AU672783B2 - Bullet-resistant transparent panel - Google Patents

Bullet-resistant transparent panel Download PDF

Info

Publication number
AU672783B2
AU672783B2 AU37351/93A AU3735193A AU672783B2 AU 672783 B2 AU672783 B2 AU 672783B2 AU 37351/93 A AU37351/93 A AU 37351/93A AU 3735193 A AU3735193 A AU 3735193A AU 672783 B2 AU672783 B2 AU 672783B2
Authority
AU
Australia
Prior art keywords
sheet
thickness
panel
transparent
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU37351/93A
Other versions
AU3735193A (en
Inventor
Joseph Labock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ady Labock Coating Ltd
Shotglass Ventures Lp
Original Assignee
ArmorVision Plastic and Glass
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/843,337 external-priority patent/US5229204A/en
Priority claimed from IL102466A external-priority patent/IL102466A/en
Application filed by ArmorVision Plastic and Glass filed Critical ArmorVision Plastic and Glass
Publication of AU3735193A publication Critical patent/AU3735193A/en
Application granted granted Critical
Publication of AU672783B2 publication Critical patent/AU672783B2/en
Assigned to Shotglass Ventures L.P., A.D.Y. Labock Coating Limited reassignment Shotglass Ventures L.P. Alteration of Name(s) in Register under S187 Assignors: ARMORVISION PLASTICS AND GLASS
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/54Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts
    • B29C65/542Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts by injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/301Three-dimensional joints, i.e. the joined area being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/342Preventing air-inclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7315Mechanical properties
    • B29C66/73151Hardness
    • B29C66/73152Hardness of different hardness, i.e. the hardness of one of the parts to be joined being different from the hardness of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • B29C66/73366General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light both parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • B29C66/73521Thickness, e.g. very thin of different thickness, i.e. the thickness of one of the parts to be joined being different from the thickness of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81457General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a block or layer of deformable material, e.g. sponge, foam, rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81463General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10064Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising at least two glass sheets, only one of which being an outer layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0407Transparent bullet-proof laminatesinformative reference: layered products essentially comprising glass in general B32B17/06, e.g. B32B17/10009; manufacture or composition of glass, e.g. joining glass to glass C03; permanent multiple-glazing windows, e.g. with spacing therebetween, E06B3/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates or anti-ballistic clothing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

2
A~
OPI DATE 13/09/93 AOJP DATE 25/11/93 APPLN. ID 37351/93 PCT NUMBER PCT/US93/01757 11111 Ill 111111 1111111111111111111 ll ii Illl i AU9337351 INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 5 (11) International Publication Number: WO 93/16872 B32B 7/12, E04B 2/02 Al (43) International Publication Date: September 1993 (02.09.93) (21) International Application Number: PCT/US93/01757 (72) Inventor; and Inventor/Applicant (for US only) LABOCK, Joseph [IL/ (22) International Filing Date: 26 February 1993 (26.02.93) IL]; 9 Hachashmonaim Street, 59 491 Bat Yam (IL).
(74) Agent: GROSS, Stephen, Blakley, Sokoloff, Taylor Priority data: Zafman, 12400 Wilshire Boulevard, 7th Floor, Los An- 07/843,337 28 February 1992 (28.02.92) US geles, CA 90025 (US).
102466 10 July 1992 (10.07.92) IL (81) Designated States: AT, AU, BB, BG, BR, CA, CH, CZ, Parent Application or Grant DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, (63) Related by Continuation MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, US 07/843,337 (CIP) UA, US, European patent (AT, BE, CH, DE, DK, ES, Filed on 28 February 1992 (28.02.92) FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, SN, TD, TG).
(71) Applicant (for all designated States except US): ARMORVI- SION PLASTICS AND GLASS [US/US]; 6222 Wilshire Boulevard, Suite 450, Los Angeles, CA 90048 Published With international search report.
Sefore the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
67278 (54) Title: BULLET-RESISTANT TRANSPARENT PANEL A 1C IETI 10 rIZ: RF. 1XI! f R I
PRESSURE
(57) Abstract A transparent panel having unidirectional bullet-resisting characteristics, comprises an outer transparent paizel of an acrylic resin; an inner transparent sheet of a polycarbonate resin; and a transparent adhesive (16) bonding the two sheets (2, 3) together. Also described are a method of making such a panel, and presses (18, 50) useful in ma.ing such a panel.
1 c i_ ii; F-!i ,ii WO 93/16872 PCT/US93/01757 1 BULLET-RESISTANT TRANSPARENT PANEL RELATED APPLICATION This application is a con itir on-in-part application ppiication Serial No. 843,337 filed February 28, 1992, which application is still pending.
FIELD AND BACKGROUND OF THE INVENTION The present invention relates to a bulletresistant transparent panel, and also to a method and presses for making such a panel.
Many types of bullet-resistant transparent panels are known. One type, as described for example in US Patent 4,594,290, includes transparent sheets of acrylic and polycarbonate resins bonded together by a transparent polyurethane adhesive. The invention of the present application is directed particularly to the latter type of bullet-resistant transparent panel.
OBJECTS AND BRIEF SUMMARY OF THE INVENTION An object of the present invention is to provide a transparent panel, particularly of the type described in US Patent 4,594,290, exhibiting unidirectional bullet-resisting characteristics; that i. "II: i I- -I -C 'j -Y WO 93/16872 PCT/US93/01757 2 3s -e.n-dea bo is, the panel block the penetration of a bullet when fired from the outer side of the panel, but not when fired from the inner side of the panel.
_Another object of the invention is te provide method of making transparent pane asa further object is to e a press particularly useful for According to the present invention, there is provided a transparent panel effective to block the penetration of a bullet when fired from the outer side of the panel but not when fired from the inner side of the panel, the transparent panel comprising: an outer transparent sheet of an acrylic resin having a thickness of 7.5-9 mm, and an inner transparent sheet of a polycarbonate resin having a thickness of 9.5-11 mm, the sheets being bonded together by a polyurethane transparent adhesive.
It has been surprisingly found, as will be shown more particularly below, that when the acrylic and polycarbonate sheets are of the above thicknesses, the laminated panel exhibits unidirectional bulletresisting characteristics. Such a panel construction thus provides protection against outsiders attacking persons inside an enclosure, such as a vehicle, a protective teller's cage, or the like; but at the same j
RA
4 ,P ,Qy\ |z i Pi WO 93/16872 PCT/US93/ 01757 3 time the panel permits insiders to fire against the attacking outsiders.
Best results were obtained when the outer acrylic resin sheet has a thickness of about 8 mm, the inner polycarbonate resin sheet has a thickness of about 10 mm, and the transparent polyurethane adhesive has a thickness of about 2 mm. Such a panel was found to exhibit the above-described unidirectional bulletresisting characteristics with respect to bullets shot from an Uzi 9 mm full metal jacket (FMG), as will be described more particularly below.
In order to provide the panel with such unidirectional bullet-resisting characteristics with respect to the more powerful M-14, M-16 and AK-47 bullets, the panel may include a plurality of glass sheets bonded to each other and to the outer acrylic sheet. Preferably, the plurality of glass sheets include an outer glass sheet of 9-14 mm thickness, an intermediate glass sheet of 9-14 mm thickness, and an inner glass sheet of 3-6 mm thickness bonded to the outer face of the acrylic sheet.
SAs will be described more particularly below, a transparent panel including the polycarbonate and acrylic resin sheets described above, togeth.. with an outer glass sheet of 10 mm thickness, an intermediate WO 93/16872 PCT/US93/01757 4 glass sheet of 10 mm thickness, and an inner glass sheet of 4 mm thickness bonded to the outer face of the acrylic sheet, exhibits the above-described unidirectional bullet-resisting characteristics with respect to M-16 and AK-47 bullets; whereas a panel as described above but including an outer glass sheet of mm thickness, an intermediate glass sheet of 10 mm thickness, and an inner glass sheet of 4 mm thickness exhibits the above-described unidirectional bulletresisting characteristics with respect to the more powerful M-14 bullet.
According to another aspect of the present invention, there is provided a method of making a transparent panel, comprising forming a sheet of an acrylic resin and a sheet of a polycarbonate resin of the same size and configuration; applying a sealing strip around the peripheral edge of one of tha sheets; applying the other sheet over the one sheet with the two sheets spaced from each other by the sealing strip; drilling two holes through one of the sheets adjacent its diagonally opposite edges; applying pressure to the opposite faces of the two sheets to press them against the sealing strip; injecting under pressure an adhesive liquid through one hole of the one sheet until it exits WO 93/16872 PCT/US93/01 757 from the other hole thereof; and permitting the adhesive to harden to bond the two sheets together.
According to a still further aspect of the present invention, there is provided a press for laminating a plurality of sheets, comprising: a fixed frame assembly, and a movable frame assembly movable with respect to the fixed frame assembly; each of the frame assemblies including a plurality of parallel pressure bars extending transversely across the respective frame; the press further including a plurality of adjustable devices for precisely positioning the pressure bars against the opposite surfaces of the panel.
Further features and advantages of the invention will be apparent from the description below.
BRIEF DESCRIPTION OF THE DRAWINGS The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein: Fig. 1 illustrates a flat transparent panel constructed in accordance with the present invention; Fig. 2 illustrates a curved transparent panel constructed in accordance with the present invention; WO 93/16872 PCT/US93/01757 6 Fig. 3 illustrates the manner of precurving each of the resin sheets in making the curved panel of Fig. 2; Fig. 4 illustrates the method of laminating the two resin sheets together in order to produce the curved panel of Fig. 2; Fig. 5 illustrates a press useful in making the flat panel of Fig. 1 or the curved panel of Fig. 2; Fig. 6 is an enlarged fragmentary view of the press of Fig. 5; and Fig. 7 is a fragmentary view illustrating another press useful in making laminated panels in accordance with the present invention.
Fig. 8 illustrates a flat transparent panel exhibiting unidirectional bullet-resisting characteristics with respect to M-16 and AK-47 bullets; and Fig. 9 illustrates a flat transparent panel exhibiting the above unidirectional bullet-resisting characteristics with respect to tie more powerful M-14 bullets.
DESCRIPTION OF A PREFERRED EMBODIMENT The bullet-resistant panel illustrated in Fig.
1 is constituted of an outer transparent sheet 2 of an L WO 93/16872 PCT/US93/O1 757 7 acrylic resin, an inner transparent sheet 3 of a polycarbonate resin, and a transparent polyurethane adhesive 4 between the two sheets bonding them together to form an integral panel.
The acrylic resin sheet 2 has a high degree of hardness, but is somewhat brittle. On the other hand, the polycarbonate resin sheet 3 is less hard than the acrylic resin sheet, but is also less brittle. By using the combination of the two sheets to form the panel, the outer acrylic resin sheet 2 imparts a high degree of hardness to the outer face of the panel receiving an impact, such as a bullet, rock or the like, and attenuates the force of this impact; whereas the polycarbonate resin sheet 3 on the inner face of the panel absorbs the attenuated force and supports the acrylic resin sheet 2 against breaking or shattering.
The combination of the two sheets thus provides a high degree of resistance against penetration or shattering by bullets, stones, rocks or the like.
It has been surprisingly found that the panel illustrated in Fig. 1 can be provided with unidirectional bullet-resisting characteristics if the two resin sheets 2 and 3 are made of predetermined thicknesses. Thus, by making the outer acrylic resin sheet 2 of a thickness of 7.5-9 mm, and the inner 1~i WO 93/16872 PC/US93/01757 8 polycarbonate resin sheet 3 of a thickness of 9.5-11 mm, the panel has been found to block the penetration of a 9 mm bullet when fired from the side of the outer acrylic resin sheet, but not when fired from the side of the inner polycarbonate resin sheet.
Table 1 below summarizes the results of a number of tests that were conducted on laminations of polycarbonate and acrylic sheets of different thicknesses when impacted by a bullet shot from an Uzi 9 mm full metal jacket (FMG); velocity 359.6 m/sec; .distance of 3 meters; temperature of 17-25 0 C at time of test: i i.
1<"
I--
WO 93/16872 PCT/US93/01757 TABLE 1
POLYCAR-
ACRYLIC BONATE RESULTS Shot from Aervl ic id l Shot from Polvcarbonate Side 1. 8 mm 6 mm Passed through Passed through 2. 8 mm 8 mm Blocked but produced Passed through a "mushroom" deformation in the polycarbonate side 3. 8 mm 10 mm Blocked Passed through 4. 8 mm 12 mm Blocked Blocked 6 mm 10 mm Passed through Passed through 6. 10 mm 10 mm Blocked Blocked The polycarbonate sheet was that supplied by Tsutsunaka of Japan under the trademark Sunloid PC; and the acrylic sheet was a cast acrylic sheet supplied by Mitsubishi of Japan, the polycarbonate and acrylic sheets having the properties as set forth in the following Table 2: J1 i -s p-- WO 93/16872 PCT/US93/01757 TABLE 2 Pronerties Specific gravity Rockwell hardness Tonsile strength Elongation Compressive strength Flexural strength Flexural modulus Izod impact strength Heat deflection temperature Coefficient of linear thermal expansion Total light transmittance Polvcarbonate 1.2 R119 650 kgf/cm 2 85% 830 kgf/cm 2 950 kgf/cm 2 24000 kgf/cm 2 80 kgf' cm/cm 135 0
C
7.0 cm/cmoCxlO -5 1.20 R124 720-770 kgf/cm 2 4-7% 160-250 kgf/cm 2 1100-1200 kgf/cm 2 30000-31000 kgf/cm 2 2-3 kgf' cm/cm 87-100 0
C
7-8 cm/cmoCxl0 Acrylic The adhesive used was a clear liquid polyurethane adhesive as commonly available for bonding polycarbonate to itself, glass or metal; it had an elongation of about 300%, and was applied at a thickness of 2 mm.
As can be seen from the above, best results were obtained when the outer acrylic sheet is about 8 mm, the inner polycarbonate resin sheet 3 is about mm, and the transparent adhesive layer 4 in between is transparent polyurethane adhesive having a thickness of about 2 mm. Preferably, each of the two sheets 2, 3 includes a scratch-resistant coating (many of which are i WO 93/16872 PCT/US93/01757 11 known) on the face thereof not bonded to the other sheet.
Fig. I illustrates the transparent panel of a 'lat :onfiguration, such as may be used for side windows on a vehicle, building windows, windows for protective cages, and the like. Fig. 2 illustrates the panel of the samne construction as that illustrated in Fig. 1, but of a curved configuration, such as may be used for the front and/or back windshields of a vehicle.
Figs. 3 and 4 illustrate a method, and Fig. illustrates a press useful in the method, for making I the curved panel of Fig. 2, but it will be appreciated that the method and press could also be used for making the flat panel of Fig. 1.
Thus each of the two resin sheets 3 for j making the panel is first cut according to the size and configuration of the panel to be produced, and is then precurved according to the curvature of the panel to be produced. Fig. 3 illustrates how each of the two resin sheets 2, 3 is precurved according to the curvature, of a windshield to be applied to a vehicle.
Thus, as shown in Fig. 3, a sheet of acrylic resin 2, having dimensions slightly larger than those of the windshield is supported on an actual glass i 1 l 2 WO 93/16872 PCT/US93/01757 12 windshield having the desired curvature (and serving as the reference model), and is heated to a temperature of about 140 0 C. This temperature is sufficiently high to soften the acrylic resin, but not the glass windshield Accordingly, the acrylic resin sheet will assume the curvature of the glass windshield A sheet 3 of polycarbonate resin, also having dimensions slightly larger than those of the windshield is supported on the windshield and is heated to a temperature of about 150 0 C. This temperature is sufficient to soften the polycarbonate resin sheet 3, but not the glass-windshield 10, so that the polycarbonate resin sheet 3 thus also assumes the curvature of the glass windshield.
The curved acrylic resin sheet 2 is then supported with its concave face facing upwardly. A preformed sealing strip 4 is applied around the peripheral edge of the acrylic resin sheet 2. The polycarbonate resin sheet 3 is then applied over the sealing strip 4 so as to be spaced from the acrylic resin sheet 2 by the thickness of the sealing strip, 2 mm in this case. Two holes 12, 14 are drilled through the polycarbonate resin sheet 3 adjacent to two diagonal corners or the sheet see Fig. 1).
Pressure is then applied (Fig. 4) to the opposite faces
LC
1' i p- WO 93/16872 PCrT/US93/01757 13 of the tao sheets to press them against the sealing strip 4, while an adhesive liquid 16 is injected under pressure through one hole 12) until it is seen exiting from the other hole 14), thereby assuring that the complete space between the two sheets 2, 3 is filled with the adhesivet6. The adhesive is then permitted to harden to bond the two sheets together.
The press illustrated in Figs. 5 and 6, and therein designated 18, is used for applying the pressure to the two sheets at the time of injection of the adhesive liquid 16 between the two sheets, to prevent distortion of the two sheets by the pressure of the injected liquid. Press 18 illustrated in Fig. comprises a fixed frame assembly, generally designated and a movable frame assembly, generally designated movable to an open position or to a closed position with respect to the fixed assembly 20. Both assemblies are of rectangular configuration of a size at least as large as, but preferably larger than, the largest panel to be produced.
The fixed frame assembly 20 comprises four vertical bars 21, one at each of the four corners of the frame assembly, joined together by four lower horizontal bars 22 braced by a diagonal bar 23, and p -i r WO 93/16872 PCT/US93/01757 14 four upper bars 24 which may be similarly braced by a diagonal bar (not shown). The fixed frame assembly further includes a plurality of parallel pressure bars extending transversely across the assembly for contacting the lower surface of the sheets to be bonded together and occupying the complete area of such sheets. Each of the pressure bars 25 includes an out, liner 26 (Fig. 6) of rubber or other resilient cushioning material which directly contacts the lower surface of the acrylic sheet to the polycarbonate sheet.
Each of the pressure bars 25 is mounted to the fixed frame assembly 20 by a cylinder-piston device 27 at each of the opposite ends of the pressure bar. The piston-cylinder devices permit each pressure bar to be located at a precise vertical position according to the curvature of the sheets to be bonded together.
The movable frame assembly 30 includes a rectangular frame of two horizontal bars 31 and four vertical bars 32 at the four corners telescopingly receivable within the vertical bars 21 of the fixed frame assembly 20, to permit the movable frame assembly 30 to be moved to an open position away from the fixed frame assembly, or to a closed posItion towards the fixed frame assembly. The movement of the movable frame assembly 30 is effected o
WO 93/16872 PCT/US93/01757 by four cylinder-piston devices 33 at the four corners of the press, each coupling one of the fixed vertical bars 21 to one of the movable vertical bars 32.
The movable frame assembly 30 further includes a plurality of parallel, horizontal pressure bars extending transversely of the assembly, one for and aligned with one of the pressure bars 25 of the fixed frame assembly 20. Each of the pressure bars 35 is also mounted by a pair of cylinder-piston devices 36, permitting each such bar to be moved to a preselected vertical position, according to the curvature of the panel to be produced. The cylinder-piston devices 36 are mounted to an upper framework including four further horizontal bars 37.
As indicated earlier, the two groups of pressure bars 25 and 35 are each individually movable by their respective cylinder-piston devices 27 and 34 to appropriate vertical positions in accordance with the curvature of the panel to be produced. The pressure bars 25, 35 are moved to their respective vertical positions by a plurality of handles 40, one controlling all the cylinder-piston devices of one pressure bar in the fixed frame assembly 20, and the aligned pressure bar 35 in the movable frame assembly 30. When the movable frame assembly 30 is moved to its closed RA4/ T 0 k, WO 93/16872 PCT/US93/01757 16 position with respect to the fixed frame assembly handles 40 are manually actuated to permit the pressure bars to be freely moved by their respective cylinderpiston devices 27, 3t until they contact the surface of the panel. The pressure bars are thus moved to their respective vertical positions according to the curvature of the panel. They are then fixed in those positions by further handles 42, one for each pair of aligned pressure bars 25, 35. When handles 42 are moved to their closed positions, they block the flow of the fluid to the respective cylinder-piston devices 27, 31, to thereby fix the pressure bars in position.
It will thus be seen that after the precurved polycarbonate resin sheet has been placed over the sealing strip 4 applied around the outer periphery of the acrylic resin sheet, the two sheets are then applied between the pressure bars 25 of the fixed frame assembly 20 and the pressure bars 35 in the movable frame assembly 30. The movable frame assembly 30 is then moved to its closed position, and handles 40 are actuated to move the two groups of pressure bars 25, into contact with the two sheets of the panel such that the bars assume their respective vertical positions according to the curvature of the two sheets. The handles 42 are then actuated to block the flow of fluid -aU r T ~i WO 93/16872 PCT/US93/01757 17 from the cylinder-piston devices 27, 34, thereby fixing the pressure bars in their respective vertical positions according to the curvature of the two sheets.
The transparent liquid adhesive is then injected via one hole 12) in the polycarbonate resin sheet 3 1.nder high pressure to fill the space between the two sheets with the transparent adhesive, as shown at 16 in Fig. 4. The pressure injection of liquid adhesive continues until the adhesive begins to exit from the other hole 14 at a diagonally-opposed corner from opening 12, indicating that the complete space between the two sheets has been filled with the transparent adhesive. The two holes 12, 14 are located so as to be outside of the area covered by the pressure bars 25, 35, and.thereby easily accessible for injecting the liquid adhesive. During this injection of the transparent adhesive, the two groups of pressure bars 25, 26 of the press illustrated in Fig. 5 are fixed in their respective vertical positions and prevent any distortion or displacement of the two sheets despite the high press ire of injection of the liquid adhesive.
After the complete space between the two shee-s 2, 3 has been filled with the transparent adhesive, the two holes 12, 14 may be plugged, and the adhesive is jQ
N
2'4 WO 93/16872 PCT/US93/01757 18 permitted to harden to thereby firmly bond the two sheets together to produce the laminated assembly.
The liquid adhesive 16 is preferably one of the commercially-available cold-applied, transparent, polyurethane adhesives. The sealing strip 4 is preferably a transparent silicon tape of 2 mm thickness having a transparent polyurethane adhesive layer applied to its opposite faces. As one example, the adhesive may be formulation 1908E.P supplied by Engineering Chemicals Steenbergen, Netherlands, and may be injected at a pressure of about 1.5 to 2 atmospheres, although this pressure may be increased up to about 7 atmospheres in order to decrease the injection time.
Since the laminated panel is made of plastic sheets, the margins of the sheets may be trimmed or planed to fit the frame windshield frame) in which they are to be applied.
Figure 7 illustrates another form of press which may be used when applying the cold liquid adhesive to the two sheets. The press illustrated in Fig. 7, generally designated 50, also includes a lower fixed frame assembly 60, and an upper movable assembly which is movable to either an open or a closed position with respect to the fixed frame assembly. Thei WO 93/16872 PCT/US93/0 757 19 opening and closing of the movable frame assembly may also be effected by telescoping vertical bars 61, 71 at each of the four corners of the two assemblies and actuated by a cylinder-piston device (not shown) at each of these corners.
The fixed frame assembly 60 also includes a plurality of pressure bars 65 extending transversely of the assembly and each adjustable to a selected vertical position according to the curvature of the panel to be produced, In the press illustrated in Fig. 7, however, each of the pressure bars 65 is lined with an inflatable flat boot 66, of rubber or the like.
The boots 66 directly contact the lower surface of the acrylic sheet used in producing the laminated panel, and apply the pressure during the application of the liquid adhesive between the two sheets.
Press 50 illustrated in Fig. 7 also provides another arrangement for adjusting the vertical positions of the pressure bars 65 to conform to the curvature (or flatness) of the laminated panel to be produced. In this case, each of the pressure bars 65 is vertically adjustable by a pair of screw-hre~e\ CA devices 67 securing the opposite ends of each pressure bar 65 to the lower frame assembly -a jl_ l I~ I WO 93/16872 PC/US93/O1757 The pressure bars in the movable assembly and therein designated 75, are similarly constructed and mounted as the pressure bars 66 in the fixed frame assembly 60. Thus, each pressure bar 75 in the movable frame assembly includes an inflatable flat boot 76 which directly contacts the outer surface of the polycarbonate sheet used in producing the laminated panel and applies pressure to that surface during the time of the injection of the transparent adhesive. Each of the pressure bars 75 in the movable frame assembly is also mounted for vertical movement by a pair of screw-and-nut devices, shown at 77, secured to the opposite ends of each pressure bar.
The press illustrated in Fig. 7 is particularly useful for producing a run of laminated panels all of the same configuration. Thus, when each of the pressure bars 65, 75 is preset in its proper vertical position, according to the curvature (or flatness) of the laminated panel to be produced, the same setup may be used for producing the run of laminated panels. The method of producing the laminated panels is the same as described above with respect to the press of Figs. and 6, except that after the upper frame assembly has been moved to its closed position, the boots 66 and 76 carried by the pressure bars 65 and 75 are inflated 7z I~~4' P4' O~' 7 2~ WO 93/16872 PCT/US93/01757 21 to firmly contact the opposite faces of the sheets being laminated and to prevent their distortion by the high pressure of injection of the transparent adhesive.
Figs. 8 and 9 illustrate transparent panels constructed in accordance with the present invention but exhibiting the above-described unidirectional bullet-resisting characteristics with respect to more powerful bullets than the above-described Uzi bullets.
Thus, Fig. 8 illustrates a panel, generally designated 100, particularly for exhibiting the abovedescribed unidirectional bullet-resisting characteristics with respect to M-16 and K-47 bullets.
Such a panel includes an inner sheet 101 of polycarbonate resin having a thickness of 10 mm; an outer (with respect to sheet 101) transparent sheet 102 of an acrylic resin having a thickness of 8 mm and bonded to the polycarbonate sheet 101 by a transparent polyurethane adhesive 102a; and three glass sheets 103, 104 and 105 bonded to the outer face of the acrylic sheet 102. Thus, the innermost glass sheet 103 is of 4 mm and is bonded to the outer face of the acrylic sheet by the same transparent polyurethane adhesive 103a as adhesive IOa,; the intermediate glass sheet 104 is of mm and is bonded to the inner glass sheet 103 by a transparent adhesive 104a called P.V.B. in the trade WO 93/16872 PCT/US93/01757 22 and conventionally used in laminating glass sheets together; and an outer glass sheet 105, also of 10 mm, bonded to the intermediate glass sheet 104 by the same adhesive 105a as used in laminating glass sheets.
Panel 100, of overall thickness of 41.6 mm, has a weight of 80 Kg per square meter.
Panel 100 as illustrated in Fig. 8 was found to exhibit the above-described unidirectional bulletresisting characteristics with respect to M-16 bullets of 5.56 calibre, having a velocity of 1,000 m/second, and a striking energy of 1,700 joule, when shot from a distance of 10 meters, at a temperature of 17-25 0
C.
The same result was found respect to AK-47 bullets of 7.62 (39) calibre having a velocity of 780 m/second, and a striking energy of 2,200 joule, also when shot at a distance of 10 meters and at a temperature of 17- 0 C. The above-described unidirectional bulletresisting characteristics means that such a bullet did not penetrate the panel when shot from the outer side of the panel from glass sheet 105 side), but did penetrate the panel when the bullet was shot from the inner side the polycarbonate sheet 201 side).
However, with respect to the more powerful M-14 bullets, the panel illustrated in Fig. 8 permitted 1-i
-T
i i i WO93/16872 PCT/US93/01757 23 bullet penetration when the bullet was shot from either side.
The panel illustrated in Fig. 9, and therein designated 200, however, exhibited unidirectional bullet-resisting characteristics with respect to the more powerful M-14 bullet. Panel 200 illustrated in Fig. 9 includes the same five sheets 201-205, corresponding respectively to sheets 101-105 as in Fig.
8 (and the same adhesives 202a-205a as adhesives 102a- 105a in Fig. except that the outer glass panel 205 and the intermediate glass panel 204 were each 12 mm in thickness instead of 10 mm in thickness. Such a construction, having an overall thickness of 45.6 mm and a weight of 90 Kg/meter-square, was found to block the penetration of M-14 bullets of 7.62 (51) calibre, having a velocity of 845 m/second, and a striking energy of 3,373 joule, when shot at a distance of meters, and at a temperature of 17-25 0 C, when shot from the outer glass sheet 205 side, but to permit the penetration of such a bullet when shot from the inner polycarbonate sheet 101 side.
While the invention has been described with respect to two preferred embodiments, it will be appreciated that many other variations, modifications and applications of the invention may be made.
S..

Claims (10)

1. A transparent panel effective to block the penetration of a bullet when fired from the outer side of the panel but not when fired from the inner side of the panel, said transparent panel comprising: an outer transparent sheet of an acrylic resin having a thickness of 7.5-9 mm, and an inner transparent sheet of a polycarbonate resin having a thickness of 9.5-11 mm, said sheets being bonded together by a polyurethane transparent adhesive.
2. The panel according to Claim 1, wherein said outer acrylic resin sheet has a thickness of about 8 mm, and said inner polycarbonate resin sheet has a thickness of about 10 mm.
3. The panel according to Claim 1, wherein said transparent polyurethane adhesive has a thickness of about 2 mm.
4. The transparent panel according to Claim 1, wherein each of said sheets includes a scratch- resistant coating on the face thereof not bonded to the other sheet. The transparent panel according to Claim 1, wherein both said sheets are of curved configuration.
RAZ i o ~e\l P:\OPER\PHH\37351-93.235 22/8/96
6. The panel according to any one of Claims 1-5, further including a plurality of glass sheets bonded to each other and to said outer acrylic sheet.
7. The panel according to Claim 6, wherein said plurality of glass sheets include: an outer glass sheet of 9-14 mm thickness; an intermediate glass sheet of 9-14 mm thickness; and an inner glass sheet of 3-6 mm thickness bonded to the outer face of said acrylic sheet.
8. The panel according to Claim 7, wherein: said outer glass sheet is of 10 mm thickness; said intermediate glass sheet is of 10 mm thickness; and said inner glass sheet is of 4 mm thickness.
9. The panel according to Claim 7, wherein: said outer glass sheet is of 12 mm thickness; said intermediate glass sheet is of 12 mm thickness; and said inner glass sheet is of 4 mm thickness. e o 15
10. A transparent panel substantially as herein described with reference to the accompanying drawings. oo DATED this 22nd day of August, 1996. ARMORVISION PLASTICS AND GLASS By its Patent Attorneys i DAVIES COLLISON CAVE 4 (Y)
AU37351/93A 1992-02-28 1993-02-26 Bullet-resistant transparent panel Ceased AU672783B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US843337 1992-02-28
US07/843,337 US5229204A (en) 1992-02-28 1992-02-28 Bullet-resistant transparent panel, and method and press for making same
IL102466 1992-07-10
IL102466A IL102466A (en) 1990-11-16 1992-07-10 Bullet-resistant transparent panel, and method and press for making same
PCT/US1993/001757 WO1993016872A1 (en) 1992-02-28 1993-02-26 Bullet-resistant transparent panel, and method and press for making same

Publications (2)

Publication Number Publication Date
AU3735193A AU3735193A (en) 1993-09-13
AU672783B2 true AU672783B2 (en) 1996-10-17

Family

ID=26322476

Family Applications (1)

Application Number Title Priority Date Filing Date
AU37351/93A Ceased AU672783B2 (en) 1992-02-28 1993-02-26 Bullet-resistant transparent panel

Country Status (7)

Country Link
EP (1) EP0627988A4 (en)
JP (1) JPH07507383A (en)
CN (1) CN1077416A (en)
AU (1) AU672783B2 (en)
CA (1) CA2131011A1 (en)
TR (1) TR27217A (en)
WO (1) WO1993016872A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05004500A (en) * 2002-10-29 2006-03-08 Lucite Int Inc Therapeutic compositions.
JP2006124255A (en) * 2004-10-29 2006-05-18 Fujiwara Kogyo Kk Bulletproof glass
DE102006029613A1 (en) * 2006-06-26 2007-12-27 Röhm Gmbh Transparent plastic composite
US20110048219A1 (en) * 2007-11-13 2011-03-03 Pyles Robert A Blast-resistant barrier
DE102008028318A1 (en) 2008-06-13 2009-12-17 Esw Gmbh Bullet-resistant transparent layer composite and protective arrangement with a bullet-resistant transparent layer composite
PL2358528T3 (en) * 2008-12-11 2014-08-29 Dsm Ip Assets Bv Transparent antiballistic article and method for its preparation
CA2839688A1 (en) * 2011-06-21 2013-04-11 Bayer Materialscience Llc Polycarbonate laminate for close-proximity blast events
GB2506358A (en) * 2012-09-26 2014-04-02 Aston Martin Lagonda Ltd Forming bonded structures
EP2914923A1 (en) * 2012-10-30 2015-09-09 DSM IP Assets B.V. Transparent antiballistic article and method for its preparation
US9555608B2 (en) 2013-02-22 2017-01-31 The Boeing Company System and method of forming an injection-bonded joint
CN103471465B (en) * 2013-09-12 2015-06-03 天津广源新材料科技有限公司 Fully transparent composite riot shield and preparation method therefor
JP6782616B2 (en) * 2016-11-22 2020-11-11 三菱重工業株式会社 Adhesive injection method and structure
CN112221835B (en) * 2020-09-25 2022-06-21 浙江舜浦工艺美术品股份有限公司 Lining ironing device for uniformly gluing and automatically controlling pressure
CN114290693B (en) * 2021-12-31 2024-06-18 江苏明智车业有限公司 Spoiler pressfitting machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243719A (en) * 1978-01-30 1981-01-06 Romag Holdings Ltd. Laminates
US4594290A (en) * 1982-12-06 1986-06-10 Swedlow, Inc. Impact resistant laminate
US4908083A (en) * 1984-04-04 1990-03-13 Pilkington Plc Impact-resistant laminate

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1809769A (en) * 1931-02-09 1931-06-09 Wetzler Max Veneer press
US2137505A (en) * 1937-06-16 1938-11-22 George H Osgood Machine for making laminated panels
BE557855A (en) * 1956-08-03
US3029730A (en) * 1957-04-10 1962-04-17 Meredith Publishing Company Method of forming laminated printing plate with plastic core
US3046169A (en) * 1958-02-12 1962-07-24 Pittsburgh Plate Glass Co Prepressing of laminated safety glass panels
US3090078A (en) * 1958-05-29 1963-05-21 A M Stackhouse Process for foaming panels in situ
GB858578A (en) * 1958-07-17 1961-01-11 Ford Motor Co Improved apparatus for applying pressure to assemblies of curved glass sheets
JPS49104909A (en) * 1973-02-03 1974-10-04
DE2516630A1 (en) * 1975-04-16 1976-10-28 Degussa Shot proof acrylic laminate pane - comprising methyl methacrylate polymer layer, hardened (meth) acrylate bonding resin and polycarbonate
CH630047A5 (en) * 1976-08-07 1982-05-28 Bayer Franz Xaver Isolierglasf METHOD AND DEVICE FOR PRODUCING A COMPOSED GLASS DISC AND A COMPOSED GLASS DISC PRODUCED THEREOF.
DE2929491A1 (en) * 1978-07-26 1980-02-14 Dansk Plastplade Vaerk Transparent safety glass - in which sealed spaces between acrylic! core and outer glass sheets are filled with cast acrylic!
US4234533A (en) * 1978-10-31 1980-11-18 Mary Frances Theresa Langlands Method of bonding spaced sheets by molding resin therebetween
WO1980000943A1 (en) * 1978-11-13 1980-05-15 Gen Electric Improved impact resistant laminate
US4322476A (en) * 1979-12-12 1982-03-30 General Electric Company Impact resistant laminate
US4312903A (en) * 1980-03-05 1982-01-26 General Electric Company Impact resistant double glazed structure
DE3016061A1 (en) * 1980-04-25 1981-10-29 Siemens AG, 1000 Berlin und 8000 München ARRANGEMENT FOR MANUFACTURING PLASTIC PLASTIC BODIES
US4592947A (en) * 1984-06-04 1986-06-03 Sierracin Corporation Low temperature laminatable polyurethane
US4647493A (en) * 1984-08-13 1987-03-03 General Electric Company Puncture resistant laminate
US4686932A (en) * 1986-02-20 1987-08-18 Foam Cutting Engineers, Inc. Apparatus for applying a modifying ingredient to open-celled polyurethane material
EP0270810B1 (en) * 1986-12-10 1993-06-02 General Electric Company Method of forming multilayer composite panels with specular surface
US5008049A (en) * 1989-09-21 1991-04-16 General Electric Company Method for sealing an electronic device containing a fluid material
FR2657046B1 (en) * 1990-01-16 1992-04-30 Saint Gobain Vitrage Int DEVICE FOR THE ASSEMBLY BY PRESSING OF SHEET GLASS.
FR2659318B1 (en) * 1990-03-08 1992-06-12 Saint Gobain Vitrage Int DEVICE FOR THE ASSEMBLY BY PRESSING OF SHEET GLASS.
FR2659317B1 (en) * 1990-03-08 1992-06-12 Saint Gobain Vitrage Int DEVICE FOR THE ASSEMBLY BY PRESSING OF SHEET GLASS.
FR2662154B1 (en) * 1990-05-15 1993-08-13 Ackermann Robert BULLETIN GLAZING FOR RESPONSE SHOOTING AND ITS MANUFACTURING METHOD.
US5241995A (en) * 1991-09-24 1993-09-07 Litton Systems Canada Limited Method of filling a suspended particle display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243719A (en) * 1978-01-30 1981-01-06 Romag Holdings Ltd. Laminates
US4594290A (en) * 1982-12-06 1986-06-10 Swedlow, Inc. Impact resistant laminate
US4908083A (en) * 1984-04-04 1990-03-13 Pilkington Plc Impact-resistant laminate

Also Published As

Publication number Publication date
EP0627988A1 (en) 1994-12-14
EP0627988A4 (en) 1995-02-08
AU3735193A (en) 1993-09-13
CA2131011A1 (en) 1993-09-02
TR27217A (en) 1994-12-09
WO1993016872A1 (en) 1993-09-02
CN1077416A (en) 1993-10-20
JPH07507383A (en) 1995-08-10

Similar Documents

Publication Publication Date Title
US5747159A (en) Bullet-resistant transparent panel, and method and press for making same
AU672783B2 (en) Bullet-resistant transparent panel
US5435226A (en) Light armor improvement
US20110048219A1 (en) Blast-resistant barrier
CA1230039A (en) Security glazing
US10408576B2 (en) High-energy impact absorbing polycarbonate mounting method
US4824722A (en) Safety glass laminates
US7300893B2 (en) Armor including a strain rate hardening elastomer
US6761641B2 (en) Glass laminate system for hockey rinks
US6817952B2 (en) Glass laminate system for hockey rinks
WO1993002269A1 (en) Transparent laminates and monolithic transparencies
DE69226125T2 (en) Lightweight glazing
CN108382023A (en) A kind of ventilative bulletproof glass
EP1918502A1 (en) Method for armouring a window
KR100848130B1 (en) Glass element assembly
NZ229985A (en) Bullet proof glass screen with each glass sheet laminated between two shatter resistant films
AT263250B (en) Composite safety panes
AU659864B2 (en) Transparent laminates and monolithic transparencies
JP3535410B2 (en) Laminated transparent plate
JPS62231745A (en) Safety-glass laminated board
DE1496508A1 (en) Safety composite panes