EP0619456B1 - Système d'alimentation en carburant pour chambre de combustion - Google Patents

Système d'alimentation en carburant pour chambre de combustion Download PDF

Info

Publication number
EP0619456B1
EP0619456B1 EP94103408A EP94103408A EP0619456B1 EP 0619456 B1 EP0619456 B1 EP 0619456B1 EP 94103408 A EP94103408 A EP 94103408A EP 94103408 A EP94103408 A EP 94103408A EP 0619456 B1 EP0619456 B1 EP 0619456B1
Authority
EP
European Patent Office
Prior art keywords
duct
supply system
fuel supply
vortex
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103408A
Other languages
German (de)
English (en)
Other versions
EP0619456A1 (fr
Inventor
Yau-Pin Dr. Chyou
Adnan Eroglu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
ABB Asea Brown Boveri Ltd
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0619456A1 publication Critical patent/EP0619456A1/fr
Application granted granted Critical
Publication of EP0619456B1 publication Critical patent/EP0619456B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers, e.g. vortex valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing

Definitions

  • the invention relates to a fuel supply system for a combustion chamber with premix combustion, in which a gaseous and / or liquid fuel is injected as a secondary flow into a gaseous, channeled main flow, the secondary flow having a substantially smaller mass flow than the main flow, and the flow through which the premix channel has curved walls having,
  • the mixing of fuel into a combustion air flow flowing in a premixing duct generally takes place by means of radial injection of the fuel into the duct by means of cross-jet mixers.
  • the momentum of the fuel is so low that an almost complete mixing takes place only after a distance of approximately 100 channel heights.
  • Venturi mixers are also used.
  • the injection of the fuel via grid arrangements is also known.
  • spraying in front of special swirl bodies is also used.
  • the invention is therefore based on the object of providing, in a combustion chamber with premix combustion, a measure with which intimate mixing of combustion air and fuel is achieved within a very short distance, with a simultaneous uniform distribution of speed in the mixing zone.
  • the measure should also be suitable for retrofitting existing premix combustion chambers.
  • the new static mixer which is represented by the 3-dimensional vortex generators, it is possible to achieve extraordinarily short mixing distances in the combustion chamber with a low pressure drop.
  • the generation of longitudinal vortices without a recirculation area results in a rough mixing of the two streams after a full vortex revolution, while fine mixing due to turbulent flow and molecular diffusion processes occurs after a distance that corresponds to a few channel heights.
  • the advantage of vortex generators can be seen in their particular simplicity in every respect.
  • the element consisting of three walls with flow around it is completely problem-free.
  • the roof surface can be joined with the two side surfaces in a variety of ways.
  • the element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area.
  • the element due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.
  • the two side surfaces enclosing the arrow angle ⁇ form an at least approximately sharp connecting edge with one another, which together with the longitudinal edges of the roof surface forms a tip, the flow cross-section is hardly impaired by blocking.
  • the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, then the non-formation of a wake area is advantageous.
  • a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the side walls of the vortex generator which consist of right-angled triangles, are fixed with their long sides on a channel wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle ⁇ .
  • the joint is designed as a sharp connecting edge 16 and is vertical to that channel wall 21 with which the side surfaces are flush.
  • the two side surfaces 11, 13 enclosing the arrow angle ⁇ are symmetrical in shape, size and orientation in FIG. 1 and are arranged on both sides of an axis of symmetry 17. This axis of symmetry 17 is rectified like the channel axis.
  • the roof surface 10 lies with a very narrow edge 15 running transversely to the flow through the channel on the same channel wall 21 as the side walls 11, 13. Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces projecting into the flow channel.
  • the roof surface extends at an angle of inclination ⁇ to the channel wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.
  • the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21.
  • a floor area is not related to the mode of operation of the element.
  • the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator.
  • the edge 15 of the roof surface 10 which runs transversely to the flow through the channel is thus the edge which is first acted upon by the channel flow.
  • the vortex generator works as follows: When flowing around edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. The number of swirls and the location of the vortex breakdown (if the latter is desired at all) are determined by appropriate selection of the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vortex strength or the swirl number becomes increased and the location of the vortex burst moves upstream into the area of the vortex generator itself. Depending on the application, these two angles e and a are predetermined by the structural conditions and by the process itself. Then only the length L of the element and the height h of the connecting edge 16 need to be adjusted (FIG. 4).
  • FIG. 2 shows a so-called half "vortex generator” based on a vortex generator according to FIG. 1, in which only one of the two side surfaces of the vortex generator 9a is provided with the arrow angle ⁇ / 2.
  • the other side surface is straight and oriented in the direction of flow.
  • only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator, but a swirl is forced on the flow.
  • the vortex generators are mainly used on the one hand as a mixer of two flows.
  • the main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow.
  • the secondary flow in the form of a gaseous and / or liquid fuel has a substantially smaller mass flow than the main flow. It is introduced into the main flow in the immediate area of the vortex generators.
  • the introduction into the flow channel of the gaseous and / or liquid fuel to be mixed into the combustion air can be designed in many ways according to FIG. 5.
  • the outflow of the fuel into the combustion air can take place via wall bores 22c, which are staggered in the longitudinal edges 12 and 14 (or at least in their immediate area) are.
  • the fuel is first introduced here through means, not shown, through the channel wall 21 into the hollow interior of the vortex generator. From the wall bores 22c, it thus arrives directly into the vortex which arises and which rises in the injection region. There are defined flow conditions here.
  • the fuel can also be injected from wall bores 22a, which are located in the channel wall 21 along the edge 15 of the vortex generator.
  • the injection angle is then selected so that the fuel flows around the roof surface of the vortex generator as a film before it is mixed in.
  • This "cold" film forms a protective layer against a hot main current for the roof surface.
  • This solution according to is particularly well suited for dual operation, in which both gaseous and liquid fuel are mixed into the main flow and later burned.
  • the liquid fuel, here oil is then injected via a single bore (not shown) which opens directly at the edge 15, preferably at the same injection angle as the gas. This oil also spreads over the surface of the roof as a protective film before it is atomized.
  • a slot (not shown here) could also be used.
  • Wall bores 22b can also be provided downstream of the vortex generators, through which the fuel is blown into the ascending vortex.
  • the fuel can also be injected from a single hole which is made in the area of the tip 18 of the vortex generator.
  • the agent is injected directly into the fully developed vertebra and also in its ascending branch.
  • FIG. 3 shows a combustion chamber with a channel 20 through which flow flows in a simplified manner.
  • an equal number of vortex generators according to FIG. 1 are lined up in the circumferential direction without any free spaces so that the connecting edges 16 are separated by two opposite vortexes. Generators lie in the same radial. If the same heights h are assumed for opposite vortex generators, FIG. 3 shows that the vortex generators on the inner channel ring 21b have a smaller arrow ⁇ . In the longitudinal section in FIG. 4 it can be seen that this could be compensated for by a larger angle of attack ⁇ if swirl-like vortices in the inner and outer ring cross-section are desired. In this solution, as indicated in FIG. 3, two vortex pairs, each with small vertebrae, are generated, which leads to a shorter mixing length.
  • the liquid fuel is injected here via a central fuel lance 24, the mouth of which is located downstream of the vortex generators 9 in the area of the tip 18 thereof.
  • the gaseous fuel is injected twice according to the methods described in FIG. 5.
  • the injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned at the beginning.
  • the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions.
  • the combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.
  • the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.
  • the gaseous fuel can be injected through wall bores which are fed from ring lines provided in the interior of the channel.
  • central lances for liquid fuel can also be provided be, a plurality of which is distributed over the circumference of the ring channel.
  • Fig. 6 shows a configuration like Fig. 3, but with smaller radii of the ring walls and large channel height. The height of the opposing vortex generators is very different.
  • the height h of the connecting edge 16 will be coordinated with the channel height H or the height of the channel part, which is assigned to the vortex generator, in such a way that the vortex generated immediately downstream of the vortex generator already reaches such a size that the full channel height H is filled, which leads to a uniform speed distribution in the applied cross section.
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.
  • the connecting edges of two opposite vortex generators are offset by half a division.
  • the vortex structure downstream of the vortex generators is changed such that the vortices generated on the same side have the same direction of rotation and may merge into one large vortex that fills the entire channel cross section in the corresponding angular sector.
  • this allows the mixing quality to be improved and, on the other hand, a longer lifespan of the vortex can be achieved.
  • This solution offers the possibility, not shown, of raising the height of the inner vortex generators so that their tips can engage between the side walls of the two opposite vortex generators.
  • FIG. 9 four vortex generators 9 are strung together on the wall 21a in the circumferential direction in such a way that no gaps are left on the channel wall.
  • the mode of operation of the elements in such a network corresponds to that of the outer vortex generators in FIG. 3.
  • the arrangement consists of 4 groups of 3 vortex generators 9a each according to FIG. 2. In one group the three vortex generators are equipped with increasing height. All vortices generated are the same rotation.
  • FIG. 13 shows a variant with vortex generators 9 which is particularly suitable as an exchange unit in cylindrical premixing chambers. It is also designed for dual operation, which means that both liquid and gaseous fuel can be mixed into the combustion air.
  • the kit which can be inserted axially into the premixing tube (not shown) consists of a central lance 24 which is provided with vortex generators 9 at its end.
  • the liquid fuel passes through an oil line 26 arranged in the central lance 24 to the injection head, from which it is injected into the channel via nozzles.
  • the nozzles are directed in the direction of the arrow in the symmetry line of the vortex generators.
  • the fuel is captured by the rising vortices.
  • the gaseous fuel which is also supplied via the gas line 29 in the central lance, passes via hollow ribs 27 into a gas ring 28 with which the system is centered and fixed in the tube. The fuel is added to the main flow from this gas ring 28.
  • the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention.
  • the introduction of the secondary flow into the main flow can also be carried out in a variety of ways.
  • the variant according to FIG. 9 is also suitable, for example, in combustion chambers of the "can" principle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Claims (16)

  1. Système d'alimentation en carburant avec combustion à prémélange, dans laquelle un carburant gazeux et/ou liquide est injecté au titre d'écoulement secondaire dans un écoulement principal gazeux canalisé, l'écoulement secondaire présentant un courant massique nettement plus petit que l'écoulement principal, et le canal de prémélange parcouru présentant des parois incurvées, caractérisé
    - en ce que l'écoulement principal est guidé sur des générateurs de tourbillons (9), dont plusieurs sont disposés l'un à côté de l'autre sur le périmètre du canal parcouru (20), sur au moins une paroi du canal, et en ce que l'écoulement secondaire est introduit dans le canal (20) à proximité immédiate des générateurs de tourbillons (9),
    - en ce que les générateurs de tourbillons (9) présentent trois faces librement balayées, qui s'étendent dans le sens de l'écoulement et dont l'une forme la face de toit (10) et les deux autres les faces latérales (11, 13),
    - en ce que les faces latérales (11, 13) sont raccordées à une même paroi de canal (21) et forment l'une avec l'autre l'angle de flèche (α),
    - en ce que la face de toit (10) s'applique sur la même paroi de canal (21) que les faces latérales par une arête (15) orientée transversalement au canal d'entrée parcouru (20), et
    - en ce que les arêtes orientées longitudinalement (12, 14) de la face de toit, qui sont raccordées aux arêtes, orientées longitudinalement et pénétrant dans le canal d'écoulement, des faces latérales (11, 13), sont orientées vers la paroi de canal (21) avec un angle d'attaque (θ).
  2. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que le carburant est injecté par des trous de paroi ou des fentes (22e), qui sont disposés en amont des générateurs de tourbillons, et qui sont alimentés à partir d'un canal annulaire (25) placé à l'intérieur de la paroi de canal.
  3. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que le carburant est injecté par des trous de paroi (22a, 22b) ménagés dans la paroi de canal (21).
  4. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que le carburant est injecté par des trous de paroi (22c), qui se trouvent dans une ou plusieurs faces (10, 11, 13) du générateur de tourbillons (9).
  5. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que le carburant est injecté par une lance centrale à carburant (24), dont les embouchures se trouvent dans le plan de l'arête aval du générateur de tourbillons (9).
  6. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que les moyens de distribution du carburant et les générateurs de tourbillons sont conçus comme des unités d'échange.
  7. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que les deux faces latérales (11, 13) du générateur de tourbillons (9), qui forment l'angle de flèche (α), sont disposées symétriquement par rapport à un axe de symétrie (17).
  8. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que seule une des deux faces latérales du générateur de tourbillons (9) est pourvue d'un angle de flèche (α, αh), tandis que l'autre face latérale est rectiligne et est orientée dans la direction de l'écoulement.
  9. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que les deux faces latérales (11, 13), qui forment l'angle de flèche (α, αh), définissent l'une avec l'autre une arête de jonction (16), qui forme une pointe (18) avec les arêtes. (12, 14) orientées longitudinalement de la face de toit (10), et en ce que l'arête de jonction est orientée selon la direction radiale de la paroi incurvée.
  10. Système d'alimentation en carburant suivant la revendication 9, caractérisé en ce que l'arête de jonction (16) et/ou les arêtes (12, 14) orientées longitudinalement de la face de toit (10) sont au moins approximativement des arêtes vives.
  11. Système d'alimentation en carburant suivant la revendication 9, caractérisé en ce que l'axe de symétrie (17) du générateur de tourbillons (9) est orienté parallèlement à l'axe du canal, l'arête de jonction (16) des deux faces latérales (11, 13) formant l'arête aval du générateur de tourbillons (9) et l'arête (15) de la face de toit (10) orientée transversalement au canal parcouru (20) étant l'arête atteinte en premier lieu par l'écoulement principal.
  12. Système d'alimentation en carburant suivant la revendication 1, caractérisé en ce que le rapport entre la hauteur (h) du générateur de tourbillons et la hauteur de canal (H) est choisi de telle façon que le tourbillon produit remplisse, immédiatement en aval du générateur de tourbillons (9), toute la hauteur du canal ou toute la hauteur de la partie de canal associée au générateur de tourbillons.
  13. Système d'alimentation en carburant suivant la revendication 7 ou 8, caractérisé en ce que le canal (20) est annulaire et en ce qu'un même nombre de générateurs de tourbillons (9) sont alignés dans le sens du périmètre, aussi bien à la paroi annulaire extérieure (21a) qu'à la paroi annulaire intérieure (21b), les arêtes de jonction (16) de deux générateurs de tourbillons (9) opposés se trouvant sur la même radiale.
  14. Système d'alimentation en carburant suivant la revendication 7 ou 8, caractérisé en ce que le canal (20) est annulaire et en ce qu'un même nombre de générateurs de tourbillons (9) sont alignés dans le sens du périmètre, aussi bien à la paroi annulaire extérieure (21a) qu'à la paroi annulaire intérieure (21b), les arêtes de jonction (16) de deux générateurs de tourbillons (9) opposés étant décalées d'un demi-pas l'une par rapport à l'autre.
  15. Système d'alimentation en carburant suivant la revendication 7 ou 8 et 9, caractérisé en ce que le canal (20) est circulaire, et en ce qu'une pluralité de générateurs de tourbillons (9, 9a) sont alignés sur la paroi (21a) dans le sens du périmètre, de préférence sans espaces intermédiaires.
  16. Système d'alimentation en carburant suivant la revendication 14, caractérisé en ce que l'axe de symétrie (17) des générateurs de tourbillons est oblique par rapport à l'axe du canal (Fig. 10).
EP94103408A 1993-04-08 1994-03-07 Système d'alimentation en carburant pour chambre de combustion Expired - Lifetime EP0619456B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1088/93 1993-04-08
CH01088/93A CH687832A5 (de) 1993-04-08 1993-04-08 Brennstoffzufuehreinrichtung fuer Brennkammer.

Publications (2)

Publication Number Publication Date
EP0619456A1 EP0619456A1 (fr) 1994-10-12
EP0619456B1 true EP0619456B1 (fr) 1997-10-08

Family

ID=4202193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103408A Expired - Lifetime EP0619456B1 (fr) 1993-04-08 1994-03-07 Système d'alimentation en carburant pour chambre de combustion

Country Status (6)

Country Link
US (1) US5658358A (fr)
EP (1) EP0619456B1 (fr)
JP (1) JP3527278B2 (fr)
CH (1) CH687832A5 (fr)
DE (1) DE59404243D1 (fr)
RU (1) RU2118756C1 (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4446541A1 (de) * 1994-12-24 1996-06-27 Abb Management Ag Brennkammer
CA2209672C (fr) * 1995-02-03 2006-06-06 Bmw Rolls-Royce Gmbh Corps de guidage de l'ecoulement pour chambres de combustion de turbines a gaz
DE19507088B4 (de) * 1995-03-01 2005-01-27 Alstom Vormischbrenner
DE19512645A1 (de) * 1995-04-05 1996-10-10 Bmw Rolls Royce Gmbh Vorrichtung zur Kraftstoffaufbereitung für eine Brennkammer
DE19520291A1 (de) * 1995-06-02 1996-12-05 Abb Management Ag Brennkammer
GB2305498B (en) * 1995-09-25 2000-03-01 Europ Gas Turbines Ltd Fuel injector arrangement for a combustion apparatus
DE19543701A1 (de) * 1995-11-23 1997-05-28 Abb Research Ltd Vormischbrenner
DE10158295B4 (de) * 2001-11-23 2005-11-24 Bramble-Trading Internacional Lda, Funchal Strömungskörper
US8979525B2 (en) 1997-11-10 2015-03-17 Brambel Trading Internacional LDS Streamlined body and combustion apparatus
US6192939B1 (en) * 1999-07-01 2001-02-27 Industrial Technology Research Institute Apparatus and method for driving a microflow
DE10101816A1 (de) * 2001-01-17 2002-07-18 Peter Ueberall Flachdiffusor zur Änderung des Strömungsquerschnittes in einem Strömungskanal
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
DE10250208A1 (de) * 2002-10-28 2004-06-03 Rolls-Royce Deutschland Ltd & Co Kg Vorrichtung zur Flammenstabilisierung für mager vorgemischte Brenner für Flüssigbrennstoff in Gasturbinenbrennkammern mittels Turbolatorelementen im Hauptstrom
US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
US20050056313A1 (en) * 2003-09-12 2005-03-17 Hagen David L. Method and apparatus for mixing fluids
US8266911B2 (en) * 2005-11-14 2012-09-18 General Electric Company Premixing device for low emission combustion process
US7520272B2 (en) * 2006-01-24 2009-04-21 General Electric Company Fuel injector
EP2112433A1 (fr) 2008-04-23 2009-10-28 Siemens Aktiengesellschaft Chambre de mélange
CA2744238C (fr) * 2008-11-26 2014-04-29 Calgon Carbon Corporation Procede et appareil pour utilisation d'elements de melange dans un systeme de desinfection par uv d'eau residuaire/eau de recyclage
EP2253888B1 (fr) 2009-05-14 2013-10-16 Alstom Technology Ltd Brûleur d'une turbine à gaz ayant un générateur de vortex avec une lance à combustible
EP2420731B1 (fr) * 2010-08-16 2014-03-05 Alstom Technology Ltd Brûleur post-combustion
US9435537B2 (en) * 2010-11-30 2016-09-06 General Electric Company System and method for premixer wake and vortex filling for enhanced flame-holding resistance
US8863525B2 (en) * 2011-01-03 2014-10-21 General Electric Company Combustor with fuel staggering for flame holding mitigation
US9297532B2 (en) * 2011-12-21 2016-03-29 Siemens Aktiengesellschaft Can annular combustion arrangement with flow tripping device
GB2500873A (en) * 2012-03-22 2013-10-09 Corac Energy Technologies Ltd Pipeline compression system
US20140123653A1 (en) * 2012-11-08 2014-05-08 General Electric Company Enhancement for fuel injector
DE102013018146B4 (de) * 2013-12-04 2021-02-25 Arianegroup Gmbh Einspritzelement für eine Raketenbrennkammer
US9358557B2 (en) * 2013-12-20 2016-06-07 Young Living Essential Oils, Lc Liquid diffuser
WO2015134009A1 (fr) * 2014-03-05 2015-09-11 Siemens Aktiengesellschaft Moteur à turbine à gaz avec système de mélange statique de flux d'échappement de compresseur
EP2993404B1 (fr) * 2014-09-08 2019-03-13 Ansaldo Energia Switzerland AG Mélangeur de gaz ou d'air de dilution pour une chambre de combustion d'une turbine à gaz
EP3301368A1 (fr) * 2016-09-28 2018-04-04 Siemens Aktiengesellschaft Générateur de turbulence, ensemble chambre de combustion et turbine à gaz avec mélange d'air/carburant amélioré
RU2685629C2 (ru) * 2017-05-24 2019-04-22 Шор Борис Иосифович Активатор жидкости
US10969107B2 (en) * 2017-09-15 2021-04-06 General Electric Company Turbine engine assembly including a rotating detonation combustor
US10767866B2 (en) * 2018-07-11 2020-09-08 General Electric Company Micromixer for use with liquid fuel
KR102164619B1 (ko) * 2019-04-08 2020-10-12 두산중공업 주식회사 연소기 및 이를 포함하는 가스터빈
US20210108801A1 (en) * 2019-10-14 2021-04-15 General Electric Company System for Rotating Detonation Combustion
CN114608032B (zh) * 2022-03-01 2023-04-07 中国航发四川燃气涡轮研究院 一种拓宽稳定性边界的燃烧室

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1312147A (en) * 1919-08-05 Josiah mowek wallwilir
US875175A (en) * 1907-06-04 1907-12-31 Herbert F Tyler Air and gas mixer.
BE522350A (fr) * 1952-09-23
NL98183C (fr) * 1954-11-24
US3244221A (en) * 1963-12-23 1966-04-05 Johns Manville Gas mixing device
GB1096624A (en) * 1964-01-30 1967-12-29 Bristol Siddeley Engines Ltd Diffusers for fluid flows
US3835886A (en) * 1972-12-14 1974-09-17 Rockwell International Corp Porous tube injector
US3879939A (en) * 1973-04-18 1975-04-29 United Aircraft Corp Combustion inlet diffuser employing boundary layer flow straightening vanes
US3829279A (en) * 1973-08-20 1974-08-13 Modine Mfg Co Dual fuel burner apparatus
DE2508665A1 (de) * 1975-02-28 1976-09-09 Klaus Dipl Ing Matzke Brenner mit einleitkoerper
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
US4160640A (en) * 1977-08-30 1979-07-10 Maev Vladimir A Method of fuel burning in combustion chambers and annular combustion chamber for carrying same into effect
US4189914A (en) * 1978-06-19 1980-02-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Supercritical fuel injection system
US4812049A (en) * 1984-09-11 1989-03-14 Mccall Floyd Fluid dispersing means
DE3520772A1 (de) * 1985-06-10 1986-12-11 INTERATOM GmbH, 5060 Bergisch Gladbach Mischvorrichtung
DK155175C (da) * 1985-06-24 1989-09-18 Danfoil Aps Forstoever
US4845952A (en) * 1987-10-23 1989-07-11 General Electric Company Multiple venturi tube gas fuel injector for catalytic combustor
US4981368A (en) * 1988-07-27 1991-01-01 Vortab Corporation Static fluid flow mixing method
DE68923413T2 (de) * 1988-09-07 1996-04-04 Hitachi Ltd Kraftstoff-Luftvormischvorrichtung für eine Gasturbine.
US4951463A (en) * 1988-09-16 1990-08-28 General Electric Company Hypersonic scramjet engine fuel injector
US5099644A (en) * 1990-04-04 1992-03-31 General Electric Company Lean staged combustion assembly
JP2852110B2 (ja) * 1990-08-20 1999-01-27 株式会社日立製作所 燃焼装置及びガスタービン装置
DE4121067A1 (de) * 1991-06-26 1993-01-14 Balcke Duerr Ag Vorrichtung zum verbrennen brennbarer stoffe
ATE130220T1 (de) * 1991-07-30 1995-12-15 Sulzer Chemtech Ag Einmischvorrichtung kleiner fluidmengen.
EP0548396B1 (fr) * 1991-12-23 1995-02-22 Asea Brown Boveri Ag Dispositif servant à mélanger deux composants gazeux et brûleur dans lequel ce dispositif est appliqué
US5267851A (en) * 1992-03-16 1993-12-07 General Electric Company Swirl gutters for isolating flow fields for combustion enhancement at non-baseload operating conditions
US5240409A (en) * 1992-04-10 1993-08-31 Institute Of Gas Technology Premixed fuel/air burners
EP0620403B1 (fr) * 1993-04-08 1996-12-04 ABB Management AG Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible.
CH687831A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Vormischbrenner.
DE59401295D1 (de) * 1993-04-08 1997-01-30 Abb Management Ag Mischkammer
DE59401018D1 (de) * 1993-04-08 1996-12-19 Abb Management Ag Mischkammer
DE59402803D1 (de) * 1993-04-08 1997-06-26 Asea Brown Boveri Brennkammer

Also Published As

Publication number Publication date
EP0619456A1 (fr) 1994-10-12
RU2118756C1 (ru) 1998-09-10
CH687832A5 (de) 1997-02-28
DE59404243D1 (de) 1997-11-13
US5658358A (en) 1997-08-19
JPH0771758A (ja) 1995-03-17
JP3527278B2 (ja) 2004-05-17

Similar Documents

Publication Publication Date Title
EP0619456B1 (fr) Système d'alimentation en carburant pour chambre de combustion
EP0619457B1 (fr) Brûleur à prémélange
EP0623786B1 (fr) Chambre de combustion
EP0675322B1 (fr) Brûleur à prémélange
EP0619133B1 (fr) Chambre de mélanges
EP0620403B1 (fr) Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible.
DE60310170T2 (de) Brennstoffinjektionsvorrichtung
DE4426351B4 (de) Brennkammer für eine Gasturbine
DE4438495B4 (de) Einspritzsystem und zugehörige trikoaxiale Einspritzelemente
DE4411623A1 (de) Vormischbrenner
EP0733861A2 (fr) Chambre de combustion à combustion étagée
EP0718561B1 (fr) Brûleur
EP0775869B1 (fr) Brûleur à prémélange
DE4446611A1 (de) Brennkammer
EP0394800B1 (fr) Brûleur à mélange préalable pour la génération de gaz chaud
EP0924460B1 (fr) Buse de pulvérisation par pression à deux étages
EP0924461B1 (fr) Buse de pulvérisation par pression à deux étages
DE19507088B4 (de) Vormischbrenner
EP0807787B1 (fr) Brûleur
EP0961905B1 (fr) Procede et dispositif de combustion d'un combustible
CH687827A5 (de) Gasturbinenanlage mit einer Druckwellenmaschine.
EP2252831B1 (fr) Ensemble brûleur et son utilisation
DE19547914A1 (de) Vormischbrenner für einen Wärmeerzeuger
CH688868A5 (de) Durchstroemter Kanal mit einem Wirbelgenerator
DE2407484A1 (de) Flammrohr fuer gasturbinentriebwerke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19950307

17Q First examination report despatched

Effective date: 19960930

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 59404243

Country of ref document: DE

Date of ref document: 19971113

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ALSTOM (SWITZERLAND) LTD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ABB SCHWEIZ HOLDING AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120320

Year of fee payment: 19

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20120709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59404243

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59404243

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130225

Year of fee payment: 20

Ref country code: FR

Payment date: 20130315

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130328

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130312

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59404243

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140307

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140308

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140306