EP0005279B1 - Glühkathode - Google Patents

Glühkathode Download PDF

Info

Publication number
EP0005279B1
EP0005279B1 EP79200056A EP79200056A EP0005279B1 EP 0005279 B1 EP0005279 B1 EP 0005279B1 EP 79200056 A EP79200056 A EP 79200056A EP 79200056 A EP79200056 A EP 79200056A EP 0005279 B1 EP0005279 B1 EP 0005279B1
Authority
EP
European Patent Office
Prior art keywords
diffusion
layer
platinum
additive
hot cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79200056A
Other languages
English (en)
French (fr)
Other versions
EP0005279A3 (en
EP0005279A2 (de
Inventor
Charley Dipl.-Ing. Buxbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0005279A2 publication Critical patent/EP0005279A2/de
Publication of EP0005279A3 publication Critical patent/EP0005279A3/de
Application granted granted Critical
Publication of EP0005279B1 publication Critical patent/EP0005279B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material

Definitions

  • the invention relates to a hot cathode based on a high-melting carrier metal, an activation substance present as an oxide of a Group IIIb metal, a reducing agent present as a carbide of the carrier metal, and an additive which promotes the diffusion of the activation substance onto the active surface.
  • Glow cathodes for electron tubes are known in the art in numerous embodiments and material combinations. They range from classic oxide cathodes with a low operating temperature and low emission current density but a long service life to complex multi-material systems, particularly the so-called reaction cathodes. Among the latter, the cathode materials of type W / W 2 C / Th0 2 (“thoriated tungsten cathodes”), which work from the inside with chemical conversion and subsequent delivery of the activating substance and have a relatively high operating temperature, are used. They are characterized by a long service life with a moderate emission current density. It was also possible to show that the work function of the electrons can be reduced by adding a platinum metal to the aforementioned system and its emission properties can be improved (e.g.
  • the invention is based on the object of developing a hot cathode which, regardless of the shape and production process and structure, enables optimum material utilization with a high emission current density and ensures the longest possible service life even under the toughest operating conditions.
  • this is achieved in that, in the initially defined hot cathode to reduce the intrinsic diffusion of said diffusion-promoting additive from the effective cathode surface into the interior on the side of the layer which contains the diffusion-promoting additive or is formed by the latter, facing away from the active surface, a further layer of one for the said addition of diffusion-inhibiting substance is provided.
  • the guiding principle underlying the invention is based on the knowledge that the temperature dependence of the self-diffusion of the diffusion-promoting additive (for example platinum) into the interior of the carrier metal (for example molybdenum) is substantially steeper than the temperature dependence of the corresponding evaporation measure.
  • the higher the operating temperature the higher the percentage of the additive diffusing from the coated surface into the cathode body. It is precisely at the higher operating temperatures required to achieve a high emission current density that a disproportionately large percentage of diffusion-promoting additive is lost for the cathode surface.
  • concentration of this additive which promotes the diffusion of the activating substance in the structure of the carrier metal, can be chosen to be significantly lower than was previously assumed. The service life of the cathode can therefore be significantly increased by switching on an additional layer which inhibits the self-diffusion of the additive to the interior of the body.
  • Such a barrier layer is subject to the condition that it does not adversely affect the chemical-thermodynamic equilibria and the corresponding reaction kinetics of the substances involved. In particular, it allows diffusion of the activation substance on the cathode surface. Furthermore, the barrier layer must not form an alloy with the diffusion-promoting additive which could chemically and physically change the activating substance and reduce its diffusion to the cathode surface.
  • the above-mentioned conditions are particularly sufficient for elements whose grain boundary diffusion inside the cathode body is smaller than that of the diffusion-promoting additive used at the same time for the respective activation substance.
  • those elements will have an advantageous effect whose vapor pressure at the operating temperature is lower than the vapor pressure of the diffusion-promoting additive used at the same time.
  • the diffusion-promoting additive consists of a platinum metal, another platinum metal or another suitable metal with a lower vapor pressure can be used for the barrier layer.
  • molybdenum powder was mixed with 2% lanthanum oxide powder, pressed and sintered.
  • a plate was separated from the heat-treated sintered body, its surface polished and electrolytically coated with rhenium.
  • the thickness of the barrier layer averaged 5 ⁇ . and can vary between 1 and 20 ⁇ .
  • the platelet was then provided with a platinum layer 10 ⁇ m thick, which was also applied electrolytically. This surface layer can advantageously 1 to 50 u. be fat.
  • the sintered plate was then carburized in a benzene-hydrogen mixture.
  • 1 shows the structure of the cathode in section.
  • 1 represents the sintered body consisting of carrier metal (e.g. molybdenum) and activation substance, which is held in a holder 4 made of a high-temperature material (e.g. also molybdenum) and is indirectly heated by a heating coil 5.
  • the barrier layer 3 made of diffusion-inhibiting material (for example rhenium) is located on the effective side of the cathode, directly below the surface layer 2 made of platinum metal.
  • the cathode can also be designed to be directly heated, as a result of which the heating coil 5 and the holder 4 are eliminated or are replaced by other components.
  • the sintered body can also have a shape other than that outlined in the figure.
  • Fig. Shows the cross section through such a cathode wire with a layered structure of the activation substance.
  • the core zone 6 of the carrier metal e.g. molybdenum
  • the boundary layer with a low content of activating substance adjoins the core zone 6.
  • the barrier layer 3 made of diffusion-inhibiting material (e.g. rhenium) and, to the extreme, the surface layer 2 made of platinum metal (platinum in the present case).
  • Example 2 According to the procedure given in Example 2, a core and a shell were created prepared, both of which had the same concentration of activating substance lanthanum oxide of 3%.
  • the core was provided with an electrolytically deposited rhenium layer of 20 ⁇ thickness and a platinum layer of 100 ⁇ thickness.
  • the layer thicknesses can vary between 5 ⁇ and 50 ⁇ or 20 ⁇ and 200 ⁇ .
  • the body was first brought down to a diameter of 3 mm by round hammering and then pulled down to a diameter of 1 mm and then carburized. Finally, the wire was provided with an electroplated rhenium and platinum layer of 3 ⁇ and 15 ⁇ , respectively.
  • the finished wire cross section can be seen in FIG. 3. 6.
  • 6 represents the core zone with a high content of activation substance and 8 the corresponding, also highly doped edge layer.
  • the barrier layer 10 made of diffusion-inhibiting material (for example rhenium) is located directly under the intermediate layer 9 made of platinum metal.
  • the structure of the surface layers 2 and 3 corresponds to that of FIG. 2.
  • the surface layer 2 made of platinum metal may also be missing in the delivery state, the barrier layer 3 initially taking on the role of the diffusion-promoting additive in the edge zone until sufficient platinum metal from the inside to the surface is diffused. Thanks to numerous alloy formation options between 2 and 3, further material combinations with differently graduated functions can be carried out anyway.
  • f1 represents the core of diffusion-promoting additive (platinum metal, in the present case platinum), while 12 denotes the jacket made of carrier metal (here molybdenum) doped with a high content of activation substance.
  • the surface layer 2 made of platinum metal (platinum) lies on the barrier layer 3 made of diffusion-inhibiting material (rhenium).
  • a core and a shell were produced in each case according to the process given in Example 2, but an additional 0.5% of platinum peat was added to the powdery starting materials for the core.
  • the further processing was carried out analogously to the process steps mentioned in Example 2.
  • the round hammered wire provided with a 4 ⁇ thick rhenium and a 25 ⁇ thick platinum layer had a diameter of 3.5 mm.
  • the core zone 13 of the carrier metal e.g. molybdenum
  • the edge layer 7 with a low content of activation substance bears the surface layers 2 and 3 corresponding to FIG. 2.
  • FIG. 6 shows a diagram which shows the service life as a function of the layer thickness of the diffusion-promoting additive for a round hammered cathode wire according to FIG. 2.
  • the influences of the barrier layer and the operating temperature are characterized by different lines.
  • the curves "a” and “b” refer to an operating temperature of 2050 K, the curves "c” and “d” to one of 1880 ° K.
  • the layer thickness of the diffusion-promoting additive platinum
  • the life of the cathode is plotted in h on a logarithmic scale.
  • a and “c” are the comparison curves for hot cathodes without a barrier layer, based on molybdenum as a carrier metal, molybdenum carbide as a reducing agent and platinum as a diffusion-promoting additive.
  • B and “d” represent the corresponding curves for hot cathodes with an additional rhenium barrier layer of 5 ⁇ thickness.
  • the operating pressure of the electron tube was 5. 10- 4 torr. The comparison of the curves shows that the lifespan of the rhenium coating could be increased on average to 2.5 times the original value.
  • the invention is not restricted to the embodiments explained in the aforementioned examples. It can also be advantageously applied to combinations of materials other than those described above.
  • the W / W 2 C / Th0 2 / Ru and Ta / Ta 2 C / Y 2 O 3 / Pd systems are also considered.
  • the proposed barrier layer can be applied in general to all material combinations of reaction cathodes of the diffusion delivery type doped with a diffusion-promoting additive, in order to reduce or completely prevent an undesirable self-diffusion of the additive in an undesired direction prevent.
  • the new hot cathodes according to the invention have created components for electron tubes which, with a high emission current density, enable the best use of the available materials and ensure a long service life.
  • the barrier layer allows the chemical-physical processes to be largely directed in the desired direction and to effectively limit unfavorable side effects during operation.

Landscapes

  • Solid Thermionic Cathode (AREA)

Description

  • Die Erfindung betrifft eine Glühkathode auf der Basis eines hochschmelzenden Trägermetalls, einer als Oxyd eines Metalls der Gruppe Illb vorliegenden Aktivierungssubstanz, eines als Karbid des Trägermetalls vorliegenden Reduktionsmittels und eines die Diffusion der Aktivierungssubstanz an die wirksame Oberfläche fördernden Zusatzes.
  • Glühkathoden für Elektronenröhren sind in der Technik in zahlreichen Ausführungsformen und Werkstoffkombinationen bekannt. Sie reichen von den klassischen Oxydkathoden mit tiefer Betriebstemperatur und geringer Emissionstromdichte aber langer Lebensdauer bis zu komplizierten Vielstoffsystemen insbesondere der Gattung der sogenannten Reaktionskathoden. Unter letzteren werden vor allem die mit chemischer Umsetzung und Nachlieferung der Aktivierungssubstanz aus dem Innern arbeitenden und eine verhältnismäßig hohe Betriebstemperatur aufweisenden Kathodenmaterialien des Typs W/W2C/Th02 (»thorierte Wolframkathoden«) eingesetzt. Sie zeichnen sich durch lange Lebensdauer bei mäßiger Emissionsstromdichte aus. Es konnte ferner gezeigt werden, daß die Austrittsarbeit der Elektronen durch Hinzufügen eines Platinmetalls zum vorgenannten System gesenkt und dessen Emissionseigenschaften verbessert werden können (z. B. DE-OS 1614541). Es sind außerdem noch andere Werkstoffkombinationen bekannt, welche bei mittlerer Lebensdauer eine Steigerung der Emissionsstromdichte erlauben, worunter vor allem die Systeme Mo/Mo2C/La203 (nach DE-AS 2 344 936) und Mo/Mo2C/La203/Pt-Metall und ähnliche (nach DE-AS 2454569) genannt seien. Es sind außerdem Glühkathoden bekannt, welche auf der Basis von aus Pulvermischungen eines hochscmelzenden Metalls mit einem Platinmetall hergestellten porösen Sinterkörpern aufgebaut sind, deren Poren mit einem die Aktivierungssubstanz enthaltenden Material ausgefüllt sind (z. B. DE-OS 2 727 187). Derartige Kathoden zeichnen sich vor allem durch hohe Emissionsstromdichte bei verhältnismäßig niedrigen Betriebstemperaturen aus.
  • Die Lebensdauererwartung der vorgenannten Kathoden ist in Anbetracht der meist noch als relativ hoch anzusehenden Betriebstemperaturen für viele Anwendungszwecke ungenügend. Bei den ein Platinmetall als diffusionsfördernden Zusatz enthaltenden Kathodenwerkstoffen (z. B. System Mo/Mo2C/La203/Pt) hat sich nun gezeigt, daß sowohl Lebensdauer wie Emissionsvermögen der monoatomaren Aktivatorschicht maßgend von der Konzentration bzw. Lebensdauer des diffusionsfördernden Zusatz in der wirksamen Oberflächenschicht bzw. Randzone der Kathode abhängt. Der Bestand einer dichten Schicht dieses Zusatzes ist einesteils von dessen Abdampfmaß an der Oberfläche, andernteils von dessen Diffusionsgeschwindigkeit ins Innere des Kathodenkörpers abhängig. Beide Faktoren sind stark temperaturabhängig, so daß der Kathodenlebensdauer schlußendlich auch von dieser Seite her Grenzen gesetzt sind. Bei den herkömmlichen Reaktionskathoden wird die Funktionsfähigkeit durch den ins Innere des Trägermetalls diffundierten und nicht kontrollierbaren Anteil an diffusionsförderndem Zusatz vorzeitig beeinträchtigt, so daß sich der Vorrat des letzteren in der Oberflächenschicht frühzeitig erschöpft.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Glühkathode zu entwickeln, welche unabhängig von Form und Herstellungsverfahren sowie Gefügebeschaffenheit bei hoher Emissionsstromdichte eine optimale Werkstoffausnutzung ermöglicht und eine möglichst hohe Lebensdauer selbst unter den härtesten Betriebsbedingungen gewährleistet.
  • Erfindungsgemäß wird dies dadurch erreicht, daß bei der eingangs definierten Glühkathode zur Herabsetzung der Eigendiffusion des besagten diffusionsfördernden Zusatzes von der wirksamen Kathodenoberfläche weg ins Innere auf der der wirksamen Oberfläche abgewandten Seite der den diffusionsfördernden Zusatz enthaltende oder durch letzteren gebildeten Schicht eine weitere Schicht eines für den besagten Zusatz diffusionshemmenden Stoffes vorgesehen ist.
  • Der der Erfindung zugrunde liegende Leitgedanke beruht auf der Erkenntnis, daß die Temperaturabhängigkeit der Eigendiffusion des diffusionsfördernden Zusatzes (beispielsweise Platin) ins Innere des Trägermetalls (beispielsweise Molybdän) wesentlich steiler verläuft als die Temperaturabhängigkeit des entsprechenden Abdampfmaßes. Mit anderen Worten, der von der beschichteten Oberfläche in den Kathodenkörper hineindiffundierende prozentuale Anteil des Zusatzes ist umso höher, je höher die Betriebstemperatur ist. Es geht also gerade bei den zur Erlangung einer hohen Emissionsstromdichte geforderten höheren Betriebstemperaturen ein unverhältnismäßig großer Prozentsatz an diffusionsförderndem Zusatz für die Kathodenoberfläche verloren. Andererseits hat sich gezeigt, daß die Konzentration dieses, die Diffusion der Aktivierungssubstanz im Gefüge des Trägermetalls fördernden Zusatzes wesentlich kleiner gewählt werden darf, als bisher angenommen wurde. Die Lebensdauer der Kathode kann daher durch Einschaltung einer zusätzlichen, die Eigendiffusion des Zusatzes nach dem Inneren des Körpers hemmenden Schicht wesentlich erhöht werden.
  • An eine derartige Sperrschicht wird die Bedingung gestellt, daß sie im übrigen die chemisch-thermodynamischen Gleichgewichte sowie die entsprechende Reaktionskinetik der beteiligten Stoffe nicht in ungünstiger Weise beeinflußt. Insbesondere darf sie die Diffusion der Aktivierungssubstanz an die Kathodenoberfläche nicht beeinträchtigen. Die Sperrschicht darf ferner mit dem diffusionsfördernden Zusatz keine derartige Legierung eingehen, welche die Aktivierungssubstanz chemisch-physikalisch verändern und deren Diffusion an die Kathodenoberfläche herabsetzen könnte.
  • Den oben genannten Bedingungen genügen vor allem Elemente, deren Korngrenzendiffusion im Innern des Kathodenkörpers kleiner ist als diejenige des gleichzeitig zur Anwendung kommenden diffusionsfördernden Zusatzes für die jeweilige Aktivierungssubstanz. Darüber hinaus werden sich diejenigen Elemente in vorteilhafter Weise auswirken, deren Dampfdruck bei der Betriebstemperatur niedriger ist als der Dampfdruck des gleichzeitig verwendeten diffusionsfördernden Zusatzes. Besteht letzterer beispielsweise aus Platin oder einer hauptsächlich dieses Metall enthaltenden Legierung, so können für die Sperrschicht vor allem die Elemente Hafnium, Rhenium, Ruthenium, Osmium oder Iridium sowie Legierungen dieser Elemente wie auch eine Palladium/Rhenium-Legierung Verwendung finden. Es kann ganz allgemein gesagt werden daß, falls der diffusionsfördernde Zusatz aus einem Platinmetall besteht, für die Sperrschicht ein anderes Platinmetall oder ein sonstwie geeignetes Metall mit niedrigerem Dampfdruck genommen werden kann.
  • Weitere Einzelheiten der Erfindung ergeben sich aus den durch Figuren näher erläuterten Ausführungsbeispielen.
  • Dabei zeigt
    • Fig. 1 den Querschnitt durch ein als Kathode wirkendes Sinterplättchen,
    • Fig. 2 den Querschnitt durch einen Kathodendraht mit schichtweisem Aufbau der Aktivierungssubstanz,
    • Fig. 3 den Querschnitt durch einen Kathodendraht mit diffusionsförderndem Zusatz als Zwischenschicht,
    • Fig. 4 den Querschnitt durch einen Kathodendraht mit diffusionsförderndem Zusatz als Kern,
    • Fig. 5 den Querschnitt durch einen Kathodendraht mit feinverteiltem diffusionsförderndem Zusatz in der Kernzone,
    • Fig. ein Diagramm der Lebensdauer in Funktion der Dicke des diffusionsfördernden Zusatzes für einen rundgehämmerten Kathodendraht mit und ohne Sperrschicht.
    Ausführungsbeispiel 1 Siehe Fig. 1
  • 98% Molybdänpulver wurden mit 2% Lanthanoxydpulver gemischt, gepreßt und gesintert. Vom wärmebehandelten Sinterkörper wurde ein Plättchen abgetrennt, seine Oberfläche poliert und auf elektrolytischem Wege mit Rhenium beschichtet. Die Dicke der Sperrschicht betrug durchschnittlich 5 u. und kann in den Grenzen von 1 bis 20 µ variieren. Hierauf wurde das Plättchen mit einer Platinschicht von 10 µ Dicke versehen, die ebenfalls elektrolytisch aufgebracht wurde. Diese Oberflächenschicht kann vorteilhafterweise 1 bis 50 u. dick sein. Das Sinterplättchen wurde hierauf in einem Benzol-Wasserstoffgemisch karburiert.
  • Den Aufbau der Kathode zeigt Fig. 1 im Schnitt. 1 stellt den aus Trägermetall (z. B. Molybdän) und Aktivierungssubstanz bestehenden Sinterkörper dar, welcher in einer Fassung 4 aus einem Hochtemperatur-Werkstoff (z. B. ebenfalls Molybdän) gehalten und von einem Heizwendel 5 aus mittelbar erwärmt wird. Die Sperrschicht 3 aus diffusionshemmendem Stoff (beispielsweise Rhenium) befindet sich auf der wirksamen Seite der Kathode, direkt unterhalb der Oberflächenschicht 2 aus Platinmetall.
  • Die Kathode kann auch direkt beheizt ausgeführt werden, wodurch der Heizwendel 5 und die Fassung 4 in Wegfall kommen bzw. durch andere Bauelemente ersetzt sind. Dabei kann der Sinterkörper auch eine andere als die in der Figur skizzierte Form aufweisen.
  • Ausführungsbeispiel 2 Siehe Fig. 2
  • 99% Molybdänpulver und 1% Lanthanoxydpulver wurden zur Herstellung einer Hülle gemischt, gepreßt und gesintert und anschließend mechanisch zu einem Hohlzylinder verarbeitet. Zur Herstellung eines Kerns wurden 97% Molybdänpulver mit 3% Lanthanoxydpulver nach dem gleichen Verfahren zu einem Stab verarbeitet. Letzterer wurde mit der Hülle zusammengefügt und durch Rundhämmern auf einen kleineren Durchmesser reduziert. Hierauf wurde der auf diese Weise hergestellte Draht von 3 mm Durchmesser in einem Benzol-Wasserstoffgemisch karburiert, zunächst mit einer galvanisch abgeschiedenen Rheniumschicht von 5 µ Dicke und zum Schluß mit einer 10 µ dicken Platinschicht versehen.
  • Fig. zeigt den Querschnitt durch einen derartigen Kathodendraht mit schichtweisem Aufbau der Aktivierungssubstanz. Die Kernzone 6 des Trägermetalls (z. B. Molybdän) ist mit einem verhältnismäßig hohen Gehalt an Aktivierungssubstanz (z. B. Lanthanoxyd) dotiert. An die Kernzone 6 schließt sich die Randschicht mit niedrigem Gehalt an Aktivierungssubstanz an. Darauf folgt die Sperrschicht 3 aus diffusionshemmendem Stoff (z. B. Rhenium) und zu äußerst die Oberflächenschicht 2 aus Platinmetall (im vorliegenden Fall Platin).
  • Ausführungsbeispiel 3 Siehe Fig. 3
  • Nach dem unter Beispiel 2 angegebenen Verfahren wurde je ein Kern und eine Hülle hergestellt, wobei beide die gleiche Konzentration an Aktivierungssubstanz Lanthanoxyd von 3% aufwiesen. Vor dem Zusammenfügen wurde der Kern mit einer elektrolytisch abgeschiedenen Rheniumschicht von 20 µ Dicke und einer Platinschicht von 100 µ Dicke versehen. Die Schichtdicken können zwischen 5 µ und 50 µ bzw. 20 µ und 200 µ variieren. Hierauf wurde der Körper zunächst durch Rundhämmern auf einen Durchmesser von 3 mm und dann durch Ziehen auf einen solchen von 1 mm heruntergebracht und anschließend karburiert. Der Draht wurde zum Schluß mit je einer galvanisch aufgebrachten Rhenium- und Platinschicht von 3 µ bzw. 15 µ versehen.
  • Der fertige Drahtquerschnitt ist aus Fig. 3 ersichtlich. 6 stellt die Kernzone mit hohem Gehalt an Aktivierungssubstanz und 8 die entsprechende, ebenfalls hoch dotierte Randschicht dar. Die Sperrschicht 10 aus diffusionshemmendem Stoff (beispielsweise Rhenium) befindet sich unmittelbar unter der Zwischenschicht 9 aus Platinmetall. Der Aufbau der Oberflächenschichten 2 und 3 entspricht demjenigen der Fig. 2. Die Oberflächenschicht 2 aus Platinmetall kann gegebenenfalls im Anlieferungszustand auch fehlen, wobei zunächst die Sperrschicht 3 die Rolle des diffusionsfördernden Zusatzes in der Randzone übernimmt, bis genügend Platinmetall aus dem Innern an die Oberfläche diffundiert ist. Dank zahlreicher Legierungsbildungsmöglichkeiten zwischen 2 und 3 sind ohnehin weitere Werkstoffkombinationen mit unterschiedlich abgestuften Funktionen ausführbar.
  • Ausführungsbeispiel4 Siehe Fig. 4
  • 96% Molybdänpulver und 4% Lanthanoxydpulver wurden zur Herstellung eines Mantels gemischt, gepreßt, gesintert und anschließend mechanisch zu einem zylindrischen Stab mit einer Bohrung verarbeitet. In die Bohrung wurde ein Platindraht stramm passend eingeschoben und das Ganze durch Rundhämmern auf einen Durchmesser von 4 mm reduziert. Der auf diese Weise gefertigte Draht wurde nach dem unter Beispiel 2 angegebenen Verfahren mit einer Rheniumschicht von 8 µ Dicke und einer Platinschicht von 20 µ Dicke versehen und anschließend karburiert.
  • In Fig. 4 ist der Querschnitt des Kathodendrahtes schematisch dargestellt. f1 stellt den Kern aus diffusionsförderndem Zusatz (Platinmetall, im vorliegenden Fall Platin) dar, während mit 12 der mit hohem Gehalt an Aktivierungssubstanz dotierte Mantel aus Trägermetall (hier Molybdän) bezeichnet ist. Die Oberflächenschicht 2 aus Platinmetall (Platin) liegt auf der Sperrschicht 3 aus diffusionshemmendem Stoff (Rhenium) auf.
  • Ausführungsbeispiel 5 Siehe Fig. 5
  • Nach dem unter Beispiel 2 angegebenen Verfahren wurde je ein Kern und eine Hülle hergestellt, wobei jedoch den pulverförmigen Ausgangsmaterialien für den Kern zusätzlich noch 0,5% Platinmoor zugegeben wurde. Die Weiterverarbeitung erfolgte analog den in Beispiel 2 erwähnten Verfahrensschritten. Der mit einer 4 µ dicken Rhenium- und einer 25 µ dicken Platinschicht versehene rundgehämmerte Draht wies einen Durchmesser von 3,5 mm auf.
  • Fig. 5 zeigt den schichtweisen Aufbau eines derartigen Kathodendrahtes. Die Kernzone 13 des Trägermetalls (z. B. Molybdän) weist einen verhältnismäßig hohen Gehalt an Aktivierungssubstanz (Lanthanoxyd) auf und ist überdies mit feinverteiltem Platin als diffusionsförderndem Zusatz dotiert. Die Randschicht 7 mit niedrigem Gehalt an Aktivierungssubstanz trägt ihrerseits die der Fig. 2 entsprechenden Oberflächenschichten 2 und 3.
  • In Fig. 6 ist ein Diagramm dargestellt, welches die Lebensdauer in Funktion der Schichtdicke des diffusionsfördernden Zusatzes für einen rundgehämmerten Kathodendraht gemäß Fig. 2 dargestellt. Die Einflüsse der Sperrschicht sowie der Betriebstemperatur sind durch verschiedene Linienzüge gekennzeichnet. Die Kurven »a« und »b« beziehen sich auf eine Betriebstemperatur von 2050 K, die Kurven »c« und »d« auf eine solche von 1880° K. Auf der Abszisse ist die Schichtdicke des diffusionsfördernden Zusatzes (Platin) in µ im natürlichen, auf der Ordinate die Lebensdauer der Kathode in h im logarithmischen Maßstab aufgetragen. »a« und »c« sind die Vergleichskurven für Glühkathoden ohne Sperrschicht, auf der Basis von Molybdän als Trägermetall, Molybdänkarbid als Reduktionsmittel und Platin als diffusionsförderndem Zusatz. »b« und »d« stellen die entsprechenden Kurven für Glühkathoden mit einer zusätzlichen Rhenium-Sperrschicht von 5 µ Dicke dar. Der Betriebsdruck der Elektronenröhre betrug 5 . 10-4 Torr. Aus dem Kurvenvergleich geht hervor, daß die Lebensdauer durch die Rheniumbeschichtung durchschnittlich auf den 2,5fachen Wert des ursprünglichen erhöht werden konnte.
  • Die Erfindung ist nicht auf die in den vorgenannten Beispielen erläuterten Ausführungsformen beschränkt. Sie läßt sich in vorteilhafter Weise auch auf andere als die oben beschriebenen Werkstoffkombinationen anwenden. Außer dem System Mo/Mo2C/La2O3/Pt kommen vor allem auch die Systeme W/W2C/ Th02/Ru und Ta/Ta2C/Y2O3/Pd in Betracht. Die vorgeschlagene Sperrschicht läßt sich ganz allgemein auf alle Werkstoffkombinationen von mit einem diffusionsfördernden Zusatz dotierten Reaktionskathoden des Diffusions-Nachlieferungstyps anwenden, um eine unliebsame Eigendiffusion des Zusatzes in eine unerwünschte Richtung zu verringern oder gänzlich zu unterbinden.
  • Durch die erfindungsgemäßen neuen Glühkathoden wurden Bauelemente für Elektronenröhren geschaffen, die bei hoher Emissionsstromdichte beste Ausnutzung der verfügbaren Materialien ermöglichen und eine lange Lebensdauer gewährleisten. Die Sperrschicht gestattet, die chemisch-physikalischen Vorgänge weitgehend in die gewünschte Richtung zu dirigieren und unvorteilhafte Nebenerscheinungen im Betrieb wirksam einzuschränken.

Claims (9)

1. Glühkathode auf der Basis eines hochschmelzenden Trägermetalls, einer als Oxyd eines Metalls der Gruppe lllb vorliegenden Aktivierungssubstanz, eines als Karbid des Trägermetalls vorliegenden Reduktionsmittels und eines die Diffusion der Aktivierungssubstanz an die wirksame Oberfläche fördernden Zusatzes, dadurch gekennzeichnet, daß zur Herabsetzung der Eigendiffusion des besagten diffusionsfördernden Zusatzes von der wirksamen Kathodenoberfläche weg ins Innere auf der der wirksamen Oberfläche abgewandten Seite der den diffusionsfördernden Zusatz enthaltenden oder durch letzteren gebildeten Schicht (2) mindestens eine weitere Schicht (3, 10) eines für den besagten Zusatz diffusionshemmenden Stoffes vorgesehen ist.
2. Glühkathode nach Anspruch 1, dadurch gekennzeichnet, daß der diffusionshemmende Stoff bei der Betriebstemperatur der Kathode einen niedrigeren Dampfdruck aufweist als der diffusionsfördernde Zusatz.
3. Glühkathode nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der diffusionsfördernde Zusatz aus einem Platinmetall oder einer Legierung von mindestens zwei Platinmetallen besteht und daß der diffusionshemmende Stoff aus einem anderen Platinmetall oder aus Hafnium oder Rhenium oder einer Legierung von mindestens zweien der vorgenannten Elemente aufgebaut ist.
4. Glühkathode nach Anspruch 3, dadurch gekennzeichnet, daß der diffusionshemmende Stoff aus mindestens einem der Elemente Hafnium, Rhenium, Ruthenium, Osmium oder Iridium besteht.
5. Glühkathode nach Anspruch 3, dadurch gekennzeichnet, daß der diffusionsfördernde Zusatz aus Platin und der diffusionshemmende Stoff aus Rhenium besteht.
6. Glühkathode nach Anspruch 1, dadurch gekennzeichnet, daß das Trägermetair Molybdän und das Reduktionsmittel Molybdänkarbid ist, daß die Aktivierungssubstanz aus Lanthanoxyd, der diffusionsfördernde Zusatz aus Platin oder einer Platinlegierung und der diffusionshemmende Stoff aus Rhenium besteht.
7- Glühkathode nach Anspruch 1, dadurch gekennzeichnet, daß die Schicht des diffusionsfördernden Zusatzes eine Dicke von 1 bis 50µ und diejenige des diffusionshemmenden Stoffes eine solche von 1 bis 20 µ aufweist.
8. Glühkathode nach Anspruch 1 und 7, dadurch gekennzeichnet, daß sie in Form eines Sinterkörpers vorliegt, wobei der Gehalt an Aktivierungssubstanz im wesentlichen gleichmäßig über den Trägermetallquerschnitt verteilt ist und die aktive Oberfläche mit einer Schicht eines diffusionshemmenden Stoffes versehen ist, über welcher eine Schicht des diffusionsfördernden Zusatzes liegt.
9. Glühkathode nach Anspruch 1 und 7, dadurch gekennzeichnet, daß sie in Form eines Drahtes, Bandes oder Bleches vorliegt, daß der Querschnitt bezüglich Konzentration und/oder Anordnung der im Trägermetall eingelagerten Aktivierungssubstanz schichtweisen Aufbau besitzt, und daß der diffusionsfördernde Zusatz die Oberflächenschicht und/oder eine Zwischenschicht bildet, unter welcher jeweils eine Schicht des diffusionshemmenden Stoffes liegt.
EP79200056A 1978-05-05 1979-02-02 Glühkathode Expired EP0005279B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4890/78 1978-05-05
CH489078A CH629033A5 (de) 1978-05-05 1978-05-05 Gluehkathode.

Publications (3)

Publication Number Publication Date
EP0005279A2 EP0005279A2 (de) 1979-11-14
EP0005279A3 EP0005279A3 (en) 1979-12-12
EP0005279B1 true EP0005279B1 (de) 1981-07-01

Family

ID=4284318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79200056A Expired EP0005279B1 (de) 1978-05-05 1979-02-02 Glühkathode

Country Status (6)

Country Link
US (1) US4274030A (de)
EP (1) EP0005279B1 (de)
JP (1) JPS54146951A (de)
AT (1) AT367567B (de)
CH (1) CH629033A5 (de)
DE (2) DE2822614A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822665A1 (de) * 1978-05-05 1979-11-08 Bbc Brown Boveri & Cie Gluehkathodenmaterial
FR2445605A1 (fr) * 1978-12-27 1980-07-25 Thomson Csf Cathode a chauffage direct et tube electronique haute frequence comportant une telle cathode
GB2050045A (en) * 1979-05-29 1980-12-31 Emi Varian Ltd Thermionic cathode
EP0143222B1 (de) * 1983-09-30 1987-11-11 BBC Aktiengesellschaft Brown, Boveri & Cie. Glühkathode mit hohem Emissionsvermögen für eine Elektronenröhre und Verfahren zu deren Herstellung
KR950012511A (ko) * 1993-10-05 1995-05-16 이헌조 음극선관용 함침형 음극
ATE167755T1 (de) * 1993-10-28 1998-07-15 Philips Electronics Nv Vorratskathode und herstellungsverfahren
JPH0850849A (ja) * 1994-05-31 1996-02-20 Nec Kansai Ltd 陰極部材およびそれを用いた電子管
DE4421810C2 (de) * 1994-06-22 1996-08-29 Siemens Ag Thermionischer Elektronenemitter und Verfahren zu dessen Herstellung
US6815876B1 (en) * 1999-06-23 2004-11-09 Agere Systems Inc. Cathode with improved work function and method for making the same
KR20020063396A (ko) * 2001-01-29 2002-08-03 삼성에스디아이 주식회사 전자관용 금속 음극
US20170330725A1 (en) * 2016-05-13 2017-11-16 Axcelis Technologies, Inc. Lanthanated tungsten ion source and beamline components

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1381553A (fr) * 1962-10-31 1964-12-14 Thomson Houston Comp Francaise Perfectionnements aux tubes électroniques
US3243637A (en) * 1962-10-31 1966-03-29 Gen Electric Dispenser cathode
US3373307A (en) * 1963-11-21 1968-03-12 Philips Corp Dispenser cathode
GB1137124A (en) * 1964-12-23 1968-12-18 Nat Res Dev Thermionic electron emitter
DE1283403B (de) * 1966-08-05 1968-11-21 Siemens Ag Mittelbar geheizte Vorratskathode fuer elektrische Entladungsgefaesse
CH477756A (de) * 1967-02-08 1969-08-31 Philips Nv Elektrische Entladungsröhre mit einer Kathode, deren Inneres ein Aktivierungsmaterial enthält
NL154047B (nl) * 1968-01-09 1977-07-15 Philips Nv Elektrische ontladingsbuis met een kathode die in het inwendige activeringsmateriaal bevat, en kathode bestemd voor een dergelijke ontladingsbuis.
DE1614642B2 (de) * 1967-02-22 1971-10-07 Siemens AG, 1000 Berlin u 8000 München Vorratskathode insbesondere mk kathode
CH582951A5 (de) * 1973-07-09 1976-12-15 Bbc Brown Boveri & Cie
US4019081A (en) * 1974-10-25 1977-04-19 Bbc Brown Boveri & Company Limited Reaction cathode
CH579824A5 (de) * 1974-10-25 1976-09-15 Bbc Brown Boveri & Cie
US3967150A (en) * 1975-01-31 1976-06-29 Varian Associates Grid controlled electron source and method of making same
US4096406A (en) * 1976-05-10 1978-06-20 Varian Associates, Inc. Thermionic electron source with bonded control grid
US4165473A (en) * 1976-06-21 1979-08-21 Varian Associates, Inc. Electron tube with dispenser cathode

Also Published As

Publication number Publication date
EP0005279A3 (en) 1979-12-12
DE2822614A1 (de) 1979-11-08
EP0005279A2 (de) 1979-11-14
CH629033A5 (de) 1982-03-31
AT367567B (de) 1982-07-12
ATA82879A (de) 1981-11-15
DE2960432D1 (en) 1981-10-08
US4274030A (en) 1981-06-16
JPS54146951A (en) 1979-11-16

Similar Documents

Publication Publication Date Title
DE1015941B (de) Vorratskathode und Verfahren zu ihrer Herstellung
EP0005279B1 (de) Glühkathode
DE2344936C3 (de) Nachlieferungs-Reaktions-Kathode für Elektronenröhren
EP0143222B1 (de) Glühkathode mit hohem Emissionsvermögen für eine Elektronenröhre und Verfahren zu deren Herstellung
DE102011106005A1 (de) Kurzbogen-Entladungslampe
DE2822665A1 (de) Gluehkathodenmaterial
WO2013113049A1 (de) Wolfram-verbundelektrode
DE3002033A1 (de) Sinterelektrode fuer entladungsroehren
EP0512280A1 (de) Vorratskathode und Verfahren zu deren Herstellung
DE2325274B2 (de) Direkt heizbare Kathode für eine elektrische Entladungsröhre
DE2454569C3 (de) Reaktionskathode
DE970707C (de) Vorratskathode, bei welcher der aktive Stoff aus einer geschlossenen Kammer durch die Poren eines Sinterkoerpers an die Kathodenoberflaeche gelangt
DE2748566C3 (de) Drehanode für eine Röntgenröhre und Verfahren zu ihrer Herstellung
DE2849606C3 (de) Basismetallplattenmaterial für direkt erhitzte Oxidkathoden
EP0673051B1 (de) Vorratskathode
DE3807324A1 (de) Gluehkathodenmaterial fuer eine nachlieferungs-reaktionskathode fuer elektronenroehren und verfahren zu dessen herstellung
EP0559283B1 (de) Kathode mit einem porösen Kathodenelement
DE1187333B (de) Elektrischer Kontakt mit grosser Schweisssicherheit, hoher Abbrandfestigkeit und guter Haftfestigkeit der Kontaktschicht auf dem Kontakttraeger
DE2619866B2 (de) Gasentladungsröhre, insbesondere Überspannungsableiter
DE1163462B (de) Verfahren zur Herstellung von impraegnierten Kathoden fuer Elektronenroehren
DE3122950A1 (de) Verfahren zum herstellen einer vorratskathode
WO2019056026A1 (de) Kathode
DE1800945A1 (de) Verfahren und Elektrodenausgangsmaterial fuer die Herstellung einer Thorium-Filmkathode fuer elektrische Entladungsgefaesse
AT215035B (de) Vorratskathode und Verfahren zur Herstellung derselben
DE1046203B (de) Vorratskathode fuer elektrische Entladungsgefaesse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB NL

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 2960432

Country of ref document: DE

Date of ref document: 19811008

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BBC AKTIENGESELLSCHAFT BROWN, BOVERI & CIE.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850328

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890131

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890228

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900901

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT