EP0890656B1 - Verfahren zum Aufsticken der Randschicht metallischer Werkstücke - Google Patents

Verfahren zum Aufsticken der Randschicht metallischer Werkstücke Download PDF

Info

Publication number
EP0890656B1
EP0890656B1 EP98108307A EP98108307A EP0890656B1 EP 0890656 B1 EP0890656 B1 EP 0890656B1 EP 98108307 A EP98108307 A EP 98108307A EP 98108307 A EP98108307 A EP 98108307A EP 0890656 B1 EP0890656 B1 EP 0890656B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
workpieces
nitriding
gas atmosphere
nitrogen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98108307A
Other languages
English (en)
French (fr)
Other versions
EP0890656A1 (de
Inventor
Jan Willem Bouwman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Publication of EP0890656A1 publication Critical patent/EP0890656A1/de
Application granted granted Critical
Publication of EP0890656B1 publication Critical patent/EP0890656B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Definitions

  • the invention relates to a method for embroidering the edge layer metallic workpieces in a nitrogenous gas atmosphere at a Temperature between 1000 ° C and 1200 ° C.
  • thermochemical treatment of a metallic workpiece Enriching the surface layer with nitrogen is very different Embodiments known.
  • the stated goal here is through a Diffusion saturation of the surface layer with nitrogen the material properties such as hardness, wear resistance, fatigue strength or Improve corrosion resistance. This is how nitriding in one Temperature range of ⁇ 600 ° C the boundary layer by excretion of Nitrides hardened.
  • the heat treatment parameters for the nitriding process depend on the alloy composition of the base material. They must be chosen so that the desired nitrogen enrichment in the surface layer occurs without the nitrogen solubility limit being exceeded.
  • the main process parameters are the temperature, the composition and the pressure of the gas atmosphere, which contains the nitrogen, as well as the treatment time for the required nitriding depth.
  • Ammonia is often used as the nitrogen-releasing medium, since the NH 3 molecules disintegrate immediately in a temperature range above 1000 ° C.
  • EP 0 652 300 A1 describes a process for the heat treatment of near-net shape parts known from stainless steel, in which by Embroidery at a temperature between 1000 ° C and 1200 ° C in one nitrogen-containing gas atmosphere and a subsequent cooling austenitic surface layer with more than 0.3% by weight of dissolved nitrogen is formed.
  • the upper limit for the nitrogen content is the beginning nitride excretion determined. The subsequent cooling occurs so quickly that there is no nitride excretion during this period occurs.
  • the well-known process makes it high-strength and tough austenitic surface layer created over a ductile core, whereby by the diffusion of nitrogen also the austenitic structure in the Surface layer is stabilized so that martensitic or ferritic Structural components in the peripheral zone can also be converted to austenite, which leads to leads to an increase in wear resistance.
  • Another disadvantage of the known method is that the difference in concentration in nitrogen content between marginal and Core area is extremely small, so a long treatment period is necessary to achieve a specified nitriding depth.
  • a disadvantage of the known method is the poor reproducibility of a same nitrogen content as well as the resulting large scatter of Nitrogen absorption within a batch of workpieces.
  • the invention has for its object to develop a method of the type mentioned in such a way that, while avoiding the disadvantages described, a nitrogen content corresponding to the arithmetic specifications is achieved with a simultaneously reduced treatment time.
  • the invention is based on the surprising finding that one with the Zheng prediction model that forms the current state of knowledge (Zheng X .: Nitrogen Solubility in Iron-Base Alloys and Powder Metallurgy of High Nitrogen Stainless Steels, thesis ETH Zurich No. 9488, Zurich, 1991) calculated equilibrium specifications corresponding nitrogen content can be achieved if the partial pressure of nitrogen initially above necessary equilibrium pressure is set and only in a second Level that for the required nitrogen content of the existing Workpiece material necessary equilibrium pressure corresponds.
