EP0627019A1 - Verfahren zur thermochemisch-thermischen behandlung von einsatzstählen - Google Patents

Verfahren zur thermochemisch-thermischen behandlung von einsatzstählen

Info

Publication number
EP0627019A1
EP0627019A1 EP93901704A EP93901704A EP0627019A1 EP 0627019 A1 EP0627019 A1 EP 0627019A1 EP 93901704 A EP93901704 A EP 93901704A EP 93901704 A EP93901704 A EP 93901704A EP 0627019 A1 EP0627019 A1 EP 0627019A1
Authority
EP
European Patent Office
Prior art keywords
temperature
process step
followed
carbon
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93901704A
Other languages
English (en)
French (fr)
Other versions
EP0627019B1 (de
Inventor
Wenzel Bina
Dieter Ekkert
Werner Kreiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INA Waelzlager Schaeffler OHG
Original Assignee
INA Waelzlager Schaeffler OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INA Waelzlager Schaeffler OHG filed Critical INA Waelzlager Schaeffler OHG
Publication of EP0627019A1 publication Critical patent/EP0627019A1/de
Application granted granted Critical
Publication of EP0627019B1 publication Critical patent/EP0627019B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces

Definitions

  • the invention relates to a method for the thermochemical treatment of case-hardening steels, in which an edge zone of a workpiece, in particular cup tappets, roller bearing parts, gear and coupling elements, is enriched with carbon and nitrogen and then subjected to a martensitic hardening.
  • One such method is carbonitriding for treating a workpiece in the austenitic state with the purpose of enriching the surface layer with carbon and with nitrogen, both elements subsequently being in solid solution in the austenite. Following this treatment, quenching is generally carried out immediately in order to achieve hardening. Carbonitriding improves the surface hardness and wear resistance of the structural parts (technology of heat treatment of steel, p. 169 ff, VEB German publishing house for basic material industry, Leipzig 1986).
  • the workpieces treated according to this method have improved properties with regard to wear resistance, but these are not sufficient in every application for components which are subject to high tribological stress, such as the contact surfaces of tappets in the valve train of an internal combustion engine.
  • these components have to be ground so that the highly enriched, wear-resistant outermost surface layer is at least partially ground away in the course of this cutting shaping.
  • Nitro carburizing is a thermochemical method for enriching the edge layer of a workpiece with nitrogen and carbon to form a connection layer, a diffusion layer enriched with nitrogen being formed above the connection layer.
  • a prerequisite for the functionality of nitrocarburized parts is a corresponding supporting effect of the diffusion layer under the naturally more or less brittle connection layer.
  • connection layer tends to plastic deformation under high tribological stresses, such as foreign bodies in the oil circuit of an internal combustion engine, and as a result can damage the connection layer.
  • the object of the present invention is to create a thermochemical-thermal treatment method which ensures sufficient wear resistance in the case of components which are subject to high tribological stress.
  • a first process step consists of carbonitriding at a temperature of 780 to 1050 ° C., with carburization and nitriding to 0.4 to 0.9 percent by weight of carbon and 0.1 to 0.8, preferably 0, 3 to 0.7 weight percent nitrogen is set.
  • the high temperatures ensure that the austenite in the peripheral zone has a correspondingly high solvency for both carbon and nitrogen.
  • the enrichment of the diffusion elements nitrogen and carbon has to be carried out in such a way that their solubility in austenite is not exceeded, ie the carbon potential in the atmosphere is to be adjusted in accordance with the SE line in the iron-carbon diagram. The same applies to the nitrogen supply according to the iron-nitrogen status diagram.
  • the holding time during carbonitriding which is one to four hours may depend on the desired hardening depth, the upper limit of which may be one millimeter.
  • the chemical composition of the edge zone is achieved by diffusion of carbon and nitrogen at the temperatures mentioned in a known manner using a working gas which contains both carbon-donating components and nitrogen-donating components.
  • the second step in the process of carbonitriding is rapid subcooling of the hardened material by quenching in suitable media.
  • the quenching should take place, for example in an oil bath, at temperatures well below the martensite starting point of the edge zone.
  • the diffusion process of the iron companions nitrogen and carbon is interrupted and the cementite precipitation at the austenite grain boundaries is suppressed, and a structure is formed which is composed of martensite containing carbon and nitrogen and a residual austenite content of up to 50%.
  • the surface hardness is between 65 and 55 Rockwell hardness.
  • the aim of the simultaneous enrichment with carbon and nitrogen in the present case is to increase the tempering resistance of said case hardening steel against case hardening.
  • the third step in the process of carbonitriding is followed by a heat treatment in which the material is tempered at 520 to 650 °, ie 20 to 40 ° C above the subsequent nitrocarburizing temperature.
  • the heating rate is between 10 to 30 ° per minute and the holding time is about 1 to 2 hours.
  • the fourth process step is followed by cooling to room temperature, the cooling rate being selected so that no new stresses are generated in the component as a result of the cooling. Tempering at a temperature of 20 to 40 ° C. above the nitro carburizing temperature means that the structural state set by carbonitriding in the edge region of the workpiece no longer changes during the subsequent nitro carburizing due to temperature influences.
  • the nitro carburizing follows as the sixth step of the method according to the invention.
  • the goal is to build a closed connection layer up to 20 ⁇ m thick.
  • the ground parts are treated at temperatures from 500 to 620 ° C for 60 to 150 minutes.
  • Nitro carburizing takes place in a gas mixture of ammonia, carbon dioxide, nitrogen and endogas or exogas.
  • the cooling of the nitrided material as the last step of the process can take place under protective gas in the furnace or by quenching in oil.
  • the nitro carburizing is carried out at a temperature of 530 to 570 ° C.
  • these temperatures are below the eutectoid temperature and, on the other hand, they are high enough to build up the connection layer with a sufficiently high growth rate.
  • the nitro carburizing can also be carried out in plasma or in a salt bath.
  • case hardening takes place at a temperature of 780 to 1050 ° C. with a carburization of the peripheral zone of 0.4 to 0.9 percent by weight of carbon with a holding time of 1 to 4 hours .
  • the subsequent method steps remain the same as described in the characterizing part of claim 1.
  • thermochemical-thermal treatment gives the material a high degree of wear resistance and load-bearing capacity, since the diffusion layer lying underneath the supporting layer has a significantly improved supporting effect, so that the connecting layer does not become plastically deformed even under the highest tribological stresses the underlying diffusion layer can be damaged.
  • Figure 1 shows the individual process steps of the method according to the invention as a function of time and temperature
  • Figure 2 shows a cross section in the region of the functional surface.
  • the carbonitriding takes place at a temperature of 780 to 1050 ° C.
  • the edge zone is carburized and nitrided within 1 to 4 hours.
  • This phase is followed by a phase 2, in which the structure is quenched to a temperature well below the martensite starting point of the edge zone.
  • the material is left at 20 to 40 ° C. above the nitro carburizing temperature for 1 to 2 hours.
  • the material is cooled under an oven or protective gas atmosphere before, as shown in dashed lines, the parts are subjected to an exciting shaping process in a fifth phase in order to bring them to their finished part dimensions.
  • a closed connecting layer 2 to 20 ⁇ m, preferably 6 to 12 ⁇ m thick is built up within 60 to 150 minutes.
  • the ground parts are used for this Treated temperatures from 500 to 620 ° C in a gas mixture of ammonia, carbon dioxide, nitrogen and endogas or exogas.
  • the last phase 7 is followed by cooling of the nitro carburized material under protective gas in the oven or by quenching in oil or aqueous media. Points that are not subject to wear and tear can be reworked.
  • FIG. 2 schematically shows the layer structure of the edge zone of a part which is treated by the method according to the invention.
  • the size relationships between the connection layer and the diffusion layer are such that the thickness of the connection layer is up to 20 ⁇ m, while the diffusion layer can have a thickness of several tenths of a millimeter.
  • the starting material 10 adjoins the diffusion layer 9.
  • the supporting effect of the diffusion layer located under the connecting layer is significantly improved by carbonitriding and tempering compared to an only nitro-carburized part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

Beschreibung
Verfahren zur thermochemiseh-thermischen Behandlung von Einsatzstählen
Die Erfindung betrifft ein Verfahren zur thermochemisch-ther isehen Behandlung von Einsatzstählen, bei denen eine Randzone eines Werkstük- kes, insbesondere Tassenstößel, Wälzlagerteile, Getriebe- und Kupp¬ lungselemente, mit Kohlenstoff und Stickstoff angereichert und an- schließend einer martensitischen Härtung unterzogen wird.
Ein derartiges Verfahren stellt das Karbonitrieren zum Behandeln eines Werkstückes im austenitischen Zustand mit dem Zweck der Anreicherung der Randschicht mit Kohlenstoff und mit Stickstoff dar, wobei sich beide Elemente danach im Austenit in fester Lösung befinden. Im An¬ schluß an diese Behandlung erfolgt im allgemeinen unmittelbar ein Abschrecken zur Erzielung einer Härtung. Durch Karbonitrieren werden die Oberflächenhärte und Verschleißfestigkeit der Konstruktionsteile verbessert (Technologie der Wärmebehandlung von Stahl, S. 169 ff, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1986).
Die nach diesem Verfahren behandelten Werkstücke weisen zwar verbes¬ serte Eigenschaften hinsichtlich der Verschleißfestigkeit auf, die jedoch für tribologisch hoch beanspruchte Bauteile wie beispielsweise die Kontaktflächen von Tassenstößeln im Ventiltrieb einer Brennkraft¬ maschine nicht in jedem Anwendungsfall ausreichen. Darüberhinaus ist wegen der geforderten Formgenauigkeit bei karbonitrierten Teilen ein Schleifen dieser Bauteile nötig, so daß im Zuge dieser spanenden Formgebung die hoch angereicherte, verschleißfeste äußerste Oberflä- chenschicht zumindest teilweise weggeschliffen wird.
Ein anderes Verfahren zur Erhöhung der Verschleißbeständigkeit ist das Nitrokarburieren. Dies ist ein thermochemisches Verfahren zum Anrei¬ chern der Randschicht eines Werkstückes mit Stickstoff und Kohlenstoff unter Bildung einer Verbindungsschicht, wobei sich unterhalb der Verbindungsschicht eine vor allem mit Stickstoff angereicherte Diffu¬ sionsschicht bildet. Voraussetzung für die Funktionstüchtigkeit nitro- karburierter Teile ist neben dem Vorhandensein dieser mit Stickstoff und Kohlenstoff angereicherten, ausreichend dicken Verbindungsschicht eine entsprechende Stützwirkung der Diffusionsschicht unter der natur¬ gemäß mehr oder weniger spröden Verbindungsschicht.
Der Nachteil dieses Verfahrens besteht nun darin, daß die unter der Verbindungsschicht liegende Diffusionsschicht bei tribologisch hohen Beanspruchungen, wie beispielsweise durch Fremdkörper im Ölkreislauf einer Brennkraftmaschine, zu plastischer Verformung neigt und als Folge davon zu Beschädigungen der Verbindungsschicht führen kann.
Aufgabe der vorliegenden Erfindung ist es, ein thermochemisch-thermi- sches Behandlungsverfahren zu schaffen, das bei tribologisch hoch beanspruchten Bauteilen eine ausreichende Verschleißfestigkeit gewähr- leistet.
Diese Aufgabe wird nach dem Kennzeichen des Anspruchs 1 gelöst durch mehrere aufeinanderfolgende Verfahrensschritte.
- Ein erster Verfahrensschritt besteht aus einem Karbonitrieren bei einer Temperatur von 780 bis 1050°C, wobei in der Randzone eine Auf¬ kohlung und Aufstickung auf 0,4 bis 0,9 Gewichtsprozent Kohlenstoff und 0,1 bis 0,8, vorzugsweise 0,3 bis 0,7 Gewichtsprozent Stickstoff eingestellt wird. Die hohen Temperaturen sorgen dafür, daß der Auste- nit in der Randzone ein entsprechend hohes Lösungsvermögen sowohl für Kohlenstoff als auch für Stickstoff aufweist. Die Anreicherung der Diffusionselemente Stickstoff und Kohlenstoff hat dabei so zu erfol¬ gen, daß deren Löslichkeit im Austenit nicht überschritten wird, d. h. das Kohlenpotential in der Atmosphäre ist dabei entsprechend der S-E- Linie im Eisenkohlenstoff-Diagramm abzustimmen. Entsprechendes gilt für das Stickstoffangebot gemäß dem Zustandsdiagramm Eisen-Stickstoff. Die Haltezeit während des Karbonitrierens, die ein bis vier Stunden betragen kann, richtet sich nach der gewünschten Einhärtetiefe, deren Obergrenze bei einem Millimeter liegen kann. Erreicht wird die chemi¬ sche Zusammensetzung der Randzone durch Diffusion von Kohlenstoff und Stickstoff bei den genannten Temperaturen in bekannter Weise unter Verwendung eines Arbeitsgases, das sowohl kohlenstoffabgebende Kom¬ ponenten als auch stickstoffabgebende Komponenten enthält.
An das Karbonitrieren schließt sich als zweiter Verfahrensschritt eine schnelle Unterkühlung des Härtegutes durch Abschrecken in geeigneten Medien an. Die Abschreckung soll, beispielsweise in einem Ölbad, auf Temperaturen deutlich unter dem Martensitstartpunkt der Randzone erfolgen. Dadurch wird der Diffusionsvorgang der Eisenbegleiter Stick¬ stoff und Kohlenstoff unterbrochen und die Zementitausscheidung an den Austenitkorngrenzen unterdrückt und es entsteht ein Gefüge, das sich aus Kohlenstoff und Stickstoff enthaltendem Martensit und einem Rest- austenitanteil bis zu 50 % zusammensetzt. Die Oberflächenhärten liegen dabei zwischen 65 und 55 Härte Rockwell. Ziel der gleichzeitigen Anreicherung mit Kohlenstoff und Stickstoff ist im vorliegenden Fall eine Erhöhung der Anlaßbeständigkeit besagten Einsatzstahles gegen- über dem Einsatzhärten.
- An das Karbonitrieren schließt sich als dritter Verfahrensschritt eine Wärmebehandlung an, im Zuge derer der Werkstoff bei 520 bis 650°, d. h. 20 bis 40° C über der nachfolgenden Nitrocarburiertemperatur, angelassen wird. Die Aufheizgeschwindigkeit liegt dabei zwischen 10 bis 30° pro Minute und die Haltezeit beträgt etwa 1 bis 2 Stunden. Nach dem Anlassen schließt sich als vierter Verfahrensschritt eine Abkühlung auf Raumtemperatur an, wobei die Abkühlgeschwindigkeit so gewählt wird, daß durch die Abkühlung keine neuen Spannungen im Bau- teil erzeugt werden. Durch das Anlassen bei einer Temperatur von 20 bis 40° C über der Nitrokarburiertemperatur wird erreicht, daß sich der durch das Karbonitrieren im Randbereich des Werkstückes einge¬ stellte Gefügezustand beim nachfolgenden Nitrokarburieren durch Tempe¬ ratureinflüsse nicht mehr verändert. Da jede Änderung des Gefügezu- Standes mit einer Volumenvergrößerung bzw. -Verkleinerung verbunden ist, wird eine derartige Volumenänderung beim nachfolgenden Nitrokar¬ burieren ausgeschlossen. Darüberhinaus wird der beim vorhergehenden Karbonitrieren mit nachfolgender Abkühlung mit inneren Spannungen eingefrorene Ungleichgewichtszustand in ein bei der Nitrokarburiertem- peratur im Gleichgewicht befindliches Gefüge umgewandelt. Der Abbau von inneren Spannungen beim Anlassen ist ebenfalls mit Maß- und Form- änderungen des Werkstückes verbunden.
- Nach der Anlaßbehandlung werden die durch die vorhergehenden Behand¬ lungsstufen Karbonitrieren und Anlassen eingetretenen Form- und Ma߬ änderungen der Teile durch einen spangebenden Formgebungsprozeß als fünften Verfahrensschritt korrigiert, um die zu nitrokarburierenden Teile auf das Fertigteilendmaß zu bringen. Gegebenenfalls ist dabei ein durch die Stickstoff- und Kohlenstoffaufnähme beim Nitrokarburie- ren eintretendes Volumenwachstum maßlich zu berücksichtigen.
- Nach der spanenden Formgebung schl eßt sich als sechster Schritt des erfindungsgemäßen Verfahrens das Nitrokarburieren an. Ziel ist der Aufbau einer bis zu 20μm dicken, geschlossenen Verbindungsschicht. Hierzu werden die geschliffenen Teile bei Temperaturen von 500 bis 620° C 60 bis 150 Minuten lang behandelt. Das Nitrokarburieren erfolgt im Gasgemisch aus Ammoniak, Kohlendioxid, Stickstoff und Endo- oder Exogas. Die Abkühlung des Nitriergutes als letzter Schritt des Ver¬ fahrens kann unter Schutzgas im Ofen oder durch Abschreckung in Öl erfolgen.
Nach einer bevorzugten Ausführungsform der Erfindung nach Anspruch 2 erfolgt das Nitrokarburieren bei einer Temperatur von 530 bis 570°C. Diese Temperaturen liegen einerseits unterhalb der eutektoiden Tempe¬ ratur und andererseits hoch genug, um mit ausreichend hoher Wachstums¬ geschwindigkeit die Verbindungsschicht aufzubauen. Darüberhinaus kommt es in diesem Temperaturbereich zu keiner zusätzlichen Gefügeumwandlung im aufgestickten Randbereich, so daß auf ein Abschrecken und den damit verbundenen Maß- und Formänderungen verzichtet werden kann.
In Weiterbildung der Erfindung nach Anspruch 3 kann das Nitrokarburie- ren auch im Plasma oder im Salzbad durchgeführt werden.
Nach einer weiteren Ausführungsform der Erfindung nach dem Oberbegriff des unabhängigen Anspruchs 4 ist es auch möglich, daß anstelle der Karbonitrierung eine Einsatzhärtung bei einer Temperatur von 780 bis 1050° C mit einer Aufkohlung der Randzone von 0,4 bis 0,9 Gewichts¬ prozent Kohlenstoff bei einer Haltezeit von 1 bis 4 Stunden erfolgt. Die sich anschließenden Verfahrensschritte bleiben die gleichen, wie im kennzeichnenden Teil des Anspruchs 1 beschrieben.
Durch das erfindungsgemäße Verfahren zur thermochemiseh-thermischen Behandlung werden dem Werkstoff eine hohe Verschleißfestigkeit und Tragfähigkeit verliehen, da die unter der Verbindungsschicht liegende und diese stützende Diffusionsschicht eine wesentlich verbesserte Stützwirkung erhält, so daß auch bei höchsten tribologischen Beanspru¬ chungen die Verbindungsschicht nicht durch plastische Verformungen der darunter liegenden Diffusionsschicht beschädigt werden kann.
Die Erfindung wird an nachstehendem Ausführungsbeispiel näher erläu¬ tert. Es zeigen:
Figur 1 die einzelnen Verfahrensschritte des erfindungsgemäßen Verfahrens in Abhängigkeit von Zeit und Temperatur;
Figur 2 einen Querschnitt im Bereich der Funktionsfläche.
In der mit 1 bezeichneten Phase erfolgt die Karbonitrierung bei einer Temperatur von 780 bis 1050° C. Je nach gewünschter Einhärtetiefe erfolgt innerhalb von 1 bis 4 Stunden eine Aufkohlung und Aufstickung der Randzone. Dieser Phase schließt sich eine Phase 2 an, in der das Gefüge auf eine Temperatur deutlich unter dem Martensitstartpunkt der Randzone abgeschreckt wird. In einer dritten Phase wird der Werkstoff 20 bis 40° C über der Nitrokarburiertemperatur 1 bis 2 Stunden ange¬ lassen. In einer vierten Phase wird der Werkstoff unter Ofen- bzw. Schutzgasatmosphäre abgekühlt, bevor wie gestrichelt dargestellt, in einer fünften Phase die Teile einem spannenden Formgebungsprozeß unterworfen werden, um diese auf ihr Fertigteilendmaß zu bringen. In einer sechsten Phase erfolgt innerhalb von 60 bis 150 Minuten der Aufbau einer 2 bis 20μm, vorzugsweise 6 bis 12 μm dicken, geschlosse¬ nen Verbindungsschicht. Hierzu werden die geschliffenen Teile bei Temperaturen von 500 bis 620° C in einem Gasgemisch aus Ammoniak, Kohlendioxyd, Stickstoff und Endogas oder Exogas behandelt. Danach schließt sich als letzte Phase 7 die Abkühlung des Nitrokarburiergutes unter Schutzgas im Ofen oder durch Abschreckung in Öl oder wäßrigen Medien an. Nicht auf Verschleiß beanspruchte Stellen können spangebend nachgearbeitet werden.
Figur 2 zeigt schematisch den Schichtenaufbau der Randzone eines nach dem erfindungsgemäßen Verfahren behandelndes Teiles. An die außenlie- gende Verbindungsschicht 8, die aus G-Nitriden, Y1-Nitriden, Karbiden und Karbonitriden besteht, schließt sich die Diffusionsschicht 9 an, die aus Nitriden, Karbiden, Karbonitriden und Ferrit besteht. Die Größenverhältnisse zwischen Verbindungsschicht und Diffusionsschicht sind dabei so, daß die Stärke der Verbindungsschicht bis zu 20μm beträgt, während die Diffusionsschicht eine Stärke von mehreren zehn¬ tel Millimetern aufweisen kann. An die Diffusionsschicht 9 schließt sich der Ausgangswerkstoff 10 an.
Erfindungsgemäß wird die Stützwirkung der unter der Verbindungsschicht befindlichen Diffusionsschicht durch Karbonitrieren und Anlassen gegenüber einem nur nitrokarburiertem Teil entscheidend verbessert.
Bezugszahlenliste
1 Karbonitrieren oder Einsatzhärten
2 Abkühlen
3 Anlassen
4 Abkühlen 5 spanende Formgebung
6 Nitrokarburieren
7 Abkühlen
8 Verbindungsschicht
9 Diffusionsschicht 10 Ausgangswerkstoff

Claims

Schutzansprüche
1. Verfahren zur thermochemisch-thermisehen Behandlung von Einsatz- stählen, bei denen eine Randzone eines Werkstückes, insbesondere
Tassenstößel, Wälzlagerteile, Getriebe- und Kupplungselemente, mit Kohlenstoff und Stickstoff angereichert und anschließend einer marten- sitischen Härtung unterzogen wird, dadurch gekennzeichnet, daß in einem ersten Verfahrensschritt eine Karbonitrierung (1) bei einer Temperatur von 780 bis 1050° C mit einer Aufkohlung und Aufstickung der Randzone von 0,4 bis 0,9 Gewichtsprozent Kohlenstoff und 0,1 bis 0,8 Gewichtsprozent Stickstoff bei einer Haltezeit von 1 bis 4 Stunden erfolgt, daß sich in einem zweiten Verfahrensschritt der Karbonitrie¬ rung (1) eine Abschreckung (2) auf eine Temperatur deutlich unter dem Martensitstartpunkt der Randzone anschließt, daß ein dritter Verfah¬ rensschritt ein AnlaßVorgang (3) ist, welcher bei einer Temperatur von 20 bis 40° C über einer Nitrokarburierte peratur, mit einer Aufheizge¬ schwindigkeit von 10 bis 30° C pro Minute und einer Haltezeit von 1 bis 2 Stunden vorgenommen wird, daß als vierter Verfahrensschritt eine Abkühlung (4) auf Raumtemperatur folgt und daß sich als fünfter Ver¬ fahrensschritt eine spanende Formgebung (5) der Werkstücke anschließt und daß als sechster Verfahrensschritt ein Nitrokarburieren (6) in einem Gasgemisch aus Ammoniak, Kohlendioxid, Stickstoff und Endo- oder Exogas bei einer Temperatur von 500 bis 620° C mit einer Haltezeit von 60 bis 150 Minuten folgt, dem sich als letzter Verfahrensschritt ein Abkühlen auf Raumtemperatur anschließt.
2. Verfahren zur thermochem sch-thermisehen Behandlung von Einsatz- stählena nach Anspruch 1, dadurch gekennzeichnet, daß das Nitrokarbu- rieren (6) bei einer Temperatur von 530 bis 570° C stattfindet.
3. Verfahren zur thermochemisch-therππschen Behandlung von Einsatz-- stählen nach Anspruch 1, dadurch gekennzeichnet, daß das Nitrokarbu¬ rieren (6) im Plasma oder Salzbad erfolgt.
4. Verfahren zur thermochemisch-thermisehen Behandlung von Einsatz- stählen, bei denen eine Randzone eines Werkstückes, insbesondere Tassenstößel, Wälzlagerteile, Getriebe- und Kupplungselemente, mit Kohlenstoff angereichert und anschließend einer martensitischen Här¬ tung unterzogen wird, dadurch gekennzeichnet, daß in einem ersten Verfahrensschritt eine Einsatzhärtung (1) bei einer Temperatur von 780 bis 1050°C mit einer Aufkohlung der Randzone von 0,4 bis 0,9 Gewichts¬ prozent Kohlenstoff bei einer Haltezeit von 1 bis 4 Stunden erfolgt, daß sich in einem zweiten Verfahrensschritt der Einsatzhärtung (1) eine Abschreckung (2) auf eine Temperatur deutlich unter dem Marten¬ sitstartpunkt der Randzone anschließt, daß ein dritter Verfahrens- schritt ein Anlaßvorgang (3) ist, welcher bei einer Temperatur von 20 bis 40° C über einer Nitrokarburiertemperatur, mit einer Aufheizge¬ schwindigkeit von 10 bis 30° C pro Minute und einer Haltezeit von 1 bis 2 Stunden vorgenommen wird, daß als vierter Verfahrensschritt eine Abkühlung (4) auf Raumtemperatur folgt und daß sich als fünfter Ver- fahrensschritt eine spanende Formgebung (5) der Werkstücke anschließt und daß als sechster Verfahrensschritt ein Nitrokarburieren (6) in einem Gasgemisch aus Ammoniak, Kohlendioxid, Stickstoff und Endo- oder Exogas bei einer Temperatur von 500 bis 620°C mit einer Haltezeit von 60 bis 150 Minuten folgt, dem sich als letzter Verfahrensschritt ein Abkühlen auf Raumtemperatur anschließt.
EP93901704A 1992-02-25 1992-12-18 Verfahren zur thermochemisch-thermischen behandlung von einsatzstählen Expired - Lifetime EP0627019B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4205647A DE4205647C2 (de) 1992-02-25 1992-02-25 Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen
DE4205647 1992-02-25
PCT/EP1992/002951 WO1993017146A1 (de) 1992-02-25 1992-12-18 Verfahren zur thermochemisch-thermischen behandlung von einsatzstählen

Publications (2)

Publication Number Publication Date
EP0627019A1 true EP0627019A1 (de) 1994-12-07
EP0627019B1 EP0627019B1 (de) 1998-04-01

Family

ID=6452467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93901704A Expired - Lifetime EP0627019B1 (de) 1992-02-25 1992-12-18 Verfahren zur thermochemisch-thermischen behandlung von einsatzstählen

Country Status (3)

Country Link
EP (1) EP0627019B1 (de)
DE (2) DE4205647C2 (de)
WO (1) WO1993017146A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326874B2 (ja) * 1993-05-31 2002-09-24 日本精工株式会社 転がり軸受
DE4327440C2 (de) * 1993-08-14 1997-07-03 Schaeffler Waelzlager Kg Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen, Vergütungsstählen und Wälzlagerstählen
DE4418245C2 (de) * 1993-08-14 2003-06-18 Ina Schaeffler Kg Verfahren zur thermochemisch-thermischen Behandlung einer Gleitfläche eines Nockens und/oder einer Gleitfläche eines Nockengegenläufers
JP3411637B2 (ja) * 1993-10-05 2003-06-03 本田技研工業株式会社 内燃機関用ロッカアームの製造方法
US5575064A (en) * 1994-12-06 1996-11-19 Honda Giken Kogyo Kabushiki Kaisha Process for producing rocker arm for internal combustion engine
JPH1060619A (ja) * 1996-08-13 1998-03-03 Tochigi Fuji Ind Co Ltd 構造用鋼製部材
US6224266B1 (en) * 1998-09-18 2001-05-01 Ntn Corporation Wheel bearing device
DE102004028221A1 (de) 2004-06-09 2005-12-29 Ina-Schaeffler Kg Hochbeanspruchtes Motorenbauteil
DE102004043550B4 (de) * 2004-09-09 2012-02-16 Schaeffler Technologies Gmbh & Co. Kg Verschleißfeste Beschichtung, ihre Verwendung und Verfahren zur Herstellung derselben
EP2653671B1 (de) * 2010-12-13 2017-03-22 Kawasaki Jukogyo Kabushiki Kaisha Steuernocken und ventiltriebvorrichtung für einen motor
EP2888377B1 (de) * 2012-08-21 2018-03-14 Aktiebolaget SKF Verfahren zur wärmebehandlung eines stahlbauteils und stahlbauteil
DE102015204656A1 (de) * 2015-03-16 2016-09-22 Aktiebolaget Skf Schichtbildung für Wälzlagerkomponenten
SE1550958A1 (en) * 2015-07-03 2017-01-04 Scania Cv Ab A rocker arm and a rocker arm assembly
DE102018208283A1 (de) * 2018-05-25 2019-11-28 Robert Bosch Gmbh Verfahren zum Herstellen eines metallischen Bauteils
CN111945104A (zh) * 2020-08-17 2020-11-17 沈阳飞机工业(集团)有限公司 薄层氮碳共渗方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461083A (en) * 1973-12-08 1977-01-13 Bell T Methods of treating metal
SU609771A1 (ru) * 1976-12-22 1978-05-10 Предприятие П/Я В-2302 Способ обработки стальных изделий
EP0033403A1 (de) * 1980-01-31 1981-08-12 Ford Motor Company Verfahren zur Behandlung der Oberflächen hochgekohlter Stahlgegenstände und Gegenstände aus hochgekohltem Stahl
US4470854A (en) * 1981-10-01 1984-09-11 Kabushiki Kaisha Komatsu Seisakusho Surface hardening thermal treatment
SE441933B (sv) * 1984-02-14 1985-11-18 Ibm Svenska Ab Uppkolnings- och vermebehandlingsprocess for en maskindel, exempelvis en tryckhammare
JP2779170B2 (ja) * 1988-07-25 1998-07-23 マツダ株式会社 浸炭焼入方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9317146A1 *

Also Published As

Publication number Publication date
EP0627019B1 (de) 1998-04-01
WO1993017146A1 (de) 1993-09-02
DE4205647C2 (de) 1996-08-01
DE59209268D1 (de) 1998-05-07
DE4205647A1 (de) 1993-08-26

Similar Documents

Publication Publication Date Title
EP2045339B1 (de) Für eine Wälzbeanspruchung ausgebildetes Werkstück aus durchhärtendem Stahl und Verfahren zur Wärmebehandlung
EP0627019B1 (de) Verfahren zur thermochemisch-thermischen behandlung von einsatzstählen
DE2417179B2 (de) Verfahren zum karburieren hochlegierter staehle
DE102005060113A1 (de) Radlager sowie Verfahren zur Herstellung desselben
DE1521237B1 (de) Werkstuecke und Bauteile aus Eisenwerkstoffen mit einer Verschleissschicht und Verfahren zu deren Herstellung
DE3311696A1 (de) Verfahren zur einsatzhaertung von stahlteilen
DE3910959C2 (de) Verfahren zum Herstellen von Wälzlagerelementen aus durchhärtendem Wälzlagerstahl
DE4204982A1 (de) Verfahren zur thermochemisch-thermischen behandlung von einsatzstaehlen
DE4327440C2 (de) Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen, Vergütungsstählen und Wälzlagerstählen
DE19500576C2 (de) Verfahren zur thermochemischen Behandlung von dünnwandigen Bauteilen
WO2013087379A1 (de) Wälzlagerkomponente
DE10319828B4 (de) Gesintertes Kettenrad und Verfahren zur Herstellung hierfür
EP3286344B1 (de) Verfahren zur thermochemisch-thermischen behandlung von kohlenstoffreduzierten stählen
WO2006013055A1 (de) Verfahren zur wärmebehandlung von werkstücken aus stahl
EP3591081A1 (de) Verwendung eines stahls zur herstellung eines stahlbauteils, nämlich eines zahnrads, einer welle, einer achse oder eines werkzeughalters mit einer thermochemisch gehärteten randschicht und derartiges stahlbauteil mit thermochemisch gehärteter randschicht
DE4418245C2 (de) Verfahren zur thermochemisch-thermischen Behandlung einer Gleitfläche eines Nockens und/oder einer Gleitfläche eines Nockengegenläufers
DE102004037074B3 (de) Verfahren zur Wärmebehandlung von Werkstücken aus Stahl
DE102015204656A1 (de) Schichtbildung für Wälzlagerkomponenten
DE2527026C3 (de) Verfahren zum Herstellen eines Bauteils hoher Lebensdauer
EP0890656B1 (de) Verfahren zum Aufsticken der Randschicht metallischer Werkstücke
DE19852450C2 (de) Verfahren zur Oberflächenhärtung von Formkörpern aus Gußwerkstoff sowie dadurch hergestellte Formkörper und deren Verwendung
WO2023134810A1 (de) STAHLLEGIERUNG FÜR EIN GROßWÄLZLAGERBAUTEIL SOWIE GROßWÄLZLAGER UND VERFAHREN ZUR WÄRMEBEHANDLUNG DES GROßWÄLZLAGERBAUTEILS AUS DIESER STAHLLEGIERUNG
DE3855540T2 (de) Zementierter stahl mit niedrigem siliziumgehalt und verfahren zu seiner herstellung
DE1521237C (de) Werkstücke und Bauteile aus Eisenwerkstoffen mit einer Verschleißschicht und Verfahren zu deren Herstellung
DE602006000331T2 (de) Verstärkungsverfahren durch Karbonitrierung und Umwandlung von Austenit in Martensit in zwei Schritten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19970701

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INA WAELZLAGER SCHAEFFLER OHG

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980402

REF Corresponds to:

Ref document number: 59209268

Country of ref document: DE

Date of ref document: 19980507

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101222

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110407 AND 20110413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120105

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120229

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120103

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59209268

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59209268

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59209268

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121217