EP0627988A1 - Panneau transparent a l'epreuve des balles, et methode de realisation par pressage de ce panneau - Google Patents

Panneau transparent a l'epreuve des balles, et methode de realisation par pressage de ce panneau

Info

Publication number
EP0627988A1
EP0627988A1 EP93906252A EP93906252A EP0627988A1 EP 0627988 A1 EP0627988 A1 EP 0627988A1 EP 93906252 A EP93906252 A EP 93906252A EP 93906252 A EP93906252 A EP 93906252A EP 0627988 A1 EP0627988 A1 EP 0627988A1
Authority
EP
European Patent Office
Prior art keywords
panel
sheet
sheets
thickness
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93906252A
Other languages
German (de)
English (en)
Other versions
EP0627988A4 (fr
Inventor
Joseph Labock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArmorVision Plastic and Glass
Original Assignee
ArmorVision Plastic and Glass
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/843,337 external-priority patent/US5229204A/en
Priority claimed from IL102466A external-priority patent/IL102466A/xx
Application filed by ArmorVision Plastic and Glass filed Critical ArmorVision Plastic and Glass
Publication of EP0627988A1 publication Critical patent/EP0627988A1/fr
Publication of EP0627988A4 publication Critical patent/EP0627988A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/54Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts
    • B29C65/542Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts by injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/301Three-dimensional joints, i.e. the joined area being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/342Preventing air-inclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7315Mechanical properties
    • B29C66/73151Hardness
    • B29C66/73152Hardness of different hardness, i.e. the hardness of one of the parts to be joined being different from the hardness of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • B29C66/73366General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light both parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • B29C66/73521Thickness, e.g. very thin of different thickness, i.e. the thickness of one of the parts to be joined being different from the thickness of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81457General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a block or layer of deformable material, e.g. sponge, foam, rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81463General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10064Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising at least two glass sheets, only one of which being an outer layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0407Transparent bullet-proof laminatesinformative reference: layered products essentially comprising glass in general B32B17/06, e.g. B32B17/10009; manufacture or composition of glass, e.g. joining glass to glass C03; permanent multiple-glazing windows, e.g. with spacing therebetween, E06B3/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing

Definitions

  • the present invention relates to a bullet- resistant transparent panel, and also to a method and presses for making such a panel.
  • bullet-resistant transparent panels are known.
  • One type as described for example in US Patent 4,594,290, includes transparent sheets of a- ' .-ylic and polycarbonate resins bonded together by a transparent polyurethane adhesive.
  • the invention of the present application is directed particularly to the latter type of bullet-resistant transparent panel.
  • An object of the present invention is to provide a transparent panel, particularly of the type described in US Patent 4,594,290, exhibiting unidirectional bullet-resisting characteristics; that is, the panel blocks the penetration of a bullet when fired from the outer side of the panel, but not when fired from the inner side of the panel.
  • Another object of the invention is to provide a method of making transparent panels, and a further object is to provide a press particularly useful for making such transparent panels.
  • a transparent panel effective to block the penetration of a bullet when fired from the outer side of the panel but not when fired from the inner side of the panel
  • the transparent panel comprising: an outer transparent sheet of an acrylic resin having a thickness of 7.5-9 mm, and an inner transparent sheet of a polycarbonate resin having a thickness of 9.5-11 mm, the sheets being bonded together by a polyurethane transparent adhesive.
  • the laminated panel exhibits unidirectional bullet- resisting characteristics.
  • Such a panel construction thus provides protection against outsiders attacking persons inside an enclosure, such as a vehicle, a protective teller's cage, or the like; but at the same time the panel permits insiders to fire against the attacking outsiders.
  • the outer acrylic resin sheet has a thickness of about 8 mm
  • the inner polycarbonate resin sheet has a thickness of about 10 mm
  • the transparent polyurethane adhesive has a thickness of about 2 mm.
  • Such a panel was found to exhibit the above-described unidirectional bullet- resisting characteristics with respect to bullets shot from an Uzi 9 mm full metal jacket (FMG) , as will be described more particularly below.
  • the panel may include a plurality of glass sheets bonded to each other and to the outer acrylic sheet.
  • the plurality of glass sheets include an outer glass sheet of 9-14 mm thickness, an intermediate glass sheet of 9-14 mm thickness, and an inner glass sheet of 3-6 mm thickness bonded to the outer face of the acrylic sheet.
  • a transparent panel including the polycarbonate and acrylic resin sheets described above, together with an outer glass sheet of 10 mm thickness, an intermediate glass sheet of 10 mm thickness, and an inner glass sheet of 4 mm thickness bonded to the outer face of the acrylic sheet exhibits the above-described unidirectional bullet-resisting characteristics with respect to M-16 and AK-47 bullets; whereas a panel as described above but including an outer glass sheet of 10 mm thickness, an intermediate glass sheet of 10 mm thickness, and an inner glass sheet of 4 mm thickness exhibits the above-described unidirectional bullet- resisting characteristics with respect to the more powerful M-14 bullet.
  • a method of making a transparent panel comprising forming a sheet of an acrylic resin and a sheet of a polycarbonate resin of the same size and configuration; applying a sealing strip around the peripheral edge of one of the sheets; applying the other sheet over the one sheet with the two sheets spaced from each other by the sealing strip; drilling two holes through one of the sheets adjacent its diagonally opposite edges; applying pressure to the opposite faces of the two sheets to press them against the sealing strip; injecting under pressure an adhesive liquid through one hole of the one sheet until it exits from the other hole thereof; and permitting the adhesive to harden to bond the two sheets together.
  • a press for laminating a plurality of sheets comprising: a fixed frame assembly, and a movable frame assembly movable with respect to the fixed frame assembly; each of the frame assemblies including a plurality of parallel pressure bars extending transversely across the respective frame; the press further including a plurality of adjustable devices for precisely positioning the pressure bars against the opposite surfaces of the panel.
  • Fig. 1 illustrates a flat transparent panel constructed in accordance with the present invention
  • Fig. 2 illustrates a curved transparent panel constructed in accordance with the present invention
  • Fig. 3 illustrates the manner of precurving each of the resin sheets in making the curved panel of Fig. 2;
  • Fig. 4 illustrates the method of laminating the two resin sheets together in order to produce the curved panel of Fig. 2;
  • Fig. 5 illustrates a press useful in making the flat panel of Fig. 1 or the curved panel of Fig. 2;
  • Fig. 6 is an enlarged fragmentary view of the press of Fig. 5;
  • Fig. 7 is a fragmentary view illustrating another press useful in making laminated panels in accordance with the present invention.
  • Fig. 8 illustrates a flat transparent panel exhibiting unidirectional bullet-resisting characteristics with respect to M-16 and AK-47 bullets
  • Fig. 9 illustrates a flat transparent panel exhibiting the above unidirectional bullet-resisting characteristics with respect to the more powerful M-14 bullets.
  • the bullet-resistant panel illustrated in Fig. 1 is constituted of an outer transparent sheet 2 of an acrylic resin, an inner transparent sheet 3 of a polycarbonate resin, and a transparent polyurethane adhesive 4 between the two sheets bonding them together to form an integral panel.
  • the acrylic resin sheet 2 has a high degree of hardness, but is somewhat brittle.
  • the polycarbonate resin sheet 3 is less hard than the acrylic resin sheet, but is also less brittle.
  • the panel illustrated in Fig. 1 can be provided with unidirectional bullet-resisting characteristics if the two resin sheets 2 and 3 are made of predetermined thicknesses.
  • the panel has been found to block the penetration of a 9 mm bullet when fired from the side of the outer acrylic resin sheet, but not when fired from the side of the inner polycarbonate resin sheet.
  • Table 1 summarizes the results of a number of tests that were conducted on laminations of polycarbonate and acrylic sheets of different thicknesses when impacted by a bullet shot from an Uzi 9 mm full metal jacket (FMG) ; velocity 359.6 m/sec; distance of 3 meters; temperature of 17-25°C at time of test:
  • the polycarbonate sheet was that supplied by Tsutsunaka of Japan under the trademark Sunloid PC; and the acrylic sheet was a cast acrylic sheet supplied by Mitsubishi of Japan, the polycarbonate and acrylic sheets having the properties as set forth in the following Table 2: TABLE 2
  • the adhesive used was a clear liquid polyurethane adhesive as commonly available for bonding polycarbonate to itself, glass or metal; it had an elongation of about 300%, and was applied at a thickness of 2 mm.
  • each of the two sheets 2, 3 includes a scratch-resistant coating (many of which are known) on the face thereof not bonded to the other sheet.
  • Fig. 1 illustrates the transparent panel of a flat configuration, such as may be used for side windows on a vehicle, building windows, windows for protective cages, and the like.
  • Fig. 2 illustrates the panel of the same construction as that illustrated in Fig. 1, but of a curved configuration, such as may be used for the front and/or back windshields of a vehicle.
  • Figs. 3 and 4 illustrate a method
  • Fig. 5 illustrates a press useful in the method, for making the curved panel of Fig. 2, but it will be appreciated that the method and press could also be used for making the flat panel of Fig. 1.
  • each of the two resin sheets 2, 3 for making the panel is first cut according to the size and configuration of the panel to be produced, and is then precurved according to the curvature of the panel to be produced.
  • Fig. 3 illustrates how each of the two resin sheets 2, 3 is precurved according to the curvature, e.g., of a windshield to be applied to a vehicle.
  • a sheet of acrylic resin 2 having dimensions slightly larger than those of the windshield is supported on an actual glass windshield having the desired curvature (and serving as the reference model) , and is heated to a temperature of about 140°C. This temperature is sufficiently high to soften the acrylic resin, but not the glass windshield 10. Accordingly, the acrylic resin sheet will assume the curvature of the glass windshield 10.
  • the curved acrylic resin sheet 2 is then supported with its concave face facing upwardly.
  • a preformed sealing strip 4 is applied around the peripheral edge of the acrylic resin sheet 2.
  • the polycarbonate resin sheet 3 is then applied over the sealing strip 4 so as to be spaced from the acrylic resin sheet 2 by the thickness of the sealing strip, 2 mm in this case.
  • Two holes 12, 14 are drilled through the polycarbonate resin sheet 3 adjacent to two diagonal corners of the sheet (e.g., see Fig. 1). Pressure is then applied (Fig.
  • Press 18 illustrated in Fig. 5 comprises a fixed frame assembly, generally designated 20, and a movable frame assembly, generally designated 30, movable to an open position or to a closed position with respect to the fixed assembly 20. Both assemblies are of rectangular configuration of a size at least as large as, but preferably larger than, the largest panel to be produced.
  • the fixed frame assembly 20 comprises four vertical bars 21, one at each of the four corners of the frame assembly, joined together by four lower horizontal bars 22 braced by a diagonal bar 23, and four upper bars 24 which may be similarly braced by a diagonal bar (not shown) .
  • the fixed frame assembly 20 further includes a plurality of parallel pressure bars 25 extending transversely across the assembly for contacting the lower surface of the sheets to be bonded together and occupying the complete area of such sheets.
  • Each of the pressure bars 25 includes an outer liner 26 (Fig. 6) of rubber or other resilient cushioning material which directly contacts the lower surface of the acrylic sheet to the polycarbonate sheet.
  • Each of the pressure bars 25 is mount-ed to the fixed frame assembly 20 by a cylinder-piston device 27 at each of the opposite ends of the pressure bar.
  • the piston-cylinder devices permit each pressure bar to be located at a precise vertical position according to the curvature of the sheets to be bonded together.
  • the movable frame assembly 30 includes a rectangular frame of four horizontal bars 31 and four vertical bars 32 at the four corners telescopingly receivable within the vertical bars 21 of the fixed frame assembly 20, to permit the movable frame assembly 30 to be moved to an open position away from the fixed frame assembly, or to a closed position towards the fixed frame assembly.
  • the movement of the movable frame assembly 30 is effected by four cylinder-piston devices 33 at the four corners of the press, each coupling one of the fixed vertical bars 21 to one of the movable vertical bars 32.
  • the movable frame assembly 30 further includes a plurality of parallel, horizontal pressure bars 35 extending transversely of the assembly, one for and aligned with one of the pressure bars 25 of the fixed frame assembly 20.
  • Each of the pressure bars 35 is also mounted by a pair of cylinder-piston devices 36, permitting each such bar to be moved to a preselected vertical position, according to the curvature of the panel to be produced.
  • the cylinder-piston devices 36 are mounted to an upper framework including four further horizontal bars 37.
  • the two groups of pressure bars 25 and 35 are each individually movable by their respective cylinder-piston devices 27 and 37 to appropriate vertical positions in accordance with the curvature of the panel to be produced.
  • the pressure bars 25, 35 are moved to their respective vertical positions by a plurality of handles 40, one controlling all the cylinder-piston devices of one pressure bar 25 in the fixed frame assembly 20, and the aligned pressure bar 35 in the movable frame assembly 30.
  • handles 40 are manually actuated to permit the pressure bars to be freely moved by their respective cylinder- piston devices 27, 37 until they contact the surface of the panel.
  • the pressure bars are thus moved to their respective vertical positions according to the curvature of the panel.
  • handles 42 are then fixed in those positions by further handles 42, one for each pair of aligned pressure bars 25, 35.
  • handles 42 are moved to their closed positions, they block the flow of the fluid to the respective cylinder-piston devices 27, 37, to thereby fix the pressure bars in position.
  • the two sheets are then applied between the pressure bars 25 of the fixed frame assembly 20 and the pressure bars 35 in the movable frame assembly 30.
  • the movable frame assembly 30 is then moved to its closed position, and handles 40 are actuated to move the two groups of pressure bars 25, 35 into contact with the two sheets of the panel such that the bars assume their respective vertical positions according to the curvature of the two sheets.
  • the handles 42 are then actuated to block the flow of fluid from the cylinder-piston devices 27, 37, thereby fixing the pressure bars in their respective vertical positions according to the curvature of the two sheets.
  • the transparent liquid adhesive is then injected via one hole (e.g., 12) in the polycarbonate resin sheet 3 under high pressure to fill the space between the two sheets with the transparent adhesive, as shown at 16 in Fig. 4.
  • the pressure injection of liquid adhesive continues until the adhesive begins to exit from the other.hole 14 at a diagonally-opposed corner from opening 12, indicating that the complete space between the two sheets has been filled with the transparent adhesive.
  • the two holes 12, 14 are located so as to be outside of the area covered by the pressure bars 25, 35, and thereby easily accessible for injecting the liquid adhesive.
  • the two groups of pressure bars 25, 26 of the press illustrated in Fig. 5 are fixed in their respective vertical positions and prevent any distortion or displacement of the two sheets despite the high pressure of injection of the liquid adhesive.
  • the two holes 12, 14 may be plugged, and the adhesive is permitted to harden to thereby firmly bond the two sheets together to produce the laminated assembly.
  • the liquid adhesive 16 is preferably one of the commercially-available cold-applied, transparent, polyurethane adhesives.
  • the sealing strip 4 is preferably a transparent silicon tape of 2 mm thickness having a transparent polyurethane adhesive layer applied to its opposite faces.
  • the adhesive may be formulation 1908E.P supplied by Engineering Chemicals B.V., Steenbergen, Netherlands, and may be injected at a pressure of about 1.5 to 2 atmospheres, although this pressure may be increased up to about 7 atmospheres in order to decrease the injection time.
  • the margins of the sheets may be trimmed or planed to fit the frame (e.g., windshield frame) in • which they are to be applied.
  • Figure 7 illustrates another form of press which may be used when applying the cold liquid adhesive to the two sheets.
  • the press illustrated in Fig. 7, generally designated 50 also includes a lower fixed frame assembly 60, and an upper movable assembly 70 which is movable to either an open or a closed position with respect to the fixed frame assembly.
  • the opening and closing of the movable frame assembly 70 may also be effected by telescoping vertical bars 61, 71 at each of the four corners of the two assemblies and actuated by a cylinder-piston device (not shown) at each of these corners.
  • the fixed frame assembly 60 also includes a plurality of pressure bars 65 extending transversely of the assembly and each adjustable to a selected vertical position according to the curvature of the panel to be produced.
  • each of the pressure bars 65 is lined with an inflatable flat boot 66, e.g., of rubber or the like.
  • the boots 66 directly contact the lower surface of the acrylic sheet used in producing the laminated panel, and apply the pressure during the application of the liquid adhesive between the two sheets.
  • Press 50 illustrated in Fig. 7 also provides another arrangement for adjusting the vertical positions of the pressure bars 65 to conform to the curvature (or flatness) of the laminated panel to be produced.
  • each of the pressure bars 65 is vertically adjustable by a pair of screw-and-nut devices 67 securing the opposite ends of each pressure bar 65 to the lower frame assembly 60.
  • the pressure bars in the movable assembly 70, and therein designated 75, are similarly constructed and mounted as the pressure bars 66 in the fixed frame assembly 60.
  • each pressure bar 75 in the movable frame assembly includes an inflatable flat boot 76 which directly contacts the outer surface of the polycarbonate sheet used in producing the laminated panel and applies pressure to that surface during the time of the injection of the transparent adhesive.
  • Each of the pressure bars 75 in the movable frame assembly 70 is also mounted for vertical movement by a pair of screw-and-nut devices, shown at 77, secured to.the opposite ends of each pressure bar.
  • the press illustrated in Fig. 7 is particularly useful for producing a run of laminated panels all of the same configuration.
  • the same setup may be used for producing the run of laminated panels.
  • the method of producing the laminated panels is the same as described above with respect to the press of Figs. 5 and 6, except that after the upper frame assembly 70 has been moved to its closed position, the boots 66 and 76 carried by the pressure bars 65 and 75 are inflated to firmly contact the opposite faces of the sheets being laminated and to prevent their distortion by the high pressure of injection of the transparent adhesive.
  • Figs. 8 and 9 illustrate transparent panels constructed in accordance with the present invention but exhibiting the above-described unidirectional bullet-resisting characteristics with respect to more powerful bullets than the above-described Uzi bullets.
  • Fig. 8 illustrates a panel, generally designated 100, particularly for exhibiting the above- described unidirectional bullet-resisting characteristics with respect to M-16 and K-47 bullets.
  • a panel includes an inner sheet 101 of polycarbonate resin having a thickness of 10 mm; an outer (with respect to sheet 101) transparent sheet 102 of an acrylic resin having a thickness of 8 mm and bonded to the polycarbonate sheet 101 by a transparent polyurethane adhesive 102a; and three glass sheets 103, 104 and 105 bonded to the outer face of the acrylic sheet 102.
  • the innermost glass sheet 103 is of 4 mm and is bonded to the outer face of the acrylic sheet by the same transparent polyurethane adhesive 103a as adhesive 12a;
  • the intermediate glass sheet 104 is of 10 mm and is bonded to the inner glass sheet 103 by a transparent adhesive 104a called P.V.B. in the trade and conventionally used in laminating glass sheets together;
  • an outer glass sheet 105 also of 10 mm, bonded to the intermediate glass sheet 104 by the same adhesive 105a as used in laminating glass sheets.
  • Panel 100 of overall thickness of 41.6 m, has a weight of 80 Kg per square meter.
  • Panel 100 as illustrated in Fig. 8 was found to exhibit the above-described unidirectional bullet- resisting characteristics with respect to M-1 bullets of 5.56 calibre, having a velocity of 1,000 m/second, and a striking energy of 1,700 joule, when shot from a distance of 10 meters, at a temperature of 17-25°C.
  • M-1 bullets of 5.56 calibre having a velocity of 1,000 m/second, and a striking energy of 1,700 joule, when shot from a distance of 10 meters, at a temperature of 17-25°C.
  • AK-47 bullets of 7.62 (39) calibre having a velocity of 780 m/second, and a striking energy of 2,200 joule, also when shot at a distance of 10 meters and at a temperature of 17- 25°C.
  • the above-described unidirectional bullet- resisting characteristics means that such a bullet did not penetrate the panel when shot from the outer side of the panel (i.e., from glass sheet 105 side), but did penetrate the panel when the bullet was shot from the inner side (i.e., the polycarbonate sheet 101 side).
  • the panel illustrated in Fig. 8 permitted bullet penetration when the bullet was shot from either side.
  • Panel illustrated in Fig. 9, and therein designated 200 exhibited unidirectional bullet-resisting characteristics with respect to the more powerful M-14 bullet.
  • Panel 200 illustrated in Fig. 9 includes the same five sheets 201-205, corresponding respectively to sheets 101-105 as in Fig. 8 (and the same adhesives 202a-205a as adhesives 102a- 105a in Fig. 8) , except that the outer glass panel 205 and the intermediate glass panel 204 were each 12 mm in thickness instead of 10 mm in thickness.
  • Such a construction having an overall thickness of 45.6 mm and a weight of 90 Kg/meter-square, was found to block the penetration of M-14 bullets of 7.62 (51) calibre, having a velocity of 845 m/second, and a striking energy of 3,373 joule, when shot at a distance of 10 meters, and at a temperature of 17-25°C, when shot from the outer glass sheet 205 side, but to permit the penetration of such a bullet when shot from the inner polycarbonate sheet 101 side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Panneau transparent présentant des caractéristiques de résistance unidirectionnelles aux balles. Le panneau est constitué d'un panneau externe transparent (2), en résine acrylique, d'une feuille interne transparente (3) de résine polycarbonate et d'une liaison adhésive (16) transparente de ces deux éléments (2, 3). L'invention porte également sur le procédé de fabrication de ce panneau et sur les presses (18, 50) employées pour le réaliser.
EP93906252A 1992-02-28 1993-02-26 Panneau transparent a l'epreuve des balles, et methode de realisation par pressage de ce panneau. Withdrawn EP0627988A4 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US843337 1992-02-28
US07/843,337 US5229204A (en) 1992-02-28 1992-02-28 Bullet-resistant transparent panel, and method and press for making same
IL102466A IL102466A (en) 1990-11-16 1992-07-10 Bullet-resistant transparent panel, and method and press for making same
IL102466 1992-07-10
PCT/US1993/001757 WO1993016872A1 (fr) 1992-02-28 1993-02-26 Panneau transparent a l'epreuve des balles, et methode de realisation par pressage de ce panneau

Publications (2)

Publication Number Publication Date
EP0627988A1 true EP0627988A1 (fr) 1994-12-14
EP0627988A4 EP0627988A4 (fr) 1995-02-08

Family

ID=26322476

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93906252A Withdrawn EP0627988A4 (fr) 1992-02-28 1993-02-26 Panneau transparent a l'epreuve des balles, et methode de realisation par pressage de ce panneau.

Country Status (7)

Country Link
EP (1) EP0627988A4 (fr)
JP (1) JPH07507383A (fr)
CN (1) CN1077416A (fr)
AU (1) AU672783B2 (fr)
CA (1) CA2131011A1 (fr)
TR (1) TR27217A (fr)
WO (1) WO1993016872A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221835A (zh) * 2020-09-25 2021-01-15 广州千研贸易有限公司 一种均匀涂胶自动控制压力的帽片熨衬装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05004500A (es) * 2002-10-29 2006-03-08 Lucite Int Inc Composiciones acrilicas.
JP2006124255A (ja) * 2004-10-29 2006-05-18 Fujiwara Kogyo Kk 防弾ガラス
DE102006029613A1 (de) * 2006-06-26 2007-12-27 Röhm Gmbh Transparenter Kunststoff-Verbund
US20110048219A1 (en) * 2007-11-13 2011-03-03 Pyles Robert A Blast-resistant barrier
DE102008028318A1 (de) 2008-06-13 2009-12-17 Esw Gmbh Durchschusshemmender transparenter Schichtverbund und Schutzanordnung mit einem durchschusshemmenden transparenten Schichtverbund
WO2010066819A2 (fr) * 2008-12-11 2010-06-17 Dsm Ip Assets B.V. Article pare-balle transparent et son procédé de préparation
CN103608640A (zh) * 2011-06-21 2014-02-26 拜尔材料科学有限公司 用于邻近爆炸事件的聚碳酸酯层叠体
GB2506358A (en) * 2012-09-26 2014-04-02 Aston Martin Lagonda Ltd Forming bonded structures
WO2014067947A1 (fr) * 2012-10-30 2014-05-08 Dsm Ip Assets B.V. Article antibalistique transparent et son procédé de préparation
US9555608B2 (en) * 2013-02-22 2017-01-31 The Boeing Company System and method of forming an injection-bonded joint
CN103471465B (zh) * 2013-09-12 2015-06-03 天津广源新材料科技有限公司 一种全透明复合防暴盾牌及其制备方法
JP6782616B2 (ja) * 2016-11-22 2020-11-11 三菱重工業株式会社 接着剤の注入方法及び構造体
CN114290693B (zh) * 2021-12-31 2024-06-18 江苏明智车业有限公司 扰流板压合机

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2516630A1 (de) * 1975-04-16 1976-10-28 Degussa Beschussfeste verbundglasscheibe (b)
DE2929491A1 (de) * 1978-07-26 1980-02-14 Dansk Plastplade Vaerk Verfahren zur herstellung von durchscheinendem sicherheitsglas
GB2032844A (en) * 1978-10-31 1980-05-14 Langlands M Method of making frangible laminates
WO1980000943A1 (fr) * 1978-11-13 1980-05-15 Gen Electric Materiau feuillete a resistance aux chocs amelioree
GB2065029A (en) * 1979-12-12 1981-06-24 Gen Electric Impact resistant laminate
US4312903A (en) * 1980-03-05 1982-01-26 General Electric Company Impact resistant double glazed structure
FR2565162A1 (fr) * 1984-06-04 1985-12-06 Sierracin Corp Polyurethane stratifiable a basse te
US4647493A (en) * 1984-08-13 1987-03-03 General Electric Company Puncture resistant laminate
EP0438328A1 (fr) * 1990-01-16 1991-07-24 Saint-Gobain Vitrage Dispositif pour l'assemblage par pressage des vitrages feuilletés
EP0446127A1 (fr) * 1990-03-08 1991-09-11 Saint-Gobain Vitrage Dispositif pour l'assemblage par pressage des vitrages feuilletés
EP0449684A1 (fr) * 1990-03-08 1991-10-02 Saint-Gobain Vitrage Dispositif pour l'assemblage par pressage des vitrages feuilletés
FR2662154A1 (fr) * 1990-05-15 1991-11-22 Ackermann Robert Vitrage pare-balle permettant le tir de riposte et son procede de fabrication.
EP0534590A1 (fr) * 1991-09-24 1993-03-31 Litton Systems Canada Limited Méthode et appareil pour remplir une cellule avec un liquide

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1809769A (en) * 1931-02-09 1931-06-09 Wetzler Max Veneer press
US2137505A (en) * 1937-06-16 1938-11-22 George H Osgood Machine for making laminated panels
BE557855A (fr) * 1956-08-03
US3029730A (en) * 1957-04-10 1962-04-17 Meredith Publishing Company Method of forming laminated printing plate with plastic core
US3046169A (en) * 1958-02-12 1962-07-24 Pittsburgh Plate Glass Co Prepressing of laminated safety glass panels
US3090078A (en) * 1958-05-29 1963-05-21 A M Stackhouse Process for foaming panels in situ
GB858578A (en) * 1958-07-17 1961-01-11 Ford Motor Co Improved apparatus for applying pressure to assemblies of curved glass sheets
JPS49104909A (fr) * 1973-02-03 1974-10-04
CH630047A5 (de) * 1976-08-07 1982-05-28 Bayer Franz Xaver Isolierglasf Verfahren und vorrichtung zur herstellung einer verbundglasscheibe sowie danach hergestellte verbundglasscheibe.
DE2962408D1 (en) * 1978-01-30 1982-05-19 Cin Ind Investments Limited Synthetic resin/glass laminates and process for producing these laminates
DE3016061A1 (de) * 1980-04-25 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Anordnung zum herstellen von flachen koerpern aus kunststoff
US4594290A (en) * 1982-12-06 1986-06-10 Swedlow, Inc. Impact resistant laminate
CA1248822A (fr) * 1984-04-04 1989-01-17 Christopher W.G. Hall Stratifie resistant aux chocs
US4686932A (en) * 1986-02-20 1987-08-18 Foam Cutting Engineers, Inc. Apparatus for applying a modifying ingredient to open-celled polyurethane material
EP0270810B1 (fr) * 1986-12-10 1993-06-02 General Electric Company Méthode de fabrication de panneaux composites stratifiés à surface spéculaire
US5008049A (en) * 1989-09-21 1991-04-16 General Electric Company Method for sealing an electronic device containing a fluid material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2516630A1 (de) * 1975-04-16 1976-10-28 Degussa Beschussfeste verbundglasscheibe (b)
DE2929491A1 (de) * 1978-07-26 1980-02-14 Dansk Plastplade Vaerk Verfahren zur herstellung von durchscheinendem sicherheitsglas
GB2032844A (en) * 1978-10-31 1980-05-14 Langlands M Method of making frangible laminates
WO1980000943A1 (fr) * 1978-11-13 1980-05-15 Gen Electric Materiau feuillete a resistance aux chocs amelioree
GB2065029A (en) * 1979-12-12 1981-06-24 Gen Electric Impact resistant laminate
US4312903A (en) * 1980-03-05 1982-01-26 General Electric Company Impact resistant double glazed structure
FR2565162A1 (fr) * 1984-06-04 1985-12-06 Sierracin Corp Polyurethane stratifiable a basse te
US4647493A (en) * 1984-08-13 1987-03-03 General Electric Company Puncture resistant laminate
EP0438328A1 (fr) * 1990-01-16 1991-07-24 Saint-Gobain Vitrage Dispositif pour l'assemblage par pressage des vitrages feuilletés
EP0446127A1 (fr) * 1990-03-08 1991-09-11 Saint-Gobain Vitrage Dispositif pour l'assemblage par pressage des vitrages feuilletés
EP0449684A1 (fr) * 1990-03-08 1991-10-02 Saint-Gobain Vitrage Dispositif pour l'assemblage par pressage des vitrages feuilletés
FR2662154A1 (fr) * 1990-05-15 1991-11-22 Ackermann Robert Vitrage pare-balle permettant le tir de riposte et son procede de fabrication.
EP0534590A1 (fr) * 1991-09-24 1993-03-31 Litton Systems Canada Limited Méthode et appareil pour remplir une cellule avec un liquide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9316872A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221835A (zh) * 2020-09-25 2021-01-15 广州千研贸易有限公司 一种均匀涂胶自动控制压力的帽片熨衬装置
CN112221835B (zh) * 2020-09-25 2022-06-21 浙江舜浦工艺美术品股份有限公司 一种均匀涂胶自动控制压力的帽片熨衬装置

Also Published As

Publication number Publication date
CA2131011A1 (fr) 1993-09-02
TR27217A (tr) 1994-12-09
AU3735193A (en) 1993-09-13
CN1077416A (zh) 1993-10-20
AU672783B2 (en) 1996-10-17
WO1993016872A1 (fr) 1993-09-02
JPH07507383A (ja) 1995-08-10
EP0627988A4 (fr) 1995-02-08

Similar Documents

Publication Publication Date Title
US5747159A (en) Bullet-resistant transparent panel, and method and press for making same
EP0627988A1 (fr) Panneau transparent a l'epreuve des balles, et methode de realisation par pressage de ce panneau
US20110048219A1 (en) Blast-resistant barrier
US10408576B2 (en) High-energy impact absorbing polycarbonate mounting method
US8025004B2 (en) Transparent ceramic composite
US8176828B2 (en) Glass-ceramic with laminates
CA1230039A (fr) Vitrage de securite
US5368904A (en) Bullet resistant glass
CN101702934B (zh) 透明装甲系统及制造方法
CA2592452A1 (fr) Composite de blindage a transmission optique
WO2009011951A2 (fr) Armure transparente en mosaïque
NZ229985A (en) Bullet proof glass screen with each glass sheet laminated between two shatter resistant films
WO2019038720A1 (fr) Blindage multi-coup transparent
WO2019064277A1 (fr) Stratifié blindé transparent constitué de tuiles avec des articulations non perpendiculaires
US20220290946A1 (en) Ballistic block for a bullet resistant glazing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RHK1 Main classification (correction)

Ipc: B32B 27/08

A4 Supplementary search report drawn up and despatched

Effective date: 19941220

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19970417

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970828