EP0674025A1 - Elektrochemisches Verfahren zur Herstellung chloridarmer wässriger Titanylnitratlösungen - Google Patents

Elektrochemisches Verfahren zur Herstellung chloridarmer wässriger Titanylnitratlösungen Download PDF

Info

Publication number
EP0674025A1
EP0674025A1 EP95103538A EP95103538A EP0674025A1 EP 0674025 A1 EP0674025 A1 EP 0674025A1 EP 95103538 A EP95103538 A EP 95103538A EP 95103538 A EP95103538 A EP 95103538A EP 0674025 A1 EP0674025 A1 EP 0674025A1
Authority
EP
European Patent Office
Prior art keywords
nitric acid
chloride
titanyl
aqueous
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95103538A
Other languages
English (en)
French (fr)
Other versions
EP0674025B1 (de
Inventor
Klaus-Dieter Dr. Franz
Klaus-Michael Dr. Jüttner
Manfred Parusel
Sabine Schäfer
Mathias Dr. Schraml-Marth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP0674025A1 publication Critical patent/EP0674025A1/de
Application granted granted Critical
Publication of EP0674025B1 publication Critical patent/EP0674025B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Definitions

  • the application relates to an electrochemical process for the preparation of low-chloride aqueous solutions of titanyl nitrate (titanium oxide nitrate, TiO (NO3) 2) which have a chloride content of less than 200 ppm.
  • titanyl nitrate titanium oxide nitrate, TiO (NO3) 2
  • Soluble titanium compounds enjoy a high level of interest in chemistry and related technical fields. For example, they can be used as versatile reagents in chemical synthesis and analysis. Of particular importance is also the use of these compounds for the deposition of titanium dioxide in or from solutions, for example in the form of sols and gels, of finely divided powders, as thin coatings on any substrates, such as on glass for optical or decorative purposes or in Production of pearlescent pigments based on mica coated with TiO2.
  • the element titanium plays a widespread and often essential role in functional ceramics, especially in electrical and piezo ceramics.
  • TiOSO4 titanyl sulfate
  • TiOCl2 titanyl chloride
  • titanyl nitrate from titanium tetrachloride or its partial hydrolysis product titanyl chloride by reaction with nitric acid according to the formula TiCl4 + 2 HNO3 + H2O ⁇ TiO (NO3) 2 + 4 HCl or TiOCl2 + 2 HNO3 ⁇ TiO (NO3) 2 + 2 HCl to produce in aqueous solution.
  • a chloride content is extremely undesirable in high-temperature solid-state reactions, such as the sintering of ceramics or the calcination of TiO2 coatings.
  • Metal chlorides are known to be extremely volatile at high temperatures. Even very small amounts of chloride in ceramic compositions for high-performance ceramics therefore have the effect that changes in composition occur during sintering and, for example, the content of dopants changes dramatically.
  • DE 41 10 685 A1 describes a process for preparing low-chloride aqueous solutions of titanyl nitrate by reacting titanium tetrachloride or titanyl chloride with nitric acid, in which reaction is carried out in the presence of excess nitric acid and / or hydrogen peroxide, as a result of which the chloride content is oxidized to chlorine and to obtain a product with a residual chloride content of less than 200 ppm.
  • this method which in itself leads to an excellent result, has some disadvantages which are unpleasantly noticeable in practical and in particular technical implementation.
  • this process requires the handling of concentrated, especially fuming nitric acid and highly concentrated hydrogen peroxide. These chemicals are known to be extremely dangerous. Transport, storage and use require the strictest security measures.
  • the reaction in addition to chlorine gas, the reaction also produces larger amounts of nitrous gases, which have to be trapped and rendered harmless. Furthermore, the end point of the reaction at which the desired low chloride content is reached is difficult to determine if one does not want to work with large excesses of nitric acid or hydrogen peroxide.
  • a particular operational advantage of the method according to the invention is that it can be worked with dilute or at most moderately concentrated nitric acid. Hydrogen peroxide is completely unnecessary.
  • Titanium tetrachloride or titanyl chloride are expediently used in the form of 20 to 50% strength aqueous solutions.
  • the use of a 30% aqueous solution is particularly preferred.
  • the nitric acid to be mixed can have a concentration of 30 to 70% by weight, preferably 65% by weight.
  • the cathode compartment is filled with 5-25%, preferably 10%, aqueous nitric acid.
  • Porous glass or ceramic materials or permeable plastic membranes for example made of polytetrafluoroethylene, can serve as diaphragms for separating the electrode spaces.
  • the process is carried out in such a way that, after the electrolysis apparatus has been filled with the appropriate solutions, a voltage in the range mentioned is applied and the electrolysis is continued until it is completely implemented, roughly ascertainable by the end of gas evolution.
  • the potential of the anode can expediently be adjusted to a fixed value, approximately 1.4 volts, using a conventional potentiostat.
  • the progress of the reaction can be followed by conventional measurement technology using the current-voltage curve.
  • the apparatus can be equipped with the reference electrodes and measuring devices required for this. If the flowing current reaches a minimum value, the end of the reaction is reached.
  • the chloride ion concentration in the reaction solution of the anode compartment can be determined by sampling and ion chromatography of the sample.
  • the electrolysis time is essentially dependent on the amount of the reaction solution, the size and performance of the apparatus and on the regulated current flow.
  • the electrochemical process according to the invention can be used to obtain reaction solutions with a residual chloride content of less than 200 ppm, based on the titanyl nitrate content. As a rule, residual contents of 100 to 10 ppm or less are reached.
  • the process is therefore particularly suitable for the preparation of low-chloride aqueous solutions of titanyl nitrate.
  • a divided cell was used as the electrolysis apparatus. It consisted of 2 cylindrical half-cells in double jacket design with an outer diameter of 12 cm, which were separated from each other by a Teflon membrane.
  • the electrodes in the anode and cathode compartments consisted of circular coated titanium expanded metal discs with a diameter of 7 cm and an area of 35 cm2.
  • the reaction was carried out under potentiostatic conditions.
  • the potential of the titanium working electrode was tapped in the anode compartment with an Ag / AgCl, KCl (total) reference electrode, designed as a Haber-Luggin capillary.
  • the anode compartment of the measuring cell was filled with electrolyte with the composition 36 ml 65% HNO3 + 50 ml 30% TiCl4. This corresponds to a molar ratio of TiCl4: HNO3 of 1: 5.
  • the reactions were carried out at room temperature.
  • the potential of the working electrode was set potentiostatically to an initial value of 1.2 V.
  • the initial current of 1 A decreased over the course of 13 h with decreasing Cl ⁇ concentration to 0.09 A.
  • the potential was adjusted discontinuously by hand until a maximum final value of 1.4 V was reached.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Die Anmeldung betrifft ein elektrochemisches Verfahren zur Herstellung von chloridarmen wäßrigen Lösungen von Titanylnitrat, die einen Chloridgehalt von weniger als 200 ppm aufweisen.

Description

  • Die Anmeldung betrifft ein elektrochemisches Verfahren zur Herstellung von chloridarmen wäßrigen Lösungen von Titanylnitrat (Titanoxidnitrat, TiO(NO₃)₂), die einen Chloridgehalt von weniger als 200 ppm aufweisen.
  • Lösliche Titanverbindungen genießen ein hohes Interesse in Chemie und angrenzenden technischen Gebieten. Beispielsweise können sie als vielseitige Reagenzien in der chemischen Synthese und Analytik eingesetzt werden. Von besonderer Bedeutung ist weiterhin die Verwendung dieser Verbindungen zur Abscheidung von Titandioxid in bzw. aus Lösungen, beispielsweise in Form von Solen und Gelen, von feinteiligen Pulvern, als dünne Beschichtungen auf beliebigen Substraten, wie etwa auf Glas für optische oder dekorative Zwecke oder bei der Herstellung von Perlglanzpigmenten auf Basis von mit TiO₂ beschichtetem Glimmer. Auf dem Sektor der Hochleistungskeramik spielt das Element Titan in Funktionskeramiken, insbesondere in Elektro- und Piezokeramiken, eine verbreitete und oft wesentliche Rolle.
  • Für die genannten Anwendungen wäre Titanylnitrat bzw. wäßrige Titanylnitratlösung die Titan-liefernde Komponente der Wahl.
  • Andere lösliche bzw. flüssige Titanverbindungen wie Titanylsulfat (TiOSO₄), Titantetrachlorid und Titanylchlorid (TiOCl₂) sind als solche bereits für keramische Zwecke ungeeignet. Organische Titanverbindungen, wie z.B. Titanorthoester, sind teuer. Allen diesen Verbindungen ist gemein, daß sie aufgrund ihrer hohen Hydrolyseempfindlichkeit sehr instabil und problematisch zu handhaben sind.
  • Schlüsselsubstanz für praktisch alle Wesentlichen Titanverbindungen ist Titantetrachlorid, das aus Titandioxid hergestellt wird. Letzteres wird wiederum aus natürlich vorkommenden Mineralien gewonnen.
  • Erstaunlicherweise bietet die einschlägige Fachliteratur kaum Hinweise für eine praktikable und möglicherweise gar im technischen Maßstab durchführbare Herstellung von Titanylnitrat bzw. dessen wäßriger Lösung.
  • Theoretisch sollte es möglich sein, Titanylnitrat aus Titantetrachlorid bzw` dessen Teilhydrolyseprodukt Titanylchlorid durch Umsetzung mit Salpetersäure gemäß den Formelgleichungen



            TiCl₄ + 2 HNO₃ + H₂O → TiO(NO₃)₂ + 4 HCl



    oder



            TiOCl₂ + 2 HNO₃ → TiO(NO₃)₂ + 2 HCl



    in wäßriger Lösung herzustellen.
  • In der Praxis führen aber Umsetzungen auf Basis dieser Reaktionen nicht zum Ziel, da zumindest eine teilweise Hydrolyse, meist bereits schon während der Reaktion, einsetzt. Eine vollständige Wederauflösung eines einmal ausgefällten Titandioxids oder der TiO₂-Hydrogele ist praktisch nicht möglich. Unabhängig davon ist es nicht möglich, die bei der Reaktion entstehende Salzsäure aus der Reaktionslösung vollständig zu entfernen. Der Versuch, diese beispielsweise durch Erhitzen oder Durchleiten von Inertgas auszutreiben, bleibt unvollständig und führt ebenfalls zu TiO₂-Ausfällungen. Die prinzipiell denkbare Ausfällung als Silberchlorid ist selbst für geringere Restgehalte an Chlorid aus wirtschaftlichen Gründen unpraktikabel.
  • Ein Gehalt an Chlorid ist in Hochtemperatur-Festkörperreaktionen, wie es das Sintern von Keramiken oder das Calcinieren von TiO₂-Beschichtungen darstellt, äußert unerwünscht. Metallchloride sind bei hohen Temperaturen bekanntlich überaus flüchtig. Auch bereits sehr geringe Mengen an Chlorid in keramischen Massen für Hochleistungskeramiken haben daher den Effekt, daß es während der Sinterung zu Zusammensetzungsveränderungen kommt und sich beispielsweise die Gehafte an Dotierstoffen dramatisch verändern.
  • Als akzeptable Grenze für einen hier noch tolerierbaren Restgehalt an Chlorid können etwa 200 ppm, bezogen auf Titanylnitrat, angesehen werden.
  • In DE 41 10 685 A1 wird ein Verfahren zur Herstellung chloridarmer wäßriger Lösungen von Titanylnitrat durch Umsetzung von Titantetrachlorid oder Titanylchlorid mit Salpetersäure beschrieben, bei dem man in Gegenwart von überschüssiger Salpetersäure und/oder Wasserstoffperoxid umsetzt, wodurch der Gehalt an Chlorid zu Chlor oxidiert wird und wobei man ein Produkt mit einem restlichen Chloridgehalt von weniger als 200 ppm erhält.
  • Dieses an sich zu einem vorzüglichen Ergebnis führende Verfahren hat jedoch einige, sich bei der praktischen und insbesondere technischen Durchführung unangenehm bemerkbar machende Nachteile. Zum einen erfordert dieses Verfahren den Umgang mit konzentrierter, insbesondere rauchender Salpetersäure und mit hochkonzentriertem Wasserstoffperoxid. Diese Chemikalien sind bekanntlich äußerst gefährlich. Transport, Lagerung und Einsatz erfordern strengste Sicherheitsmaßnahmen. Zum anderen entstehen bei der Reaktion neben Chlorgas auch größere Mengen an nitrosen Gasen, die abzufangen und unschädlich zu machen sind. Weiterhin ist der Endpunkt der Reaktion, bei dem der gewünscht niedrige Chlorid-Gehalt erreicht ist, nur schwer zu bestimmen, wenn man nicht mit größeren Überschüssen von Salpetersäure bzw. Wasserstoffperoxid arbeiten will.
  • Es wurde nun gefunden, daß man chloridarme wäßrige Lösungen von Titanylnitrat erhalten kann, wenn man Titantetrachlorid oder Titanylchlorid in Gegenwart von Salpetersäure einer Elektrolyse unterzieht, bei der das Potential der Anode Werte zwischen 1,1 und 1,7 Volt, bezogen auf die gesättigte Ag/AgCl-Bezugselektrode, besitzt.
  • Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung chloridarmer wäßriger Lösungen von Titanylnitrat, bei dem man Titantetrachlorid oder Titanylchlorid in Gegenwart von Salpetersäure bei Elektrodenpotentialen zwischen 1,1 und 1,7 Volt der Elektrolyse unterzieht, wobei man ein Produkt mit einem restlichen Chloridgehalt von weniger als 200 ppm erhält.
  • Dem erfindungsgemäßen Verfahren liegen entsprechend den eingesetzten Titanverbindungen folgende Reaktionen zugrunde:
    Figure imgb0001

    Anodenreaktion:



            4 Cl⁻ → 2 Cl₂↑ + 4e⁻   (Ib)



    Kathodenreaktion:



            4 H⁺ + 4 e⁻ → 2 H₂↑  (Ic)

    Figure imgb0002

    Anodenreaktion:



            2Cl⁻ → Cl₂↑ + 2e⁻   (IIb)



    Kathodenreaktion:



            2 H⁺ + 2e⁻ → H₂↑    (IIc)



    Die Reaktionsgleichgewichte (Ia) bzw. (IIa) der eigentlichen chemischen Reaktion werden durch die Anodenreaktion (Ib) bzw. (IIb) und die Kathodenreaktion (Ic) bzw. (IIc) nach rechts, also zur Bildung von Titanylnitrat hin, verschoben.
  • Als weitere Reaktionsprodukte treten nur Chlor- und Wasserstoffgas auf, die vergleichsweise einfach zu bewältigen und zu entsorgen sind. Es hat sich dabei herausgestellt, daß die vorstehenden Reaktionen problemlos und ohne Bildung unerwünschter Produkte oder Nebenprodukte wie insbesondere nitrose Gase ablaufen, wenn bei der Elektrolyse das Potential der Anode potentiostatisch auf Werte im Bereich zwischen 1,1 und 1,7 Volt vorgegeben wird. Vorzugsweise wird im Potentialbereich zwischen 1,2 und 1,6 Volt gearbeitet, wobei sich die Einhaltung eines konstanten Potentials von 1,4 Volt als besonders günstig erwiesen hat.
  • Ein besonderer operativer Vorteil des erfindungsgemäßen Verfahrens ist, daß hier mit verdünnter oder allenfalls mäßig konzentrierter Salpetersäure gearbeitet werden kann. Wasserstoffperoxid ist völlig entbehrlich.
  • Wegen der Entwicklung von Chlorgas an der Anode und Wasserstoffgas an der Kathode, die gemeinsam explosive Mischungen bilden können, ist es zweckmäßig, Anodenraum und Kathodenraum durch ein Diaphragma zu trennen und für eine getrennte Abführung der beiden Gase zu sorgen. Der Anodenraum wird hierbei mit einem wäßrigen Gemisch aus Titantetrachlorid oder Titanylchlorid und Salpetersäure befüllt; der Kathodenraum enthält zweckmäßigerweise eine wäßrige Salpetersäurelösung. In dem Lösungsgemisch des Anodenraumes kann das molare Mischungsverhältnis von Titantetrachlorid bzw. Titanylchlorid und Salpetersäure zwischen 1 : 2 und 1 : 5 liegen. Titantetrachlorid bzw. Titanylchlorid werden hierbei zweckmäßigerweise in Form von 20 bis 50%iger wäßriger Lösungen eingesetzt. Besonders bevorzugt ist die Verwendung einer 30%igen wäßrigen Lösung. Die zuzumischende Salpetersäure kann eine Konzentration von 30 bis 70 Gew.%, vorzugsweise 65 Gew.% aufweisen. Der Kathodenraum wird mit 5-25%iger, vorzugsweise 10%iger wäßriger Salpetersäure befüllt.
  • Das erfindungsgemäße Verfahren läßt sich äußert einfach und ohne größeren apparativen Aufwand durchführen. Das Verfahren läßt sich problemlos gerade auch im Technikums- und produktionstechnischen Maßstab durchführen. Hierbei können an sich bekannte und übliche Elektrolyseapparaturen und -techniken Anwendung finden. Im Prinzip geeignet sind Elektrolysezellen mit der gewünschten Produktionsmenge entsprechendem Volumen aus inertem Material, wie z.B. Glas, Keramik oder resistente Kunststoffe wie beispielsweise Polytetrafluorethylen. Die Apparaturen sind mit Vorrichtungen zur Abführung der Reaktionsgase ausgestattet und können zweckmäßigerweise mit Ein- und Auslaßeinrichtungen für die Lösungen sowie mit Rühr- oder Mischvorrichtungen versehen sein. Für die Elektroden kommen Materialien in Betracht, die gegenüber den verwendeten Lösungen und den Elektrolysebedingungen inert sind. So sind beispielsweise Elektroden aus Platin oder Titan gut geeignet. Ihre Dimensionierung und Formgebung ist beliebig und richtet sich zweckmäßigerweise nach der Größe und Gestaltungsweise der Elektrolysezellen. Als Diaphragmen zur Trennung der Elektrodenräume können poröse Glas- bzw. Keramik-Materialien oder permeable Kunststoffmembranen, etwa aus Polytetrafluorethylen, dienen.
  • Die Durchführung des Verfahrens erfolgt in der Weise, daß man nach der Befüllung der Elektrolyseapparatur mit den entsprechenden Lösungen eine in dem genannten Bereich liegende Spannung anlegt und die Elektrolyse bis zur vollständigen Umsetzung, grob feststellbar durch das Ende der Gasentwicklung, fortsetzt. Das Potential der Anode kann zweckmäßigerweise mittels eines üblichen Potentiostaten auf einen festen Wert, etwa 1,4 Volt, eingeregelt werden. Der Reaktionsfortschritt kann durch übliche Meßtechnik anhand der Strom-Spannungskurve verfolgt werden. Für entsprechende Messungen kann die Apparatur mit den hierfür erforderlichen Referenzelektroden und Meßeinrichtungen ausgestattet sein. Erreicht der fließende Strom einen minimalen Wert, so ist das Ende der Reaktion erreicht. Die Chloridionen-Konzentration in der Reaktionslösung des Anodenraumes kann durch Probennahme und lonenchromatographie der Probe bestimmt werden. Die Elektrolysedauer ist im wesentlichen abhängig von der Menge der Reaktionslösung, der Größe und Leistungsfähigkeit der Apparatur und von dem eingeregelten Stromfluß.
  • In typischen halbtechnischen Versuchen wurde bei einer Anfangsspannung von 1,2 Volt und einer Anfangsstromstärke von 1 Ampere nach etwa 13 Stunden bei einer Endspannung von 1,4 Volt ein Endstrom von 0,09 Ampere gemessen. Die restliche Chloridionen-Konzentration in der Reaktionslösung betrugt 0,0009 Mol/l.
  • Mit dem erfindungsgemäßen elektrochemischen Verfahren lassen sich in jedem Fall Reaktionslösungen mit einem Restgehalt an Chlorid von Weniger als 200 ppm, bezogen auf den Gehalt an Titanylnitrat erhalten. In der Regel werden Restgehalte von 100 bis 10 ppm oder auch weniger erreicht. Das Verfahren ist somit vorzüglich geeignet für die Herstellung chloridarmer wäßriger Lösungen von Titanylnitrat.
  • Beispiel 1
  • Als Elektrolyseappartur wurde eine geteilte Zelle verwendet. Sie bestand aus 2 zylindrischen Halbzellen in Doppelmantelausführung mit einem Außendurchmesser von 12 cm, die durch eine Teflonmembran voneinander getrennt waren. Die Elektroden im Anoden- und Kathodenraum bestanden aus kreisförmigen beschichteten Titanstreckmetallscheiben mit einem Durchmesser von 7 cm und einer Fläche von 35 cm².
  • Die Reaktionsführung erfolgte unter potentiostatischen Bedinungen. Dazu wurde im Anodenraum das Potential der Titan-Arbeitselektrode mit einer Ag/AgCl, KCl (ges.)-Bezugselektrode, ausgeführt als Haber-Luggin-Kapillare, abgegriffen.
  • Zu Beginn der Versuche wurde der Anodenraum der Meßzelle mit Elektrolyt der Zusammensetzung 36 ml 65 % HNO₃ + 50 ml 30 % TiCl₄ gefüllt. Das entspricht einem Molverhältnis TiCl₄ : HNO₃ von 1 : 5.
  • Für den Kathodenraum wurde 10 % HNO₃-Lösung verwendet. Die sich während der Reaktion im Anoden- und Kathodenraum bildenden Gase Cl₂ und H₂ wurden getrennt abgeleitet. Cl₂ wurde in NaOH absorbiert. H₂ gelangte über die Ventilation ins Freie.
  • Die Umsetzungen erfolgten bei Raumtemperatur.
  • Das Potential der Arbeitselektrode wurde potentiostatisch auf einen Anfangswert von 1,2 V eingestellt. Die Anfangsstromstärke von 1 A sank im Verlauf von 13 h mit abnehmender Cl⁻-Konzentration auf 0,09 A. Das Potential wurde per Hand bis zum Erreichen eines maximalen Endwertes von 1,4 V diskontinuierlich nachgeregelt.
  • Nach 13 h Versuchsdauer ergab sich im Anodenraum ein Restchloridgehalt von 0,0009 mol/l, dies entspricht einem Anteil von 158 ppm bezogen auf TiO(NO₃)₂.

Claims (5)

  1. Verfahren zur Herstellung chloridarmer wäßriger Lösungen von Titanylnitrat durch Umsetzung von Titantetrachlorid oder Titanylchlorid mit Salpetersäure, dadurch gekennzeichnet, daß man Titantetrachlorid oder Titanylchlorid in Gegenwart von Salpetersäure bei einem Anodenpotential zwischen 1,1 und 1,7 Volt der Elektrolyse unterzieht, wobei man ein Produkt mit einem restlichen Chloridgehalt von weniger als 200 ppm erhält.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Elektrolyse in einer Elektrolyseapparatur durchgeführt wird, in der der Anodenraum und der Kathodenraum durch ein Diaphragma getrennt sind, wobei der Anodenraum ein wäßriges Gemisch aus Titantetrachlorid oder Titanylchlorid und Salpetersäure und der Kathodenraum eine wäßrige Lösung von Salpetersäure enthält.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß im Anodenraum Titantetrachlorid bzw. Titanylchlorid und Salpetersäure im Molverhältnis 1 : 2 bis 1 : 5 vorliegen.
  4. Verfahren nach den Ansprüchen 2 oder 3, dadurch gekennzeichnet, daß als Lösung für den Anodenraum ein Gemisch aus 20-50%iger wäßriger Titantetrachlorid- bzw. Titanylchloridlösung und 30-70%iger wäßriger Salpetersäure und als Lösung für den Kathodenraum 5-25%ige wäßrige Salpetersäure eingesetzt werden.
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man die Elektrolyse bei Anodenpotentialen zwischen 1,2 und 1,6 Volt, vorzugsweise bei ca. 1,4 Volt, durchführt.
EP95103538A 1994-03-26 1995-03-11 Elektrochemisches Verfahren zur Herstellung chloridarmer wässriger Titanylnitratlösungen Expired - Lifetime EP0674025B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4410581 1994-03-26
DE4410581A DE4410581A1 (de) 1994-03-26 1994-03-26 Elektrochemisches Verfahren zur Herstellung chloridarmer wäßriger Titanylnitratlösungen

Publications (2)

Publication Number Publication Date
EP0674025A1 true EP0674025A1 (de) 1995-09-27
EP0674025B1 EP0674025B1 (de) 1997-08-13

Family

ID=6513956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95103538A Expired - Lifetime EP0674025B1 (de) 1994-03-26 1995-03-11 Elektrochemisches Verfahren zur Herstellung chloridarmer wässriger Titanylnitratlösungen

Country Status (6)

Country Link
US (1) US5607571A (de)
EP (1) EP0674025B1 (de)
JP (1) JP3423101B2 (de)
AT (1) ATE156870T1 (de)
DE (2) DE4410581A1 (de)
ES (1) ES2107872T3 (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729669A1 (de) * 1987-09-04 1989-03-16 Basf Ag Verfahren zur herstellung von alkalimetallnitraten
DE4110685A1 (de) * 1991-04-03 1992-10-08 Merck Patent Gmbh Verfahren zur herstellung chloridarmer, waessriger titanylnitratloesungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
No relevant documents disclosed *

Also Published As

Publication number Publication date
US5607571A (en) 1997-03-04
JP3423101B2 (ja) 2003-07-07
ATE156870T1 (de) 1997-08-15
DE59500490D1 (de) 1997-09-18
JPH07278863A (ja) 1995-10-24
DE4410581A1 (de) 1995-09-28
EP0674025B1 (de) 1997-08-13
ES2107872T3 (es) 1997-12-01

Similar Documents

Publication Publication Date Title
EP0424776B1 (de) Verfahren zur Gewinnung von Rutheniumtextroxid durch Oxidation von wässrigen Lösungen von Alkaliruthenaten
DE2725066A1 (de) Verfahren und vorrichtung zum elektrolysieren
EP0674025B1 (de) Elektrochemisches Verfahren zur Herstellung chloridarmer wässriger Titanylnitratlösungen
DE2713236C3 (de)
DE1592466B1 (de) Verfahren zum elektrolytischen herstellen von mangandioxyd
DE1567816B1 (de) Verfahren zur herstellung von alkali- und erdalkalimetallchloriten
DE2310073A1 (de) Verfahren zur herstellung von basischen aluminiumchloriden mit vorbestimmtem chlorgehalt
EP3354623B1 (de) Verfahren zur herstellung hochreinen iridium(iii)chlorid-hydrats
EP0507165B1 (de) Verfahren zur Herstellung chloridarmer, wässriger Titanylnitratlösungen
DE1110616B (de) Verfahren zur Herstellung von kuenstlichem Kryolith
DE273763C (de)
DE117129C (de) Verfahren zur Aktivirung von elektrolytisch gewonnenem Sauerstoff
EP0814060A2 (de) Verfahren zur Anhebung des pH-Wertes saurer Wässer
EP0198303B1 (de) Verfahren zur anodischen Oxidation von wasserlöslichen Leukotriphenylmethanfarbstoffverbindungen
DE3781967T2 (de) Verfahren zur elektrochemischen oxidation von organischen verbindungen.
CH682661A5 (de) Verfahren zur Reduktion aromatischer Nitroverbindungen mit Hilfe dreiwertiger Titanverbindungen.
DE3701727A1 (de) Verfahren und vorrichtung zur coulometrischen bestimmung von freiem chlor u. dgl. in fluessigkeiten oder gasen
DE2505911A1 (de) Verfahren zur herstellung von diaceton- 2-ketogulonsaeure
DE137050C (de)
EP0530872A1 (de) Verfahren zur Herstellung einer Titan(III)-Sulfatlösung
DE2217644A1 (de) Verfahren zur verminderung der konzentration wasserloeslicher carboxylischer verunreinigungen in chloridhaltigen salzloesungen
DE3028758A1 (de) Verfahren zur herstellung von anisaldehyd
DE1149912B (de) Verfahren zur Herstellung von Gold mit einem Reinheitsgrad von mindestens 99,9999%
DE110505C (de)
DE101177C (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19960308

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961025

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 156870

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59500490

Country of ref document: DE

Date of ref document: 19970918

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970925

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107872

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040304

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040309

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040310

Year of fee payment: 10

Ref country code: GB

Payment date: 20040310

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040311

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040317

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040318

Year of fee payment: 10

Ref country code: DE

Payment date: 20040318

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040519

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050311

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050311

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050312

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

BERE Be: lapsed

Owner name: *MERCK PATENT G.M.B.H.

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050312

BERE Be: lapsed

Owner name: *MERCK PATENT G.M.B.H.

Effective date: 20050331