  • the duration of the first and second Process section depending on the workpiece material used and the required nitrogen content of the rim chosen to be high To achieve reproducibility. It has proven to be particularly advantageous exposed the workpieces during the first and second Expose process section to the same treatment duration.
  • the workpieces are before the actual embroidery under vacuum to the embroidery temperature heated to contribute to the formation of nitrides on the surface of the workpieces avoid lower temperatures.
  • the workpieces in Connection to the embroidery can be deterred, so that depending on used workpiece material a corrosion-resistant surface layer a fully austenitic or martensite structure is created.
  • the Cooling rate chosen while avoiding nitride precipitation becomes.
  • Gas is advantageously used for quenching, so that a Carburizing the surface layer compared to, for example Oil quenching must be ruled out.
  • the gas be with an excess pressure is applied.
  • workpieces are not made from rusting austenitic, martensitic, ferritic, ferritic-austenitic or ferritic-martensitic steel is used so that Nitrogen as a further alloying element to increase the strength of the Boundary layer and leads to an increase in corrosion resistance.
  • Vacuum furnace is used to make variable changes in process parameters and the type of treatment.
  • the current state of knowledge appropriate embroidery processes the temperature and pressure of the Nitrogen kept constant over the treatment period. This will put pressure and temperature depending on the desired nitrogen content set by the choice of alloy composition of the used workpiece and in this regard thermodynamic equilibrium is given.
  • the current one State-of-the-art method for calculating the process parameters Temperature and nitrogen partial pressure come from Zheng (Zheng X .: Nitrogen Solubility in Iron-Base Alloys and Powder Metallurgy of High Nitrogen Stainless Steels, thesis ETH Zurich No. 9488, Zurich, 1991).
  • the one with the Nitrogen atmosphere in equilibrium Workpiece surface takes according to Fick's second law of diffusion as illustrated schematically in FIGS. 2 and 2a. At the Workpiece surface in constant equilibrium Process size, the penetration depth of nitrogen depends essentially on the Length of treatment.
  • Fig. 2b are those using the method according to the invention values of nitrogen content in the surface layer of a workpiece those using the known method as an example juxtaposed.
  • the material used in the present example is a stainless steel of material number 1.4462, which is used as a batch of workpieces was embroidered in a vacuum oven at a temperature of 1150 ° C. To achieve the nitrogen temperature, the one with the Batch loaded vacuum furnace with a residual pressure of less than Evacuated 0.1 mbar and then heated with intermediate rinsing. To the conventional method was then embroidered for 15 hours in a pure nitrogen atmosphere with a constant pressure of 220 mbar, the at the specified temperature of 1150 ° C and the used Material corresponds to the equilibrium pressure on the workpiece surface.
  • the nitrogen pressure was during the first seven and a half hours to a constant 660 mbar and thus far above the necessary equilibrium pressure of 220 mbar.
  • a Treatment duration of 15 hours was both that of conventional Method as well as those embroidered on by the method according to the invention Workpiece batches of pure nitrogen quenching at one pressure of about 6 bar.
  • the method according to the invention was used achieves a nitrogen content of approx. 0.67% by weight on the workpiece surface, while according to the conventional method only a value of approx. 0.42 % By weight was to be achieved.
  • This difference continues inside the Workpiece, with a penetration depth of 2 mm the nitrogen content still almost twice as high by the method according to the invention was like that according to the conventional method and also - as Fig. 2a to remove is - almost corresponds to the calculated course.
  • the process according to the invention not only the nitrogen content increases, but at the same time also the penetration depth constant treatment time of 15 hours was increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Automatic Embroidering For Embroidered Or Tufted Products (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Aufsticken der Randschicht metallischer Werkstücke in einer stickstoffhaltigen Gasatmosphäre bei einer Temperatur zwischen 1000°C und 1200°C.
