EP0628146B1 - Poröse metallfiber-platte - Google Patents

Poröse metallfiber-platte Download PDF

Info

Publication number
EP0628146B1
EP0628146B1 EP93903734A EP93903734A EP0628146B1 EP 0628146 B1 EP0628146 B1 EP 0628146B1 EP 93903734 A EP93903734 A EP 93903734A EP 93903734 A EP93903734 A EP 93903734A EP 0628146 B1 EP0628146 B1 EP 0628146B1
Authority
EP
European Patent Office
Prior art keywords
plate
process according
gas
holes
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93903734A
Other languages
English (en)
French (fr)
Other versions
EP0628146A1 (de
Inventor
Philip Vansteenkiste
Willy Verplancke
Ignace Lefever
Ronny Losfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bekaert NV SA
Acotech NV SA
Original Assignee
Bekaert NV SA
Acotech NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE9200209A external-priority patent/BE1005739A3/nl
Priority claimed from BE9200811A external-priority patent/BE1006201A3/nl
Application filed by Bekaert NV SA, Acotech NV SA filed Critical Bekaert NV SA
Publication of EP0628146A1 publication Critical patent/EP0628146A1/de
Application granted granted Critical
Publication of EP0628146B1 publication Critical patent/EP0628146B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q2/00Lighters containing fuel, e.g. for cigarettes
    • F23Q2/16Lighters with gaseous fuel, e.g. the gas being stored in liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/101Flame diffusing means characterised by surface shape
    • F23D2203/1012Flame diffusing means characterised by surface shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/102Flame diffusing means using perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/102Flame diffusing means using perforated plates
    • F23D2203/1023Flame diffusing means using perforated plates with specific free passage areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/105Porous plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/105Porous plates
    • F23D2203/1055Porous plates with a specific void range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/20Burner material specifications metallic
    • F23D2212/201Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00003Fuel or fuel-air mixtures flow distribution devices upstream of the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14001Sealing or support of burner plate borders

Definitions

  • the invention relates to a porous metal fiber plate.
  • Such plates in which the fibers are sintered to one another, are used, among other things, as filter media.
  • the equivalent fiber diameters may range between about 8 ⁇ m and 150 ⁇ m. With an equivalent fiber diameter is meant here the diameter of a fictive perfectly cylindrical fiber, the cross-section surface of which corresponds to the average cross-section surface of a real fiber which is not perfectly circular or even not circular at all.
  • the thickness of the plate is preferably between 0.8 mm and 4 mm and the plate is sufficiently rigid and strong to resist the selected pressure drops at the desired porosities. Plate thicknesses of 1, 2 and 3 mm, for example, are suitable. The porous plate therefore does not need any extra support near its bottom surface or its top surface (e.g. with a steel plate). Thus the bottom and top surfaces remain freely accessible.
  • It is another object of the invention to provide a gas burner device comprising a housing with supply means for the gas to be burned, a distribution element for the gas stream and a porous metal fiber plate as a burner membrane which enables a controllable and uniform gas flow to the burner membrane exit surface and as a consequence a uniform burning process over the entire burner surface and with a low pressure drop in the gas flow crossing the membrane.
  • the process of the invention allows the design of a porous metal fiber plate, usable as a burner membrane over an enormously broad power range and which is therefor suitable for both surface radiant and blue flame modes.
  • the invention allows with the design of burner membrane plates which offer remarkably low CO and NO x -emissions and high yields.
  • the porous metal fiber plate 1 comprises holes 2 spaced at regular distances p (pitch) from one another. These holes are by preference cylindrical in shape and, in particular, circular-cylindrical. By preference, the area of each hole 2 is the same and lies between 0.03 and 3 mm 2 , though more preferably between 0.4 and 1.5 mm 2 , respectively between 0.5 and 0.8 mm 2 . As will be seen below, these dimensions are to be chosen i.a. depending on the thickness of the plate 1, its porosity and the intended application. When the hole 2 thus has a circular cross-section, the diameter of each circle will be 0.8 mm for a surface area of approximately 0.5 mm 2 .
  • the holes 2 are by preference made with a punching operation since this assures a smooth cylinder wall. If so desired, holes can also be punched with triangular, square, rectangular or other shapes. The holes may also be made with laser beams. Thus, in principle, very small holes with a diameter of at least 0.2 mm are possible for thin plates.
  • Figures 4 to 7 illustrate other preferred shapes of passages : slots of different shapes and their regular distribution over the plate surface.
  • Two examples of a suitable regular pattern of adjacent rectangular slots 9 are shown in figure 4 (right side, resp. left side).
  • Circular passages 2 and rectangular slots 9 can alternate over the surface as shown in figure 5.
  • oval or elliptic slots 11 can alternate with circular holes 2 as represented in figure 7.
  • a pattern of cruciform slots 10 is possible also as illustrated in figure 6.
  • a great number of regular distributions of passages with different shapes is conceivable in view i.a. of minimizing or avoiding any whistling effect in the gas flow as will be explained further.
  • Each of the slots 9, 10, 11 should preferably have a surface area of between 1 and 10 mm 2 .
  • Rectangular, or substantially rectangular slots will have a slot width "w" of between 0,3 mm and 2 mm and a length "l" of between 3 mm and 20 mm.
  • the relations 0,5 mm ⁇ w ⁇ 1 mm and 5 mm ⁇ 1 ⁇ 10 mm will apply.
  • the overall free passage area occupies 20 % to 30 % of the total surface area of the plate.
  • the pitch p between adjacent holes 2 is chosen such that their total surface area comprises 5 % to 25 % of the total surface area of the plate, and preferably 8 % to 16 %. Values of 10 %, 12 % and 15 % are adequate.
  • the successive holes are by preference ordered in a pattern of adjacent, equilateral triangles in which each hole 2 occupies a corner of the triangle.
  • the porosity of the plate (between the holes 2) is always between 60 % and 95 %, but preferably between 78 % and 88 %.
  • the plate surfaces can be flat, can have a relief (be embossed), or else can be curved or corrugated, for example.
  • the metal fibers that can be used for producing the porous plates and the production of the plates themselves, and in particular those that are resistant against very high temperatures, are described in the same European patent application 390.255.
  • stainless steel fibers are suitable.
  • steel fibers containing Cr and Al are to be used, preferably those containing also a small amount of yttrium.
  • the porous plate 1 can be assembled in a standard manner in a housing 3 with supply means 4 for the gas.
  • a flammable gas mixture e.g. natural gas/air
  • the device thus formed can, moreover, comprise a distribution element 5 for the incoming gas flow.
  • this will be a plate with suitable holes or passages arranged in it such that a uniform flow of gas with a suitable pressure reaches the inlet side of the porous plate 1.
  • the surface area of the free passages in the distribution plate 5 can amount to between 2 % and 10 %.
  • the distribution plate 5 also serves as a support element for the end plate 8.
  • the distribution element 5 can possibly be corrugated and can also function to neutralize possible sound resonances in the gas flow or asa flame arrester or barrier should they backfire into the gas inlet side of the plate 1, e.g. as a result of damage (cracks) in the burner plate.
  • the holes 2 can have a conical entrance 6 and a cylindrical exit 7 or vice versa (plate upside down) : a cylindrical entrance and a conical exit.
  • a distribution element 5 is by preference also provided for the gas supply, along with an end plate 8 in the cylindrical device according to figure 3. Due to the flexibility of the membrane plate 1 with hole pattern 2, cylinders of relatively small diameters can be bent from flat plates.
  • the resonance phenomenon is presumably related to the high pressure gradient of the gas mixture between the relatively cold under side (inlet side) of the burner membrane and the very hot upper side (exit side : burning surface).
  • flow rate variables such as excess air and gas mixture flow rate
  • an oscillation phenomenon presumably occurs between the flame front (i.e. the level of the flame bases) and the gas mixture entering the holes.
  • the tongues of flame therefore can dance up and down above the burner surface or even oscillate with their flame bases between a position in (or even under) the holes and a position above the holes (above the burning surface). This can be accompanied by annoying whistling sounds ranging from 1000 to 1500 Hz.
  • This drawback can also be encountered when changing a burner from a blown gas to a drawn gas system.
  • the measure taken should not reduce any of the other advantages of the concept with perforated burner membrane.
  • the measure should not result in a drastic increase in the total pressure drop over the burner or a (local) destabilizing of the flame front.
  • the solution according to the invention consists of providing a gas burner device which includes a housing comprising the following elements, positioned in succession downstream one after the other: means of supply for the gas which is to be burned, a distribution element, at least one acoustic muffling layer through which gas can pass, and a porous plate as burner membrane provided with a regular pattern of holes that, taken together, make up 5 % to 35 % of the surface area of the plate, with each hole having a surface area of between 0.03 mm 2 and 10 mm 2 .
  • the gas burner device includes a housing 16 with the following elements positioned in succession downstream from one another : a supply duct 15 for the gas mixture and a distribution element 5 in the form of a perforated metal plate which lies against the bent edge 22 of said supply duct 15.
  • the housing 16 is attached to the supply duct with a weld 17.
  • the distribution plate 5 is, for example, 0.4 mm thick and provided with holes 18, each having a diameter of 0.4 mm.
  • the holes or passages 18 can be placed in the corner points of a pattern of adjacent equilateral triangles with a triangle side (i.e. pitch between the holes) of 1.25 mm. This means a free passage surface area of the plate 5 of approximately 10 %. Depending on the circumstances, this free surface area could just as well lie between 5 % and 20 %. Below 5 %, the pressure drop becomes too high at high gas flow rates; above 20 % the distribution effect for the gas mixture becomes insufficient at low flow rates.
  • a permeability can be chosen of between 30 mesh and 60 mesh.
  • Two or more meshes 13 can also be stacked on top of one another, preferably of different permeabilities.
  • the porous membrane plate 1 Downstream from the welded wire mesh (or meshes) 13, which operates as an acoustic muffling layer, is the porous membrane plate 1, which is provided with a regular pattern of holes 12.
  • This porous plate is again preferably a sintered metal fiber plate in which the fibers are heat-resistant, i.e. resistant against the high burner temperatures occurring during operation and resistant against thermal shocks.
  • the fibers therefore, are preferably steel fibers with a suitable Cr and Al content: e.g. FeCrAlloy fibers as described hereinbefore.
  • Plate 1 for example, is 2 mm thick and has a porosity of 80.5 % between the holes.
  • the fiber diameter in the example 2 below was 22 ⁇ m and the diameter of the cylinder-shaped punched holes was 0.8 mm, while the spacing between the centers of the holes (i.e. the pitch) was 1.5 mm.
  • Plate 1 is clamped against the housing 16, with a ceramic mat 14 inserted between the two.
  • the device can, for example, include one muffling layer 13 that is in surface contact with the distribution element 5. In another embodiment the layer 13 can be in surface contact with both element 5 and porous plate 1.
  • the muffling layer 13 is built up as a laminate made up of two wire meshes 25 and 26 with a porous mass interposed between them. If so desired, the porosity, and therefore also the pressure drop over this laminate, can be changed under the influence of the gas pressure of the incoming mixture or via external operating means (not shown).
  • the porous mass 27 can, for example, be a resilient mass of fibers, e.g. steel wool. Besides a more intense distributive effect on the mixture, this transverse compression respectively relaxation of the laminate can decrease the pressure drop over the membrane 1 at high flow rates so that again the danger of resonance becomes less critical.
  • the muffling layer 13 can consist wholly or partially of a porous mass of fibers 27. If so desired, this mass can fill up the whole interspace between plate 1 and element 5.
  • mineral fibers are to be utilized (e.g. rockwool or steel wool).
  • the porous plate 1 can also include a laminate of wire meshes sintered to one another. Woven or knitted wire meshes of heat-resistant wires can be used for this purpose.
  • a suitable laminate structure is described in U.S. patent 3.780.872. On the whole these laminates will be more rigid than those made of sintered fiber webs. Therefore they are mounted by preference in flat burners. A pattern of holes is of course also punched through these laminates as described above.
  • sintered porous plates 1 as such - made of shavings or cut fibers, or else of wire meshes such as described above - can also be utilized.
  • a muffling layer 2 is not required and embodiments according to or analogous to those described in the Belgian patent application 09200209 are then applicable.
  • FeCrAlloy fibers ceramic fibers or wires can also be used.
  • a flat sintered porous metal fiber plate 1 produced according to the invention and possessing the characteristics given below can be used as a membrane for a gas burner device.
  • the characteristics and advantages of this concept with respect to previously presented burner membranes are explained below.
  • the steel fibers to be used are resistant against high temperatures and, for this purpose, contain by percent weight, for example, 15 to 22 % Cr, 4 to 5.2 % Al, 0.05 to 0.4 % Y, 0.2 to 0.4 % Si and at most 0.03 % C. They have a diameter of between 8 and 35 ⁇ m - for example, approximately 22 ⁇ m.
  • the fibers can be obtained by a technique of bundled drawing, as known, for example, from U.S. patent 3.379.000 and as is mentioned in U.S. patent 4.094.673. They are processed into a non-woven fiber web according to a method described in or similar to the method which is known from U.S. patents 3.469.297 or 3.127.668.
  • these webs are consolidated by pressing and sintering into a porous plate 1 with a porosity of between 78 % and 88 %. Porosities of 80.5 %, 83 % and 85.5 % are very common.
  • thicker metal fibers as heat-resistant fibers in the porous plate, e.g. fibers with equivalent diameters of between 35 and 150 ⁇ m and consisting of wire shavings or cuttings from a plate of the desired heat-resistant alloy (e.g. FeCrAlloy). These fibers look rather like steel wool and can be manufactured according to a shaving process as disclosed e.g. in U.S. patent 4.930.199.
  • This porous plate 1 is now placed in a mould and, with a suitable punching device (stamp with punching pins), it is provided with a regular pattern of perfectly delimited circular cylindrical passages or holes 2 having a diameter of, for example, 0.8 mm. With a pitch of 2 mm between every pair of adjacent holes, a free surface area of nearly 15 % is obtained.
  • this design increases the flexibility and thus at the same time it facilitates the process of shaping, for example, into cylinders.
  • the holes also form barriers against the spreading or propagation of cracks that may form in the membrane plate 1 as a result of the fluctuating thermal stress during operation. If so desired, the pattern of holes can be supplemented with a waffle pattern such as is described in EP 390.255.
  • the thickness of the plate must always be thinner than the diameter of the holes. Surprisingly however, it has been found that this is not required for the punching of holes in the porous plates according to the invention. Thus there is a broad range of choice for the ratio of plate thickness to diameter or size of the holes or passages.
  • the gas mixture to be burned is passed through the porous membrane plate 1.
  • the gas mixture now flows mainly through the holes 2, because of which the pressure drop over the membrane 1 is noticeably lower (than for plates without holes) for a particular flow rate or by which higher flow rates - and consequently larger thermal outputs or powers - can be achieved for a particular pressure drop value.
  • the power range can now be selected between 150 and 900 kW/m 2 for a radiant surface combustion and can be increased to that of a blue flame surface burner with an output or power of up to 4000 kW/m 2 , depending on factors such as the excess air in the gas mixture in relation to a stoichiometric gas combustion mixture.
  • the porosity of the plate 1 results in the fact that a small portion of the gas always penetrates through the pores between the holes 2 to the hot exit surface. As explained below, this greatly promotes a uniform and stable burning over a broad load or power range. Especially at higher flow rates, the portion of gas that passes between the holes through the plate increases proportionally. It is now precisely at these higher flow rates (and consequently higher powers if the percent of excess air remains the same in the gas mixture) that the tendency to blow away the blue flame at the level of the holes needs to be counteracted.
  • the burning of the gas at the surface of the plate between the holes 2 maintains, as it were, a stable (blue) flame front over the whole plate surface and prevents this front (or the blue flame tongues within it) from being blown away from the plate surface.
  • the tongue-shaped flames above each hole remain, as it were, with their base - or root - anchored to the plate surface.
  • the largely horizontal orientation of the fibers within the porous plate also promotes the isolating effect of the membrane. Indeed, the heat conduction runs primarily in the outside surface (radiant side) of the plate and much less in the depth (throughout the thickness) of the plate. Moreover, there is the ongoing uniform cooling effect of the cold gas supply in direct contact with the layer of fibers on the gas inlet side. In turn, this uniform heat distribution at the level of the plate surface promotes the uniform combustion of the gas layer and a stable burning state over a broad load or power range at the exit side of the plate between the consecutive holes 2.
  • a porous membrane layer 1 that on its gas inlet side is attached, for example, to a supporting steel plate and in which the porous layer together with the support plate have the same pattern of holes, this isolating effect will on the whole be smaller and the powers that can be attained will be lower.
  • a porous membrane without holes that is attached to a gas distribution plate support with a regular pattern of many small holes (e.g. hole diameters of 0.3 mm and a pitch or center-to-center distance of adjacent holes of 1.25 mm)
  • the attainable gas flow rate for a given pressure drop will remain more limited than with the plate according to the invention.
  • the high powers per unit of burner surface area are not attainable.
  • the plate thickness, its porosity and the size of the passages or holes must of course all be coordinated with one another so that for any burner state no backfiring towards the gas inlet side will occur.
  • the plate was 2 mm thick, had a porosity of 80.5 % and was built into a gas burning device of the type illustrated in figure 2.
  • the distribution plate 5 (0.4 mm thick) was at a distance of 5 mm from plate 1 and was provided with holes of 0.4 mm diameter and with a pitch of 1.5 mm. This resulted in a free passage surface area of 6.5 %. There were no sound resonances or whistling sounds during operation.
  • the pressure drop in the gas mixture over the plate increases somewhat more rapidly than linearly with the resulting power (kW/m 2 ).
  • a power of 150 kW/m 2 was noted and at a pressure drop of 3 mbar, a power of 3500 kW/m 2 was attained.
  • the gas mixture was composed of 8.1 % natural gas and 91.9 % air. Natural gas with a relatively low calorific value of 10 kWh/Nm 3 was used and a 30 % excess of air was applied.
  • a radiant surface burner state was noted up to something like 800 kW/m 2 .
  • the burning changed into a blue flame mode.
  • the temperature of the membrane surface (gas outlet side) increased to approximately 850 degrees C at around 700 kW/m 2 and gradually fell when going to higher powers (blue flame mode) to approximately 600 degrees C.
  • the membrane temperature on the gas inlet side remained below 150 degrees C and even decreased to below 100 degrees C in the blue flame mode.
  • the measured NO x emission (ppm) rose gradually over the whole power range up to 2000 kW/m 2 . However, it was only about 10 ppm at 700 kW/m 2 , and for powers around 2000 kW/m 2 and up, it stabilized at about 15 to 20 ppm.
  • the measured NO x values are in fact the data reduced to their value at 0 % 02 in the combustion gases. These very low NO x values are probably to be explained by the fact that the flame tongues above the holes remain small so that the temperature in their cores remains relatively low. The CO content was nearly zero over the entire power range.
  • the porous plate 1 is in surface contact with the 48 mesh wire mesh 13.
  • a gas mixture of natural gas and air was passed through the compact combination in housing 16 of this wire mesh 13 clamped together between the 2 mm thick porous plate 1 and the distribution element 5 with free passage surface area of 10% (both described above).
  • the square burner surface measured 150 mm x 150 mm.
  • Various proportions of excess air were utilized (1.1 to 1.3) and the flow rates were increased such that powers were developed ranging from 500 kW/m 2 to 5000 kW/m 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Burners (AREA)
  • Laminated Bodies (AREA)
  • Panels For Use In Building Construction (AREA)

Claims (19)

  1. Verfahren zur Herstellung einer gesinterten porösen Metallfaserplatte (1) innerhalb eines weiten Bereichs von Plattendicken und mit Ermöglichung eines gleichmäßigen Quergasstroms dadurch, das die Erzeugung eines regelmäßigen Musters von Querlöchern oder -durchlässen (2) einer vollkommen begrenzten zylindrischen Abmessung darin vorsieht, die eine gesamte freie Durchlaßfläche von 5 % bis 35 % der ganzen Oberseitenfläche der Platte einnehmen, wobei jedes Loch (2) eine Oberfläche von zwischen 0,03 mm2 und 10 mm2 hat, und das die Schritte des Anordnens der Platte (1) in einer Form und des Erzeugens der Querdurchlässe mittels eines Prägestempels mit Stanzstiften der geeigneten Abmessung aufweist, die die Platte durchdringen.
  2. Verfahren nach Anspruch 1, bei dem die Platte eine Dicke vcn zwischen 0,8 mm und 4 mm hat.
  3. Verfahren nach Anspruch 1, bei dem die Löcher (2) eine zylindrische Kreisform mit jeweils einer Oberfläche von zwischen 0,03 mm2 und 3 mm2 haben.
  4. Verfahren nach Anspruch 1, bei dem die Durchlässe Schlitze (9 bis 11) mit jeweils einer Oberfläche von zwischen 1 und 10 mm2 sind.
  5. Verfahren nach Anspruch 1, bei dem sowohl Schlitze (9, 11) als auch kreisförmige Öffnungen (2) vorhanden sind.
  6. Verfahren nach Anspruch 1, bei dem eine Porosität zwischen aufeinanderfolgenden Durchlässen zwischen 60 % und 95 % liegt.
  7. Verfahren nach Anspruch 6, bei dem die Porosität zwischen 78 % und 88 % liegt.
  8. Verfahren nach Anspruch 1, bei dem die Metallfasern gegen hohe Temperaturen beständig sind und einen äquivalenten Durchmesser zwischen 8 und 150 µm haben.
  9. Verfahren nach Anspruch 8, bei dem die Metallfasern Aluminium und Chrom enthaltende Stahlfasern sind.
  10. Verfahren nach Anspruch 3, bei dem die Löcher eine Oberfläche von zwischen 0,5 und 0,8 mm2 haben.
  11. Verfahren nach Anspruch 3, bei dem die freie Durchlaßoberfläche zwischen 8 % und 16 % einnimmt.
  12. Verfahren nach Anspruch 11, bei dem die aufeinanderfolgenden Löcher (2) in einem Muster gleichzeitiger Dreiekke angeordnet werden, worin jedes Loch (2) einen Eckpunkt des Dreiecks enthält.
  13. Verfahren nach Anspruch 4, bei dem die Schlitze im wesentlichen rechteckig mit einer Breite "w" von zwischen 0,4 und 2 mm und einer Länge "l" von zwischen 3 und 20 mm sind.
  14. Verfahren nach Anspruch 13, bei dem die Schlitze eine Breite 0,5 mm ≤ w ≤ 1 mm und eine Länge 5 mm ≤ 1 ≤ 10 mm haben.
  15. Verfahren nach Anspruch 13 oder 14, bei dem die gesamte freie Durchlaßfläche 20 % bis 30 % der ganzen Oberseitenfläche der Platte einnimmt.
  16. Gasbrennervorrichtung, die ein Gehäuse (3) mit Zuführmitteln (4) für das zu verbrennende Gas, ein Verteilungsbauelement (5) für das Gas und eine poröse Platte (1) aufweist, die gemäß Anspruch 1 als Brennermembran erzeugt wurde.
  17. Gasbrennervorrichtung nach Anspruch 16, die ein Gehäuse mit den folgenden, nocheinander stromab voneinander positionierten Bauelementen: Zuführmittel (15) für das zu verbrennende Gas, ein Verteilungsbauelement (5), wenigstens eine akustische Schalldämpfschicht (13), die für Gase durchlässig ist, und eine poröse Platte (1) als Brennermembran aufweist.
  18. Vorrichtung nach Anspruch 17, in der die akustische Schalldämpfschicht (13) wenigstens ein Drahtgeflecht enthält.
  19. Vorrichtung nach Anspruch 17, in der die Schalldämpfschicht (13) entweder völlig oder teilweise aus einer porösen Masse von Fasern (27) besteht.
EP93903734A 1992-03-03 1993-02-26 Poröse metallfiber-platte Expired - Lifetime EP0628146B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
BE9200209 1992-03-03
BE9200209A BE1005739A3 (nl) 1992-03-03 1992-03-03 Poreuze metaalvezelplaat.
BE9200811A BE1006201A3 (nl) 1992-09-16 1992-09-16 Gasverbrandingsinrichting.
BE9200811 1992-09-16
PCT/BE1993/000010 WO1993018342A1 (en) 1992-03-03 1993-02-26 Porous metal fiber plate

Publications (2)

Publication Number Publication Date
EP0628146A1 EP0628146A1 (de) 1994-12-14
EP0628146B1 true EP0628146B1 (de) 1998-12-16

Family

ID=25662619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93903734A Expired - Lifetime EP0628146B1 (de) 1992-03-03 1993-02-26 Poröse metallfiber-platte

Country Status (8)

Country Link
EP (1) EP0628146B1 (de)
JP (1) JP3463934B2 (de)
KR (1) KR950700517A (de)
AT (1) ATE174681T1 (de)
BR (1) BR9306001A (de)
CA (1) CA2117605A1 (de)
DE (1) DE69322622T2 (de)
WO (1) WO1993018342A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405374A (zh) * 2009-04-30 2012-04-04 伊莱克斯家用产品股份有限公司 竖直火焰燃烧器
WO2012065582A2 (de) 2010-11-16 2012-05-24 Ulrich Dreizler Verbrennungsverfahren mit kühler flammenwurzel
DE202013102111U1 (de) 2012-06-01 2013-09-03 Ulrich Dreizler Brenner mit einer Oberflächenverbrennung
DE202013102109U1 (de) 2012-07-03 2013-10-10 Ulrich Dreizler Brenner mit einer Oberflächenverbrennung
DE102012104741A1 (de) 2012-06-01 2013-12-05 Ulrich Dreizler Verfahren zur vollständigen und geräuschreduzierten Verbrennung eines Brennstoff-Luft-Gemisches sowie Brenner hierzu
EP2871414A1 (de) 2013-11-08 2015-05-13 Vaillant GmbH Stickstoffoxidarmer Brenner mit Metallfasern
WO2020132759A1 (es) * 2018-12-28 2020-07-02 Universidad Técnica Federico Santa María Quemador poroso para hornos
US11614230B2 (en) 2018-10-11 2023-03-28 Corning Incorporated Abatement systems including an oxidizer head assembly and methods for using the same
EP4160092A1 (de) * 2021-10-01 2023-04-05 Vaillant GmbH Flammensperre, gasbrenner und gasheizgerät
EP4163544A1 (de) 2021-10-07 2023-04-12 BDR Thermea Group B.V. Brennerdeck und verfahren zur herstellung desselben

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439372A (en) * 1993-06-28 1995-08-08 Alzeta Corporation Multiple firing rate zone burner and method
BE1007596A3 (nl) * 1993-10-08 1995-08-16 Bekaert Sa Nv Poreuze metaalvezelplaat.
US5642724A (en) * 1993-11-29 1997-07-01 Teledyne Industries, Inc. Fluid mixing systems and gas-fired water heater
US5431557A (en) * 1993-12-16 1995-07-11 Teledyne Industries, Inc. Low NOX gas combustion systems
BE1008483A3 (nl) * 1994-04-07 1996-05-07 Bekaert Sa Nv Metaalvezelmembraan voor gasverbranding.
EP0687854A1 (de) 1994-06-13 1995-12-20 N.V. Acotech S.A. Brenner mit Abgasrückführung
BE1009485A3 (nl) * 1995-07-14 1997-04-01 Bekaert Sa Nv Textielstof omvattende bundels geschaafde metaalfilamenten.
DE19648808A1 (de) * 1996-11-26 1998-06-04 Schott Glaswerke Gasbrenner
BE1010845A3 (nl) * 1997-01-10 1999-02-02 Bekaert Sa Nv Konische oppervlaktebrander.
BE1011478A3 (nl) * 1997-10-02 1999-10-05 Bekaert Sa Nv Brandermembraan omvattende een vernaald metaalvezelvlies.
EP0982541B1 (de) * 1998-08-28 2003-01-02 N.V. Bekaert S.A. Wellenförmige Membran für Gasstrahlungsbrenner
DE19847042B4 (de) * 1998-10-13 2008-05-29 Ceramat, S. Coop., Asteasu Hochporöse Brennermatte für Gas- und/oder Ölbrenner
US6199364B1 (en) * 1999-01-22 2001-03-13 Alzeta Corporation Burner and process for operating gas turbines with minimal NOx emissions
FR2791416B1 (fr) * 1999-03-25 2001-06-15 Sunkiss Aeronautique Dispositif de combustion catalytique emettant un rayonnement infra-rouge
FR2792394B1 (fr) 1999-04-16 2001-07-27 Gaz De France Procede pour realiser une surface d'accrochage de flammes
DE10007766A1 (de) * 2000-02-20 2001-08-23 Gen Motors Corp Brenneranordnung
KR100566806B1 (ko) * 2000-11-09 2006-04-03 어코드 주식회사 다화염 예혼합 버너
FR2835042B1 (fr) * 2002-01-22 2004-12-17 Mer Joseph Le Bruleur a gaz, a face de combustion bipartite et chaudiere equipee d'un tel bruleur
DE10250716C1 (de) 2002-10-31 2003-12-24 Ulrich Mueller Verfahren zur Herstellung eines porösen, plattenförmigen Metallverbundes
GB2404008A (en) * 2003-07-16 2005-01-19 Aeromatix Ltd A burner including a ceramic burner head and an associated baffle
ITTO20050685A1 (it) * 2005-09-30 2007-04-01 Indesit Co Spa Piano di cottura con bruciatore a gas comprendente un elemento semipermeabile
ES2664225T3 (es) * 2006-01-25 2018-04-18 Solaronics S.A. Sistema convectivo para una instalación de secador
WO2008055829A1 (en) 2006-11-08 2008-05-15 Nv Bekaert Sa Modular flare stack and method of flaring waste gas
ITRN20070012A1 (it) * 2007-02-27 2008-08-28 Indesit Company Spa Piano cottura
ITRN20070013A1 (it) * 2007-02-27 2008-08-28 Indesit Company Spa Piano cottura.
ITMI20071751A1 (it) 2007-09-12 2009-03-13 Polidoro S P A Bruciatore premiscelato
CN101398176B (zh) * 2008-11-03 2013-05-22 广东万家乐燃气具有限公司 一种全预混燃气燃烧器装置
DE102009028624A1 (de) 2009-08-18 2011-02-24 Sandvik Intellectual Property Ab Strahlungsbrenner
DE102010024678A1 (de) * 2010-06-24 2011-12-29 Arcotec Gmbh Gasbrenner
ITMI20101980A1 (it) * 2010-10-26 2012-04-27 Worgas Bruciatori Srl Bruciatore per caldaia a gas
ITMI20101981A1 (it) * 2010-10-26 2012-04-27 Worgas Bruciatori Srl Bruciatore per caldaia a gas
DE102010051415B4 (de) 2010-11-16 2012-12-27 Ulrich Dreizler Verdrängungsverfahren bei der Herstellung einer Brennergewebemembrane für eine kühle Flammenwurzel
TWI570362B (zh) * 2010-12-20 2017-02-11 索拉羅尼克斯股份有限公司 具有浮凸屏之氣體加熱輻射發射體
JP2014519001A (ja) * 2011-05-06 2014-08-07 ベーカート・コンバスチョン・テクノロジー・ベスローテン・フェンノートシャップ 温度測定付き予混合ガスバーナー
KR20130025501A (ko) * 2011-09-02 2013-03-12 주식회사 경동나비엔 믹싱챔버 내에 공명실을 구비한 버너 시스템
NL2007646C2 (en) 2011-09-16 2013-03-19 Micro Turbine Technology B V Braided burner for premixed gas-phase combustion.
EP2636951A1 (de) 2012-03-07 2013-09-11 Flare Industries, LLC Vorrichtung und Verfahren zum Abfackeln von Abgas
GB2506097B (en) * 2012-06-22 2017-09-13 Irmac Roads Ltd Improvements relating to road repair systems
DE102012014009A1 (de) * 2012-07-17 2014-01-23 Robert Bosch Gmbh Flächenbrenner und Verfahren zur Überwachung einer Flammenbildung bei einem Flächenbrenner
EP2877781B1 (de) * 2012-07-27 2016-09-14 Ulrich Dreizler Brenner mit einer oberflächenverbrennung
CN104769360B (zh) * 2012-10-31 2017-12-01 贝卡尔特燃烧技术股份有限公司 燃气预混燃烧器
CN102913908A (zh) * 2012-10-31 2013-02-06 刘鑫 全预混倒置燃烧器
JP6238523B2 (ja) * 2013-01-25 2017-11-29 大阪瓦斯株式会社 筒状表面燃焼バーナ及びそれを備えた加熱装置
TR201910916T4 (tr) 2013-07-02 2019-08-21 Bekaert Combustion Tech Bv Ön karışım gaz brülörü.
EP3049724B1 (de) * 2013-09-23 2020-06-17 ClearSign Technologies Corporation Poröser flammenhalter für niedrig-nox-verbrennung und verfahren
JP6405592B2 (ja) * 2014-05-01 2018-10-17 タニコー株式会社 燃焼バーナー
GB2525873A (en) * 2014-05-07 2015-11-11 Worgas Burners Ltd Gas burner
FR3033026B1 (fr) * 2015-02-20 2019-07-12 Nov-Tech Alambic equipe d'un bruleur a gaz ameliore
US10551058B2 (en) 2016-03-18 2020-02-04 Clearsign Technologies Corporation Multi-nozzle combustion assemblies including perforated flame holder, combustion systems including the combustion assemblies, and related methods
WO2018085152A1 (en) 2016-11-04 2018-05-11 Clearsign Combustion Corporation Plasma pilot
JP6853075B2 (ja) * 2017-03-13 2021-03-31 リンナイ株式会社 全一次燃焼式バーナ
WO2018180915A1 (ja) * 2017-03-27 2018-10-04 Jfeスチール株式会社 面燃焼バーナ、複合バーナ、および焼結機用点火装置
DE102017109154A1 (de) * 2017-04-28 2018-10-31 Voith Patent Gmbh Infrarot-Strahler
WO2019173498A1 (en) * 2018-03-08 2019-09-12 Clearsign Combustion Corporation Burner system including a plurality of perforated flame holders
CN108870366B (zh) * 2018-03-27 2019-05-21 山东交通学院 一种雾化孔直径变化的燃气蒸汽发生器
CN109737411B (zh) * 2018-03-27 2021-01-26 山东交通学院 一种燃烧器空气出口分布规律的优化设计方法
EP3598000B1 (de) * 2018-07-20 2021-04-28 Solaronics Gasbefeuerter strahlungsemitter mit einem strahlungsschirm
KR101972555B1 (ko) * 2018-08-06 2019-04-25 순천대학교 산학협력단 밀폐형 복사식 가스레인지
US20210348755A1 (en) * 2018-10-17 2021-11-11 Beckett Thermal Solutions Ltd. Method for forming a gas burner membrane
DE102019216769A1 (de) * 2019-10-30 2021-05-06 Robert Bosch Gmbh Voll- oder teilvormischender Brenner für einen gasförmigen Brennstoff mit einer sehr hohen Flammengeschwindigkeit
US11788722B2 (en) 2020-02-24 2023-10-17 The Regents Of The University Of California Flame stabilizer for natural draft lean premixed burner apparatus
DE102020117692B4 (de) 2020-07-06 2023-06-07 Viessmann Climate Solutions Se Gasbrennervorrichtung und Verfahren zum Betrieb einer Gasbrennervorrichtung
DE102021121764A1 (de) 2021-08-23 2023-02-23 Viessmann Climate Solutions Se Gasbrennervorrichtung
DE102022106404A1 (de) 2022-03-18 2023-09-21 Vaillant Gmbh Gasbrenneranordnung, Gasheizgerät und Verwendung
DE102022129505A1 (de) 2022-11-08 2024-05-08 Vaillant Gmbh Heizgerät, Anordnung von einer Flammensperre und einem Brenner und Verwendung einer Dichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250036A (en) * 1975-10-20 1977-04-21 Rinnai Corp Infrared gas combustion panel
GB8405681D0 (en) * 1984-03-05 1984-04-11 Shell Int Research Surface-combustion radiant burner
BE1003054A3 (nl) * 1989-03-29 1991-11-05 Bekaert Sa Nv Brandermembraan.
FR2679981A1 (fr) * 1991-07-31 1993-02-05 Applic Gaz Sa Bruleur catalytique de combustion, et appareil incorporant un tel bruleur.

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405374B (zh) * 2009-04-30 2014-10-15 伊莱克斯家用产品股份有限公司 竖直火焰燃烧器
CN102405374A (zh) * 2009-04-30 2012-04-04 伊莱克斯家用产品股份有限公司 竖直火焰燃烧器
WO2012065582A2 (de) 2010-11-16 2012-05-24 Ulrich Dreizler Verbrennungsverfahren mit kühler flammenwurzel
DE102010051414A1 (de) 2010-11-16 2012-05-31 Ulrich Dreizler Verbrennungsverfahren
DE102010051414B4 (de) * 2010-11-16 2013-10-24 Ulrich Dreizler Verbrennungsverfahren mit kühler Flammenwurzel
DE202013102111U1 (de) 2012-06-01 2013-09-03 Ulrich Dreizler Brenner mit einer Oberflächenverbrennung
DE102012104741A1 (de) 2012-06-01 2013-12-05 Ulrich Dreizler Verfahren zur vollständigen und geräuschreduzierten Verbrennung eines Brennstoff-Luft-Gemisches sowie Brenner hierzu
WO2013178465A2 (de) 2012-06-01 2013-12-05 Ulrich Dreizler Verfahren zur vollständigen und geräuschreduzierten verbrennung eines brennstoff-luft-gemisches sowie brenner hierzu
WO2013178466A1 (de) 2012-06-01 2013-12-05 Ulrich Dreizler Brenner mit einer oberflächenverbrennung
DE202013102109U1 (de) 2012-07-03 2013-10-10 Ulrich Dreizler Brenner mit einer Oberflächenverbrennung
WO2014005751A2 (de) 2012-07-03 2014-01-09 Ulrich Dreizler Brenner mit einer oberflächenverbrennung
EP2871414A1 (de) 2013-11-08 2015-05-13 Vaillant GmbH Stickstoffoxidarmer Brenner mit Metallfasern
US11614230B2 (en) 2018-10-11 2023-03-28 Corning Incorporated Abatement systems including an oxidizer head assembly and methods for using the same
WO2020132759A1 (es) * 2018-12-28 2020-07-02 Universidad Técnica Federico Santa María Quemador poroso para hornos
EP4160092A1 (de) * 2021-10-01 2023-04-05 Vaillant GmbH Flammensperre, gasbrenner und gasheizgerät
EP4163544A1 (de) 2021-10-07 2023-04-12 BDR Thermea Group B.V. Brennerdeck und verfahren zur herstellung desselben
WO2023057605A1 (en) 2021-10-07 2023-04-13 Bdr Thermea Group B.V. Burner deck and process of manufaturing thereof

Also Published As

Publication number Publication date
EP0628146A1 (de) 1994-12-14
KR950700517A (ko) 1995-01-16
JP3463934B2 (ja) 2003-11-05
ATE174681T1 (de) 1999-01-15
CA2117605A1 (en) 1993-09-16
DE69322622D1 (de) 1999-01-28
BR9306001A (pt) 1997-10-21
DE69322622T2 (de) 1999-05-27
JPH07504266A (ja) 1995-05-11
WO1993018342A1 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
EP0628146B1 (de) Poröse metallfiber-platte
US5088919A (en) Burner membrane
EP0888516B1 (de) Oberflächen-brenner
EP0705409B1 (de) Brenner mit mehreren brenngeschwindigkeitszonen und verfahren dazu
US6896512B2 (en) Radiator element
US6939522B1 (en) Honeycomb structure
JP3979785B2 (ja) 針状化した金属繊維ウェブからなるバーナー膜
EP0681143A2 (de) Strahlungsbrenner mit niedrigem NOx-Ausstoss und hoher Intensität
KR20080089473A (ko) 허니컴 구조체, 허니컴 구조체의 제조 방법, 케이싱 및 배기 가스 정화 장치
JP2006502849A (ja) 短金属繊維を含む層状フィルター構造
EP3017099B1 (de) Gasvormischbrenner
KR100853474B1 (ko) 적외선 버너용 다공성 금속섬유 메디아
BE1006201A3 (nl) Gasverbrandingsinrichting.
JP3488634B2 (ja) 水素表面燃焼バーナ
JP2000130715A (ja) バーナ
BE1005739A3 (nl) Poreuze metaalvezelplaat.
JP3319796B2 (ja) 表面燃焼バーナ
US20050271995A1 (en) Metal fiber sintered body for surface combustion
JP2000514916A (ja) ガスバーナ
EP0707889A1 (de) Katalysatorkörper und Verfahren zu dessen Herstellung
BE1005992A4 (nl) Poreus membraan voor oppervlakte stralingsbrander.
RU15001U1 (ru) Насадка инфракрасного излучения
JPH05180421A (ja) バ−ナ板の製造方法
JPH07332620A (ja) 表面燃焼バーナ
WO1995022719A1 (en) Improvements relating to fuel-fired burners

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL SE

17Q First examination report despatched

Effective date: 19960104

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981216

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981216

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19981216

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981216

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981216

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981216

REF Corresponds to:

Ref document number: 174681

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69322622

Country of ref document: DE

Date of ref document: 19990128

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990226

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990316

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990316

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090331

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090408

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090217

Year of fee payment: 17

BERE Be: lapsed

Owner name: *BECKAERT COMBUSTION TECHNOLOGY N.V.

Effective date: 20100228

Owner name: S.A. *BEKAERT N.V.

Effective date: 20100228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100226