EP0637677B1 - Viertakt-Verbrennungsmotor - Google Patents

Viertakt-Verbrennungsmotor Download PDF

Info

Publication number
EP0637677B1
EP0637677B1 EP94111859A EP94111859A EP0637677B1 EP 0637677 B1 EP0637677 B1 EP 0637677B1 EP 94111859 A EP94111859 A EP 94111859A EP 94111859 A EP94111859 A EP 94111859A EP 0637677 B1 EP0637677 B1 EP 0637677B1
Authority
EP
European Patent Office
Prior art keywords
piston
cylinder
combustion engine
internal combustion
stroke internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94111859A
Other languages
English (en)
French (fr)
Other versions
EP0637677A1 (de
Inventor
Manfred Födisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0637677A1 publication Critical patent/EP0637677A1/de
Application granted granted Critical
Publication of EP0637677B1 publication Critical patent/EP0637677B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0079Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having pistons with rotary and reciprocating motion, i.e. spinning pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/04Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
    • F01B3/06Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces by multi-turn helical surfaces and automatic reversal
    • F01B3/08Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces by multi-turn helical surfaces and automatic reversal the helices being arranged on the pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Definitions

  • the present invention relates to a four-stroke internal combustion engine according to the preamble of patent claim 1.
  • crank mechanism makes the reciprocating engine complex, heavy and space-consuming, which is ultimately reflected in the use of materials and fuel.
  • the present invention has for its object to provide a four-stroke internal combustion engine working on a novel principle, which is characterized by design simplicity, low weight and low fuel consumption.
  • a four-stroke internal combustion engine of the type specified in the preamble of claim 1 is characterized according to the invention in that the piston is mounted in the cylinder axially and rotatably and between the piston and the cylinder a wavy, positive guidance is provided, which impresses the piston with a rotation of 360 ° four axial strokes for the four work cycles, that the cylinder and the piston each have a combustion chamber half in their peripheral walls adjacent to their adjacent end faces, which at the time of ignition of the fuel gas supplement a combustion chamber, so that fuel gas expanding in the combustion chamber exerts a torque on the piston, and that a coaxial shaft shaft is provided on the piston for deriving the rotary movement carried out by the piston.
  • the piston carries out four stroke movements for the four working cycles during a revolution of 360 °, suctioning - compressing - expanding (working) - expelling.
  • the shaft power generated by the motor can be taken directly from the rotating piston.
  • the combustion chamber halves formed in the peripheral walls of the cylinder and piston and complementing one combustion chamber ensure that the expanding fuel gas immediately exerts a torque on the circumference of the piston during the expansion work cycle. The rotational forces exerted on the piston are therefore considerably greater than the axial forces exerted on the piston.
  • the four-stroke internal combustion engine designed according to the invention combines to a certain extent the advantages of a reciprocating piston engine and a rotary piston engine. Since a crank mechanism is not required, it is simple in construction and comparatively light in weight. Since the forces exerted by the expanding fuel gas act primarily in the circumferential direction and act on the outer circumference of the piston, the engine operates with high efficiency, which is reflected in a correspondingly low fuel consumption. This is promoted by a good swirling of the fuel gas in the displacement, which is brought about primarily by the rotary movement of the piston. Because of the simple construction, the susceptibility to faults is low, so that the motor has a long service life.
  • the shaft shaft provided on the piston to compensate for the lifting movement and to transmit the rotary movement of the piston is mounted in an axially movable and rotationally fixed manner in a drive shaft which is rotatably and axially fixed in the cylinder.
  • the drive shaft thus immediately receives the torque generated by the engine.
  • the valve device preferably consists of a valve flange with a valve slot penetrating the valve flange, which is rotatably mounted in the end wall of the cylinder and rotates with the piston, so that the valve flange with the valve slot opens and closes the inlet and outlet opening in a timely manner. This further simplifies the internal combustion engine, since no separate intake and exhaust valves with valve control are required.
  • a further displacement is formed between the piston and the cylinder on the rear side facing away from the working side, each of which has a return line with the inlet channel and the
  • the outlet duct is connected in such a way that part of the exhaust gas (for example a third to a quarter of the quantity of exhaust gas) is returned from the outlet duct to the rear displacement and from there via the inlet duct together with fresh fuel gas to the working displacement.
  • the hot exhaust gas ensures rapid heating of the fuel gas and the entire engine to the operating temperature, which is particularly advantageous particularly in operating conditions with a heat deficit, such as during a cold start, since this ensures that the catalytic converter functions correctly immediately after starting.
  • the amount of pollutants in the exhaust gas is considerably reduced by the exhaust gas recirculation in its own cylinder.
  • the recirculated hot exhaust gas ensures good swirling of fuel and combustion air.
  • the four-stroke internal combustion engine designed according to the invention can be operated both as a gasoline engine and as a diesel engine.
  • the preferred field of application of the invention is the motor vehicle engine, but is not limited to this.
  • the cylinder-piston arrangement shown in Fig. 1 is formed by a housing in the form of a cylinder 2, which consists of a cylindrical peripheral wall 4 and two end walls 6a and 6b.
  • the end walls 6a, 6b are fixedly and sealingly connected to the peripheral wall in order to form a cylindrical space in the interior of the cylinder.
  • a cylindrical piston 10 is slidably supported by means of piston rings 12, so that the cylindrical interior is divided into a displacement 8 on the left side in FIG. 1 (working side) and a displacement 9 on the right side (return side) becomes.
  • the piston-cylinder arrangement shown in Fig. 1 is symmetrical in some respects with respect to a central plane III-III educated.
  • the parts located opposite one another on the working and return sides, which correspond, have therefore been identified with the same reference numerals with the addition of the letters a and b.
  • the piston 10 is provided on its opposite end faces with a coaxial shaft shaft 14a, 14b, which is connected to a drive shaft 16a or 16b in a rotationally fixed but axially displaceable manner.
  • the shaft shafts 14a, 14b are designed as hexagonal or octagonal shafts, which extend into correspondingly designed inner hexagonal or octagonal guides of the drive shafts 16a, 16b.
  • the drive shafts 16a, 16b are in turn rotatably supported by bearings 18a, 18b in the end wall 6a and 6b and are axially immovable.
  • the piston 10 can perform both a rotational movement and an axially reciprocating stroke movement. As indicated in Fig. 1, the piston 10 has a comparatively large diameter. The axial length of the cylindrical interior is approximately 50% greater than the axial length of the piston.
  • a positive guide 20 is provided between the piston 10 and the peripheral wall 4.
  • the positive guide 20 has a wave-shaped circumferential groove 22 formed in the circumference of the piston and having a semicircular cross section with four approximately semi-sinusoidal winding sections, cf. 5.
  • two balls 24 are mounted at diametrically opposite locations with the aid of two screws 26, half of which engage in the groove 22 of the piston 10.
  • the winding portions of the groove 22 are shaped so that the piston makes four strokes for the four in one revolution Work cycles suction - compressing - expanding (working) - ejecting, as will be explained.
  • a combustion chamber half 32 and 34 is formed in the peripheral wall 4 of the cylinder and in the peripheral wall of the piston 10, adjacent to the end face of the cylinder or piston supplement the position of the piston 10 indicated by dashed lines in FIG. 3a to form a combustion chamber 30.
  • each of the combustion chamber halves 32, 34 has an approximately triangular outline in a plane perpendicular to the cylinder axis, the combustion chamber halves 32, 34 on their inner long sides and the combustion chamber half 34 also on their one axial end face to the working displacement 8 are open.
  • An ignition device in the form of a spark plug 35 is assigned to the combustion chamber half 32 formed in the cylinder 2. The mode of operation of the combustion chamber 30 is explained in more detail below.
  • an inlet channel 36 with an inlet opening 38 opening into the displacement 8 is formed for supplying fuel gas, cf. 3, 3a and 4. Furthermore, an outlet channel 40 is formed in the end wall 6a with an outlet opening 42 connected to the displacement 8 for discharging exhaust gas.
  • a valve device is provided, which in the exemplary embodiment shown is designed as a valve flange 48a provided on the drive shaft 16a with a valve slot 54a penetrating the valve flange 48a (cf. in particular FIGS. 1, 3, 3a and 6, 7).
  • the valve flange 48a which is rotatably mounted in a recess in the end wall 6a, performs the same rotary movement because of the drive connection between the drive shaft 16a and the piston 10 like the piston 10, so that the valve slot 54a alternately coincides with the inlet opening 38 and the outlet opening 42, in order to open and close the inlet opening 38 and the outlet opening 42 in accordance with the four work cycles of the four-stroke engine.
  • a sealing washer 50a is axially slidably mounted in a recess of the valve flange 48a.
  • the sealing disk 50a is provided with a valve slot 52a penetrating the sealing disk, the shape of which corresponds to the valve slot 54a and is slidably guided on an axial shoulder surrounding the valve slot 54a of the valve flange 48a, cf. 6 and 7.
  • the sealing washer 50a is pressed against the end face of the end wall 6a by several (for example three) curved leaf springs 56a, which are supported on the valve flange 48a, so that the sealing washer 50a can perform its sealing function to avoid leakage losses.
  • the fuel gas can consist of a fuel-air mixture if the mixture is formed in a carburetor (not shown). However, it can also consist of pure air if the mixture is only formed in the displacement 8 by means of fuel injection (not shown).
  • the piston Upon its further rotation by 90 °, the piston executes a lifting movement into its (in FIG. 1) left end position, as a result of which the fuel gas located in the displacement 8 and in the combustion chamber halves 32, 34 is compressed.
  • the piston 10 assumes the angular position indicated in dashed lines in FIG. 3a, in which the combustion chamber halves 32 and 34 complement each other to form the combustion chamber 30 and in which the maximum compression is achieved.
  • essentially all of the fuel gas is in the combustion chamber 30 and is now ignited by the spark plug 35.
  • the combustion chamber 30 has an approximately rectangular shape, the combustion chamber half 34 of the piston 10 having a drive surface 34 'substantially perpendicular to the circumferential direction and the combustion chamber half 32 formed in the cylinder having a reaction surface 32' substantially parallel thereto. Due to this combustion chamber design, the expanding fuel gas exerts a rotating force on the piston 10, which acts on the outer circumference of the piston 10 and thus generates a correspondingly large torque.
  • the piston 10 is thus driven by the fuel gas in the direction of rotation, while at the same time exerting an expansion stroke (to the right in FIG. 1).
  • the rotary movement of the piston 10 is directly on the drive shaft via the shaft 14a 16a transmit, which ensures a high efficiency of the internal combustion engine.
  • the piston After a quarter of a turn, the piston has completed its work stroke (expansion stroke), whereupon the work cycle begins to expel the exhaust gas.
  • the piston 10 is again moved to the left (in FIG. 1) by the positive guide 20, while the valve slots 52a, 54a sweep over the outlet opening 42. The exhaust gas is thus expelled from the piston 10 into the exhaust gas duct 40.
  • the piston 10 At the end of the ejection stroke, the piston 10 again assumes the angular position indicated by the broken line in FIG. 3, in which the valve slots 52a, 54a are located between the outlet opening 42 and the inlet opening 38.
  • the piston 10 has thus carried out the four working cycles of suction - compression - working (expanding) - ejecting which are characteristic of a four-stroke engine, with each working cycle corresponding to a piston rotation by 90 ° and an axial stroke movement. During a work cycle with the four work cycles, the piston 10 thus makes a rotation through 360 ° and four axial stroke movements.
  • a return line 60 and 62 is branched off from the outlet channel 40 and the inlet channel 36 and communicates with the rear displacement 9 via openings 64 and 66.
  • an arrangement of valve flange 48b, sealing washer 50b, valve slots 52b, 54b and springs 56b corresponding to the working side is provided on the back, which in principle is the same as the corresponding arrangement on the working side works.
  • the proportion of the gas branched off to the return side can be dimensioned by appropriately dimensioning the return lines 60, 62. It goes without saying that the metering can also be carried out by a correspondingly controlled valve device (not shown). The latter possibility has the advantage that the return of the exhaust gas to operating states with a heat deficit such as the cold start can be limited.
  • a recess (not shown) can be provided in the piston 10, which increases the volume of the rear displacement 9.
  • drive shafts of further cylinders can be coupled to the drive shafts 16a, 16b - either directly or via gears.
  • coolant channels 68 for cooling the cylinder are indicated. Further details of the internal combustion engine that are not necessary for understanding the invention, such as e.g. the lubricant supply has been omitted for the sake of simplicity.
  • longitudinal lubricant bores in the screws 26 provide precise lubrication of the positive guide 20, i.e. the balls 24 and the groove 22 and the piston 10 can take place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Viertakt-Verbrennungsmotor nach dem Oberbegriff des Patentanspruchs 1.
  • Viertakt-Verbrennungsmotoren der Hubkolbenbauart haben bekanntlich einen hohen Entwicklungsstand erreicht. Dennoch sind sie mit dem grundsätzlichen Nachteil behaftet, daß die hin- und hergehende Hubbewegung des Kolbens über einen Kurbeltrieb auf die Antriebswelle übertragen werden muß. Der Kurbeltrieb macht den Hubkolbenmotor aufwendig, schwer und platzraubend, was sich letztlich auch im Materialeinsatz und im Kraftstoffverbrauch niederschlägt.
  • Viertakt-Verbrennungsmotoren der Rotations- bzw. Kreiskolbenbauart benötigen keinen Kurbeltrieb, da die Drehbewegung des Kreiskolbens unmittelbar in Wellenleistung umgewandelt werden kann. Der Erfolg des Kreiskolbenmotors in der Praxis ist jedoch wegen anderer Nachteile wie z.B. Dichtungsprobleme, dreifachen Ladungswechsels mit hohem Treibstoffverbrauch während einer Kolbenumdrehung u.a. vergleichsweise gering.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen nach einem neuartigen Prinzip arbeitenden Viertakt-Verbrennungsmotor zu schaffen, der sich durch konstruktive Einfachheit, niedriges Gewicht und geringen Kraftstoffverbrauch auszeichnet.
  • Zur Lösung dieser Aufgabe ist ein Viertakt-Verbrennungsmotor der im Oberbegriff des Anspruchs 1 angegebenen Gattung erfindungsgemäß dadurch gekennzeichnet, daß der Kolben im Zylinder axial und drehbeweglich gelagert ist und zwischen Kolben und Zylinder eine wellenförmig gewundene Zwangsführung vorgesehen ist, die dem Kolben bei einer Umdrehung von 360° vier axiale Hubbewegungen für die vier Arbeitstakte aufprägt, daß der Zylinder und der Kolben in ihren Umfangswänden angrenzend an ihren einander benachbarten Stirnflächen je eine Brennkammerhälfte aufweisen, die sich zum Zeitpunkt der Zündung des Brenngases zu einer Brennkammer ergänzen, so daß in der Brennkammer expandierendes Brenngas ein Drehmoment auf den Kolben ausübt, und daß am Kolben ein koaxial angeordneter Wellenschaft zum Ableiten der vom Kolben ausgeführten Drehbewegung vorgesehen ist.
  • Aus der DE-PS 121 720 und der DE-PS 725 885 sind bereits Kraftmaschinen in Form von Dampfmaschinen bekannt, bei denen der Kolben aufgrund einer Zwangsführung gleichzeitig eine Dreh- und Hubbewegung ausführt. Bei diesen Kraftmaschinen ist die Zwangsführung jedoch so ausgebildet, daß der Kolben bei einer Umdrehung von 360° lediglich zwei Hubbewegungen ausführt. Aus diesem Grund wie auch aus weiteren Gründen sind daher die dort gezeigten Maschinen nicht als Viertakt-Verbrennungsmotor geeignet.
  • Bei dem gemäß der DE-A-4027533 ausgebildeten Viertakt-Verbrennungsmotor führt der Kolben während einer Umdrehung von 360° vier Hubbewegungen für die vier Arbeitstakte Ansaugen - Verdichten - Expandieren (Arbeiten) - Ausstoßen aus. Von dem sich drehenden Kolben kann unmittelbar die vom Motor erzeugte Wellenleistung abgenommen werden. Bei dem erfindungsgemäß ausgebildeten Motor stellen die in den Umfangswänden von Zylinder und Kolben gebildeten, sich zu einer Brennkammer ergänzenden Brennkammerhälften sicher, daß das expandierende Brenngas während des Arbeitstaktes Expandieren unmittelbar ein Drehmoment auf den Umfang des Kolbens ausübt. Die auf den Kolben ausgeübten Drehkräfte sind daher wesentlich größer als die auf den Kolben ausgeübten axialen Kräfte.
  • Der erfindungsgemäß ausgebildete Viertakt-Verbrennungsmotor vereinigt gewissermaßen die Vorzüge von Hubkolbenmotor und Kreiskolbenmotor. Da ein Kurbeltrieb nicht erforderlich ist, ist er von einfacher Bauart und vergleichsweise geringem Gewicht. Da die von dem expandierenden Brenngas ausgeübten Kräfte in erster Linie in Umfangsrichtung wirken und am äußeren Umfang des Kolbens angreifen, arbeitet der Motor mit hohem Wirkungsgrad, was sich in einem entsprechend geringen Kraftstoffverbrauch niederschlägt. Dies wird begünstigt durch eine gute Verwirbelung des Brenngases im Hubraum, die in erster Linie durch die Drehbewegung des Kolbens herbeigeführt wird. Wegen des einfachen konstruktiven Aufbaues ist die Störanfälligkeit gering, so daß der Motor eine hohe Lebensdauer besitzt.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß der am Kolben vorgesehene Wellenschaft zum Ausgleich der Hubbewegung und zum Übertragen der Drehbewegung des Kolbens axial beweglich und drehfest in einer Antriebswelle gelagert ist, die im Zylinder drehbar und axial feststehend gelagert ist. Die Antriebswelle empfängt somit unmittelbar das vom Motor erzeugte Drehmoment.
  • Vorzugsweise besteht die Ventileinrichtung aus einem Ventilflansch mit einem den Ventilflansch durchdringenden Ventilschlitz, der in der Stirnwand des Zylinders drehbar gelagert ist und mit dem Kolben umläuft, so daß der Ventilflansch mit dem Ventilschlitz die Einlaß- und Auslaßöffnung taktgerecht öffnet und schließt. Dies sorgt für eine weitere Vereinfachung des Verbrennungsmotors, da keine getrennten Ein- und Auslaßventile mit Ventilsteuerung erforderlich sind.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß auf der der Arbeitsseite abgewandten Rückseite zwischen Kolben und Zylinder ein weiterer Hubraum gebildet ist, der über je eine Rückführleitung mit dem Einlaßkanal und dem Auslaßkanal so verbunden ist, daß ein Teil des Abgases (z.B. ein Drittel bis ein Viertel der Abgasmenge) aus dem Auslaßkanal in den rückseitigen Hubraum und von da über den Einlaßkanal zusammen mit frischem Brenngas in den arbeitsseitigen Hubraum rückgeführt wird. Das heiße Abgas sorgt hierbei für eine rasche Erwärmung des Brenngases und des gesamten Motors auf die Betriebstemperatur, was insbesondere bei Betriebszuständen mit Wärmedefizit wie z.B. beim Kaltstart besonders vorteilhaft ist, da hierdurch eine einwandfreie Katalysatorfunktion unmittelbar nach dem Start sichergestellt wird. Durch die Abgasrückführung im eigenen Zylinder wird somit die Schadstoffmenge im Abgas erheblich reduziert. Außerdem sorgt das rückgeführte heiße Abgas für eine gute Verwirbelung von Kraftstoff und Verbrennungsluft.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung gehen aus den Unteransprüchen hervor.
  • Der erfindungsgemäß ausgebildete Viertakt-Verbrennungsmotor kann sowohl als Otto- wie auch als Dieselmotor betrieben werden. Das bevorzugte Anwendungsgebiet der Erfindung ist der Kraftfahrzeugmotor, ohne jedoch hierauf beschränkt zu sein.
  • Anhand der Zeichnungen wird ein bevorzugtes Ausführungsbeispiel der Erfindung näher erläutert. Es zeigen:
  • Fig. 1
    einen schematischen Längsschnitt durch eine Zylinder-Kolben-Anordnung eines Viertakt-Verbrennungsmotors;
    Fig. 2
    eine Draufsicht auf die Zylinder-Kolben-Anordnung der Fig. 1;
    Fig. 3 und 3a
    Schnittansichten in Blickrichtung der Pfeile III in Fig. 1 mit zwei um 180° gegeneinander versetzten Stellungen des gestrichelt angedeuteten Kolbens;
    Fig. 4
    eine Ansicht in Blickrichtung der Pfeile IV in Fig. 1;
    Fig. 5
    eine in Umfangsrichtung abgewickelte Ansicht der Umfangsfläche des Kolbens in verkleinertem Maßstab;
    Fig. 6
    eine perspektivische Explosionsdarstellung der Ventileinrichtung für die Zylinder-Kolben-Anordnung der vorhergehenden Figuren;
    Fig. 7
    eine Draufsicht auf den Ventilflansch der Ventileinrichtung in Fig. 6.
  • In den Zeichnungen ist eine Zylinder-Kolben-Anordnung eines nach dem Otto-Prozeß arbeitenden Viertakt-Verbrennungsmotors dargestellt. Die in den Zeichnungen nicht dargestellten Bestandteile des Verbrennungsmotors wie z.B. Kraftstoff-Luft-Gemischaufbereitung(Vergaser oder Einspritzung), elektronische Steuerung, Schmierung, Zündung etc. können herkömmlicher Bauart sein. Sie werden daher, da sie für das Verständnis der Erfindung nicht erforderlich sind, nicht beschrieben.
  • Die in Fig. 1 gezeigte Zylinder-Kolben-Anordnung wird von einem Gehäuse in Form eines Zylinders 2 gebildet, der aus einer zylindrischen Umfangswand 4 und zwei Stirnwänden 6a und 6b besteht. Die Stirnwände 6a, 6b sind mit der Umfangswand fest und abgedichtet verbunden, um im Inneren des Zylinders einen zylindrischen Raum zu bilden.
  • In diesem zylindrischen Raum ist ein zylindrischer Kolben 10 mit Hilfe von Kolbenringen 12 abgedichtet gleitend gelagert, so daß der zylindrische Innenraum in einen Hubraum 8 auf der linken Seite in Fig. 1 (Arbeitsseite) und einen Hubraum 9 auf der rechten Seite (Rückführseite) unterteilt wird.
  • Die in Fig. 1 gezeigte Kolben-Zylinder-Anordnung ist bezüglich einer Mittelebene III-III in mancher Hinsicht symmetrisch ausgebildet. Die gegenüberliegend auf der Arbeits- und Rückführseite angeordneten Teile, die sich entsprechen, wurden daher mit den gleichen Bezugszeichen unter Hinzufügung des Buchstabens a bzw. b gekennzeichnet.
  • Der Kolben 10 ist an seinen gegenüberliegenden Stirnseiten mit je einem koaxial verlaufenden Wellenschaft 14a, 14b versehen, der jeweils mit einer Antriebswelle 16a bzw. 16b drehfest, jedoch axial verschiebbar verbunden ist. Zu diesem Zweck sind die Wellenschäfte 14a, 14b als Sechs- oder Achtkantwelle ausgebildet, die sich in entsprechend gestaltete innere Sechs- oder Achtkant-Führungen der Antriebswellen 16a, 16b erstrecken. Die Antriebswellen 16a, 16b sind ihrerseits mittels Lager 18a, 18b in der Stirnwand 6a bzw. 6b drehbar und axial unverschiebbar gelagert.
  • Aufgrund dieser Anordnung kann der Kolben 10 sowohl eine Drehbewegung wie auch eine axial hin- und hergehende Hubbewegung ausführen. Wie in Fig. 1 angedeutet, hat der Kolben 10 einen vergleichsweise großen Durchmesser. Die axiale Länge des zylindrischen Innenraums ist ungefähr um 50% größer als die axiale Länge des Kolbens.
  • Um dem Kolben 10 eine gleichzeitige Dreh- und Hubbewegung (Windebewegung) aufzuprägen, ist zwischen dem Kolben 10 und der Umfangswand 4 eine Zwangsführung 20 vorgesehen. Die Zwangsführung 20 besitzt eine im Kolbenumfang gebildete, wellenförmig umlaufende Nut 22 von halbkreisförmigem Querschnitt mit vier ungefähr halbsinusförmigen Windungsabschnitten, vgl. die Abwicklung in Fig. 5. In der Umfangswand 4 des Zylinders 2 sind an diametral gegenüberliegenden Stellen mit Hilfe zweier Schrauben 26 zwei Kugeln 24 gelagert, die zur Hälfte in die Nut 22 des Kolbens 10 greifen. Die Windungsabschnitte der Nut 22 sind so geformt, daß der Kolben bei einer Umdrehung vier Hubbewegungen für die vier Arbeitstakte Ansaugen - Verdichten - Expandieren (Arbeiten) - Ausstoßen ausführt, wie noch erläutert wird.
  • Auf der Arbeitsseite (in Figur linken Seite) der Zylinder-Kolben-Anordnung ist in der Umfangswand 4 des Zylinders sowie in der Umfangswand des Kolbens 10, angrenzend an der Stirnfläche des Zylinders bzw. Kolbens je eine Brennkammerhälfte 32 und 34 gebildet, die sich in der in der Fig. 3a gestrichelt angedeuteten Stellung des Kolbens 10 zu einer Brennkammer 30 ergänzen. Wie in den Fig. 3, 3a zu sehen ist, hat jede der Brennkammerhälften 32, 34 in einer auf der Zylinderachse senkrechten Ebene einen ungefähr dreieckigen Umriß, wobei die Brennkammerhälften 32, 34 an ihren innenliegenden langen Seiten und die Brennkammerhälfte 34 auch an ihrer einen axialen Stirnseite zu dem arbeitsseitigen Hubraum 8 hin offen sind. Der im Zylinder 2 gebildeten Brennkammerhälfte 32 ist eine Zündeinrichtung in Form einer Zündkerze 35 zugeordnet. Die Funktionsweise der Brennkammer 30 wird weiter unten noch genauer erläutert.
  • In der Stirnwand 6a des Zylinders 2 ist zum Zuführen von Brenngas ein Einlaßkanal 36 mit einer im Hubraum 8 mündenden Einlaßöffnung 38 gebildet, vgl. auch die Fig. 3, 3a und 4. Ferner ist in der Stirnwand 6a ein Auslaßkanal 40 mit einer am Hubraum 8 angeschlossenen Auslaßöffnung 42 zum Abführen von Abgas gebildet.
  • Zum Öffnen und Schließen der Einlaßöffnung 38 und Auslaßöffnung 42 ist eine Ventileinrichtung vorgesehen, die im dargestellten Ausführungsbeispiel als an der Antriebswelle 16a vorgesehener Ventilflansch 48a mit einem den Ventilflansch 48a durchdringenden Ventilschlitz 54a ausgebildet ist (vgl. insbesondere die Fig. 1, 3, 3a und 6, 7). Der Ventilflansch 48a, der in einer Ausnehmung der Stirnwand 6a drehbar gelagert ist, führt wegen der Antriebsverbindung zwischen der Antriebswelle 16a und dem Kolben 10 die gleiche Drehbewegung wie der Kolben 10 aus, so daß der Ventilschlitz 54a abwechselnd mit der Einlaßöffnung 38 und der Auslaßöffnung 42 zur Deckung kommt, um auf diese Weise die Einlaßöffnung 38 und die Auslaßöffnung 42 entsprechend den vier Arbeitstakten des Viertaktmotors zu öffnen und zu schließen.
  • Um Leckverluste zwischen dem Ventilflansch 48a und der Stirnwand 6a zu vermeiden, ist in einer Ausnehmung des Ventilflansches 48a eine Dichtungsscheibe 50a axial gleitend gelagert. Die Dichtungsscheibe 50a ist mit einem die Dichtungsscheibe durchdringenden Ventilschlitz 52a versehen, der in seiner Form dem Ventilschlitz 54a entspricht und auf einem den Ventilschlitz 54a des Ventilflansches 48a umgebenden axialen Ansatz gleitend geführt ist, vgl. Fig. 6 und 7. Die Dichtungsscheibe 50a wird von mehreren (beispielsweise drei) gekrümmten Blattfedern 56a, die an dem Ventilflansch 48a abgestützt sind, gegen die Stirnfläche der Stirnwand 6a angedrückt, so daß die Dichtungsscheibe 50a ihre Dichtungsfunktion zur Vermeidung von Leckverlusten ausüben kann.
  • Die Funktionsweise der bisher beschriebenen Zylinder-Kolben-Anordnung des nach dem Otto-Prozeß arbeitenden Viertakt-Verbrennungsmotors ist wie folgt:
  • Es sei angenommen, daß der Kolben 10 gerade seinen Saughub beginnt. Zu diesem Zeitpunkt nimmt der Kolben 10 die in Fig. 3 gezeigte Winkelstellung ein, in der die Ventilschlitze 52a, 54a gerade beginnen, die Einlaßöffnung 38 zu überdecken. Zu diesem Zeitpunkt nimmt der Kolben 10 seine in Fig. 1 linke Endstellung ein, so daß das Volumen des Hubraums 8 - abgesehen von dem Volumen der Brennkammerhälften 32 und 34 - gleich Null ist. Führt nun der Kolben eine Viertelumdrehung im Uhrzeigersinn (in Fig. 3) aus, wird der Kolben 10 gleichzeitig durch die Zwangsführung 20 in seine rechte Endstellung (Fig. 1) verschoben. Hierdurch wird Brenngas aus dem Einlaßkanal 36 durch die nun geöffnete Einlaßöffnung 38 in den Hubraum 8 angesaugt.
  • Das Brenngas kann aus einem Kraftstoff-Luft-Gemisch bestehen, wenn die Gemischbildung in einem Vergaser (nicht gezeigt) erfolgt. Sie kann jedoch auch aus reiner Luft bestehen, wenn die Gemischbildung erst im Hubraum 8 mittels Kraftstoffeinspritzung (nicht gezeigt) erfolgt.
  • Bei seiner weiteren Drehung um 90° führt der Kolben eine Hubbewegung in seine (in Fig. 1) linke Endstellung aus, wodurch das im Hubraum 8 und in den Brennkammerhälften 32, 34 befindliche Brenngas verdichtet wird. Am Ende des Verdichtungshubes nimmt der Kolben 10 die in Fig. 3a gestrichelte angedeutete Winkelstellung ein, in der sich die Brennkammerhälften 32 und 34 zu der Brennkammer 30 ergänzen und in der die maximale Verdichtung erreicht ist. Zu diesem Zeitpunkt befindet sich im wesentlichen das gesamte Brenngas in der Brennkammer 30 und wird nun durch die Zündkerze 35 gezündet.
  • Wie in Fig. 3a gezeigt, hat die Brennkammer 30 eine ungefähr rechteckige Form, wobei die Brennkammerhälfte 34 des Kolbens 10 eine im wesentlichen zur Umfangsrichtung senkrechte Antriebsfläche 34' und die im Zylinder gebildete Brennkammerhälfte 32 eine dazu im wesentlichen parallele Reaktionsfläche 32' besitzt. Aufgrund dieser Brennkammergestaltung übt das expandierende Brenngas auf den Kolben 10 eine Drehkraft aus, die am äußeren Umfang des Kolbens 10 angreift und somit ein entsprechend großes Drehmoment erzeugt.
  • Der Kolben 10 wird somit von dem Brenngas in Drehrichtung angetrieben, während er gleichzeitig einen Expansionshub (nach rechts in Fig. 1) ausübt. Die Drehbewegung des Kolbens 10 wird über den Wellenschaft 14a unmittelbar auf die Antriebswelle 16a übertragen, was einen hohen Wirkungsgrad des Verbrennungsmotors sicherstellt.
  • Nach einer Viertelumdrehung hat der Kolben seinen Arbeitshub (Expansionshub) beendet, worauf der Arbeitstakt Ausstoßen des Abgases beginnt. Während des Ausstoßtaktes wird der Kolben 10 durch die Zwangsführung 20 wieder nach links (in Fig. 1) bewegt, während die Ventilschlitze 52a, 54a die Auslaßöffnung 42 überstreichen. Das Abgas wird somit vom Kolben 10 in den Abgaskanal 40 ausgestoßen. Am Ende des Ausstoßhubes nimmt der Kolben 10 wieder die in Fig. 3 gestrichelt angedeutete Winkelstellung ein, in der sich die Ventilschlitze 52a, 54a zwischen der Auslaßöffnung 42 und der Einlaßöffnung 38 befinden.
  • Der Kolben 10 hat somit die für einen Viertaktmotor charakteristischen vier Arbeitstakte Ansaugen - Verdichten - Arbeiten (Expandieren) - Ausstoßen ausgeführt, wobei jedem Arbeitstakt eine Kolbendrehung um 90° und eine axiale Hubbewegung entspricht. Während eines Arbeitsspieles mit den vier Arbeitstakten führt der Kolben 10 somit eine Umdrehung um 360° und vier axiale Hubbewegungen aus.
  • Von dem Auslaßkanal 40 und dem Einlaßkanal 36 ist je eine Rückführleitung 60 bzw. 62 abgezweigt, die über Öffnungen 64 und 66 mit dem rückseitigen Hubraum 9 in Verbindung stehen. Zur Steuerung des Öffnens und Schließens der Öffnungen 64 und 66 ist auf der Rückseite eine der Arbeitsseite entsprechende Anordnung aus Ventilflansch 48b, Dichtungsscheibe 50b, Ventilschlitze 52b, 54b und Federn 56b vorgesehen, die im Prinzip in der gleichen Weise wie die entsprechende Anordnung auf der Arbeitsseite funktioniert.
  • Aufgrund dieser Anordnung wird bei dem Arbeitstakt Ausstoßen ein Teil des durch den Auslaßkanal 40 strömenden Abgases (z.B. ein Drittel bis ein Viertel der Abgasmenge) durch die Rückführleitung 60 in den rückseitigen Hubraum 9 gesaugt. Bei dem darauffolgenden Arbeitstakt Ansaugen wird das im Hubraum 9 befindliche Abgas über die Rückführleitung 62 in die Einlaßleitung 36 bewegt, und diese Abgasmenge strömt zusammen mit frischem Brenngas durch die Einlaßöffnung 38 in den arbeitsseitigen Hubraum 8.
  • Hierdurch ergibt sich eine Vorwärmung des Brenngases und somit eine rasche Erwärmung des Motors auf seine Betriebstemperatur, was eine optimale Zündung und Verbrennung und eine entsprechende Verringerung von Schadstoffemissionen zur Folge hat.
  • Der Anteil des zur Rückführseite abgezweigten Gases kann durch eine entsprechende Dimensionierung der Rückführleitungen 60, 62 bemessen werden. Es versteht sich, daß die Dosierung auch durch eine entsprechend gesteuerte Ventileinrichtung (nicht gezeigt) erfolgen kann. Die letztgenannte Möglichkeit hat den Vorteil, daß die Rückführung des Abgases auf Betriebszustände mit Wärmedefizit wie z.B. den Kaltstart beschränkt werden kann.
  • Um zu vermeiden, daß während des Verdichtungshubes im rückseitigen Hubraum 9 ein zu großer Unterdruck entsteht, kann im Kolben 10 eine Ausnehmung (nicht gezeigt) vorgesehen werden, die das Volumen des rückseitigen Hubraumes 9 vergrößert. Zusätzlich oder statt dessen ist es auch möglich, durch eine entsprechende Ventilsteuerung Luft aus dem Einlaßkanal 36 oder direkt aus der Atmosphäre einströmen zu lassen.
  • Es versteht sich, daß an den Antriebswellen 16a, 16b die Antriebswellen weiterer Zylinder - entweder direkt oder über Getriebe - angekoppelt werden können.
  • In den Fig. 3, 3a und 4 sind Kühlmittelkanäle 68 zum Kühlen des Zylinders angedeutet. Weitere zum Verständnis der Erfindung nicht erforderliche Einzelheiten des Verbrennungsmotors wie z.B. die Schmiermittelzuführung wurden der Einfachheit halber weggelassen.
  • Es sei jedoch darauf hingewiesen, daß durch längs verlaufende Schmiermittelbohrungen in den Schrauben 26 eine exakte Schmierung der Zwangsführung 20, d.h. der Kugeln 24 und der Nut 22 sowie des Kolbens 10 erfolgen kann.

Claims (12)

  1. Viertakt-Verbrennungsmotor der Kolbenbauart mit mindestens einem Zylinder, in dem ein zylindrischer Kolben abgedichtet gleitend gelagert ist, wobei auf einer Arbeitsseite zwischen einer Stirnwand des Zylinders und der benachbarten Stirnwand des Kolbens ein Hubraum gebildet ist, einer an einem Einlaßkanal angeschlossenen Einlaßöffnung zum Zuführen von Brenngas in den Hubraum, einer an einem Auslaßkanal angeschlossenen Auslaßöffnung zum Abführen von Abgas aus dem Hubraum und einer Ventileinrichtung zum taktgerechten Öffnen und Schließen der Einlaß- und Auslaßöffnung, wobei
    der Kolben (10) im Zylinder (2) axial und drehbeweglich gelagert ist und zwischen Kolben (10) und Zylinder (2) eine wellenförmig gewundene Zwangsführung (20) vorgesehen ist, die dem Kolben (10) bei einer Umdrehung von 360° vier axiale Hubbewegungen für die vier Arbeitstakte aufprägt, und am Kolben (10) ein koaxial angeordneter Wellenschaft (14a) zum Ableiten der vom Kolben (10) ausgeführten Drehbewegung vorgesehen ist, dadurch gekennzeichnet,
    daß der Zylinder (2) und der Kolben (10) in ihren Umfangswänden angrenzend an ihren einander benachbarten Stirnflächen je eine Brennkammerhälfte (32, 34) aufweisen, die sich zum Zeitpunkt der Zündung des Brenngases zu einer Brennkammer (30) ergänzen, so daß in der Brennkammer (30) expandierendes Brenngas ein Drehmoment auf den Kolben (10) ausübt.
  2. Viertakt-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Zwangsführung (20) aus einer wellenförmig gewundenen Nut (22) halbkreisförmigen Querschnitts in der Umfangswand des Kolbens (10) und zwei diametral gegenüberliegenden, in der Umfangswand (4) des Zylinders (2) gelagerten Kugeln (24) besteht, die in die Nut (22) des Kolbens (10) greifen.
  3. Viertakt-Verbrennungsmotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die beiden Brennkammerhälften (32, 34) jeweils einen ungefähr dreieckigen Umriß in einer auf der Zylinderachse senkrechten Ebene haben und sich zu einer viereckigen Brennkammer (30) mit einer quer zur Umfangsrichtung verlaufenden Antriebsfläche (34') im Kolben (10) und einer dazu im wesentlichen parallelen Reaktionsfläche (32') im Zylinder (2) ergänzen.
  4. Viertakt-Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Wellenschaft (14a) zum Ausgleich der Hubbewegung und zum Übertragen der Drehbewegung des Kolbens (10) axial beweglich und drehfest in einer Antriebswelle (16a) gelagert ist, die im Zylinder (2) drehbar und axial feststehend gelagert ist.
  5. Viertakt-Verbrennungsmotor nach Anspruch 4, dadurch gekennzeichnet, daß der Wellenschaft (14a) und die Antriebswelle (16a) einen mehreckigen, vorzugsweise sechs- oder achteckigen Querschnitt haben.
  6. Viertakt-Verbrennungsmotor nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß auf jeder Seite des Kolbens (10) ein Wellenschaft (14a, 14b) und eine Antriebswelle (16a, 16b) angeordnet sind.
  7. Viertakt-Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Ventileinrichtung aus einem Ventilflansch (48a) mit einem den Ventilflansch durchdringenden Ventilschlitz (54a) besteht, der in der Stirnwand (6a) des Zylinders (2) drehbar gelagert ist und mit dem Kolben (10) umläuft, so daß der Ventilflansch (48a) mit dem Ventilschlitz (54a) die Einlaß- und Auslaßöffnung (38, 42) taktgerecht öffnet und schließt.
  8. Viertakt-Verbrennungsmotor nach den Ansprüchen 4 und 7, dadurch gekennzeichnet, daß zur Abdichtung gegen Leckverluste eine Dichtungsscheibe (50a) mit einem die Dichtungsscheibe durchdringenden Ventilschlitz (52a) in einer Ausnehmung des Ventilflansches (48a) axial beweglich gelagert und durch am Ventilflansch (48a) abgestützte Federn (56a) gegen die angrenzende Stirnwand (6a) des Zylinders (2) angedrückt wird, wobei ein den Ventilschlitz (54a) des Ventilflansches (48a) umgebender axialer Ansatz gleitend in dem Ventilschlitz (52a) der Dichtungsscheibe (50a) verläuft.
  9. Viertakt-Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf der der Arbeitsseite abgewandten Rückseite zwischen Kolben (10) und Zylinder (2) ein weiterer Hubraum (9) gebildet ist.
  10. Viertakt-Verbrennungsmotor nach Anspruch 9, dadurch gekennzeichnet, daß der rückseitige Hubraum (9) über je eine Rückführleitung (60, 62) mit dem Einlaßkanal (36) und dem Auslaßkanal (40) so verbunden ist, daß ein Teil des Abgases aus dem Auslaßkanal (40) in den rückseitigen Hubraum (9) und von da über den Einlaßkanal (36) zusammen mit frischem Brenngas in den arbeitsseitigen Hubraum (8) zurückgeführt wird.
  11. Viertakt-Verbrennungsmotor nach einem der vorhergehenden Ansprüche in Verbindung mit Anspruch 4, dadurch gekennzeichnet, daß die Antriebswelle (16a) mit den Kolben weiterer Zylinder gekoppelt ist.
  12. Viertakt-Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er als Otto-Motor ausgebildet ist und in der Brennkammerhälfte (32) des Zylinders (2) eine Zündeinrichtung (36) angeordnet ist.
EP94111859A 1993-08-06 1994-07-29 Viertakt-Verbrennungsmotor Expired - Lifetime EP0637677B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4326463A DE4326463A1 (de) 1993-08-06 1993-08-06 Viertakt-Verbrennungsmotor
DE4326463 1993-08-06

Publications (2)

Publication Number Publication Date
EP0637677A1 EP0637677A1 (de) 1995-02-08
EP0637677B1 true EP0637677B1 (de) 1997-10-08

Family

ID=6494617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94111859A Expired - Lifetime EP0637677B1 (de) 1993-08-06 1994-07-29 Viertakt-Verbrennungsmotor

Country Status (4)

Country Link
EP (1) EP0637677B1 (de)
JP (1) JP3677058B2 (de)
KR (1) KR100313162B1 (de)
DE (2) DE4326463A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022478A1 (en) * 2008-09-01 2010-03-04 Are Engines Limited Internal combustion rotary piston engine
AU2009287355B2 (en) * 2009-09-01 2015-03-26 Are Engines Limited Internal combustion rotary piston engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19920564C2 (de) * 1999-05-05 2003-06-05 Bernd Pfalz Drehkolben-Verbrennungsmotor
DE10121036B4 (de) * 2001-04-28 2007-08-02 Pfalz, Thomas, Dipl.-Ing. Verdichtungsraum für einen Drehkolbenmotor
RU2551717C1 (ru) * 2014-06-10 2015-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Двухтактная бескривошипная поршневая тепловая машина-двигатель
BG112149A (bg) * 2015-11-16 2016-03-31 "Ксиметро - Татяна Николова" Ет Устройство за преобразуване на възвратно-постъпателно движение във въртеливо движение и обратно при аксиално-бутални механични системи
WO2018016973A1 (en) * 2016-07-18 2018-01-25 Shepherd Inventor Limited Reciprocating engines and compressors

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR372580A (fr) * 1906-12-15 1907-04-11 Ludwig Maurer Moteur à combustion rotatif
US1572068A (en) * 1921-08-31 1926-02-09 Advanced Engine Co Inc Engine
DE822176C (de) * 1949-12-09 1951-11-22 Dr Med Vet Paul Wenzel Brennkraftmaschine mit um die Laengsachse rotierendem Zylinder
DE1143057B (de) * 1961-02-27 1963-01-31 Heinrich Franke Kolbenmaschine mit hin- und hergehendem und sich drehendem Kolben
DE1169195B (de) * 1962-03-22 1964-04-30 Heinrich Franke Kolbenmaschine mit hin- und hergehendem und sich drehendem Kolben
GB1146589A (en) * 1965-05-17 1969-03-26 Blackstone & Co Ltd Improvements in or relating to a fuel injection internal combustion piston engine
GB1204434A (en) * 1967-10-16 1970-09-09 Ustav Pro Vyzkum Motorovych Vo Improvements in or relating to otto engines having a combustion space of rotary or substantially rotary shape
US4026250A (en) * 1973-11-30 1977-05-31 Angelo Funiciello Explosion internal-combustion engines
US3994632A (en) * 1975-01-08 1976-11-30 Schreiber Ralph E Rotary engine and pump
JPS52107419A (en) * 1976-03-06 1977-09-09 Shigeyuki Segi Four cycle low speed rolling piston engine
DD132990A1 (de) * 1977-08-12 1978-11-22 Egon Schlosser Drehhubkolben-brennkraftmotor
JPS5537531A (en) * 1978-09-06 1980-03-15 Isao Yamaguchi Internal combustion engine for piston to rotate without crankshaft
DE3320363A1 (de) * 1983-06-06 1984-12-06 Schweikert, Otfried, 8575 Kirchenthumbach Kurbelwellenlose viertaktverbrennungskraftmaschine
DE3326714A1 (de) * 1983-07-25 1985-02-07 John 8011 Zorneding Völker Verbrennungsmaschine
JPS62135618A (ja) * 1984-07-02 1987-06-18 Shigeyoshi Karasawa 同軸型内燃機関
DE3710824A1 (de) * 1987-04-01 1988-12-15 Erich Ortmeier Steuerscheibe zum steuern des gaswechsels bei kolben-motoren und -pumpen
GB2213549A (en) * 1987-12-10 1989-08-16 Kevin Wilcox Improvements in or relating to mechanisms for translating reciprocating motion into rotary motion and vice versa
DE3931702A1 (de) * 1989-09-22 1991-04-04 Rabbe Dr Med Nordstroem Brennkraftmaschine
DE4027533A1 (de) * 1990-08-31 1992-03-05 Karl Sprenger Verbrennungsmotor mit zwangsweise drehendem kolben
DE4129804C2 (de) * 1991-09-07 2002-11-28 Porsche Ag Brennraum eines Hubkolbenmotors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010022478A1 (en) * 2008-09-01 2010-03-04 Are Engines Limited Internal combustion rotary piston engine
AU2009287355B2 (en) * 2009-09-01 2015-03-26 Are Engines Limited Internal combustion rotary piston engine

Also Published As

Publication number Publication date
DE59404261D1 (de) 1997-11-13
KR100313162B1 (ko) 2001-12-28
DE4326463A1 (de) 1995-02-09
EP0637677A1 (de) 1995-02-08
JPH07158464A (ja) 1995-06-20
JP3677058B2 (ja) 2005-07-27
KR950006214A (ko) 1995-03-20

Similar Documents

Publication Publication Date Title
EP0477256B1 (de) Kolbenmaschine
EP1427925B1 (de) Hubkolbenmaschine mit umlaufendem zylinder
DE1294088B (de) Brennkraftmaschinensatz
EP0187165A1 (de) Rotationskolben-Brennkraftmaschine
DE4191140C2 (de) Drehkolbenmaschine
EP0021170B1 (de) Zweitaktbrennkraftmaschine
EP0637677B1 (de) Viertakt-Verbrennungsmotor
DE2631234A1 (de) Von einem fluessigen oder gasfoermigen medium betriebene kraftmaschine
DE2904947A1 (de) Verteiler-einspritzpumpe fuer mit kompressionszuendung arbeitende mehrzylinder-verbrennungsmotoren
DE2747884A1 (de) Verfahren zum steuern des betriebes einer brennkraftmaschine, sowie nach dem verfahren arbeitende brennkraftmaschine
EP0136565A2 (de) Aggregat bestehend aus einer Hubkolbenmaschine und einem Getriebe
DE2349547A1 (de) Rotierende verbrennungskraftmaschine, insbesondere kreiskolbenmotor, mit ladungsgekuehltem rotor
DE3447004A1 (de) Verbrennungsringmotor
EP0307417B1 (de) Rotationskolbenmaschine
EP0214255B1 (de) Brennkraftmaschine
DE102009052960B4 (de) Freikolben-Brennkraftmaschine
DE19731974A1 (de) Hubkolbenbrennkraftmaschine
DE3041405A1 (en) Cam driven engine
DE3435356C2 (de) Brennkraftmaschine
DE863727C (de) Verbrennungskraftmaschine mit Drehschieberkolben
DE3919168A1 (de) Kolbenmaschine
DE3532417C2 (de)
DE3938793A1 (de) Kolbenmaschine
DE102007009291A1 (de) Drehkolbenmotor
DE3315783A1 (de) Viertaktverbrennungsmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19950808

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970120

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971010

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

REF Corresponds to:

Ref document number: 59404261

Country of ref document: DE

Date of ref document: 19971113

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070730

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070724

Year of fee payment: 14

Ref country code: IT

Payment date: 20070726

Year of fee payment: 14

Ref country code: DE

Payment date: 20070926

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070718

Year of fee payment: 14

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080729

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080730