EP0559283B1 - Kathode mit einem porösen Kathodenelement - Google Patents

Kathode mit einem porösen Kathodenelement Download PDF

Info

Publication number
EP0559283B1
EP0559283B1 EP93200563A EP93200563A EP0559283B1 EP 0559283 B1 EP0559283 B1 EP 0559283B1 EP 93200563 A EP93200563 A EP 93200563A EP 93200563 A EP93200563 A EP 93200563A EP 0559283 B1 EP0559283 B1 EP 0559283B1
Authority
EP
European Patent Office
Prior art keywords
cathode
particles
cathode element
melting point
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93200563A
Other languages
English (en)
French (fr)
Other versions
EP0559283A1 (de
Inventor
Georg Dr. Gärtner
Hans Dr. Lydtin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0559283A1 publication Critical patent/EP0559283A1/de
Application granted granted Critical
Publication of EP0559283B1 publication Critical patent/EP0559283B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material

Definitions

  • the invention relates to a cathode with a porous cathode element which contains at least one high-melting metal and nanostructured particles with an average diameter ⁇ 1000 nm.
  • vacuum electron tubes for example picture tubes, X-ray tubes and generally tubes in high-frequency and microwave technology
  • HDTV cathodes must allow emission current densities of 20 A / cm 2 , whereby the operating temperatures should be well below 1000 ° C and lifetimes of more than 20,000 h are required.
  • Cathodes of modern high-performance X-ray tubes are said to deliver emission current densities of 10A / cm 2 at relatively high residual gas pressures of up to 10 -3 mbar and with intensive ion bombardment.
  • the most important property criterion of a cathode is a constant high emission current density over the lifetime.
  • the electron emission can be increased exponentially by increasing the temperature.
  • a dispenser cathode with a thermionically emitting cathode element of the type mentioned at the beginning is known from EP-A-0442 163 as an I-cathode.
  • Oxide particles such as BaO are embedded in a material structure.
  • a cathode with a porous metal body is known from FR-A 1 410 641.
  • the coarse porous body has a thin emitting layer on one surface, the porosity of which is so fine that there is a uniform emission.
  • cathode with impregnated pores is known. This cathode contains both particles of high-melting metal and particles of scandium oxides.
  • the invention has for its object to design a cathode element of the type mentioned in such a way that higher emission current densities with a long service life are made possible at a given temperature.
  • the cathode element is formed entirely from particles whose average diameter is less than 1000 nm, and which are connected to one another in a homogeneous distribution, in that 5 to 90% of the total volume of the cathode element consists of unfilled and open pores, the free distances between adjacent particles formed by the pores being less than 1000 nm.
  • Another cathode is characterized in that the porous cathode element contains both particles of high-melting metals and particles of metal oxides (such as Sc 2 O 3 , Y 2 O 3 , Eu 2 O 3 , La 2 O 3 , ThO 2 ) a heatable Substrate are applied.
  • the porous cathode element contains both particles of high-melting metals and particles of metal oxides (such as Sc 2 O 3 , Y 2 O 3 , Eu 2 O 3 , La 2 O 3 , ThO 2 ) a heatable Substrate are applied.
  • a cathode element according to the invention is referred to below as an “effusion cathode element”, since electrons “operate” from the near-surface, densely distributed pores into a vacuum during operation.
  • An effusion cathode element in the sense of the present invention if it does not itself contain alkaline earth oxides, can be used as a cover element e.g. can be used for an I-cathode of known type.
  • an effusion cathode element according to the invention can also contain particles of alkaline earth oxides, so that it can then be used as a full-fledged cathode element.
  • a homogeneous distribution of the particles means that in each volume element with a volume (20 d ⁇ ) 3 the numbers of the respective particles with an average diameter d ⁇ deviate from each other by less than ⁇ 20%, d being defined as the mean of the statistically scattering diameter d of the particles.
  • the diameter d of naturally not precisely spherical particles is to be understood as the mean value of the spatial extent of the particles measured in different angular positions.
  • Effusion cathode elements according to the invention can additionally be provided with cover layers made of Os or Ru, which are known per se. Such cover layers should also be designed with open pores.
  • an effusion cathode element In the case of an effusion cathode element according to the invention, the elements and compounds important for electron emission adjoin in a homogeneous fine distribution with a large total area of pores. Since the pores are open and thus accessible from the outer surfaces of the effusion cathode element in a manner free of solids, the active area of the effusion cathode body according to the invention is considerably enlarged. Subsequent delivery of alkaline earth atoms to near-surface areas is through the open pores facilitated. As a result, high emission current densities can be achieved even at relatively low operating temperatures.
  • An arrangement according to the invention is also insensitive to ion bombardment (sputtering) and to residual gas occupancy (poisoning).
  • sputtering ion bombardment
  • residual gas occupancy residual gas occupancy
  • the effusion cathode element consists of particles, of which at least 90% have a diameter in the range from 5 to 1000 nm, preferably 30 to 500 nm.
  • the smaller the particle diameter the larger the ratio of the total available active surface to the outer surface of the effusion cathode element.
  • particle diameters that are too small d ⁇ 1 nm
  • pore diameters that are too small the effectiveness of the pores becomes too low, since structures made of particles with d ⁇ 1 nm do not remain stable in the long run at operating temperatures of 750 °. If more than 10% of the particles of the solid structure had diameters of more than 500 nm, the intrinsically excellent resistance of the cathodes according to the invention to ion bombardment was noticeably deteriorated.
  • the high-melting metal components should have a proportion of> 30%, in particular about 50-90%, of the total volume of the solid particles. A value of about 50% has proven advantageous for effusion cathode bodies according to the invention containing alkaline earth oxide particles. With a metal content of less than 30%, a sufficiently good metallic conduction of the effusion cathode element can no longer be guaranteed.
  • the oxidic particles are at least partially surrounded by a thin metal shell or that at least some of the metallic particles are enveloped by a thin oxidic cover layer.
  • the cladding layers must of course be structured so thin or so permeable that the covered core can become active through the cladding.
  • an effusion cathode element 1 is applied to an I-cathode element 2.
  • the I cathode element 2 consists of a porous W matrix 3, which is impregnated with BaCa aluminate 4.
  • the structure of a volume element of the effusion cathode element 1 is indicated in FIG. 1.
  • Tungsten particles 5 with an average diameter of 30 nm form a supporting framework around pore spaces 6, in which an electron gas cloud is created during operation.
  • Separate oxide particles 7 of Sc 2 O 3 with approximately the same diameter are embedded.
  • a surface complex 9 made of Ba-Sc -O formed on surfaces of the W-particles 5 directed towards the pores.
  • a surface complex 9 made of Ba-Sc -O formed on surfaces of the W-particles 5 directed towards the pores.
  • an emission current density of 110 A / cm 2 was measured after 50 hours of operation (electron current direction according to arrows 10 and 11).
  • These laboratory-made samples already showed significantly better values than were achieved with previously known cathode elements.
  • lifetimes of more than 3000 hours were easily achieved.
  • FIG. 4 shows a meandering foil-like effusion cathode element 20, with a structure according to FIG. 2, which is arranged on a support plate 21 which is preferably made of W, Ni or Ti.
  • the carrier plate 21 can also be a substrate for the production of the layer of the effusion cathode element 20.
  • the meandering effusion cathode element 20 can also be heated directly without a support plate 21. If the heating current (arrow 18) is passed through, an electron current can be generated in the direction of arrow 19.
  • Indirect heating can of course also be provided.
  • structured effusion cathode elements can be arranged on a resistance heating conductor according to FIG. 2.

Landscapes

  • Solid Thermionic Cathode (AREA)

Description

  • Die Erfindung bezieht sich auf eine Kathode mit einem porösen Kathodenelement, welches mindestens ein hochschmelzendes Metall sowie nanostrukturierte Partikel mit mittlerem Durchmesser <1000 nm enthält.
  • Elektronenemitter von Vakuumelektronenröhren, beispielsweise von Bildröhren, Röntgenröhren und allgemein von Röhren in der Hochfrequenz- und Mikrowellentechnik sollen wegen steigender Leistungsanforderungen hohe Emissionsstromdichten bei möglichst niedriger Betriebstemperatur, eine hohe Lebensdauer, hohe Resistenz gegenüber Vergiftung durch Restgase und ein stabiles Verhalten bei Elektronenbeschuß aufweisen.
  • HDTV-Kathoden müssen Emissionsstromdichten von 20 A/cm2 zulassen, wobei die Betriebstemperaturen deutlich unter 1000 °C liegen sollen und Lebensdauern von mehr als 20 000 h gefordert werden. Kathoden moderner Hochleistungsröntgenröhren sollen Emissionsstromdichten von 10A/cm2 bei relativ hohen Restgasdrücken von bis zu 10-3 mbar und bei intensivem Ionenbeschuß liefern.
  • Wichtigstes Eigenschaftskriterium einer Kathode ist eine über die Lebensdauer gleichbleibend hohe Emissionsstromdichte. Bei einem bekannten Material mit gegebener Austrittsarbeit für Elektronen läßt sich die Elektronenemission durch Temperaturerhöhung exponentiell erhöhen.
  • Dadurch können jedoch eine Erhöhung der Verlustleistung, eine Verminderung der mechanischen Stabilität des emittierenden Festkörpers bzw. seines Heizers und infolge Verdampfung des emittierenden Materials eine schnelle Erschöpfung des Vorrats und schädliche Kontaminationen von Systembauteilen einer Röhre (beispielsweise Gitter) verursacht werden, so daß einer hinsichtlich der Elektronenemission vorteilhaften Temperaturerhöhung Grenzen gesetzt sind.
  • Für den Hochtemperaturbetrieb sind nur wenige hochschmelzende Metalle, insbesondere W, Re und Ta als Refraktärmetalle geeignet, da gleichzeitig die Forderung nach einer niedrigen Verdampfungsrate erfüllt werden muß.
  • Ein Vorteil des Hoch-Temperaturbetriebs reiner Metalle ist die geringe Kontamination (Vergiftung) der Kathodenoberfläche und die geringe Empfindlichkeit gegenüber Ionenbeschuß. Allerdings ist selbst reines Wolfram für hohe Emissionsstromdichten > 5A/cm2 und Lebensdauern von > 103h ungeeignet. Demgegenüber können solche Emissionsbedingungen durch Aufbau geeigneter Oberflächenkomplexe (Adsorbat/Substrat-Dipolschichten) erfüllt werden, wodurch die Elektronenaustrittsarbeit herabgesetzt wird. Damit erreicht man hohe Emissionsstromdichten bei relativ niedrigen Betriebstemperaturen und geringe Energieverluste. In der Praxis werden Materialkombinationen von W/ThO2, W/Th, W/Ba, W/BaO, W/SC2O3/BaO/CaO/Al2O3 verwendet.
  • Erstrebenswert ist dabei eine möglichst uniforme Belegung der emittierenden Fläche mit Komplexen, die eine niedrige Austrittsarbeit bei gleichzeitig geringer Abdampfrate haben. Dieses Ziel versucht man in der Praxis mit Hilfe strukturmodifizierter Kathoden, wie z.B. Imprägnations-, Top-Layer-, Mixed Metal Matrix-, Multilayer- und Controlled Porosity Dispenser-Kathoden zu erreichen. Die Gründe für die dennoch unzureichende Emission der konventionellen strukturmodifizierten Kathoden sind ein zu geringer Bedeckungsgrad der emittierenden Kathodenoberfläche - z.B. mit BaO bei imprägnierten Kathoden - durch ungenügende Nachlieferung aus den Poren oder Korngrenzen nach Abdampfung/Absputtern oder wegen der Kontamination von Oberflächenplätzen durch Restgase.
  • Die grundsätzliche Möglichkeit, hohe Emissionsstromdichten über Temperaturerhöhungen einzustellen, wird bei derartigen Kathodenausführungsformen über eine niedrige Lebensdauer erkauft. Im schlimmsten Fall werden Oberflächenplätze irreversibel mit Elementen bzw. Molekülen belegt, welche die Austrittsarbeit sogar noch über den Wert des reinen Matrixmetalles erhöhen. Zwar regenerierbar aber in der Auswirkung ähnlich nachteilig ist der Verlust eines die Austrittsarbeit herabsetzenden Adsorbats (z.B. Sc aus Sc203) durch Verdampfung oder Ionenbeschuß.
  • Eine Dispenser-Kathode mit einem thermionisch emittierenden Kathodenelement der eingangs genannten Art ist durch die EP-A-0442 163 als I-Kathode bekannt. Dabei sind in einer Materialstruktur Oxidpartikel wie beispielsweise BaO eingebettet.
  • Aus der FR-A 1 410 641 ist eine Kathode mit einem porösen Metallkörper bekannt. Der grob poröse Körper weist dabei an einer Oberfläche eine dünne emittierende Schicht auf, deren Porösität so fein ist, daß sich eine gleichmäßige Emission ergibt.
  • Aus der GB-A 21 16 356 ist eine Kathode mit imprägnierten Poren bekannt. Diese Kathode enthält sowohl Partikel aus hochschmelzendem Metall als auch Partikel aus Scandium-Oxiden.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Kathodenelement der eingangs genannten Art derart zu gestalten, daß bei gegebener Temperatur höhere Emissionsstromdichten bei hoher Lebensdauer ermöglicht werden.
  • Die Lösung gelingt dadurch, daß das Kathodenelement vollständig aus Partikeln gebildet ist, deren mittlerer Durchmesser kleiner als 1000 nm ist, und welche in homogener Verteilung miteinander verbunden sind, daß 5 bis 90% des Gesamtvolumens des Kathodenelements aus ungefüllten und zur Umgebung offenen Poren besteht, wobei die von den Poren gebildeten freien Abstände zwischen benachbarten Partikeln kleiner als 1000 nm sind.
  • Eine weitere Kathode ist dadurch gekennzeichnet, daß das poröse Kathodenelement sowohl Partikel aus hochschmelzenden Metallen als auch Partikel aus Metalloxiden (wie Sc2O3, Y2O3, Eu2O3, La2O3, ThO2) enthält, welche auf einem beheizbaren Substrat aufgebracht sind.
  • Ein erfindungsgemäßes Kathodenelement wird im Folgenden als "Effusionskathodenelement" bezeichnet, da Elektronen bei Betrieb aus den oberflächennahen, dicht verteilten Poren ins Vakuum "effundieren". Ein Effusionskathodenelement im Sinne der vorliegenden Erfindung kann, wenn es selbst keine Erdalkalioxide enthält, als Deckelement z.B. für eine I-Kathode bekannter Art verwendet werden. Andererseits kann ein erfindungsgemäßes Effusionskathodenelement auch Partikel aus Erdalkalioxiden enthalten, so daß es dann als vollwertiges Kathodenelement verwendbar ist.
  • Eine homogene Verteilung der Partikel bedeutet, daß in jedem Volumenelement mit einem Volumen (20 d ¯
    Figure imgb0001
    )3 die Anzahlen der jeweiligen Partikel mit einem mittleren Durchmesser d ¯
    Figure imgb0002
    um weniger als ± 20% voneinander abweichen, wobei d als Mittelwert der statistisch streuenden Durchmesser d der Partikel definiert ist.
  • Als Durchmesser d von natürlich nicht genau kugelförmig ausgebildeten Partikeln ist der Mittelwert der in verschiedenen Winkellagen gemessenen räumlichen Erstrekkung der Partikel zu verstehen.
  • Erfindungsgemäße Effusionskathodenelemente können zusätzlich mit an sich bekannten Deckschichten aus insbesondere Os oder Ru versehen sein. Solche Deckschichten sollten aber ebenfalls offenporig gestaltet werden.
  • Bei einem erfindungsgemäßen Effusionskathodenelement grenzen die für die Elektronenemission wichtigen Elemente und Verbindungen in homogener feiner Verteilung mit einer hohen Gesamtfläche an Poren an. Da die Poren offen und damit auf festkörperfreiem Wege von den Außenflächen des Effusionskathodenelements her zugänglich sind, ist die aktiv wirksame Fläche des erfindungsgemäßen Effusionskathodenkörpers erheblich vergrößert. Eine Nachlieferung von Erdalkaliatomen zu oberflächennahen Bereichen wird durch die offenen Poren hindurch erleichtert. Infolgedessen lassen sich hohe Emissionsstromdichten bereits bei relativ niedrigen Betriebstemperaturen erreichen.
  • Eine erfindungsgemäße Anordnung ist auch unempfindlich gegenüber Ionenbeschuß (Sputtern) und gegen Restgasbelegung (Vergiftung). Die Sputtereffekte betreffen nämlich nur die äußere Oberfläche, nicht aber die oberflächennahen Bereiche in der porösen Struktur. Unerwünschte Restgasbelegungen im Inneren der Struktur sind unter Betriebsbedingungen erschwert, weil die dort befindlichen freien Oberflächen der Partikel in hohem Maße mit erwünschten Atomen/Molekülen belegt sind.
  • Diese Vorteile kommen insbesondere dann signifikant gegenüber bekannten Kathoden zur Geltung, wenn das Effusionskathodenelement aus Partikeln besteht, von denen mindestens 90% einen Durchmesser im Bereich von 5 bis 1000 nm, vorzugsweise 30 bis 500 nm aufweisen. Je kleiner die Partikeldurchmesser sind, um so größer wird das Verhältnis der insgesamt verfügbaren aktiven Oberfläche zur äußeren Oberfläche des Effusionskathodenelements. Bei zu kleinen Partikeldurchmessern (d <1 nm) und auch bei zu kleinen Porendurchmessern wird allerdings die Wirksamkeit der Poren zu gering, da Strukturen aus Partikeln mit d < 1 nm bei Betriebstemperaturen von 750° nicht auf Dauer stabil bleiben. Falls mehr als 10% der Partikel der Festkörperstruktur Durchmesser von mehr als 500 nm aufwiesen, wurde die an sich hervorragende Widerstandsfähigkeit erfindungsgemäßer Kathoden gegen Ionenbombardement merkbar verschlechtert.
  • Die hochschmelzenden metallischen Komponenten sollten einen Anteil von > 30%, insbesondere etwa 50-90% des Gesamtvolumens der Festkörperpartikel aufweisen. Ein Wert von etwa 50% hat sich dabei für Erdalkalioxid-Partikel enthaltende erfindungsgemäße Effusionskathodenkörper als vorteilhaft erwiesen. Bei einem Metallanteil von weniger als 30% ist eine genügend gute metallische Leitung des Effusionskathodenelements nicht mehr gewährleistet.
  • Gemäß einer Weiterbildung der Erfindung ist vorgesehen,
    daß die oxidischen Partikel mindestens teilweise von einer dünnen Metallhülle umgeben sind oder daß mindestens ein Teil der metallischen Partikel von einer dünnen oxidischen Deckschicht umhüllt ist. Die Hüllschichten müssen natürlich so dünn bzw. so durchlässig strukturiert sein, daß der bedeckte Kern durch die Hülle hindurch aktiv wirksam werden kann.
  • Besonders hohe Emissionsstromdichten wurden dadurch ermöglicht, daß das Porenvolumen im oberen Teil des Effusionskathodenelements größer als im unteren Teil ist.
  • Weitere Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Die Erfindung wird anhand der Beschreibung von in der Zeichnung dargestellten vorteilhaften Ausführungsbeispielen näher erläutert.
  • Fig. 1
    zeigt einen Schnitt durch ein Volumenelement eines erfindungsgemäßen Effusionskathodenelements, welches W- und Sc2O3-Partikel, aber keine Erdalkalioxid-Partikel enthält und als Auflage für ein I-Kathodenelement (Fig. 3) geeignet ist.
    Fig. 2
    zeigt eine Ausführung mit Erdalkalioxid-Partikeln, welches als vollwertiges Dispenserkathodenelement verwendbar ist.
    Fig. 3
    zeigt einen Schnitt durch ein Kathodenelement, bei welchem ein Effusionskathodenelement nach Fig. 1 auf einem I-Kathodenelement aufgebracht ist.
    Fig. 4
    zeigt eine strombeheizte mäanderförmige Ausführungsform eines Effusionskathodenelements mit einer Struktur nach Fig. 2.
  • Gemäß Fig. 3 ist ein Effusionskathodenelement 1 auf einem I-Kathodenelement 2 aufgebracht. Das I Kathodenelement 2 besteht aus einer porösen W-Matrix 3, welche mit BaCa-Aluminat 4 imprägniert ist. Die Struktur eines Volumenelements des Effusionskathodenelements 1 ist in Fig. 1 angedeutet. Wolfram-Partikel 5 mit einem mittleren Durchmesser von 30 nm bilden ein tragendes Gerüst um Porenräume 6, in welchen bei Betrieb eine Elektronengaswolke entsteht. Eingelagert sind separate Oxidpartikel 7 aus Sc2O3 mit etwa gleichen Durchmessern. Infolge der Lieferung von Ba in Richtung des Pfeils 8 aus dem I-Kathodenelement 2 (Fig. 3) wird bei Betrieb der Kathode bei z.B. 900° C auf zu den Poren hin gerichteten Flächen der W-Partikel 5 ein Oberflächenkomplex 9 aus Ba-Sc-O gebildet. Bei 900° C und einer Feldstärke von ca. 4 kV/mm wurde nach 50 Stunden Betriebsdauer eine Emissionsstromdichte von 110 A/cm2 gemessen (Elektronenstromrichtung gemäß den Pfeilen 10 und 11). Es ergaben sich bereits bei diesen labormäßig hergestellten Proben erheblich bessere Werte als mit bisher bekannten Kathodenelementen erreicht wurden. Bei 965°C wurden Lebensdauern von mehr als 3000 Stunden problemlos erreicht.
  • Bei der Ausführung nach Fig. 2 sind Sc203-Kerne 12 und BaO-Kerne 13 (oder auch CaO-Kerne) mit W-Schichten 14a bzw. 14b umhüllt. Auf den zu den Porenräumen 15 gerichteten W-Flächen der zweischichtigen Partikel werden emittierende Schichten aus Ba-Sc-O gebildet. Für den in Richtung der Pfeile 16,17 fließenden Elektronenstrom wurden Stromdichten von 95 A/cm2 bei 850° C und Feldstärken von ca. 4kV/mm gemessen. Bei bekannten pulvermetallurgisch hergestellten Kathodenelementen, welche also keine offenporige Struktur aufweisen, konnte unter vergleichbaren Bedingungen höchstens 80 A/cm2 erreicht werden. Dabei ist zu bedenken, daß die mit der Erfindung erreichten günstigen Werte an nicht optimierten labormäßig hergestellten Proben gemessen wurden. Die bei der Erfindung erforderliche Offenporigkeit konnte mit Niederschlagsverfahren wie insbesondere PCVD erreicht werden. Sinterverfahren erwiesen sich als wenig geeignet.
  • Fig. 4 zeigt ein mäanderförmig folienartiges Effusionskathodenelement 20, mit einer Struktur nach Fig. 2, welches auf einem vorzugsweise aus W, Ni oder Ti bestehenden Tragblech 21 angeordnet ist. Das Tragblech 21 kann gleichzeitig Substrat für die Herstellung der Schicht des Effusionskathodenelements 20 sein.
  • Wegen der metallischen Leitfähigkeit erfindungsgemäßer Effusionskathodenelemente und der nanostrukturierten homogenen Struktur läßt sich das mäanderförmige Effusionskathodenelement 20 auch ohne Tragblech 21 direkt heizen. Bei einem hindurchgeleiteten Heizstrom (Pfeil 18), kann ein Elektronenstrom in Richtung des Pfeils 19 erzeugt werden.
  • Man kann natürlich auch eine indirekte Heizung vorsehen. Beispielsweise können gemäß Fig. 2 strukturierte Effusionskathodenelemente auf einem Widerstandsheizleiter angeordnet sein.

Claims (10)

  1. Kathode mit einem porösen Kathodenelement, welches zwischen zwei einander gegenüberliegenden Oberflächen ein hochschmelzendes Metall enthält,
    dadurch gekennzeichnet, daß das Kathodenelement (1) Partikel (5,7) aus hochschmelzendem Metall enthält, daß weniger als 10% der Partikel (5,7) einen Durchmesser von mehr als 500 nm aufweisen und daß das Kathodenelement (1) Poren enthält, die von einer oder beiden Oberflächen zugänglich sind.
  2. Kathode mit einem porösen Kathodenelement, welches zwischen zwei einander gegenüberliegenden Oberflächen ein hochschmelzendes Metall enthält,
    dadurch gekennzeichnet, daß das Kathodenelement (1) sowohl Partikel (5) aus hochschmelzendem Metall als auch Partikel aus Metalloxiden (7) enthält, daß weniger als 10% der Partikel (5,7) einen Durchmesser von mehr als 500 nm aufweisen und daß das Kathodenelement (1) Poren enthält, die von einer oder beiden Oberflächen zugänglich sind.
  3. Kathode nach Anspruch 2,
    dadurch gekennzeichnet, daß das poröse Kathodenelement (1) mit Heizungsmitteln versehen ist.
  4. Kathode mit einem porösen Kathodenkörper (3) das von einem Impregnant (4) versehen ist und mit einer emittierenden Oberfläche,
    dadurch gekennzeichnet, daß die Kathode auf der emittierenden Oberfläche ein poröses Kathodenelement (1) enthält, welches zwischen zwei einander gegenüberliegenden Oberflächen ein hochschmelzendes Metall enthält, wobei das Kathodenelement (1) sowohl Partikel (5) aus hochschmelzendem Metall als auch Partikel aus Metalloxiden (7) enthält, daß weniger als 10% der Partikel (5,7) einen Durchmesser von mehr als 500 nm aufweisen und daß das Kathodenelement (1) Poren enthält, die sich zwischen den beiden Oberflächen erstrecken.
  5. Kathode mit einem porösen Kathodenelement, welches mindestens ein hochschmelzendes Metall sowie nanostrukturierte Partikel mit mittlerem Durchmesser < 1000 nm enthält,
    dadurch gekennzeichnet, daß das Kathodenelement (1) vollständig aus Partikeln (5,7) gebildet ist, deren mittlerer Durchmesser kleiner als 1000 nm ist, und welche in homogener Verteilung miteinander verbunden sind, daß 5 bis 90% des Gesamtvolumens des Kathodenelements (1) aus ungefüllten und zur Umgebung offenen Poren (6,15) besteht, wobei die von den Poren (6,15) gebildeten freien Abstände zwischen benachbarten Partikeln (5,7,14a,14b) kleiner als 1000 nm sind.
  6. Kathode nach Anspruch 5,
    dadurch gekennzeichnet, daß das poröse Kathodenelement sowohl Partikel aus hochschmelzenden Metallen (5) als auch Partikel aus Metalloxiden (7) enthält, welche auf einem beheizbaren Substrat aufgebracht sind.
  7. Kathode nach Anspruch 5,
    dadurch gekennzeichnet, daß das poröse Kathodenelement ausschließlich Partikel aus einem hochschmelzenden Metall (5) oder Partikel aus Metalloxiden (7) enthält, und daß das Kathodenelement (1) auf einem I-Kathodenelement (2) aufgebracht ist.
  8. Kathode nach Anspruch 5 oder 6,
    dadurch gekennzeichnet, daß das poröse Kathodenelement Partikel aus hochschmelzendem Metall und Partikel aus Metalloxiden und Partikel aus Erdalkalimetalloxiden enthält.
  9. Kathode nach einem der Ansprüche 5 bis 8,
    dadurch gekennzeichnet, daß der Metallanteil (5,14a,14b) einen Volumenanteil von >30% der gesamten Festkörperpartikel aufweist.
  10. Kathode nach einem der Ansprüche 5 bis 9,
    dadurch gekennzeichnet, daß das poröse Kathodenelement (1) aus Partikeln (5,7,14a,14b) gebildet ist, von denen mindestens 30% einen Durchmesser im Bereich von 5 bis 1000 nm, vorzugsweise 30 bis 500 nm aufweisen.
EP93200563A 1992-03-05 1993-03-01 Kathode mit einem porösen Kathodenelement Expired - Lifetime EP0559283B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4206909 1992-03-05
DE4206909A DE4206909A1 (de) 1992-03-05 1992-03-05 Thermionisch emittierendes kathodenelement

Publications (2)

Publication Number Publication Date
EP0559283A1 EP0559283A1 (de) 1993-09-08
EP0559283B1 true EP0559283B1 (de) 1996-11-13

Family

ID=6453269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93200563A Expired - Lifetime EP0559283B1 (de) 1992-03-05 1993-03-01 Kathode mit einem porösen Kathodenelement

Country Status (3)

Country Link
EP (1) EP0559283B1 (de)
JP (1) JPH065198A (de)
DE (2) DE4206909A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400353A1 (de) * 1994-01-08 1995-07-13 Philips Patentverwaltung Steuerbarer thermionischer Elektronenemitter
DE19652822A1 (de) 1996-12-18 1998-06-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Sinterelektrode
DE19855670A1 (de) * 1998-12-02 1999-12-09 Siemens Ag Verfahren zum Betreiben eines Dampferzeugers und Dampferzeuger zur Durchführung des Verfahrens
DE102006024437B4 (de) * 2006-05-24 2012-08-09 Siemens Ag Röntgenstrahler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL266639A (de) * 1960-07-05
FR1410641A (fr) * 1963-10-04 1965-09-10 Philips Nv Corps métallique poreux et son procédé de fabrication
JPS58154131A (ja) * 1982-03-10 1983-09-13 Hitachi Ltd 含浸形陰極
US4986788A (en) * 1989-11-02 1991-01-22 Samsung Electron Devices Co., Ltd. Process of forming an impregnated cathode
KR920001335B1 (ko) * 1989-11-10 1992-02-10 삼성전관 주식회사 디스펜서 음극

Also Published As

Publication number Publication date
DE59304447D1 (de) 1996-12-19
EP0559283A1 (de) 1993-09-08
JPH065198A (ja) 1994-01-14
DE4206909A1 (de) 1993-09-09

Similar Documents

Publication Publication Date Title
DE1015941B (de) Vorratskathode und Verfahren zu ihrer Herstellung
EP0560436B1 (de) Kathode mit einem Festkörperelement
DE102006038417B4 (de) Röntgenanode
EP0559283B1 (de) Kathode mit einem porösen Kathodenelement
EP0005279B1 (de) Glühkathode
DE2504674A1 (de) Schnellheizkatode fuer bildroehren mit einer inneren beschichtung mit grossem waermeemissionsvermoegen
EP0063840A1 (de) Hochspannungs-Vakuumröhre, insbesondere Röntgenröhre
DE2655726C2 (de)
DE102012002048A1 (de) Kathode für eine Entladungslampe
DE2719408C2 (de) Drehanode für eine Röntgenröhre und Verfahren zu ihrer Herstellung
EP0757370B1 (de) Elektrische Entladungsröhre oder Entladungslampe und Scandat-Vorratskathode
DE2947313C2 (de) Elektronenröhrenkathode
DE10142396B4 (de) Kathode und Verfahren zu ihrer Herstellung
EP0900858B1 (de) Keramische Flash-Verdampfer
EP0235619B1 (de) Röntgenröhren-Glühkathode
WO2002025681A1 (de) Kathodenstrahlröhre mit oxidkathode
DE60319301T2 (de) Emittierende Kathodenstruktur für eine Vorratskathode einer Elektronenröhre
DE1218072B (de) Sekundaerelektronenvervielfacher und Verfahren zur Herstellung des Vervielfachers
AT130795B (de) Verfahren zur Herstellung von mehrsystemigen Vakuumröhren nach dem Dampfverfahren.
DE102008052363B4 (de) Anode für eine Röntgenröhre
DE60102648T2 (de) Oxidkathode und zugehöriges herstellungsverfahren
DE69925940T2 (de) Indirekt beheizte Kathode und diese enhaltende Kathodenstrahlröhre
DE1071849B (de)
DE2947919A1 (de) Vorratskathode, verfahren zu ihrer herstellung sowie pille dafuer
DE3915261A1 (de) Verbund-supraleiter in drahtform, auf der basis eines keramischen stoffes (y,se)ba(pfeil abwaerts)2(pfeil abwaerts)cu(pfeil abwaerts)3(pfeil abwaerts)0(pfeil abwaerts)6(pfeil abwaerts)(pfeil abwaerts),(pfeil abwaerts)(pfeil abwaerts)5(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)(pfeil abwaerts)y(pfeil abwaerts) mit se = seltene erde und 0&lt;y&lt;l und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19940228

17Q First examination report despatched

Effective date: 19941221

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961113

REF Corresponds to:

Ref document number: 59304447

Country of ref document: DE

Date of ref document: 19961219

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970129

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20021017

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030328

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030515

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST