EP0619456B1 - Fuel supply system for combustion chamber - Google Patents

Fuel supply system for combustion chamber Download PDF

Info

Publication number
EP0619456B1
EP0619456B1 EP94103408A EP94103408A EP0619456B1 EP 0619456 B1 EP0619456 B1 EP 0619456B1 EP 94103408 A EP94103408 A EP 94103408A EP 94103408 A EP94103408 A EP 94103408A EP 0619456 B1 EP0619456 B1 EP 0619456B1
Authority
EP
European Patent Office
Prior art keywords
duct
supply system
fuel supply
vortex
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103408A
Other languages
German (de)
French (fr)
Other versions
EP0619456A1 (en
Inventor
Yau-Pin Dr. Chyou
Adnan Eroglu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
ABB Asea Brown Boveri Ltd
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0619456A1 publication Critical patent/EP0619456A1/en
Application granted granted Critical
Publication of EP0619456B1 publication Critical patent/EP0619456B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing

Definitions

  • the invention relates to a fuel supply system for a combustion chamber with premix combustion, in which a gaseous and / or liquid fuel is injected as a secondary flow into a gaseous, channeled main flow, the secondary flow having a substantially smaller mass flow than the main flow, and the flow through which the premix channel has curved walls having,
  • the mixing of fuel into a combustion air flow flowing in a premixing duct generally takes place by means of radial injection of the fuel into the duct by means of cross-jet mixers.
  • the momentum of the fuel is so low that an almost complete mixing takes place only after a distance of approximately 100 channel heights.
  • Venturi mixers are also used.
  • the injection of the fuel via grid arrangements is also known.
  • spraying in front of special swirl bodies is also used.
  • the invention is therefore based on the object of providing, in a combustion chamber with premix combustion, a measure with which intimate mixing of combustion air and fuel is achieved within a very short distance, with a simultaneous uniform distribution of speed in the mixing zone.
  • the measure should also be suitable for retrofitting existing premix combustion chambers.
  • the new static mixer which is represented by the 3-dimensional vortex generators, it is possible to achieve extraordinarily short mixing distances in the combustion chamber with a low pressure drop.
  • the generation of longitudinal vortices without a recirculation area results in a rough mixing of the two streams after a full vortex revolution, while fine mixing due to turbulent flow and molecular diffusion processes occurs after a distance that corresponds to a few channel heights.
  • the advantage of vortex generators can be seen in their particular simplicity in every respect.
  • the element consisting of three walls with flow around it is completely problem-free.
  • the roof surface can be joined with the two side surfaces in a variety of ways.
  • the element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area.
  • the element due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.
  • the two side surfaces enclosing the arrow angle ⁇ form an at least approximately sharp connecting edge with one another, which together with the longitudinal edges of the roof surface forms a tip, the flow cross-section is hardly impaired by blocking.
  • the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, then the non-formation of a wake area is advantageous.
  • a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the side walls of the vortex generator which consist of right-angled triangles, are fixed with their long sides on a channel wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle ⁇ .
  • the joint is designed as a sharp connecting edge 16 and is vertical to that channel wall 21 with which the side surfaces are flush.
  • the two side surfaces 11, 13 enclosing the arrow angle ⁇ are symmetrical in shape, size and orientation in FIG. 1 and are arranged on both sides of an axis of symmetry 17. This axis of symmetry 17 is rectified like the channel axis.
  • the roof surface 10 lies with a very narrow edge 15 running transversely to the flow through the channel on the same channel wall 21 as the side walls 11, 13. Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces projecting into the flow channel.
  • the roof surface extends at an angle of inclination ⁇ to the channel wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.
  • the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21.
  • a floor area is not related to the mode of operation of the element.
  • the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator.
  • the edge 15 of the roof surface 10 which runs transversely to the flow through the channel is thus the edge which is first acted upon by the channel flow.
  • the vortex generator works as follows: When flowing around edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. The number of swirls and the location of the vortex breakdown (if the latter is desired at all) are determined by appropriate selection of the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vortex strength or the swirl number becomes increased and the location of the vortex burst moves upstream into the area of the vortex generator itself. Depending on the application, these two angles e and a are predetermined by the structural conditions and by the process itself. Then only the length L of the element and the height h of the connecting edge 16 need to be adjusted (FIG. 4).
  • FIG. 2 shows a so-called half "vortex generator” based on a vortex generator according to FIG. 1, in which only one of the two side surfaces of the vortex generator 9a is provided with the arrow angle ⁇ / 2.
  • the other side surface is straight and oriented in the direction of flow.
  • only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator, but a swirl is forced on the flow.
  • the vortex generators are mainly used on the one hand as a mixer of two flows.
  • the main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow.
  • the secondary flow in the form of a gaseous and / or liquid fuel has a substantially smaller mass flow than the main flow. It is introduced into the main flow in the immediate area of the vortex generators.
  • the introduction into the flow channel of the gaseous and / or liquid fuel to be mixed into the combustion air can be designed in many ways according to FIG. 5.
  • the outflow of the fuel into the combustion air can take place via wall bores 22c, which are staggered in the longitudinal edges 12 and 14 (or at least in their immediate area) are.
  • the fuel is first introduced here through means, not shown, through the channel wall 21 into the hollow interior of the vortex generator. From the wall bores 22c, it thus arrives directly into the vortex which arises and which rises in the injection region. There are defined flow conditions here.
  • the fuel can also be injected from wall bores 22a, which are located in the channel wall 21 along the edge 15 of the vortex generator.
  • the injection angle is then selected so that the fuel flows around the roof surface of the vortex generator as a film before it is mixed in.
  • This "cold" film forms a protective layer against a hot main current for the roof surface.
  • This solution according to is particularly well suited for dual operation, in which both gaseous and liquid fuel are mixed into the main flow and later burned.
  • the liquid fuel, here oil is then injected via a single bore (not shown) which opens directly at the edge 15, preferably at the same injection angle as the gas. This oil also spreads over the surface of the roof as a protective film before it is atomized.
  • a slot (not shown here) could also be used.
  • Wall bores 22b can also be provided downstream of the vortex generators, through which the fuel is blown into the ascending vortex.
  • the fuel can also be injected from a single hole which is made in the area of the tip 18 of the vortex generator.
  • the agent is injected directly into the fully developed vertebra and also in its ascending branch.
  • FIG. 3 shows a combustion chamber with a channel 20 through which flow flows in a simplified manner.
  • an equal number of vortex generators according to FIG. 1 are lined up in the circumferential direction without any free spaces so that the connecting edges 16 are separated by two opposite vortexes. Generators lie in the same radial. If the same heights h are assumed for opposite vortex generators, FIG. 3 shows that the vortex generators on the inner channel ring 21b have a smaller arrow ⁇ . In the longitudinal section in FIG. 4 it can be seen that this could be compensated for by a larger angle of attack ⁇ if swirl-like vortices in the inner and outer ring cross-section are desired. In this solution, as indicated in FIG. 3, two vortex pairs, each with small vertebrae, are generated, which leads to a shorter mixing length.
  • the liquid fuel is injected here via a central fuel lance 24, the mouth of which is located downstream of the vortex generators 9 in the area of the tip 18 thereof.
  • the gaseous fuel is injected twice according to the methods described in FIG. 5.
  • the injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned at the beginning.
  • the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions.
  • the combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.
  • the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.
  • the gaseous fuel can be injected through wall bores which are fed from ring lines provided in the interior of the channel.
  • central lances for liquid fuel can also be provided be, a plurality of which is distributed over the circumference of the ring channel.
  • Fig. 6 shows a configuration like Fig. 3, but with smaller radii of the ring walls and large channel height. The height of the opposing vortex generators is very different.
  • the height h of the connecting edge 16 will be coordinated with the channel height H or the height of the channel part, which is assigned to the vortex generator, in such a way that the vortex generated immediately downstream of the vortex generator already reaches such a size that the full channel height H is filled, which leads to a uniform speed distribution in the applied cross section.
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.
  • the connecting edges of two opposite vortex generators are offset by half a division.
  • the vortex structure downstream of the vortex generators is changed such that the vortices generated on the same side have the same direction of rotation and may merge into one large vortex that fills the entire channel cross section in the corresponding angular sector.
  • this allows the mixing quality to be improved and, on the other hand, a longer lifespan of the vortex can be achieved.
  • This solution offers the possibility, not shown, of raising the height of the inner vortex generators so that their tips can engage between the side walls of the two opposite vortex generators.
  • FIG. 9 four vortex generators 9 are strung together on the wall 21a in the circumferential direction in such a way that no gaps are left on the channel wall.
  • the mode of operation of the elements in such a network corresponds to that of the outer vortex generators in FIG. 3.
  • the arrangement consists of 4 groups of 3 vortex generators 9a each according to FIG. 2. In one group the three vortex generators are equipped with increasing height. All vortices generated are the same rotation.
  • FIG. 13 shows a variant with vortex generators 9 which is particularly suitable as an exchange unit in cylindrical premixing chambers. It is also designed for dual operation, which means that both liquid and gaseous fuel can be mixed into the combustion air.
  • the kit which can be inserted axially into the premixing tube (not shown) consists of a central lance 24 which is provided with vortex generators 9 at its end.
  • the liquid fuel passes through an oil line 26 arranged in the central lance 24 to the injection head, from which it is injected into the channel via nozzles.
  • the nozzles are directed in the direction of the arrow in the symmetry line of the vortex generators.
  • the fuel is captured by the rising vortices.
  • the gaseous fuel which is also supplied via the gas line 29 in the central lance, passes via hollow ribs 27 into a gas ring 28 with which the system is centered and fixed in the tube. The fuel is added to the main flow from this gas ring 28.
  • the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention.
  • the introduction of the secondary flow into the main flow can also be carried out in a variety of ways.
  • the variant according to FIG. 9 is also suitable, for example, in combustion chambers of the "can" principle.

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Brennstoffzufuhrsystem für eine Brennkammer mit Vormischverbrennung, in welcher ein gasförmiger und/oder flüssiger Brennstoff als Sekundärströmung in eine gasförmige, kanalisierte Hauptströmung eingedüst wird, wobei die Sekundärströmung einen wesentlich kleineren Massenstrom aufweist als die Hauptströmung, und wobei der durchströmte Vormischkanal gekrümmte Wände aufweist,The invention relates to a fuel supply system for a combustion chamber with premix combustion, in which a gaseous and / or liquid fuel is injected as a secondary flow into a gaseous, channeled main flow, the secondary flow having a substantially smaller mass flow than the main flow, and the flow through which the premix channel has curved walls having,

Stand der TechnikState of the art

Die Einmischung von Brennstoff in eine in einem Vormischkanal strömendenden Brennluftströmung geschieht in der Regel durch radiale Eindüsung des Brennstoffs in den Kanal mittels Querstrahlmischern. Der Impuls des Brennstoffs ist indes so gering, dass eine nahezu vollständige Durchmischung erst nach einer Strecke von ca. 100 Kanalhöhen erfolgt ist. Auch Venturimischer kommen zur Anwendung. Bekannt ist auch die Eindüsung des Brennstoffs über Gitteranordnungen. Schliesslich wird auch das Eindüsen vor besonderen Drallkörpern angewendet.The mixing of fuel into a combustion air flow flowing in a premixing duct generally takes place by means of radial injection of the fuel into the duct by means of cross-jet mixers. However, the momentum of the fuel is so low that an almost complete mixing takes place only after a distance of approximately 100 channel heights. Venturi mixers are also used. The injection of the fuel via grid arrangements is also known. Finally, spraying in front of special swirl bodies is also used.

Die auf der Basis von Querstrahlen oder Schichtströmungen arbeitende Vorrichtungen haben entweder sehr lange Mischstrecken zur Folge oder verlangen höhe Einspritzimpulse. Bei Vormischung unter hohem Druck und unterstöchiometrischen Mischverhältnissen besteht die Gefahr von Rückschlagen der Flamme oder gar von Selbstzündung des Gemischs. Strömungsablösungen und Totwasserzonen im Vormischrohr, dicke Grenzschichten an den Wandungen oder eventuell extreme Gechwindigkeitsprofile über dem durchströmten Querschnitt können die Ursache für Selbstzündung im Rohr sein oder Pfade bilden, über die die Flamme aus der stromab liegenden Verbrennungszone in das Vormischrohr zurückschlagen kann. Der Geometrie der Vormischstrecke muss demnach höchste Beachtung geschenkt werden. Dokument EP-A-0 520 163 offenbart einen Brenner mit Wirbeleinbauflächen.The devices operating on the basis of transverse jets or stratified flows either have very long mixing distances result or require high injection pulses. With premixing under high pressure and substoichiometric mixing ratios, there is a risk of the flame flashing back or even of self-ignition of the mixture. Flow separations and dead water zones in the premixing tube, thick boundary layers on the walls or possibly extreme speed profiles over the cross-section through which the flow is flowing can be the cause of auto-ignition in the tube or form paths through which the flame can strike back from the downstream combustion zone into the premixing tube. The geometry of the premixing section must therefore be given the greatest attention. Document EP-A-0 520 163 discloses a burner with swirl mounting surfaces.

Darstellung der ErfindungPresentation of the invention

Die Erfindung liegt deshalb die Aufgabe zugrunde, bei einer Brennkammer mit Vormischverbrennung eine Massnahme zu schaffen, mit welcher innert kürzester Strecke eine innige Vermischung von Brennluft und Brennstoff erzielt wird bei gleichzeitig gleichmässiger Geschwindigkeitsverteilung in der Mischzone. Die Massnahme soll zudem geeignet sein, um bestehende Vormischbrennkammern nachzurüsten.The invention is therefore based on the object of providing, in a combustion chamber with premix combustion, a measure with which intimate mixing of combustion air and fuel is achieved within a very short distance, with a simultaneous uniform distribution of speed in the mixing zone. The measure should also be suitable for retrofitting existing premix combustion chambers.

Erfindungsgemäss wird dies dadurch erreicht, dass

  • dass die Hauptströmung über Wirbel-Generatoren geführt wird, von denen über dem Umfang des durchströmten Kanals an mindestens einer Kanalwand mehrere nebeneinander angeordnet sind, und dass die Sekundärströmung im unmittelbaren Bereich der Wirbel-Generatoren in den Kanal eingeleitet wird,
  • dass ein Wirbel-Generator drei frei umströmte Flächen aufweist, die sich in Strömungsrichtung erstrecken und von denen eine die Dachfläche und die beiden anderen die Seitenflächen bilden,
  • dass die Seitenflächen mit einer gleichen Kanalwand bündig sind und miteinander den Pfeilwinkel α einschliessen,
  • dass die Dachfläche mit einer quer zum durchströmten Kanal verlaufenden Kante an der gleichen Kanalwand anliegt wie die Seitenwände,
  • und dass die längsgerichteten Kanten der Dachfläche, die bündig sind mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen unter einem Anstellwinkel Θ zur Kanalwand verlaufen.
According to the invention this is achieved in that
  • that the main flow is conducted via vortex generators, of which several are arranged next to one another on at least one channel wall over the circumference of the channel, and that the secondary flow is introduced into the channel in the immediate area of the vortex generators,
  • that a vortex generator has three free-flowing surfaces which extend in the direction of flow and one of which forms the roof surface and the other two form the side surfaces,
  • that the side surfaces are flush with the same duct wall and enclose the arrow angle α with one another,
  • that the roof surface rests on the same channel wall as the side walls, with an edge running transversely to the flow channel,
  • and that the longitudinal edges of the roof surface, which are flush with the longitudinal edges of the side surfaces projecting into the flow channel, extend at an angle of attack Θ to the channel wall.

Mit dem neuen statischen Mischer, den die 3-dimensionalen Wirbel-Generatoren darstellen, ist es möglich, in der Brennkammer ausserordentlich kurze Mischstrecken bei gleichzeitig geringem Druckverlust zu erzielen. Durch die Erzeugung von Längswirbel ohne Rezirkulationsgebiet ist bereits nach einer vollen Wirbelumdrehung eine grobe Durchmischung der beiden Ströme vollzogen, während eine Feinmischung infolge von turbulenter Strömung und molekularer Diffusionsprozesse nach einer Strecke vorliegt, die einigen wenigen Kanalhöhen entspricht.With the new static mixer, which is represented by the 3-dimensional vortex generators, it is possible to achieve extraordinarily short mixing distances in the combustion chamber with a low pressure drop. The generation of longitudinal vortices without a recirculation area results in a rough mixing of the two streams after a full vortex revolution, while fine mixing due to turbulent flow and molecular diffusion processes occurs after a distance that corresponds to a few channel heights.

Der Vorteil der Wirbel-Generatoren ist in ihrer besonderen Einfachheit in jeder Hinsicht zu sehen. Fertigungstechnisch ist das aus drei umströmten Wänden bestehende Element völlig problemlos. Die Dachfläche kann mit den beiden Seitenflächen auf verschiedenste Arten zusammengefügt werden. Auch die Fixierung des Elementes an ebenen oder gekrümmten Kanalwänden kann im Falle von schweissbaren Materialien durch einfache Schweissnähte erfolgen. Vom strömungstechnischen Standpunkt her weist das Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet. Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.The advantage of vortex generators can be seen in their particular simplicity in every respect. In terms of production technology, the element consisting of three walls with flow around it is completely problem-free. The roof surface can be joined with the two side surfaces in a variety of ways. The element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area. Finally, due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.

Es ist angebracht, das Verhältnis Höhe h der Verbindungskante der beiden Seitenflächen zur Kanalhöhe H so zu wählen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators die volle Kanalhöhe oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausfüllt.It is appropriate to choose the ratio of the height h of the connecting edge of the two side surfaces to the channel height H so that the vortex generated fills the full channel height or the full height of the channel part assigned to the vortex generator immediately downstream of the vortex generator.

Es ist sinnvoll, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen symmetrisch um eine Symmetrieachse angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.It makes sense if the two side surfaces including the arrow angle α are arranged symmetrically about an axis of symmetry. This creates swirls of equal swirl.

Wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen eine zumindest annähernd scharfe Verbindungskante miteinander bilden, die mit den Längskanten der Dachfläche zusammen eine Spitze bildet, wird der Durchströmquerschnitt kaum durch Sperrung beeinträchtigt.If the two side surfaces enclosing the arrow angle α form an at least approximately sharp connecting edge with one another, which together with the longitudinal edges of the roof surface forms a tip, the flow cross-section is hardly impaired by blocking.

Ist die scharfe Verbindungskante die austrittsseitige Kante des Wirbel-Generators und verläuft sie senkrecht zu jener Kanalwand, mit welcher die Seitenflächen bündig sind, so ist die Nichtbildung eines Nachlaufgebietes von Vorteil.If the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, then the non-formation of a wake area is advantageous.

Wenn die Symmetrieachse parallel zur Kanalachse verläuft, und die Verbindungskante der beiden Seitenflächen die stromabwärtige Kante des Wirbel-Generators bildet, während demzufolge die quer zum durchströmten Kanal verlaufende Kante der Dachfläche die von der Kanalströmung zuerst beaufschlagte Kante ist, so werden an einem Wirbel-Generator zwei gleiche gegenläufige Wirbel erzeugt. Es liegt ein drallneutrales Strömungsbild vor, bei welchem der Drehsinn der beiden Wirbel im Bereich der Verbindungskante aufsteigend ist.If the axis of symmetry runs parallel to the channel axis, and the connecting edge of the two side surfaces forms the downstream edge of the vortex generator, whereas the edge of the roof surface which runs transversely to the channel through which the flow is flowing is the edge first acted upon by the channel flow, then a vortex generator generated two identical opposite vortices. There is a swirl-neutral flow pattern in which the direction of rotation of the two vortices is ascending in the area of the connecting edge.

Weitere Vorteile der Erfindung, insbesondere im Zusammenhang mit der Anordnung der Wirbel-Generatoren und der Einführung der Sekundärströmung ergeben sich aus den Unteransprüchen.Further advantages of the invention, in particular in connection with the arrangement of the vortex generators and the introduction of the secondary flow, result from the subclaims.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung schematisch dargestellt.Several exemplary embodiments of the invention are shown schematically in the drawing.

Es zeigen:

Fig. 1
eine perspektivische Darstellung eines Wirbel-Generators;
Fig. 2
eine Ausführungssvariante des Wirbel-Generators;
Fig. 3
die Ringbrennkammer einer Gasturbine mit eingebauten Wirbel-Generatoren nach Fig. 1;
Fig. 4
einen teilweisen Längsschnitt durch eine Brennkammer nach Linie 4-4 in Fig. 3
Fig. 5
mehrere Varianten der Sekundärströmungsführung;
Fig. 6 a,b
eine zweite Anordnungsvariante der Wirbel-Generatoren in einer Ringbrennkammer;
Fig. 7 a,b
eine dritte Anordnungsvariante der Wirbel-Generatoren in einer Ringbrennkammer;
Fig. 8 a,b
eine vierte Anordnungsvariante der Wirbel-Generatoren nach Fig. 2 in einer Ringbrennkammer;
Fig. 9 a,b
eine zylindrische Brennkammer mit einer ersten Anordnungsvariante der Wirbel-Generatoren;
Fig. 10 a,b
eine zylindrische Brennkammer mit einer zweiten Anordnungsvariante der Wirbel-Generatoren;
Fig. 11 a,b
eine zylindrische Brennkammer mit einer Anordnungsvariante der Wirbel-Generatoren nach Fig. 2;
Fig. 12 a,b
eine Anordnungsvariante wie in Fig. 9 mit einer zentralen Brennnstoff-Einführung;
Fig. 13 a,b
eine mit Wirbel-Generatoren bestückte Brennstofflanze.
Show it:
Fig. 1
a perspective view of a vortex generator;
Fig. 2
an embodiment of the vortex generator;
Fig. 3
the annular combustion chamber of a gas turbine with built-in vortex generators according to Fig. 1;
Fig. 4
3 shows a partial longitudinal section through a combustion chamber according to line 4-4 in FIG. 3
Fig. 5
several variants of secondary flow control;
Fig. 6 a, b
a second variant of the arrangement of the vortex generators in an annular combustion chamber;
Fig. 7 a, b
a third arrangement variant of the vortex generators in an annular combustion chamber;
8 a, b
a fourth arrangement variant of the vortex generators according to Figure 2 in an annular combustion chamber.
9 a, b
a cylindrical combustion chamber with a first arrangement variant of the vortex generators;
10 a, b
a cylindrical combustion chamber with a second arrangement variant of the vortex generators;
11 a, b
a cylindrical combustion chamber with a variant arrangement of the vortex generators according to FIG. 2;
Fig. 12 a, b
an arrangement variant as in Figure 9 with a central fuel introduction.
Fig. 13 a, b
a fuel lance equipped with vortex generators.

Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet. In den verschiedenen Figuren sind die gleichen Elemente jeweils mit den gleichen Bezugszeichen versehen. Erfindungsunwesentliche Elemente wie Gehäuse, Befestigungen, Leitungsdurchführungen und dergleichen sind fortgelassen.The direction of flow of the work equipment is indicated by arrows. In the various figures, the same elements are provided with the same reference symbols. Elements not essential to the invention, such as housings, fastenings, cable bushings and the like, have been omitted.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Bevor auf die eigentliche Brennkammer eingegangen wird, wird zunächst der für die Wirkungswweise der Erfindung wesentliche Wirbel-Generator beschrieben.Before going into the actual combustion chamber, the vortex generator essential for the mode of operation of the invention is first described.

In den Figuren 1, 2 und 5 ist der eigentliche Kanal, der von einer mit grossem Pfeil symbolisierten Hauptströmung durchströmt wird, nicht dargestellt. Gemäss diesen Figuren besteht ein Wirbel-Generator im wesentlichen aus drei frei umströmten dreieckigen Flächen. Es sind dies eine Dachfläche 10 und zwei Seitenflächen 11 und 13. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.In Figures 1, 2 and 5, the actual channel, which is flowed through by a main flow symbolized by a large arrow, is not shown. According to these figures, a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.

Die Seitenwände des Wirbel-Generators, welche aus rechtwinkligen Dreiecken bestehen, sind mit ihren Längsseiten auf einer Kanalwand 21 fixiert, vorzugsweise gasdicht. Sie sind so orientiert, dass sie an ihren Schmalseiten einen Stoss bilden unter Einschluss eines Pfeilwinkels α. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht senkrecht zu jener Kanalwand 21, mit welcher die Seitenflächen bündig sind. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11, 13 sind in Fig. 1 symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieachse 17 angeordnet. Diese Symmetrieachse 17 ist gleichgerichtet wie die Kanalachse.The side walls of the vortex generator, which consist of right-angled triangles, are fixed with their long sides on a channel wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle α. The joint is designed as a sharp connecting edge 16 and is vertical to that channel wall 21 with which the side surfaces are flush. The two side surfaces 11, 13 enclosing the arrow angle α are symmetrical in shape, size and orientation in FIG. 1 and are arranged on both sides of an axis of symmetry 17. This axis of symmetry 17 is rectified like the channel axis.

Die Dachfläche 10 liegt mit einer quer zum durchströmten Kanal verlaufenden und sehr schmal ausgebildeten Kante 15 an der gleichen Kanalwand 21 an wie die Seitenwände 11, 13. Ihre längsgerichteten Kanten 12, 14 sind bündig mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen. Die Dachfläche verläuft unter einem Anstellwinkel Θ zur Kanalwand 21. Ihre Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 eine Spitze 18.The roof surface 10 lies with a very narrow edge 15 running transversely to the flow through the channel on the same channel wall 21 as the side walls 11, 13. Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces projecting into the flow channel. The roof surface extends at an angle of inclination Θ to the channel wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.

Selbstverständlich kann der Wirbel-Generator auch mit einer Bodenfläche versehen sein, mit welcher er auf geeignete Art an der Kanalwand 21 befestigt ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Elementes.Of course, the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21. However, such a floor area is not related to the mode of operation of the element.

In Fig. 1 bildet die Verbindungskante 16 der beiden Seitenflächen 11, 13 die stromabwärtige Kante des Wirbel-Generators. Die quer zum durchströmten Kanal verlaufende Kante 15 der Dachfläche 10 ist somit die von der Kanalströmung zuerst beaufschlagte Kante.In Fig. 1, the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator. The edge 15 of the roof surface 10 which runs transversely to the flow through the channel is thus the edge which is first acted upon by the channel flow.

Die Wirkungsweise des Wirbel-Generators ist folgende: Beim Umströmen der Kanten 12 und 14 wird die Hauptströmung in ein Paar gegenläufiger Wirbel umgewandelt. Deren Wirbelachsen liegen in der Achse der Hauptströmung. Die Drallzahl und der Ort des Wirbelaufplatzens (vortex break down), sofern letzteres überhaupt gewünscht wird, werden bestimmt durch entsprechende Wahl des Anstellwinkels Θ und des Pfeilwinkels α. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel e und a durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden müssen dann nur noch die Länge L des Elementes sowie die Höhe h der Verbindungskante 16 (Fig. 4).The vortex generator works as follows: When flowing around edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. The number of swirls and the location of the vortex breakdown (if the latter is desired at all) are determined by appropriate selection of the angle of attack Θ and the arrow angle α. With increasing angles, the vortex strength or the swirl number becomes increased and the location of the vortex burst moves upstream into the area of the vortex generator itself. Depending on the application, these two angles e and a are predetermined by the structural conditions and by the process itself. Then only the length L of the element and the height h of the connecting edge 16 need to be adjusted (FIG. 4).

In Fig. 2 ist ein sogenannter halber "Wirbel-Generator" auf der Basis eines Wirbel-Generators nach Fig. 1 gezeigt, bei welchen nur die eine der beiden Seitenflächen des Wirbel-Generators 9a mit dem Pfeilwinkel α/2 versehen ist. Die andere Seitenfläche ist gerade und in Strömungsrichtung ausgerichtet. Im Gegensatz zum symmetrischen Wirbel-Generator wird hier nur ein Wirbel an der gepfeilten Seite erzeugt. Es liegt demnach stromabwärts des Wirbel-Generators kein wirbelneutrales Feld vor, sondern der Strömung wird ein Drall aufgezwungen.FIG. 2 shows a so-called half "vortex generator" based on a vortex generator according to FIG. 1, in which only one of the two side surfaces of the vortex generator 9a is provided with the arrow angle α / 2. The other side surface is straight and oriented in the direction of flow. In contrast to the symmetrical vortex generator, only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator, but a swirl is forced on the flow.

Die Wirbel-Generatoren sind hauptsächlich zum einen als Mischer zweier Strömungen verwendet. Die Hauptströmung in Form von Brennluft attackiert in Pfeilrichtung die quergerichteten Eintrittskanten 15. Die Sekundärströmung in Form eines gasförmigen und/oder flüssigen Brennstoffs weist einen wesentlich kleineren Massenstrom auf als die Hauptströmung. Sie wird im unmittelbaren Bereich der Wirbel-Generatoren in die Hauptströmung eingeleitet.The vortex generators are mainly used on the one hand as a mixer of two flows. The main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow. The secondary flow in the form of a gaseous and / or liquid fuel has a substantially smaller mass flow than the main flow. It is introduced into the main flow in the immediate area of the vortex generators.

Das Einleiten in den Strömungskanal des in die Verbrennungluft einzumischenden gasförmigen und/oder flüssigen Brennstoffs kann gemäss Fig. 5 vielfältig gestaltet sein.The introduction into the flow channel of the gaseous and / or liquid fuel to be mixed into the combustion air can be designed in many ways according to FIG. 5.

So kann die Ausströmung des Brennstoffs in die Verbrennungsluft über Wandbohrungen 22c erfolgen, die gestaffelt in den Längskanten 12 und 14 (oder zumindest in deren unmittelbaren Bereich) angeordnet sind. Der Brennstoff wird hier zunächst über nicht gezeigte Mittel durch die Kanalwand 21 ins hohle Innere des Wirbel-Generators eingeleitet. Aus den Wandbohrungen 22c gelangt er somit direkt in den entstehenden Wirbel, der im Einspritzbereich aufsteigend ist. Es herrschen hier definierte Strömungsverhältnisse vor.Thus, the outflow of the fuel into the combustion air can take place via wall bores 22c, which are staggered in the longitudinal edges 12 and 14 (or at least in their immediate area) are. The fuel is first introduced here through means, not shown, through the channel wall 21 into the hollow interior of the vortex generator. From the wall bores 22c, it thus arrives directly into the vortex which arises and which rises in the injection region. There are defined flow conditions here.

Der Brennstoff kann auch aus Wandbohrungen 22a eingedüst werdn, welche sich in der Kanalwand 21 längs der Kante 15 des Wirbel-Generators befinden. Der Einspritzwinkel ist dann so gewählt, dass der Brennstoff vor seiner Einmischung die Dachfläche des Wirbel-Generators als Film umströmt. Dieser "kalte" Film bildet für die Dachfläche eine Schutzschicht gegen eine heisse Hauptströmung. Diese Lösung nach eignet sich besonders gut für den Dual-Betrieb, bei welchem sowohl gasförmiger als auch flüssiger Brennstoff in die Hauptströmung eingemischt und später verbrannt wird. Der flüssige Brennstoff, hier Öl, wird dann über eine unmittelbar an der Kante 15 einmündende Einzelbohrung (nicht dargestellt) eingedüst, vorzugsweise unter dem gleichen Einspritzwinkel wie das Gas. Auch dieses Öl verteilt sich vor seiner Vernebelung im Wirbel als schützender Film über der Dchfläche. Anstelle der Wandbohrungen 22b könnte auch ein hier nicht dargestellter Schlitz verwendet werden.The fuel can also be injected from wall bores 22a, which are located in the channel wall 21 along the edge 15 of the vortex generator. The injection angle is then selected so that the fuel flows around the roof surface of the vortex generator as a film before it is mixed in. This "cold" film forms a protective layer against a hot main current for the roof surface. This solution according to is particularly well suited for dual operation, in which both gaseous and liquid fuel are mixed into the main flow and later burned. The liquid fuel, here oil, is then injected via a single bore (not shown) which opens directly at the edge 15, preferably at the same injection angle as the gas. This oil also spreads over the surface of the roof as a protective film before it is atomized. Instead of the wall bores 22b, a slot (not shown here) could also be used.