Die thermochemische Behandlung eines metallischen Werkstücks durch Anreichern der Randschicht mit Stickstoff ist in den unterschiedlichsten Ausführungsformen bekannt. Das erklärte Ziel dabei ist, durch eine Diffusionssättigung der Randschicht mit Stickstoff die Werkstoffeigenschaften wie beispielsweise Härte, Verschleißwiderstand, Dauerfestigkeit oder Korrosionsbeständigkeit zu verbessern. So wird beim Nitrieren in einem Temperaturbereich von < 600°C die Randschicht durch Ausscheiden von Nitriden gehärtet. Beim Aufsticken in einem Temperaturbereich > 1000°C kommt es hingegen zur interstitiellen Lösung des Stickstoffs im austenitischen Gefüge, welches in Abhängigkeit des verwendeten Werkstoffs bei anschließendem Abschrecken zu einer harten, martensitischen Randschicht, welche korrosionsbeständig ist und in der sich Druckeigenspannungen ausbilden, umgewandelt wird oder stabil austenitisch bleibt, so daß eine zähe korrosionsbeständige austenitische Randschicht mit hoher Mischkristallverfestigung entsteht.
Die Wärmebehandlungsparameter für den Aufstickungsprozeß hängen von der Legierungszusammensetzung des Grundwerkstoffes ab. Sie müssen so gewählt werden, daß es zu der gewünschten Stickstoffanreicherung in der Randschicht kommt, ohne daß die Löslichkeitsgrenze des Stickstoffs überschritten wird. Als Prozeßparameter zählen hauptsächlich die Temperatur, die Zusammensetzung und der Druck der Gasatmosphäre, die den Stickstoff enthält, sowie die Behandlungsdauer für die geforderte Aufstickungstiefe. Als stickstoffabgebendes Medium wird häufig Ammoniak verwendet, da die NH3-Moleküle in einem Temperaturbereich oberhalb von 1000°C sofort zerfallen.
Aus der EP 0 652 300 A1 ist ein Verfahren zur Wärmebehandlung von endformnahen Teilen aus nicht rostendem Stahl bekannt, bei dem durch Aufsticken bei einer Temperatur zwischen 1000°C und 1200°C in einer stickstoffhaltigen Gasatmosphäre und einer nachfolgenden Abkühlung eine austenitische Randschicht mit mehr als 0,3 Gew.-% an gelöstem Stickstoff gebildet wird. Die Obergrenze für den Stickstoffgehalt ist hierbei durch die beginnende Nitridausscheidung festgelegt. Die anschließende Abkühlung erfolgt so rasch, daß auch in diesem Zeitraum keine Nitridausscheidung auftritt. Durch das bekannte Verfahren wird eine hochfeste und zähe austenitische Randschicht über einem duktilen Kern geschaffen, wobei durch die Eindiffusion von Stickstoff zudem das austenitische Gefüge in der Randschicht stabilisiert wird, so daß martensitische oder ferritische Gefügeanteile in der Randzone auch zu Austenit umgewandelt werden, was zu einer Erhöhung des Verschleißwiderstandes führt.
Als Nachteil dieses Verfahrens erweist sich, daß der in der Randschicht des behandelten Werkstücks gemessene Stickstoffgehalt weitaus niedriger ausfällt als mit anerkannten Berechnungsmodellen vorausgesagt wird. Ein den derzeitigen Kenntnisstand darlegendes Modell, das die zu einem geforderten Randstickstoffgehalt benötigten thermodynamischen Gleichgewichtsparameter Stickstoffpartialdruck und Temperatur in Abhängigkeit von der Werkstoffzusammensetzung ermittelt, stammt von Zheng (Zheng X.: Nitrogen Solubility in Iron-Base Alloys and Powder Metallurgy of High Nitrogen Stainless Steels, Dissertation ETH Zürich Nr. 9488, Zürich, 1991). Die sich für die Praxis daraus ergebenden Konsequenzen sind, daß zum Erhalt des geforderten Stickstoffgehaltes in der Randschicht nicht auf die durch das Modell vorgegebenen Prozeßgrößen zurückgegriffen werden kann, sondern in zeitaufwendiger Weise mittels Empirie die Prozeßparameter eingestellt werden müssen. Ein weiterer Nachteil des bekannten Verfahrens besteht darin, daß der Konzentrationsunterschied im Stickstoffgehalt zwischen Rand- und Kernbereich äußerst gering ist, so daß eine lange Behandlungsdauer notwendig ist, um eine vorgegebene Nitriertiefe zu erreichen. Nachteilig bei dem bekannten Verfahren ist weiterhin die schlechte Reproduzierbarkeit eines gleichen Stickstoffgehaltes sowie die sich herausstellende große Streuung der Stickstoffaufnahme innerhalb einer Werkstückcharge.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art dahingehend weiterzubilden, daß unter Vermeidung der beschriebenen Nachteile ein den rechnerischen Vorgaben entsprechender Stickstoffgehalt bei gleichzeitig reduzierter Behandlungsdauer erreicht wird.
Die Lösung dieser Aufgabe erfolgt durch das Verfahren gemäß Anspruch 1. Vorteilhafte Ausführungen des Verfahrens sind in den Ansprüchen 2 bis 10 definiert.
Der Erfindung liegt die überraschende Erkenntnis zugrunde, daß sich ein mit dem den derzeitigen Kenntnisstand bildenden Vorhersagemodell nach Zheng (Zheng X.: Nitrogen Solubility in Iron-Base Alloys and Powder Metallurgy of High Nitrogen Stainless Steels, Dissertation ETH Zürich Nr. 9488, Zürich, 1991) errechneten Gleichgewichtsvorgaben entsprechender Stickstoffgehalt erzielen läßt, wenn der Partialdruck des Stickstoffs anfänglich über dem notwendigen Gleichgewichtsdruck eingestellt wird und erst in einer zweiten Stufe dem für den geforderten Stickstoffgehalt des vorhandenen Werkstückmaterials notwendigen Gleichgewichtsdruck entspricht. Obwohl die einschlägige Fachwelt bisher davon ausging, daß ein Stickstoffpartialdruck, der höher ist als der für die vorliegenden Prozeßbedingungen notwendige Gleichgewichtsdruck, auf die Löslichkeit des Stickstoffs keinen Einfluß hat und vielmehr zu unerwünschten Nitridbildungen im Gefüge führt, die den Korrosionswiderstand reduzieren, kommt es bei dem erfindungsgemäßen Verfahren neben einer Erhöhung des Stickstoffgehaltes in der Randschicht des Werkstückes auch zu einer wesentlich konstanteren Stickstoffaufnahme und deutlich höheren Eindringtiefe. Ursächlich hierfür ist, daß während des ersten Prozeßabschnittes ein überhöhtes Stickstoffpotential in der Atmosphäre vorliegt, welches eine Übersättigung der Randschicht zur Folge hat, so daß während des zweiten Prozeßabschnitts bei verringertem Stickstoffpotential der Gasatmosphäre eine Diffusion des Stickstoffs aus der übersättigten Randzone in die Tiefe hinein erzwungen wird.
Zweckmäßigerweise werden die Dauer des ersten und zweiten Prozeßabschnitts in Abhängigkeit von dem verwendeten Werkstückmaterial und dem geforderten Stickstoffgehalt des Randes gewählt, um eine hohe Reproduzierbarkeit zu erzielen. Als besonders vorteilhaft hat es sich dabei herausgestellt, die Werkstücke während des ersten und zweiten Prozeßabschnitts einer gleichen Behandlungsdauer auszusetzen.
Gemäß einem vorteilhaften Merkmal der Erfindung werden die Werkstücke vor dem eigentlichen Aufsticken unter Vakuum auf die Aufstickungstemperatur erwärmt, um die Bildung von Nitriden an der Oberfläche der Werkstücke bei niedrigeren Temperaturen zu vermeiden.
Mit der Erfindung wird weiterhin vorgeschlagen, daß die Werkstücke im Anschluß an das Aufsticken abgeschreckt werden, so daß je nach verwendetem Werkstückmaterial eine korrosionsbeständige Randschicht aus einem vollaustenitischen oder in Martensit umgewandelten Gefüge entsteht. Zu diesem Zweck wird weiterhin vorgeschlagen, daß die Abkühlgeschwindigkeit unter Vermeidung einer Nitridausscheidung gewählt wird. Vorteilhafterweise wird zum Abschrecken Gas verwendet, so daß ein Aufkohlen der Randschicht im Vergleich beispielsweise zu einer Ölabschreckung auszuschließen ist. Um Nitridausscheidungen während des Abschreckens zu vermeiden, wird ferner vorgeschlagen, daß das Gas mit einem Überdruck beaufschlagt wird.
Gemäß einem weiteren Merkmal der Erfindung werden Werkstücke aus nicht rostendem austenitischen, martensitischen, ferritischen, ferritisch-austenitischen oder ferritisch-martensitischen Stahl verwendet, so daß Stickstoff als weiteres Legierungselement zu einer Festigkeitssteigerung der Randschicht und zu einer Erhöhung des Korrosionswiderstandes führt.
Gemäß einem weiteren Vorteil der Erfindung wird vorgeschlagen, daß als Gasatmosphäre reiner Stickstoff verwendet wird, so daß auf einfachste Art und Weise eine Veränderung des Stickstoffdruckes während der Prozeßabschnitte ermöglicht wird.
Schließlich wird vorgeschlagen, daß zur Durchführung des Verfahrens ein Vakuumofen eingesetzt wird, um variable Veränderungen der Prozeßparameter und der Behandlungsart zu ermöglichen.
Im folgenden wird ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens anhand der Zeichnung erläutert, auf der ein Vergleich mit dem Stand der Technik dargestellt ist, und zwar zeigen darin:
Fig. 1
die Prozeßparameter und den Prozeßverlauf eines dem bisherigen Kenntnisstand entsprechenden Aufstickungsverfahrens;
Fig. 1a
die Prozeßparameter und den Prozeßverlauf des erfindungsgemäßen Aufstickungsverfahrens;
Fig. 2
eine qualitative Verteilung des Stickstoffgehaltes in der Randschicht nach dem bekannten Aufstickungsverfahren im Vergleich zu den auf Basis des thermodynamischen Gleichgewichts berechneten Werten;
Fig. 2a
die qualitative Verteilung des Stickstoffgehaltes in der Randschicht nach dem erfindungsgemäßen Aufstickungsverfahren im Vergleich zu den auf Basis des thermodynamischen Gleichgewichts berechneten Werten und
Fig. 2b
einen Vergleich des Stickstoffprofils in der Randschicht nach dem erfindungsgemäßen Aufstickungsverfahren mit dem des bekannten Aufstickungsverfahrens.
Wie Fig. 1 zu entnehmen ist, wird bei einem dem bisherigen Kenntnisstand entsprechenden Aufstickungsverfahren die Temperatur und der Druck des Stickstoffs über die Behandlungsdauer konstant gehalten. Dabei werden Druck und Temperatur in Abhängigkeit des gewünschten Stickstoffgehaltes eingestellt, der durch die Wahl der Legierungszusammensetzung des verwendeten Werkstücks und des sich diesbezüglich einstellenden thermodynamischen Gleichgewichts vorgegeben ist. Eine den derzeitigen Kenntnisstand darlegende Methode zur Berechnung der Prozeßparameter Temperatur und Stickstoffpartialdruck stammt von Zheng (Zheng X.: Nitrogen Solubility in Iron-Base Alloys and Powder Metallurgy of High Nitrogen Stainless Steels, Dissertation ETH Zürich Nr. 9488, Zürich, 1991). Der mit der Stickstoffatmosphäre im Gleichgewicht stehende Stickstoffgehalt an der Werkstückoberfläche nimmt gemäß dem zweiten Fickschen Diffusionsgesetz ab, wie in den Fig. 2 und 2a schematisch veranschaulicht ist. Bei an der Werkstückoberfläche sich im Gleichgewicht befindenden, konstanten Prozeßgrößen hängt die Eindringtiefe des Stickstoffes im wesentlichen von der Länge der Behandlungsdauer ab.
In Fig. 2b sind die bei Anwendung des erfindungsgemäßen Verfahrens zu erzielenden Werte an Stickstoffgehalt in der Randschicht eines Werkstücks denen bei Anwendung des bekannten Verfahrens beispielhaft gegenübergestellt. Der im vorliegenden Beispiel verwendete Werkstoff ist ein nicht rostender Stahl der Werkstoffnummer 1.4462, der als Werkstückcharge in einem Vakuumofen bei einer Temperatur von 1150°C aufgestickt wurde. Zum Erreichen der Aufstickungstemperatur wurde der mit der Werkstückcharge beladene Vakuumofen mit einem Restdruck von weniger als 0.1 mbar evakuiert und anschließend unter Zwischenspülen erwärmt. Nach dem herkömmlichen Verfahren erfolgte daraufhin ein 15stündiges Aufsticken in einer reinen Stickstoffatmosphäre mit einem Druck von konstant 220 mbar, der bei der vorgegebenen Temperatur von 1150°C und dem verwendeten Werkstoff dem Gleichgewichtsdruck an der Werkstückoberfläche entspricht. Beim erfindungsgemäßen Verfahren hingegen befand sich der Stickstoffdruck während der ersten siebeneinhalb Stunden auf konstant 660 mbar und damit weit über dem notwendigen Gleichgewichtsdruck von 220 mbar. Nach einer Behandlungsdauer von 15 Stunden wurden sowohl die nach herkömmlichem Verfahren als auch die nach dem erfindungsgemäßen Verfahren aufgestickten Werkstückchargen einer Abschreckung mit reinem Stickstoff bei einem Druck von ca. 6 bar unterzogen.
Wie in Fig. 2b zu erkennen ist, wurde mit dem erfindungsgemäßen Verfahren ein Stickstoffgehalt von ca. 0,67 Gew.-% an der Werkstückoberfläche erzielt, während nach dem herkömmlichen Verfahren lediglich ein Wert von ca. 0,42 Gew.-% zu erreichen war. Dieser Unterschied setzt sich auch im Inneren des Werkstücks fort, wobei bei einer Eindringtiefe von 2 mm der Stickstoffgehalt nach dem erfindungsgemäßen Verfahren immer noch fast doppelt so hoch war, wie der nach dem herkömmlichen Verfahren und zudem - wie Fig. 2a zu entnehmen ist - nahezu dem berechneten Verlauf entspricht. Darüber hinaus ist festzustellen, daß sich durch das erfindungsgemäße Verfahren nicht nur der Stickstoffgehalt erhöht, sondern zugleich auch die Eindringtiefe bei gleichbleibender Behandlungsdauer von 15 Stunden gesteigert wurde.
Die sich bei dem erfindungsgemäßen Verfahren mit dem verwendeten Werkstoff der Werkstoffnummer 1.4462 ergebende austenitische Randschicht konnte in Folgeversuchen bestätigt werden, so daß insgesamt eine hohe Reproduzierbarkeit gewährleistet ist. Weiterhin zeigte sich, daß die Streuung der Stickstoffaufnahme innerhalb einer Werkstückcharge nach dem erfindungsgemäßen Verfahren weitaus geringer ausfällt, als bei dem herkömmlichen Verfahren. Mit dem voranstehend dargestellten Verfahren ist es daher möglich, deutlich bessere Ergebnisse hinsichtlich den Verschleiß- und Gleiteigenschaften eines metallischen Werkstoffes zu erzielen, als bei den bisher bekannten Aufstickungsverfahren.

Claims (10)

  1. Verfahren zum Aufsticken der Randschicht metallischer Werkstücke in einer stickstoffhaltigen Gasatmosphäre bei einer Temperatur zwischen 1000 °C und 1200°C,
    dadurch gekennzeichnet,
    dass der Partialdruck des Stickstoffs in der Gasatmosphäre während des Aufstickens in einem ersten Prozessabschnitt zum Erreichen eines überhöhten Stickstoffpotentials in der Gasatmosphäre über und in einem zweiten Prozessabschnitt gleich einem Gleichgewichtsdruck eingestellt wird,
    wobei der Gleichgewichtsdruck dem für den Werkstoff der zu behandelnden Werkstücke und einen vorgegebenen Stickstoffgehalt der Randschicht errechneten thermodynamischen Gleichgewicht zwischen Gasatmosphäre und Oberfläche der zu behandelnden Werkstücke entspricht und
    wobei die Dauer von erstem und zweitem Prozessabschnitt in Abhängigkeit von dem Werkstoff und dem gewünschten Stickstoffgehalt der Randschicht gewählt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Werkstücke während des ersten und zweiten Prozessabschnitts einer gleichen Behandlungsdauer ausgesetzt werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Werkstücke vor dem eigentlichen Aufsticken unter Vakuum auf die Aufstickungstemperatur erwärmt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Werkstücke im Anschluss an das Aufsticken abgeschreckt werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Abschreckgeschwindigkeit unter Vermeidung einer Nitridausscheidung gewählt wird.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass zum Abschrecken Gas verwendet wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Gas mit einem Überdruck beaufschlagt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, gekennzeichnet durch Werkstücke aus nicht rostendem austenitischen, martensitischen, ferritischen, ferritisch-austenitischen oder ferritisch-martensitischen Stahl.
  9. Verfahren nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Gasatmosphäre aus reinem Stickstoff.
  10. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Vakuumofen zur Durchführung des Verfahrens.
EP98108307A 1997-07-12 1998-05-07 Verfahren zum Aufsticken der Randschicht metallischer Werkstücke Expired - Lifetime EP0890656B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19729984A DE19729984A1 (de) 1997-07-12 1997-07-12 Verfahren zum Aufsticken der Randschicht metallischer Werkstücke
DE19729984 1997-07-12

Publications (2)

Publication Number Publication Date
EP0890656A1 EP0890656A1 (de) 1999-01-13
EP0890656B1 true EP0890656B1 (de) 2001-06-20

Family

ID=7835556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98108307A Expired - Lifetime EP0890656B1 (de) 1997-07-12 1998-05-07 Verfahren zum Aufsticken der Randschicht metallischer Werkstücke

Country Status (3)

Country Link
EP (1) EP0890656B1 (de)
AT (1) ATE202385T1 (de)
DE (2) DE19729984A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011077368A1 (de) 2011-06-10 2012-12-13 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät mit einem wärmebehandelten Haushaltsgeräte-Bauteil
DE102011105426A1 (de) * 2011-06-22 2012-12-27 Mt Aerospace Ag Druckbehälter zum Aufnehmen und Speichern von kryogenen Fluiden, insbesondere von kryogenen Flüssigkeiten, und Verfahren zu dessen Herstellung sowie dessen Verwendung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637059B (zh) * 2016-12-21 2019-03-05 机械科学研究总院青岛分院有限公司 一种低温气体渗氮的催化方法
CN106637058B (zh) * 2016-12-21 2019-06-25 机械科学研究总院青岛分院有限公司 一种奥氏体不锈钢的低温气体渗氮方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333917C2 (de) * 1993-10-05 1994-06-23 Hans Prof Dr Ing Berns Randaufsticken zur Erzeugung einer hochfesten austenitischen Randschicht in nichtrostenden Stählen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011077368A1 (de) 2011-06-10 2012-12-13 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät mit einem wärmebehandelten Haushaltsgeräte-Bauteil
DE102011105426A1 (de) * 2011-06-22 2012-12-27 Mt Aerospace Ag Druckbehälter zum Aufnehmen und Speichern von kryogenen Fluiden, insbesondere von kryogenen Flüssigkeiten, und Verfahren zu dessen Herstellung sowie dessen Verwendung
DE102011105426B4 (de) * 2011-06-22 2013-03-28 Mt Aerospace Ag Druckbehälter zum Aufnehmen und Speichern von kryogenen Fluiden, insbesondere von kryogenen Flüssigkeiten, und Verfahren zu dessen Herstellung sowie dessen Verwendung

Also Published As

Publication number Publication date
EP0890656A1 (de) 1999-01-13
DE59800880D1 (de) 2001-07-26
ATE202385T1 (de) 2001-07-15
DE19729984A1 (de) 1999-01-14

Similar Documents

Publication Publication Date Title
DE69811200T2 (de) Einsatzstahl mit hervorragender verhinderung der sekundärrekristallisation während der aufkohlung, verfahren zu dessen herstellung, halbzeug für aufzukohlende teile
DE60017010T2 (de) Schraube mit hoher Festigkeit
DE3923999A1 (de) Verfahren zum aufkohlen und vergueten von stahlteilen
DE69817098T2 (de) Herstellungsverfahren für Bauteile aus zementierter oder carbonitrierter Stahl und Stahl für die Herstellung dieser Bauteile
DE1533239B1 (de) Verwendung eines stahles fuer tellerventile
DE1521660B2 (de)
DE2830850C3 (de) Verwendung eines Einsatzstahls
DE102004048172A1 (de) Spanlos hergestelltes dünnwandiges rostfreies Lagerbauteil insbesondere Wälzlagerbauteil
EP1786935B1 (de) Verfahren zur waermebehandlung von waelzlagerbauteilen aus stahl
EP0747154B1 (de) Verfahren und Vorrichtung zur Herstellung von Sinterteilen
EP0890656B1 (de) Verfahren zum Aufsticken der Randschicht metallischer Werkstücke
DE10322255A1 (de) Verfahren zur Hochtemperaturaufkohlung von Stahlteilen
DE1927461B2 (de)
DE19546204C1 (de) Verfahren zur Herstellung von hochfesten Gegenständen aus einem Vergütungsstahl und Anwendung dieses Verfahrens zur Erzeugung von Federn
DE69909940T2 (de) Teile aus martensitischem rostfreiem Stahl und Verfahren zu ihrer Herstellung
DE2537702C3 (de) Verwendung eines niedriglegierten Vergütungsstahls
DE2756191C3 (de) Verfahren zur Wärmebehandlung von Bohrloch-Auskleidungen
DE1950004B2 (de) Verwendung eines Stahles fur Bau teile mit hoher Schwingungsfestigkeit
DE2118697C3 (de) Verfahren zur Herstellung eines hochfesten, kohlenstoffarmen Baustahles mit guter Schweißbarkeit
DE69802525T2 (de) Verfahren zum kontinuierlichen herstellen von stahlband mit verbesserten oberflächeneigenschaften zum tiefziehen
DE2527026C3 (de) Verfahren zum Herstellen eines Bauteils hoher Lebensdauer
DE3407010C2 (de) Körper aus gehärtetem, metastabilem Gusseisen und Verfahren zur Herstellung desselben
DE1458325A1 (de) Waermehaertbarer,rostfreier,legierter Chrom-Nickel-Molybdaen-Stahl
DE1521660C (de) Verfahren zur Erhöhung der Verschleiß festigkeit von durch Kaltbearbeitung verfestig tem Metall
DE19946327B4 (de) Verfahren zur Senkung der Kernhärte beim Einsatzhärten nichtrostender martensitischer Stähle mit Stickstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT CH DE FR GB LI

17Q First examination report despatched

Effective date: 20000118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REF Corresponds to:

Ref document number: 202385

Country of ref document: AT

Date of ref document: 20010715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59800880

Country of ref document: DE

Date of ref document: 20010726

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010906

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: IPSEN INTERNATIONAL GMBH

Free format text: IPSEN INTERNATIONAL GMBH#FLUTSTRASSE 78#47533 KLEVE (DE) -TRANSFER TO- IPSEN INTERNATIONAL GMBH#FLUTSTRASSE 78#47533 KLEVE (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140521

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140513

Year of fee payment: 17

Ref country code: FR

Payment date: 20140527

Year of fee payment: 17

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 202385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150507

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150507

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170523

Year of fee payment: 20

Ref country code: CH

Payment date: 20170519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59800880

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL