EP0619457B1 - Brûleur à prémélange - Google Patents

Brûleur à prémélange Download PDF

Info

Publication number
EP0619457B1
EP0619457B1 EP94103873A EP94103873A EP0619457B1 EP 0619457 B1 EP0619457 B1 EP 0619457B1 EP 94103873 A EP94103873 A EP 94103873A EP 94103873 A EP94103873 A EP 94103873A EP 0619457 B1 EP0619457 B1 EP 0619457B1
Authority
EP
European Patent Office
Prior art keywords
gap
vortex
flow
height
side surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103873A
Other languages
German (de)
English (en)
Other versions
EP0619457A1 (fr
Inventor
Klaus Dr. Döbbeling
Adnan Eroglu
Thomas Dr. Sattelmayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0619457A1 publication Critical patent/EP0619457A1/fr
Application granted granted Critical
Publication of EP0619457B1 publication Critical patent/EP0619457B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers, e.g. vortex valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43171Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43172Profiles, pillars, chevrons, i.e. long elements having a polygonal cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/02Baffles or deflectors for air or combustion products; Flame shields in air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to premix burners according to the double-cone principle with essentially two hollow, conical partial bodies nested one inside the other in the direction of flow, the respective central axes of which are offset from one another, the adjacent walls of the two partial bodies in their longitudinal extension forming tangential gaps for the combustion air, and in the area of the tangential ones Gaps in the walls of the two partial bodies are provided in the longitudinal direction distributed gas inflow openings.
  • Such double-cone burners are known, for example, from EP-B1-0 321 809 and are described later in relation to FIGS. 1 and 2.
  • the fuel there natural gas, is injected into the combustion air flowing in from the compressor through a series of injector nozzles. As a rule, these are evenly distributed over the entire gap.
  • the invention is based on the object of equipping a double-cone burner of the type mentioned at the outset with a device with which longitudinal vortices can be generated without a recirculation area in the inlet gap through which flow passes.
  • the new static mixer which is represented by the 3-dimensional vortex generators, it is possible to achieve extraordinarily short mixing distances at the inlet to the burner with a low pressure drop.
  • a coarse mixing of the two streams takes place after just one full vortex revolution, while a fine mixing due to turbulent flow occurs after a distance that corresponds to a few gap heights.
  • This type of mixture is particularly suitable for mixing the fuel into the combustion air at a relatively low admission pressure and with great dilution.
  • a low admission pressure of the fuel is particularly advantageous when using medium and low calorific fuel gases.
  • the energy required for mixing is largely drawn from the flow energy of the fluid with the higher volume flow, namely the combustion air.
  • the advantage of such an element can be seen in its particular simplicity in every respect.
  • the element consisting of three walls with flow around it is completely problem-free.
  • the roof surface can be joined with the two side surfaces in a variety of ways.
  • the element can also be fixed to flat or curved gap walls in the case of weldable materials by simple weld seams.
  • the vortex generators can also be cast together with the limiting walls. From a fluidic point of view The element has a very low flow around it Pressure loss and it creates vortices without a dead water area.
  • the element can be cooled in a variety of ways and with various means.
  • the combustion air flows evenly into the inlet gaps, it is appropriate to choose the ratio of the height h of the connecting edge of the two side faces to the gap height H so that the generated vortex immediately downstream of the vortex generator is the full gap height or the full height of the vortex generator fills the assigned gap part.
  • premix burners 101 are arranged in the dome-shaped end of a combustion chamber in the combustion chamber wall 100.
  • Gas is preferably used as fuel.
  • the combustion air passes from an annular air inlet 102 into the housing interior 103, from where it flows into the burner 101 in the direction of the arrow.
  • the schematically illustrated premix burner 101 according to FIGS. 1 and 2 is a so-called double-cone burner, as is known for example from EP-B1-0 321 809. It essentially consists of two hollow, conical partial bodies 111, 112 which are nested one inside the other in the direction of flow. The respective central axes 113, 114 of the two partial bodies are offset from one another. The adjacent walls of the two partial bodies in their longitudinal extent form tangential slots 20 for the combustion air, which in this way reaches the interior of the burner. A first fuel nozzle 116 for liquid fuel is arranged there. The fuel is injected into the hollow cone at an acute angle. The resulting conical fuel profile is enclosed by the combustion air flowing in tangentially.
  • the concentration of the fuel is continuously reduced in the axial direction due to the mixing with the combustion air.
  • the burner is also operated with gaseous fuel.
  • gas inflow openings 117 distributed in the longitudinal direction are provided in the region of the tangential slots 20 in the walls of the two partial bodies.
  • the mixture formation begins with the combustion air thus already in the zone of the inlet slots 20. It goes without saying that mixed operation with both types of fuel is also possible in this way.
  • a fuel concentration that is as homogeneous as possible is established over the loaded cross-section in the form of a ring.
  • a defined dome-shaped return flow zone is created at the burner outlet, at the tip of which the ignition takes place.
  • a vortex generator 9 essentially consists of three freely flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the two side surfaces 11 and 13 are perpendicular to the gap wall 21, it being noted that this is not mandatory.
  • the side walls which consist of right-angled triangles, are fixed with their long sides on this gap wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle ⁇ .
  • the joint is designed as a sharp connecting edge 16 and is also perpendicular to the gap wall 21 with which the side surfaces are flush.
  • the two side surfaces 11 enclosing the arrow angle ⁇ , 13 are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 (Fig. 6b, 7b). This axis of symmetry 17 is rectified like the gap axis.
  • the roof surface 10 abuts the same gap wall 21 as the side walls 11, 13 with a very pointed edge 15 running transversely to the inlet gap and its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow gap.
  • the roof surface extends at an angle of inclination ⁇ to the gap wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.
  • the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the gap wall 21.
  • a floor area is not related to the mode of operation of the element.
  • the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator.
  • the edge 15 of the roof surface 10 which runs transversely to the inlet gap through which it flows is thus the edge which is first acted upon by the gap flow.
  • the vortex generator 9 works as follows: When flowing around the edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. There is a swirl-neutral flow pattern in which the direction of rotation of the two vortices is ascending in the area of the connecting edge. The number of twists and the location of the vortex breakdown (vortex break down), if the latter is desired at all, are determined by a corresponding choice of the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself. Depending on the application, these two angles ⁇ and ⁇ are predetermined by the structural conditions and by the process itself. All that then has to be adjusted is the height h of the connecting edge 16 (FIG. 6a).
  • the vortex generator can have different heights compared to the slit height H.
  • the height h of the connecting edge 16 will be coordinated with the gap height H in such a way that the vortex generated immediately downstream of the vortex generator already has such a size that the full gap height H is filled.
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.
  • FIG. 4 shows a so-called half "vortex generator" 9a based on a vortex generator 9 according to FIG. 3, in which only the one of the two side surfaces is provided with the arrow angle ⁇ / 2. The other side surface is straight and oriented in the direction of flow. In contrast to the symmetrical vortex generator 9, only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator 9a, but a swirl is imposed on the flow if the vortex generator 9a is alone.
  • the sharp connecting edge 16 of the vortex generator 9 is the point which is first acted upon by the gap flow.
  • the element is rotated by 180 °.
  • the two opposite vortices have changed their sense of rotation.
  • FIG. 6 shows how a plurality of vortex generators 9, here 3 vortex generators 9, are arranged side by side without gaps across the width of the inlet gap 20.
  • the entry gap 20 has a rectangular shape, but this is not essential to the invention.
  • FIG. 7 An embodiment variant with two full (9) and two half (9a) vortex generators adjoining it on both sides is shown in FIG. 7.
  • the elements differ in particular by their greater height h. If the angle of attack remains the same, this inevitably leads to a greater length L of the element and consequently - because of the same division - to a smaller arrow angle ⁇ .
  • the vortices produced will have a lower swirl strength, but will completely fill the gap cross section within a shorter interval. If in both cases a vortex burst is intended, for example to stabilize the flow, this will be done later with the vortex generator according to FIG. 7 than with that according to FIG. 6.
  • the ducts shown in FIGS. 6 and 7 represent rectangular low-pressure air ducts. It is pointed out once again that the shape of the inlet gap through which the air flows is not essential for the mode of operation of the invention. With the help of the vortex generators 9, 9a, two flows are mixed together. The main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow. The secondary flow in the form of fuel has a substantially smaller mass flow than the main flow. and will in the immediate Area of the vortex generators introduced into the main flow.
  • this injection takes place via individual bores 22a which are made in the wall 21a.
  • the wall 21a is the wall on which the vortex generators are arranged.
  • the bores 22a are located on the line of symmetry 17 downstream behind the connecting edge 16 of each vortex generator. With this configuration, the fuel is fed into the already existing large-scale vortices.
  • FIG. 7 shows an embodiment variant of an inlet gap in which the fuel is also injected via wall bores 22b. These are located downstream of the vortex generators in that wall 21b on which the vortex generators are not arranged, that is to say on the wall opposite the wall 21a.
  • the wall bores 22b are each made centrally between the connecting edges 16 of two adjacent vortex generators, as can be seen in FIG. 4.
  • the fuel reaches the vortex in the same way as in the embodiment according to FIG. 6, but with the difference that it is no longer mixed into the vortex of a pair of vertebrae generated by the same vortex generator, but in one each Vortex of two neighboring vortex generators. Since the adjacent vortex generators are arranged without a gap and generate vortex pairs with the same direction of rotation, the injections according to FIGS. 6 and 7 have the same effect.
  • the vortex generators all have the same sweep and the same angle of attack, which according to FIGS. 2A and 2B leads to different lengths of the vortex generators for a given height. If one wants to carry out the fuel supply according to the rules given in FIG. 6 in the plane of the connecting edges, this naturally leads also to an uneven distance and consequently the diameter of the individual holes.
  • the axis of symmetry of the vortex generators runs in the direction of flow, i.e. at a certain angle to the longitudinal axis of the gap.
  • the vortex generators have the same arrow angles but different angles of attack.
  • the length of all elements is the same.
  • the holes for the fuel injection are equidistant.
  • the injected fuel is dragged along by the vortices and mixed with the air. It follows the helical course of the vertebrae and is evenly finely distributed in the interior of the Benner downstream of the vertebrae. This reduces the risk of impact jets on the opposite wall and the formation of so-called “hot spots” —with the previously customary radial injection of fuel into a swirling flow.
  • the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions.
  • the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention.
  • the introduction of the secondary flow into the main flow can also be carried out in a variety of ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Claims (6)

  1. Brûleur à prémélange suivant le principe du double cône, avec essentiellement deux corps partiels coniques creux (111, 112), emboîtés l'un dans l'autre dans le sens de l'écoulement, dont les axes centraux respectifs (113, 114) sont décalés l'un par rapport à l'autre, dans lesquels les parois des deux corps partiels voisines l'une de l'autre forment, suivant leur dimension longitudinale, des fentes tangentielles (20) pour l'air de combustion, et dans lesquels il est prévu, dans la région des fentes tangentielles, des ouvertures d'entrée de gaz (117) réparties dans le sens longitudinal dans les parois des deux corps partiels, caractérisé en ce que l'air est guidé dans les fentes tangentielles (20) sur des générateurs de tourbillons (9), dont plusieurs sont disposés l'un à côté de l'autre sur la largeur ou le périmètre de la fente parcourue, de préférence sans espaces intermédiaires, et dont la hauteur (h) vaut au moins 50 % de la hauteur (H) de la fente parcourue, et en ce que le combustible est introduit dans la fente (20) à proximité immédiate des générateurs de tourbillons (9), dans lequel
    - un générateur de tourbillons (9) présente trois faces librement balayées, qui s'étendent dans le sens de l'écoulement et dont l'une forme la face de toit (10) et les deux autres les faces latérales (11, 13),
    - les faces latérales (11, 13) sont raccordées à une même paroi de fente (21) et forment l'une avec l'autre l'angle de flèche (α, α/2),
    - la face de toit (10) s'applique sur la même paroi de fente (21) que les faces latérales par une arête (15) orientée transversalement à la fente d'entrée parcourue (20), et
    - les arêtes orientées longitudinalement (12, 14) de la face de toit (10), qui sont raccordées aux arêtes, orientées longitudinalement et pénétrant dans la fente d'écoulement, des faces latérales, sont orientées vers la paroi de fente (21) avec un angle d'attaque (θ).
  2. Brûleur à prémélange suivant la revendication 1, caractérisé en ce que le rapport entre la hauteur (h) du générateur de tourbillons (9, 9a) et la hauteur de fente (H) est choisi de telle façon que le tourbillon produit remplisse toute la hauteur de fente immédiatement en aval du générateur de tourbillons.
  3. Brûleur à prémélange suivant la revendication 1, caractérisé en ce que les deux faces latérales (11, 13) du générateur de tourbillons (9), qui forment l'angle de flèche (α), sont disposées symétriquement par rapport à un axe de symétrie (17).
  4. Brûleur à prémélange suivant la revendication 1, caractérisé en ce que les deux faces latérales (11, 13), qui forment l'angle de flèche (α), définissent l'une avec l'autre une arête de jonction (16), qui forme une pointe (18) avec les arêtes (12, 14) orientées longitudinalement de la face de toit (10), et en ce que l'arête de jonction est de préférence orientée perpendiculairement à la paroi de fente (21), à laquelle les faces latérales sont raccordées.
  5. Brûleur à prémélange suivant la revendication 4, caractérisé en ce que l'arête de jonction (16) et/ou les arêtes (12, 14) orientées longitudinalement de la face de toit sont au moins approximativement des arêtes vives.
  6. Brûleur à prémélange suivant la revendication 1, caractérisé en ce que les générateurs de tourbillons (9) disposés l'un à côté de l'autre dans la fente (20) présentent des hauteurs (h) différentes.
EP94103873A 1993-04-08 1994-03-14 Brûleur à prémélange Expired - Lifetime EP0619457B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1082/93 1993-04-08
CH01082/93A CH687831A5 (de) 1993-04-08 1993-04-08 Vormischbrenner.

Publications (2)

Publication Number Publication Date
EP0619457A1 EP0619457A1 (fr) 1994-10-12
EP0619457B1 true EP0619457B1 (fr) 1997-10-08

Family

ID=4202041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103873A Expired - Lifetime EP0619457B1 (fr) 1993-04-08 1994-03-14 Brûleur à prémélange

Country Status (6)

Country Link
US (1) US5433596A (fr)
EP (1) EP0619457B1 (fr)
JP (1) JPH0712313A (fr)
CH (1) CH687831A5 (fr)
DE (1) DE59404244D1 (fr)
RU (1) RU2106573C1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696959A (zh) * 2015-03-03 2015-06-10 兆轩能科技有限公司 一种燃烧器及其点火器
RU2632749C1 (ru) * 2016-11-08 2017-10-09 Эмель Борисович Ахметов Газотурбинный двигатель

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620403B1 (fr) * 1993-04-08 1996-12-04 ABB Management AG Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible.
DE59402803D1 (de) * 1993-04-08 1997-06-26 Asea Brown Boveri Brennkammer
CH687832A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Brennstoffzufuehreinrichtung fuer Brennkammer.
DE4411623A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Vormischbrenner
DE4411622A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Vormischbrenner
DE4417538A1 (de) * 1994-05-19 1995-11-23 Abb Management Ag Brennkammer mit Selbstzündung
DE4446541A1 (de) * 1994-12-24 1996-06-27 Abb Management Ag Brennkammer
CA2209672C (fr) * 1995-02-03 2006-06-06 Bmw Rolls-Royce Gmbh Corps de guidage de l'ecoulement pour chambres de combustion de turbines a gaz
DE19507088B4 (de) * 1995-03-01 2005-01-27 Alstom Vormischbrenner
DE19510744A1 (de) * 1995-03-24 1996-09-26 Abb Management Ag Brennkammer mit Zweistufenverbrennung
DE19512645A1 (de) * 1995-04-05 1996-10-10 Bmw Rolls Royce Gmbh Vorrichtung zur Kraftstoffaufbereitung für eine Brennkammer
DE19525044A1 (de) * 1995-07-10 1997-01-16 Linde Ag Verfahren und Vorrichtung zum Stoffeintrag in strömende Medien
DE19527453B4 (de) * 1995-07-27 2009-05-07 Alstom Vormischbrenner
JP3492099B2 (ja) * 1995-10-03 2004-02-03 三菱重工業株式会社 バーナ
US5647215A (en) * 1995-11-07 1997-07-15 Westinghouse Electric Corporation Gas turbine combustor with turbulence enhanced mixing fuel injectors
DE19542521A1 (de) * 1995-11-15 1997-05-22 Ruhrgas Ag Verfahren und Brenner zum Verbrennen eines Luft/Brennstoff-Gemisches
DE19545026A1 (de) * 1995-12-02 1997-06-05 Abb Research Ltd Vormischbrenner
DE19548851A1 (de) * 1995-12-27 1997-07-03 Asea Brown Boveri Vormischbrenner
DE19654009B4 (de) * 1996-12-21 2006-05-18 Alstom Vormischbrenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
DE19737997A1 (de) * 1997-08-30 1999-03-04 Asea Brown Boveri Plenum
DE59709446D1 (de) * 1997-10-31 2003-04-10 Alstom Switzerland Ltd Brenner für den Betrieb eines Wärmeerzeugers
ATE244380T1 (de) * 1997-11-21 2003-07-15 Alstom Brenner für den betrieb eines wärmeerzeugers
CN1105595C (zh) * 1998-08-28 2003-04-16 金伯利-克拉克环球有限公司 混合不同流股的装置
EP1048898B1 (fr) 1998-11-18 2004-01-14 ALSTOM (Switzerland) Ltd Brûleur
DE10040869A1 (de) * 2000-08-21 2002-03-07 Alstom Power Nv Verfahren und Vorrichtung zur Unterdrückung von Strömungswirbeln innerhalb einer Strömungskraftmaschine
DE10128063A1 (de) * 2001-06-09 2003-01-23 Alstom Switzerland Ltd Brennersystem
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
EP1439349A1 (fr) * 2003-01-14 2004-07-21 Alstom Technology Ltd Procédé de combustion et brûleur pour sa mise en oeuvre
WO2006058843A1 (fr) * 2004-11-30 2006-06-08 Alstom Technology Ltd Procede et dispositif de combustion d'hydrogene dans un bruleur a premelange
US7437876B2 (en) * 2005-03-25 2008-10-21 General Electric Company Augmenter swirler pilot
GB2435508B (en) * 2006-02-22 2011-08-03 Siemens Ag A swirler for use in a burner of a gas turbine engine
EP2112433A1 (fr) * 2008-04-23 2009-10-28 Siemens Aktiengesellschaft Chambre de mélange
EP2496883B1 (fr) * 2009-11-07 2016-08-10 Alstom Technology Ltd Brûleur à prémélange pour chambre de combustion de turbine à gaz
WO2011054739A2 (fr) 2009-11-07 2011-05-12 Alstom Technology Ltd Système d'injection pour brûleur de réchauffage
EP2496885B1 (fr) 2009-11-07 2019-05-29 Ansaldo Energia Switzerland AG Brûleur avec un système de refroidissement permettant d'accroître le rendement d'une turbine à gaz
EP2496884B1 (fr) 2009-11-07 2016-12-28 General Electric Technology GmbH Système d'injection de brûleur de postcombustion
EP2496882B1 (fr) 2009-11-07 2018-03-28 Ansaldo Energia Switzerland AG Système d'injection pour brûleur de réchauffage avec lances à combustible
US8434723B2 (en) * 2010-06-01 2013-05-07 Applied University Research, Inc. Low drag asymmetric tetrahedral vortex generators
US8881500B2 (en) * 2010-08-31 2014-11-11 General Electric Company Duplex tab obstacles for enhancement of deflagration-to-detonation transition
CH704829A2 (de) 2011-04-08 2012-11-15 Alstom Technology Ltd Gasturbogruppe und zugehöriges Betriebsverfahren.
US9957609B2 (en) 2011-11-30 2018-05-01 Corning Incorporated Process for making of glass articles with optical and easy-to-clean coatings
RU2561956C2 (ru) 2012-07-09 2015-09-10 Альстом Текнолоджи Лтд Газотурбинная система сгорания
EP2685160B1 (fr) * 2012-07-10 2018-02-21 Ansaldo Energia Switzerland AG Brûleur de prémélange du type multi-cônes destiné à une turbine à gaz
EP2703721B1 (fr) * 2012-08-31 2019-05-22 Ansaldo Energia IP UK Limited Brûleur à prémélange
CN103962058A (zh) 2013-01-30 2014-08-06 中国石油化工股份有限公司 预混合器、径向固定床反应器和丁烯氧化脱氢反应系统
CN103615723B (zh) * 2013-11-08 2015-08-19 无锡锡州机械有限公司 热交换器用瓦斯盖
JP6840172B2 (ja) * 2017-01-24 2021-03-10 株式会社日立製作所 流体機器
EP3889506A1 (fr) * 2020-03-31 2021-10-06 Siemens Aktiengesellschaft Composant de brûleur d'un brûleur et brûleur d'une turbine à gaz doté d'un tel composant
CN115362333B (zh) * 2020-03-31 2023-08-25 西门子能源全球有限两合公司 燃烧器的燃烧器部件和燃气轮机的具有这种燃烧器部件的燃烧器
US11039550B1 (en) * 2020-04-08 2021-06-15 Google Llc Heat sink with turbulent structures
CA3113029A1 (fr) * 2021-03-23 2022-09-23 De-Mission Inc. Bruleur par combustion a tourbillon
US11454396B1 (en) * 2021-06-07 2022-09-27 General Electric Company Fuel injector and pre-mixer system for a burner array

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674561A5 (fr) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
DE4121067A1 (de) * 1991-06-26 1993-01-14 Balcke Duerr Ag Vorrichtung zum verbrennen brennbarer stoffe
EP0548396B1 (fr) * 1991-12-23 1995-02-22 Asea Brown Boveri Ag Dispositif servant à mélanger deux composants gazeux et brûleur dans lequel ce dispositif est appliqué

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696959A (zh) * 2015-03-03 2015-06-10 兆轩能科技有限公司 一种燃烧器及其点火器
RU2632749C1 (ru) * 2016-11-08 2017-10-09 Эмель Борисович Ахметов Газотурбинный двигатель

Also Published As

Publication number Publication date
RU2106573C1 (ru) 1998-03-10
EP0619457A1 (fr) 1994-10-12
CH687831A5 (de) 1997-02-28
DE59404244D1 (de) 1997-11-13
JPH0712313A (ja) 1995-01-17
US5433596A (en) 1995-07-18
RU94011631A (ru) 1996-06-20

Similar Documents

Publication Publication Date Title
EP0619457B1 (fr) Brûleur à prémélange
EP0675322B1 (fr) Brûleur à prémélange
EP0623786B1 (fr) Chambre de combustion
EP0619456B1 (fr) Système d'alimentation en carburant pour chambre de combustion
EP0619133B1 (fr) Chambre de mélanges
EP0620403B1 (fr) Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible.
EP1382379B1 (fr) Procédé pour le contrôle de fluide en aval d'un générateur de tourbillons
DE2143012C3 (de) Brenneranordnung bei einer Gasturbinen-Brennkammer
EP0794383B1 (fr) Méthode d'exploitation d'une buse de pulvérisation par pression
DE4411623A1 (de) Vormischbrenner
DE112004002704B4 (de) Verbrennungsanlage
DE19510744A1 (de) Brennkammer mit Zweistufenverbrennung
EP0775869B1 (fr) Brûleur à prémélange
WO2006042796A2 (fr) Bruleur pour turbine a gaz
WO2015150114A1 (fr) Brûleur, turbine à gaz munie dudit brûleur et injecteur de combustible
EP0718561A2 (fr) Brûleur
DE4446611A1 (de) Brennkammer
DE19905996A1 (de) Brennstofflanze zum Eindüsen von flüssigen und/oder gasförmigen Brennstoffen in eine Brennkammer
EP0807213B1 (fr) Corps de guidage de l'ecoulement pour chambres de combustion de turbines a gaz
DE19654116A1 (de) Brenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP0924461B1 (fr) Buse de pulvérisation par pression à deux étages
DE19654008A1 (de) Brenner
DE19708218C2 (de) Gasbrenner
DE4412315A1 (de) Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine
EP0730121A2 (fr) Brûleur à prémélange

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19950307

17Q First examination report despatched

Effective date: 19960930

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59404244

Country of ref document: DE

Date of ref document: 19971113

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971210

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010313

Year of fee payment: 8

Ref country code: DE

Payment date: 20010313

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST