EP0673051A1 - Vorratskathode - Google Patents

Vorratskathode Download PDF

Info

Publication number
EP0673051A1
EP0673051A1 EP95103216A EP95103216A EP0673051A1 EP 0673051 A1 EP0673051 A1 EP 0673051A1 EP 95103216 A EP95103216 A EP 95103216A EP 95103216 A EP95103216 A EP 95103216A EP 0673051 A1 EP0673051 A1 EP 0673051A1
Authority
EP
European Patent Office
Prior art keywords
weight
cathode according
metal
storage
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95103216A
Other languages
English (en)
French (fr)
Other versions
EP0673051B1 (de
Inventor
Frank Dr. Phil. Bossert
Manfred Hacker
Rolf Dr. Lotthammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0673051A1 publication Critical patent/EP0673051A1/de
Application granted granted Critical
Publication of EP0673051B1 publication Critical patent/EP0673051B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Definitions

  • the present invention relates to a supply cathode according to the preamble of claim 1.
  • Storage cathodes are also referred to as matrix cathodes or dispenser cathodes. They generally consist of a storage body which is pressed or sintered from a metal powder and which is impregnated with the actual emission material. Metals such as tungsten and molybdenum are particularly suitable as metal powder for the storage body. It is also known to use mixtures of such metal powders. From DE-OS 20 48 224 it is known to press the storage body into a cavity in a cathode sleeve. From DE-OS 41 14 856 it is For example, it is known to build up the storage body in layers. The porous matrix body can be impregnated with an emission material which consists, for example, of BaO-CaO-Al2O3, by impregnation, melting or the like.
  • MM cathodes mixed metal cathodes
  • the stock bodies of mixed metal cathodes generally consist of metals from a first group, such as tungsten, chromium or molybdenum, and metals from a second group, such as iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh ), Paladium (Pd), Rhenium (Re), Osmium (Os), Iridium (Ir), Platinum (Pt).
  • a first group such as tungsten, chromium or molybdenum
  • metals from a second group such as iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh ), Paladium (Pd), Rhenium (Re), Osmium (Os), Iridium (Ir), Platinum (Pt).
  • the emissivity of the cathodes can be improved by adding scandium compounds in the cathode body or in the emission material.
  • scandium compounds in the cathode body or in the emission material.
  • scandium compounds in the cathode body or in the emission material.
  • the present invention is therefore based on the object of improving a storage cathode of the type mentioned at the outset, in particular with regard to electron emission (high current density) with a long service life.
  • FIG. 1 schematically shows the structure of a supply cathode with an emission surface 6.
  • the cathode body 1 which can also consist of two or three layers, is e.g. by pressing a powder mixture (e.g. W + Os + Cr2O3) into the cathode holder 2 (e.g. made of molybdenum). After sintering, the material is filled with the emission material (e.g. BaO + CaO + Al2O3) e.g. by watering.
  • a powder mixture e.g. W + Os + Cr2O3
  • the emission material e.g. BaO + CaO + Al2O
  • the heater 3 is e.g. with Al2O3 4 embedded in a pot 5 made of molybdenum, which is attached to the cathode holder 2.
  • FIG. 2 shows the electron work function (e ⁇ / eV), the value of which was determined from (current measured at 1000 o C) current-voltage characteristics according to known methods, as a function of the cathode temperature (T in o C).
  • the work function for cathodes with Cr2O3 addition is low temperatures about 0.1 eV lower than for cathodes without additives, at high temperatures about 0.05 eV.
  • FIG. 3 shows the change in work function (e ⁇ / eV) (for 1000 o C) during operation with (to accelerate aging) increased temperature (1100 o C) over the operating time in hours (h).
  • the work function for cathodes with Cr2O3 additive drops somewhat at the beginning of operation and remains practically constant during the observation period (almost 10,000 hours).
  • the work function for cathodes without additives increases, so that after 1000 hours their value is about 0.1 eV higher than for cathodes with Cr2O3.
  • FIG. 4 shows, as an example of the size of the current that can be achieved, the change over time in the saturation current (current density j in A / cm 2) at a field strength of 35 kV / cm over the operating time t (h).
  • the saturation current behaves according to the work function (FIG. 3); it changes less for cathodes with Cr203 addition than for those without addition. After a long period of operation (in the example, almost 10,000 hours at 1100 o C), the saturation current for cathodes with Cr203 addition is still about twice as large as the current for cathodes without addition. (Both types show practically no waste at low temperatures).
  • the chromium or chromium oxide additive is added to the sintered body of the cathode body. This is advantageously done in such a way that the powder or metals of the first group and the second group powdered chromium oxide (Cr203) is mixed, this mixture is then pressed and is then sintered into a porous sintered body.
  • the chromium oxide content of the powder mixture is 1-20% by weight, preferably 7-14% by weight, in particular approximately 10% by weight.
  • the other powder fractions preferably consist of tungsten and osmium, the tungsten fraction expediently not to be smaller than the osmium fraction.
  • the metal of the second group for example osmium, can be dispensed with entirely.
  • the chromium or the chromium oxide is not added to the powder mixture for the sintered body, but rather to the emission material, likewise prepared as a powder mixture, with which the porous sintered body is then impregnated.
  • the sintered body does not have to contain chromium or chromium oxide.
  • Metallic chromium or chromium oxide can be added to the emission material. Chromium is expediently added in proportions of 1-12% by weight, preferably 4-10% by weight, in particular 6-8% by weight. Chromium oxide is expediently added in proportions of 2-18% by weight, preferably 5-15% by weight, in particular 8-12% by weight.
  • the chromium content of the emission material should be chosen to be lower.
  • the basic matrix, that is the sintered body suitably consists of a tungsten-osmium mixture with a possibly very low osmium content.
  • the chromium additive according to the invention is particularly advantageous for use with a storage cathode, the storage body consists of several superimposed and sintered sintered layers, as described for example in DE-OS 41 14 856 A1.
  • the layer sintering described there consists of at least two layers which consist of essentially the same materials. However, the percentage by weight of the materials differs in at least two adjacent layers in such a way that in one layer the proportion of the metal of the first group is greater than the proportion of the metal in the second group and in the other layer the proportion of the metal in the second group is greater than the proportion of metal in the first group.
  • chromium or chromium oxide should be present at least in the layer having the emission surface 6, wherein the chromium oxide or chromium can either be contained in the sintered body or, if appropriate, the layers can only be introduced with the emission material .
  • Such a supply cathode is preferably produced with a multilayer cathode body using a method known from DE-OS 4 114 856, in which the sintered body is produced with an additional layer and this additional layer is removed again after sintering.
  • FIG. 5 shows in the right half a cross section through a sintered body with a first layer 11, a second layer 12 and a third layer 13 in a cathode holder 2.
  • the first layer is essentially composed of a metal powder mixture of more than 50% by weight, preferably more produced as 70% by weight of tungsten and the rest of osmium.
  • the third layer 13 is preferably composed in exactly the same way as the first layer.
  • the second layer 12 is produced from a mixture of tungsten metal powder, osmium metal powder and approximately 10% by weight of chromium oxide powder, the content of osmium being higher than in layers 11 and 13 and preferably more than 50% by weight. is.
  • the various powder mixtures are successively filled into the cathode holder, pressed under high pressure and sintered together.
  • the third layer 13 and part of the second layer 12 up to the broken line are removed after sintering, e.g. by grinding, so that a two-layer cathode body sketched in the left half of FIG. 5 is formed with the emission surface 6 forming the exposed surface of the second layer.
  • the metal matrix is preferably filled (impregnated) with the emission material before the third and part of the second layer are removed.

Landscapes

  • Solid Thermionic Cathode (AREA)
  • Powder Metallurgy (AREA)

Abstract

Zur Verbesserung des Langzeitverhaltens bei erhöhter Elektronenemission einer Mischmetall-Vorratskathode wird vorgeschlagen, dem Vorratskörper Chrom oder Chromoxid zuzusetzen. <IMAGE>

Description

  • Die vorliegende Erfindung betrifft eine Vorratskathode nach dem Oberbegriff des Patentanspruches 1.
  • Vorratskathoden werden auch als Matrix-Kathoden oder Dispenser-Kathoden bezeichnet. Sie bestehen im allgemeinen aus einem Vorratskörper, der aus einem Metallpulver gepreßt oder gesintert ist und der mit dem eigentlichen Emissionsmaterial imprägniert ist. Als Metallpulver für den Vorratskörper kommen insbesondere Metalle wie Wolfram und Molybdän in Frage. Es ist auch bekannt, Mischungen solcher Metallpulver zu verwenden. Aus der DE-OS 20 48 224 ist es bekannt, den Vorratskörper in eine Höhlung einer Kathodenhülse einzupressen. Aus der DE-OS 41 14 856 ist es z.B. bekannt, den Vorratskörper schichtförmig aufzubauen. Die Imprägnierung des porösen Matrix-Körpers mit einem Emissionsmaterial, das z.B. aus BaO-CaO-Al₂O₃ besteht, kann durch Tränken, Einschmelzen oder dergleichen erfolgen.
  • Allgemein hat sich gezeigt, daß sogenannte Mischmetall-Kathoden (MM-Kathoden), d.h. also Kathoden, deren Vorratskörper aus einem Metallpulvergemisch gepreßt und gesintert sind, verbesserte Emissionseigenschaften und eine bessere Stromstabilität aufweisen. Die Vorratskörper von Mischmetall-Kathoden bestehen im allgemeinen aus Metallen einer ersten Gruppe wie Wolfram, Chrom oder Molybdän und Metallen einer zweiten Gruppe, wie Eisen (Fe), Kobalt (Co), Nickel (Ni), Ruthenium (Ru), Rhodium (Rh), Paladium (Pd), Rhenium (Re), Osmium (Os), Iridium (Ir), Platin (Pt).
  • Aus der DE-PS 30 17 429 ist weiterhin bekannt, Wolfram oder Wolframoxid dem Emissionsmaterial zuzusetzen.
  • Weiter ist bekannt, daß durch Zusatz von Scandium-Verbindungen im Kathodenkörper oder im Emissionsmaterial die Emissionsfähigkeit der Kathoden verbessert werden kann. Allerdings sind die Langzeit-Eigenschaften dieser sogenannten "Scandat-Kathoden" bisher noch nicht befriedigend.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Vorratskathode der eingangs genannten Art insbesondere hinsichtlich der Elektronenemission ( hoher Stromdichte) bei langer Lebensdauer zu verbessern.
  • Diese Aufgabe wird durch die im Kennzeichen des Patentanspruches 1 angegebenen Merkmale gelöst.
  • Bei Versuchen mit verschiedenen Zusätzen hat sich gezeigt, daß mit einer Beimischung von Cr₂O₃-Pulver insbesondere zum Mischmetall-Pulver Kathoden mit merklich verbesserten Emissionseigenschaften erhalten werden können. Insbesondere bei Vorratskathoden mit einem Vorratskörper in Schichtaufbau wie z.B. in der DE 41 14 856 A1 beschrieben, konnten bei gleicher Kathodentemperatur eine gegenüber einer Kathode ohne chromhaltigen Zusatz etwa doppelt so große Stromdichten erreicht werden, die sich auch nach längerer Betriebszeit kaum änderten. Entsprechend ist die Austrittsarbeit ( für 1000oC) bei Kathoden mit z.B. 10% Cr₂O₃-Zusatz zu einem W/Os-Pulver um etwa 0,1 eV niedriger als bei den Kathoden ohne Zusatz.
  • Anhand der Figuren wird die Erfindung nachfolgend näher erklärt.
  • FIG. 1
    zeigt schematisch einen Querschnitt durch eine Vorratskathode dessen Kathodenkörper auch aus zwei oder drei übereinanderliegenden Schichten bestehen kann.
    FIG. 2
    zeigt eine Kurve der Austrittsarbeit in Abhängigkeit von der Kathodentemperatur für eine Mischmetallkathode (W/Os) mit und ohne chromhaltigen Zusatz (vor Lebensdauer-Betrieb).
    FIG. 3
    zeigt eine Kurve der Austrittsarbeit bei 1000oC in Abhängigkeit von der Betriebszeit bei erhöhter Kathodentemperatur (1100oC) für Mischmetallkathoden (W/Os) mit und ohne chromhaltigen Zusatz.
    FIG. 4
    zeigt eine Kurve des Sättigungsstroms für 35 kV/cm in Abhängigkeit von der Betriebszeit für Mischmetallkathoden (W/Os) mit und ohne chromhaltigen Zusatz.
    FIG. 5
    zeigt schematisch einen Querschnitt durch einen Kathodenkörper mit zwei Schichten und dessen Herstellung aus einem dreischichtigen Sinterkörper.
  • FIG. 1 zeigt schematisch den Aufbau einer Vorratskathode mit einer Emissionsfläche 6. Der Kathodenkörper 1 der auch aus zwei oder drei Schichten bestehen kann, wird z.B. durch Pressen einer Pulvermischung (z.B. W + Os + Cr₂O₃) in den Kathodenhalter 2 (z.B. aus Molybdän) hergestellt. Nach dem Sintern erfolgt das Füllen mit dem Emissionsmaterial (z.B. BaO + CaO + Al₂O₃) z.B. durch Tränken.
  • Der Heizer 3 wird z.B. mit Al₂O₃ 4 in einen Topf 5 aus Molybdän eingebettet, der an dem Kathodenhalter 2 befestigt ist.
  • FIG. 2 zeigt die Elektronen-Austrittsarbeit (eΦ/eV), deren Wert aus (bei 1000oC gemessenen) Strom-Spannungs-Kennlinien nach bekannten Verfahren ermittelt wurde, in Abhängigkeit von der Kathoden-Temperatur (T in oC).
  • Bei neu hergestellten Kathoden (sehr kurze Betriebszeit) ist die Austrittsarbeit für Kathoden mit Cr₂O₃-Zusatz bei tiefen Temperaturen etwa 0,1 eV niedriger als für Kathoden ohne Zusatz, bei hohen Temperaturen noch etwa 0,05 eV.
  • FIG. 3 zeigt die Änderung der Austrittsarbeit (eΦ/eV) (für 1000oC) während des Betriebs mit (zur Beschleunigung der Alterung) erhöhter Temperatur (1100oC) über der Betriebszeit in Stunden (h). Die Austrittsarbeit für Kathoden mit Cr₂O₃-Zusatz fällt am Anfang des Betriebs noch etwas ab und bleibt während der Beobachtungszeit (fast 10 000 Stunden) praktisch konstant. Die Austrittsarbeit für Kathoden ohne Zusatz steigt an, sodaß nach 1000 Stunden ihr Wert etwa 0,1 eV höher liegt als bei Kathoden mit Cr₂O₃.
  • FIG. 4 zeigt als Beispiel für die Größe des erreichbaren Stroms die zeitliche Änderung des Sättigungsstroms (Stromdichte j in A/cm²) bei einer Feldstärke von 35 kV/cm über der Betriebszeit t(h). Entsprechend zur Austrittsarbeit (FIG. 3) verhält sich der Sättigungsstrom; er ändert sich für Kathoden mit Cr₂0₃-Zusatz weniger als für solche ohne Zusatz. Nach längerer Betriebszeit (im Beispiel fast 10000 Stunden bei 1100oC) ist der Sättigungs-Strom für Kathoden mit Cr₂0₃-Zusatz noch etwa doppelt so groß wie der Strom bei Kathoden ohne Zusatz. (Bei tiefer Temperatur zeigen beide Typen praktisch keinen Abfall).
  • Bei einem vorteilhaften Ausführungsbeispiel wird der Chrom- bzw. der Chromoxidzusatz dem Sinterkörper des Kathodenkörpers zugesetzt. Dies geschieht zweckmäßig in der Weise, daß dem oder den Pulvern der Metalle der ersten Gruppe und der zweiten Gruppe pulverförmiges Chromoxid (Cr₂0₃) zugemischt wird, diese Mischung dann gepreßt und dann zu einem porösen Sinterkörper gesintert wird. Der Chromoxidanteil der Pulvermischung beträgt 1-20 Gew.%, vorzugsweise 7-14 Gew.%, insbesondere etwa 10 Gew.%. Bevorzugt bestehen die anderen Pulveranteile aus Wolfram und Osmium, wobei der Wolframanteil zweckmäßig nicht kleiner sein soll, als der Osmiumanteil. Gegebenenfalls kann auf das Metall der zweiten Gruppe, also z.B. Osmium, ganz verzichtet werden.
  • Bei einem weiteren Ausführungsbeispiel wird das Chrom bzw. das Chromoxyd nicht dem Pulvergemisch für den Sinterkörper zugemischt, sondern dem ebenfalls als Pulvermischung aufbereiteten Emissionsmaterial, mit dem dann der poröse Sinterkörper getränkt wird, beigemischt. Der Sinterkörper muß in diesem Falle kein Chrom- oder Chromoxyd enthalten. Dem Emissionsmaterial kann metallisches Chrom oder Chromoxyd zugesetzt werden. Chrom wird zweckmäßig in Anteilen von 1-12 Gew.% vorzugsweise 4-10 Gew.% insbesondere 6-8 Gew.% zugesetzt. Chromoxid wird zweckmäßig in Anteilen von 2-18 Gew.%, vorzugsweise 5-15 Gew.%, insbesondere 8-12 Gew.% zugesetzt.
  • Sollte der Sinterkörper bereits schon einen gewissen Chromoxidanteil aufweisen, so ist die Chromhaltigkeit des Emissionsmaterials geringer zu wählen. Die Grundmatrix, das ist der Sinterkörper, besteht zweckmäßig aus einem Wolfram-Osmiumgemisch mit ggf. sehr niedrigem Osmiumgehalt.
  • Der erfindungsgemäße Chromzusatz ist besonders vorteilhaft bei einer Vorratskathode anzuwenden, deren Vorratskörper aus mehreren übereinanderliegenden und zusammengesinterten Sinterschichten besteht, wie sie z.B. in der DE-OS 41 14 856 A1 beschrieben ist. Der dort beschriebene Schichtsinterling besteht mindestens aus zwei Schichten, die aus im wesentlichen gleichen Materialien bestehen. Der gewichtsprozentuale Anteil der Materialien ist jedoch in wenigstens zwei aneinandergrenzenden Schichten unterschiedlich und zwar in der Weise, daß in der einen Schicht der Anteil des Metalles der ersten Gruppe größer ist als der Anteil des Metalles der zweiten Gruppe und in der anderen Schicht der Anteil des Metalles der zweiten Gruppe größer ist als der Anteil des Metalles der ersten Gruppe. Auch bei einem solchen Kathodenkörper mit geschichtetem Sinterling soll zumindest in der die Emissionsoberfläche 6 aufweisenden Schicht Chrom- bzw. Chromoxid vorhanden sein, wobei das Chromoxid bzw. Chrom entweder im Sinterling enthalten sein kann oder ggf. auch erst mit dem Emissionsmaterial die Schichten eingebracht werden kann.
  • Vorzugsweise wird eine solche Vorratskathode mit einem mehrschichtigen Kathodenkörper unter Anwendung eines aus der DE-OS 4 114 856 bekannten Verfahrens hergestellt, bei welchem der Sinterkörper mit einer zusätzlichen Schicht hergestellt wird und diese zusätzliche Schicht nach dem Sintern wieder entfernt wird.
  • FIG. 5 zeigt in der rechten Hälfte einen Querschnitt durch einen Sinterkörper mit einer ersten Schicht 11, einer zweiten Schicht 12 und einer dritten Schicht 13 in einem Kathodenhalter 2. Die erste Schicht ist im wesentlichen aus einem Metallpulvergemisch von mehr als 50 Gew.%, vorzugsweise mehr als 70 Gew.% Wolfram und Rest Osmium hergestellt. Die dritte Schicht 13 ist vorzugsweise genauso zusammengesetzt wie die erste Schicht. Die zweite Schicht 12 ist hergestellt aus einem Gemisch von Wolfram-Metallpulver, Osmium-Metallpulver und ca. 10 Gew.% Chromoxid-Pulver, wobei der Gehalt von Osmium höher ist als in den Schichten 11 und 13 und vorzugsweise mehr als 50 Gew.% beträgt. Die verschiedenen Pulvermischungen werden nacheinander in den Kathodenhalter eingefüllt, unter hohem Druck gepreßt und gemeinsam gesintert.
  • Die dritte Schicht 13 und ein Teil der zweiten Schicht 12 bis zu der unterbrochenen Linie werden nach dem Sintern entfernt, z.B. durch Schleifen, so daß ein in der linken Hälfte der Fig. 5 skizzierter zweischichtiger Kathodenkörper mit der die freiliegende Oberfläche der zweiten Schicht bildenden Emissionsoberfläche 6 entsteht. Die Füllung (Imprägnierung) der Metall-Matrix mit dem Emissionsmaterial erfolgt vorzugsweise vor dem Entfernen der dritten und des Teils der zweiten Schicht.

Claims (14)

  1. Vorratskathode mit einem Vorratskörper, der einen porösen Sinterkörper aufweist, der mindestens ein Metall einer ersten Gruppe wie W, Mo, Cr und/oder einer zweiten Gruppe wie Fe, Co, Ni, Ru, Rh, Pd, Re, Os, Ir, Pt enthält und der mit einem Emissionsmaterial imprägniert ist, dadurch gekennzeichnet, daß das Chrom im Vorratskörper als Chromoxid zugesetzt ist.
  2. Vorratskathode nach Anspruch 1, dadurch gekennzeichnet, daß das Chromoxid dem Vorratskörper als Bestandteil des porösen Sinterkörpers zugesetzt ist.
  3. Vorratskathode nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß der Sinterkörper im wesentlichen aus einer gesinterten Pulvermischung aus Wolfram, Osmium und Chromoxid besteht.
  4. Vorratskathode nach Anspruch 3, dadurch gekennzeichnet, daß der Wolframanteil gleich oder größer ist als der Osmiumanteil.
  5. Vorratskathode nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß 1-20 Gew.%, vorzugsweise 7-14 Gew.%, insbesondere etwa 10 Gew.% Chromoxid zugesetzt sind.
  6. Vorratskathode nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Sinterkörper aus wenigstens zwei übereinanderliegenden zusammengesinterten Schichten besteht, die aus gleichen Materialien bestehen jedoch bezüglich der gewichtsprozentualen Zusammensetzung unterschiedlich sind, und von denen die obenliegende Schicht die Emissionsoberfläche enthält.
  7. Vorratskathode nach Anspruch 6, dadurch gekennzeichnet, daß der Anteil des Metalls der ersten Gruppe, insbesondere des Wolframs, in der die Emissionsoberfläche enthaltenden Schicht kleiner ist als der Anteil des Metalls der zweiten Gruppe, insbesondere des Osmiums.
  8. Vorratskathode nach Anspruch 1, dadurch gekennzeichnet, daß das Chromoxid dem Emissionsmaterial zugesetzt ist.
  9. Vorratskathode nach Anspruch 8, dadurch gekennzeichnet, daß dem Emissionsmaterial 2-18 Gew.%, vorzugsweise 5-15 Gew.%, insbesondere 8-12 Gew.% Chromoxid (Cr₂0₃) zugesetzt ist.
  10. Vorratskathode nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Sinterkörper aus einem gesinterten Metallpulvergemisch im wesentlichen der Metalle Wolfram und Osmium besteht.
  11. Vorratskathode nach Anspruch 10, dadurch gekennzeichnet, daß gewichtsprozentual der Wolframanteil gleich oder größer ist als der Osmiumanteil.
  12. Vorratskathode nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß der Sinterkörper aus wenigstens zwei übereinanderliegende, miteinander versinterten Schichten gleicher Materialien besteht, wobei jedoch die gewichtsprozentuale Zusammensetzung der Materialien zumindest zweier Schichten unterschiedlich ist, und von denen die obenliegende Schicht die Emissionsoberfläche enthält.
  13. Vorratskathode nach Anspruch 12, dadurch gekennzeichnet, daß in der die Emissionsoberfläche enthaltenden Schicht gewichtsprozentual der Anteil des Metalls der ersten Gruppe, insbesondere des Wolframs gleich oder kleiner ist als der Anteil des Metalls der zweiten Gruppe, insbesondere des Osmiums.
  14. Vorratskathode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Emissionsmaterial mindestens zwei Erdalkalimetalloxide wie Ca0, Ba0 und mindestens ein Oxid eines Metalls der Gruppe IIIa oder IIIb des periodischen Systems wie z.B. Al₂0₃ enthält.
EP95103216A 1994-03-16 1995-03-07 Vorratskathode Expired - Lifetime EP0673051B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4408941A DE4408941A1 (de) 1994-03-16 1994-03-16 Vorratskathode
DE4408941 1994-03-16

Publications (2)

Publication Number Publication Date
EP0673051A1 true EP0673051A1 (de) 1995-09-20
EP0673051B1 EP0673051B1 (de) 1997-08-13

Family

ID=6512957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95103216A Expired - Lifetime EP0673051B1 (de) 1994-03-16 1995-03-07 Vorratskathode

Country Status (4)

Country Link
US (1) US5594299A (de)
EP (1) EP0673051B1 (de)
JP (1) JPH07272614A (de)
DE (2) DE4408941A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054801A (en) * 1998-02-27 2000-04-25 Regents, University Of California Field emission cathode fabricated from porous carbon foam material
RU2176833C1 (ru) * 2000-11-30 2001-12-10 Закрытое акционерное общество Научно-производственный центр "СОЛИТОН-НТТ" Материал электродов генераторов низкотемпературной плазмы
WO2006115428A1 (fr) * 2005-04-27 2006-11-02 Vladimir Ivanovich Kapustin Materiau de thermo-emetteur destine a l'ionisation en surface des compositions organiques aeriennes et procede d'activation de thermo-emetteur
GB2567853B (en) * 2017-10-26 2020-07-29 Isotopx Ltd Gas-source mass spectrometer comprising an electron source

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1114163A (fr) * 1953-11-28 1956-04-09 Siemens Ag électrode émettrice d'électrons
US2995674A (en) * 1959-02-27 1961-08-08 Raytheon Co Impregnated cathodes
US3155864A (en) * 1960-03-21 1964-11-03 Gen Electric Dispenser cathode
EP0282040A1 (de) * 1987-03-10 1988-09-14 Siemens Aktiengesellschaft Vorratskathode, insbesondere Metall-Kapillar-Kathode, für elektrische Entladungsgefässe
EP0299126A1 (de) * 1987-07-13 1989-01-18 Syracuse University Imprägnierte thermionische Kathode
EP0322304A1 (de) * 1987-12-23 1989-06-28 Thomson-Csf Verfahren zur Herstellung einer imprägnierten Kathode und gemäss dem Verfahren hergstellte Kathode
DE4114856A1 (de) * 1991-05-07 1992-11-12 Licentia Gmbh Vorratskathode und verfahren zu deren herstellung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3017429A1 (de) * 1980-05-07 1981-11-12 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Elektronenroehre und verfahren zu deren herstellung
US4417173A (en) * 1980-12-09 1983-11-22 E M I-Varian Limited Thermionic electron emitters and methods of making them
DE3122950A1 (de) * 1981-06-10 1983-01-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zum herstellen einer vorratskathode
US5019752A (en) * 1988-06-16 1991-05-28 Hughes Aircraft Company Plasma switch with chrome, perturbated cold cathode
KR910003698B1 (en) * 1988-11-11 1991-06-08 Samsung Electronic Devices Cavity reservoir type dispenser cathode and method of the same
KR920009849B1 (ko) * 1990-12-28 1992-10-31 주식회사 금성사 함침형 음극 제조방법
KR930007461B1 (ko) * 1991-04-23 1993-08-11 주식회사 금성사 함침형 음극 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1114163A (fr) * 1953-11-28 1956-04-09 Siemens Ag électrode émettrice d'électrons
US2995674A (en) * 1959-02-27 1961-08-08 Raytheon Co Impregnated cathodes
US3155864A (en) * 1960-03-21 1964-11-03 Gen Electric Dispenser cathode
EP0282040A1 (de) * 1987-03-10 1988-09-14 Siemens Aktiengesellschaft Vorratskathode, insbesondere Metall-Kapillar-Kathode, für elektrische Entladungsgefässe
EP0299126A1 (de) * 1987-07-13 1989-01-18 Syracuse University Imprägnierte thermionische Kathode
EP0322304A1 (de) * 1987-12-23 1989-06-28 Thomson-Csf Verfahren zur Herstellung einer imprägnierten Kathode und gemäss dem Verfahren hergstellte Kathode
DE4114856A1 (de) * 1991-05-07 1992-11-12 Licentia Gmbh Vorratskathode und verfahren zu deren herstellung

Also Published As

Publication number Publication date
DE59500487D1 (de) 1997-09-18
EP0673051B1 (de) 1997-08-13
JPH07272614A (ja) 1995-10-20
DE4408941A1 (de) 1995-09-21
US5594299A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
DE4105657C2 (de) Gleit- bzw. Schiebematerial und Verfahren zu seiner Herstellung
DE60019682T2 (de) Poröse Metallkörper, Verfahren zur Herstellung derselben und diese verwendende Metall-Verbundmaterialien
DE3880794T2 (de) Scandatkathode.
DE1015941B (de) Vorratskathode und Verfahren zu ihrer Herstellung
DE4106001A1 (de) Gleit- bzw. schiebematerial und verfahren zu seiner herstellung
EP0512280B1 (de) Vorratskathode und Verfahren zu deren Herstellung
DE2635289C2 (de) Metallene Trägerplatte der Oxidschicht direkt geheizter Oxidkathoden und Verfahren zu ihrer Herstellung
DE2545119C2 (de) Selbsteinschmelzendes, glasartiges Widerstandsgemisch für Widerstandszündkerzen
DE3221629C2 (de) Keramikwerkstoff für Zerspanungswerkzeuge und Verfahren zu dessen Herstellung
DE2641884A1 (de) Gasbindevorrichtung - verfahren zur herstellung einer farbfernsehbildroehre unter verwendung dieser gasbindevorrichtung und durch dieses verfahren hergestellte farbfernsehbildroehre
EP0005279B1 (de) Glühkathode
EP0673051B1 (de) Vorratskathode
DE2822665A1 (de) Gluehkathodenmaterial
DE69026032T2 (de) Scandatkathode
DE69220865T2 (de) Werkstoff für Vakuumschalterkontakte und Verfahren zu ihrer Herstellung
DE69010241T2 (de) Scandatkathode.
DE2454569C3 (de) Reaktionskathode
DE1276535B (de) Vakuumdichte feuerfeste Metall-Keramik-Verbindung und Verfahren zu ihrer Herstellung
DE3889696T2 (de) Verfahren zur Herstellung einer Scandat-Kathode.
EP0660964B1 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid und verfahren zu seiner herstellung
DE68923098T2 (de) Verfahren zur Herstellung einer Brennstoffzelle.
DE3888882T2 (de) Verfahren zum Herstellen einer Nachlieferungskathode.
DE2435658C3 (de) Keramik-Metall-Werkstoff
DE3122950A1 (de) Verfahren zum herstellen einer vorratskathode
DE19618929A1 (de) Kathode für Elektronenröhren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19951026

17Q First examination report despatched

Effective date: 19960716

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AEG ELEKTRONISCHE ROEHREN GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970813

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970814

REF Corresponds to:

Ref document number: 59500487

Country of ref document: DE

Date of ref document: 19970918

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20000522

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120327

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500487

Country of ref document: DE

Representative=s name: GERHARD WEBER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500487

Country of ref document: DE

Representative=s name: GERHARD WEBER, DE

Effective date: 20120911

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500487

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE, DE

Effective date: 20120911

Ref country code: DE

Ref legal event code: R081

Ref document number: 59500487

Country of ref document: DE

Owner name: THALES AIR SYSTEMS & ELECTRON DEVICES GMBH, DE

Free format text: FORMER OWNER: THALES ELECTRON DEVICES GMBH, 89077 ULM, DE

Effective date: 20120911

Ref country code: DE

Ref legal event code: R081

Ref document number: 59500487

Country of ref document: DE

Owner name: THALES ELECTRONIC SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THALES ELECTRON DEVICES GMBH, 89077 ULM, DE

Effective date: 20120911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130331

Year of fee payment: 19

Ref country code: GB

Payment date: 20130318

Year of fee payment: 19

Ref country code: FR

Payment date: 20130329

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500487

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500487

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE, DE

Effective date: 20130911

Ref country code: DE

Ref legal event code: R081

Ref document number: 59500487

Country of ref document: DE

Owner name: THALES ELECTRONIC SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THALES AIR SYSTEMS & ELECTRON DEVICES GMBH, 89077 ULM, DE

Effective date: 20130911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59500487

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140307

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59500487

Country of ref document: DE

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140307