur les deux canaux pour déclencher le premier étage d'amorçage (S1).
  8. Chaíne explosive selon l'une des revendications 1 à 7, les étages d'amorçage (S1, S2, ...) étant réunis par deux sous la forme d'un élément de circuit disposé dans un boítier commun et tous les éléments de circuit étant de structure identique, seul le premier étage d'amorçage (S1) de la séquence d'amorçage, qui n'est précédé d'aucun autre étage, pouvant être activé par une impulsion initiale.
  9. Chaíne explosive selon une des revendications précédentes, chaque dispositif d'amorçage (ZE) contenant deux amorces (Z1, Z2) montées en série.
  10. Chaíne explosive selon une des revendications précédentes, chaque dispositif d'amorçage (ZE) contenant deux amorces (Z1, Z3) montées en parallèle.
EP95105373A 1994-05-02 1995-04-10 Chaíne pyrotechnique Expired - Lifetime EP0681158B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97120954A EP0845652A3 (fr) 1994-05-02 1995-04-10 Chaíne pyrotechnique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4415388 1994-05-02
DE4415388A DE4415388C1 (de) 1994-05-02 1994-05-02 Sprengkette

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP97120954.9 Division-Into 1997-11-28

Publications (2)

Publication Number Publication Date
EP0681158A1 EP0681158A1 (fr) 1995-11-08
EP0681158B1 true EP0681158B1 (fr) 1998-09-30

Family

ID=6517051

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97120954A Withdrawn EP0845652A3 (fr) 1994-05-02 1995-04-10 Chaíne pyrotechnique
EP95105373A Expired - Lifetime EP0681158B1 (fr) 1994-05-02 1995-04-10 Chaíne pyrotechnique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP97120954A Withdrawn EP0845652A3 (fr) 1994-05-02 1995-04-10 Chaíne pyrotechnique

Country Status (10)

Country Link
US (1) US5571985A (fr)
EP (2) EP0845652A3 (fr)
JP (1) JP2820383B2 (fr)
KR (1) KR950033411A (fr)
CN (1) CN1062954C (fr)
AU (1) AU684909B2 (fr)
CA (1) CA2147676A1 (fr)
DE (2) DE4415388C1 (fr)
ES (1) ES2123173T3 (fr)
ZA (1) ZA946072B (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546781C1 (de) * 1995-12-14 1997-07-24 Euro Matsushita Electric Works Gehäuse für eine Anschlußstelle in einer Flachbandleitung
DE19546782C1 (de) * 1995-12-14 1997-07-24 Euro Matsushita Electric Works Schaltungsanordnung mit mehreren Schaltungseinheiten und gemeinsamer Mehrdrahtleitung
US6490977B1 (en) * 1998-03-30 2002-12-10 Magicfire, Inc. Precision pyrotechnic display system and method having increased safety and timing accuracy
US20060086277A1 (en) 1998-03-30 2006-04-27 George Bossarte Precision pyrotechnic display system and method having increased safety and timing accuracy
US6079333A (en) * 1998-06-12 2000-06-27 Trimble Navigation Limited GPS controlled blaster
FR2832501B1 (fr) * 2001-11-19 2004-06-18 Delta Caps Internat Dci Installation de tirs pyrotechniques programmables
US6941870B2 (en) * 2003-11-04 2005-09-13 Advanced Initiation Systems, Inc. Positional blasting system
US7874250B2 (en) * 2005-02-09 2011-01-25 Schlumberger Technology Corporation Nano-based devices for use in a wellbore
US8079307B2 (en) 2005-10-05 2011-12-20 Mckinley Paul Electric match assembly with isolated lift and burst function for a pyrotechnic device
WO2007124517A2 (fr) * 2006-04-20 2007-11-01 Detnet South Africa (Pty) Ltd Systeme detonateur
US8477049B2 (en) * 2009-06-05 2013-07-02 Apple Inc. Efficiently embedding information onto a keyboard membrane
US8646387B2 (en) * 2009-09-09 2014-02-11 Detnet South Africa (Pty) Ltd Detonator connector and detonator system
CN101900517B (zh) * 2010-05-26 2016-04-06 大连理工大学 反恐微差控爆破除障碍物方法
CN103997031A (zh) * 2014-05-16 2014-08-20 上海微小卫星工程中心 一种火工品控制电路及使用该控制电路的控制器
DE102015207187B4 (de) * 2015-04-21 2016-11-17 Siemens Aktiengesellschaft Umrichter mit Kurzschlussunterbrechung in einer Halbbrücke
DE102018109305A1 (de) * 2018-04-19 2019-10-24 Fogtec Brandschutz Gmbh & Co. Kg Brandbekämpfungseinrichtung
CN109654959A (zh) * 2018-11-13 2019-04-19 重庆长安工业(集团)有限责任公司 用于人雨火箭弹的电子安全保险电路
WO2021229597A1 (fr) * 2020-05-09 2021-11-18 Murtaza Maimoon Système électronique pour une détonation séquentielle contrôlée et procédé associé

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1287495B (fr) * 1969-01-16
US3099962A (en) * 1961-06-28 1963-08-06 Chester L Smith Electric timer and sequencing system for pyrotechnic flash items
US3468255A (en) * 1968-02-19 1969-09-23 Honeywell Inc Intervalometer
US3559582A (en) * 1968-12-27 1971-02-02 Energy Conversion Devices Inc Squib control circuit
US3603844A (en) * 1969-07-31 1971-09-07 Hercules Inc Electronic delay multiperiod initiating system
US3697954A (en) * 1969-11-19 1972-10-10 Svenska Dataregister Ab Matrix with inductive elements
DE2150126A1 (de) * 1970-10-07 1972-07-27 B B W Telekonstruktion Ab Steuervorrichtung zum Steuern eines beweglichen Bildes auf einer Lichtzeichen-Tafel
US3687075A (en) * 1970-12-11 1972-08-29 Hercules Inc Modified presplitting technique
NL7208320A (fr) * 1972-06-17 1973-12-19
US3895265A (en) * 1972-10-24 1975-07-15 Gen Electric Sequencing circuit for firing photoflash lamps in predetermined order
US3808459A (en) * 1972-12-04 1974-04-30 Alkan R & Cie Electronic distributor for the sequential supplying electric-current-receiving loads
US3892182A (en) * 1973-12-10 1975-07-01 Cbf Systems Inc Squib control circuit
AU6933074A (en) * 1974-05-23 1975-11-27 African Explosives & Chem Sequential actuation of initiators
ZA757981B (en) * 1975-12-23 1977-07-27 Plessey Sa Ltd The sequential initiation of explosions
AU518851B2 (en) * 1978-04-26 1981-10-22 Aeci Limited Explosives
AU6636981A (en) * 1980-02-08 1981-08-13 Aeci Limited Sequential initiation of explosions
US4487125A (en) * 1982-08-05 1984-12-11 Rca Corporation Timing circuit
US4489655A (en) * 1983-01-06 1984-12-25 Bakke Industries Limited Sequential blasting system
AU3328084A (en) * 1983-10-05 1985-04-18 Johannesburg Construction Corp. Pty. Ltd. Electrical sequential firing system
ZA875014B (fr) * 1987-07-09 1988-01-18
WO1992008932A1 (fr) * 1990-11-13 1992-05-29 Schultz Richard M Systeme de commande electronique pour explosifs
DE4212375C2 (de) * 1991-05-02 1994-02-03 Euro Matsushita Electric Works Sprengkette
US5347929A (en) * 1993-09-01 1994-09-20 Schlumberger Technology Corporation Firing system for a perforating gun including an exploding foil initiator and an outer housing for conducting wireline current and EFI current

Also Published As

Publication number Publication date
ES2123173T3 (es) 1999-01-01
EP0681158A1 (fr) 1995-11-08
ZA946072B (en) 1995-04-04
JP2820383B2 (ja) 1998-11-05
CN1062954C (zh) 2001-03-07
DE4415388C1 (de) 1995-04-20
CA2147676A1 (fr) 1995-11-03
CN1119735A (zh) 1996-04-03
US5571985A (en) 1996-11-05
EP0845652A2 (fr) 1998-06-03
KR950033411A (ko) 1995-12-26
JPH0875400A (ja) 1996-03-19
DE59503754D1 (de) 1998-11-05
AU684909B2 (en) 1998-01-08
AU1779995A (en) 1995-11-09
EP0845652A3 (fr) 2002-01-30

Similar Documents

Publication Publication Date Title
EP0681158B1 (fr) Chaíne pyrotechnique
DE3788430T2 (de) Verzögerungsschaltung zum elektrischen Sprengen, Zünder mit Verzögerungsschaltung und Verfahren zum elektrischen Sprengen von Zündern.
DE2838055C2 (de) Elektrischer Zünder
DE2945122C2 (fr)
EP0183933B1 (fr) Fusée à temps électronique pour sautage
DE112006003347T5 (de) Elektronische Zündsysteme und Verfahren zum Zünden einer Vorrichtung
DE2804713C2 (fr)
DE3904563C2 (fr)
DE2143119B2 (de) Elektrischer geschosszuender
DE2046098A1 (de) Schaltungsanordnung für Raketenstartgeräte
DE2151245A1 (de) Elektrischer zuender fuer geschosse
EP0075968B1 (fr) Circuit de commande pour l'allumage d'une fusée de faible résistance
DE1155037B (de) Elektrische Zuendschaltung fuer Geschosszuendeinrichtungen zum Zuenden einer oder mehrerer Ladungen
DE2422155A1 (de) Vorrichtung zur automatischen umschaltung in elektrischen zuendern fuer geschosse
DE4212375C2 (de) Sprengkette
DE4433880C1 (de) Sprengkette
DE2133684C2 (de) Schaltungsanordnung in einem elektrischen Zünder für Geschosse
DE1927519B2 (fr)
DE2613227C2 (de) Schaltungsanordnung zur Auslösung eines drehzahlabhängigen Schaltvorganges
DE2259378C3 (de) Schutzschaltung für elektrische Zunder
DE3021976C2 (de) Elektrische Zündschaltung
DE4422359C1 (de) Sprengkette
DE1638178C3 (de) Minenzündvorrichtung
DE19845751B4 (de) Geschoß-Aufschlagzünder
DE1925866C3 (de) Elektrische Schaltungsanordnung zur verzögerten Zündung eines elektrischen Zünders

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19970321

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981001

REF Corresponds to:

Ref document number: 59503754

Country of ref document: DE

Date of ref document: 19981105

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2123173

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000307

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000315

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000405

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000609

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050410