Es können auch Wandbohrungen 22b stromabwärts der Wirbel-Generatoren vorgesehen werden, durch die der Brennstoff in den aufsteigenden Wirbel eingeblasen wird.Wall bores 22b can also be provided downstream of the vortex generators, through which the fuel is blown into the ascending vortex.

In Abweichung der gezeigten Möglichkeiten kann der Brennstoff auch aus einer Einzelbohrung, die im Bereich der Spitze 18 des Wirbel-Generators angebracht ist, eingedüst werden. In diesem Fall wird das Mittel direkt in den voll ausgebildeten Wirbel eingedüst und zwar ebenfalls in dessen aufsteigenden Ast.In a departure from the options shown, the fuel can also be injected from a single hole which is made in the area of the tip 18 of the vortex generator. In this case, the agent is injected directly into the fully developed vertebra and also in its ascending branch.

Schliesslich versteht es sich, dass die angeführten Methoden auch alle oder einzeln miteinander kombiniert werden könnenFinally, it goes without saying that the methods mentioned can also be combined with each other or individually

Nachstehend werden diverse unterschiedliche Einbaumöglichkeiten der Wirbel-Generatoren im Vormischraum der Brennkammmer beschrieben.Various different installation options for the vortex generators in the premixing chamber of the combustion chamber are described below.

Die Fig. 3 zeigt vereinfacht eine Brennkammer mit ringförmig durchströmtem Kanal 20. An beiden Kanalwänden 21a und 21b ist jeweils eine gleiche Anzahl von Wirbel-Generatoren gemäss Fig. 1 im Umfangsrichtung ohne freien Zwischenräume so aneinandergereiht, dass die Verbindungskanten 16 von zwei gegenüberliegenden Wirbel-Generatoren in der gleichen Radialen liegen. Werden gleiche Höhen h für gegenüberliegende Wirbel-Generatoren vorausgesetzt, so zeigt Fig. 3, dass die Wirbel-Generatoren am inneren Kanalring 21b eine kleinere Pfeilung α haben. Im Längsschnitt in Fig. 4 ist erkennbar, dass dies durch einen grösseren Anstellwinkel Θ kompensiert werden könnte, wenn drallgleiche Wirbel im inneren und äusserern Ringquerschnitt erwünscht sind. Bei dieser Lösung werden, wie in Fig. 3 angedeutet, zwei Wirbelpaare mit jeweils kleinen Wirbeln erzeugt, was zu einer kürzeren Mischlänge führt.3 shows a combustion chamber with a channel 20 through which flow flows in a simplified manner. On both channel walls 21a and 21b, an equal number of vortex generators according to FIG. 1 are lined up in the circumferential direction without any free spaces so that the connecting edges 16 are separated by two opposite vortexes. Generators lie in the same radial. If the same heights h are assumed for opposite vortex generators, FIG. 3 shows that the vortex generators on the inner channel ring 21b have a smaller arrow α. In the longitudinal section in FIG. 4 it can be seen that this could be compensated for by a larger angle of attack Θ if swirl-like vortices in the inner and outer ring cross-section are desired. In this solution, as indicated in FIG. 3, two vortex pairs, each with small vertebrae, are generated, which leads to a shorter mixing length.

Gemäss Fig. 4 wird hier der flüssige Brennstoff über eine zentrale Brennstofflanze 24 eingedüst, deren Mündung sich stromabwärts der Wirbel-Generatoren 9 im Bereich deren Spitze 18 befinden. Die Eindüsung des gasförmigen Brennstoffs geschieht bei diesem Beispiel zweifach nach den in Fig. 5 beschriebenen Methoden. Zum einen, wie dies durch Pfeile angedeutet ist, über Wandbohrungen in den Wirbel-Generatoren selbst und zum andern über Wandbohrungen 22b in der Kanalwand 21b hinter den Wirbel-Generatoren, wobei diese Wandbohrungen über eine Ringleitung versorgt werden können.4, the liquid fuel is injected here via a central fuel lance 24, the mouth of which is located downstream of the vortex generators 9 in the area of the tip 18 thereof. In this example, the gaseous fuel is injected twice according to the methods described in FIG. 5. On the one hand, as indicated by arrows, via wall bores in the vortex generators themselves and on the other hand via wall bores 22b in the channel wall 21b behind the vortex generators, these wall boreholes being able to be supplied via a ring line.

Der eingedüste Brennstoff wird von den Wirbeln mitgeschleppt und mit der Hauptströmung vermischt. Er folgt dem schraubenförmigen Verlauf der Wirbel und wird stromabwärts der Wirbel in der Kammer gleichmässig feinverteilt. Dadurch reduziert sich die - bei der eingangs erwähnten radialen Eindüsung von Brennstoff in eine unverwirbelte Strömung - Gefahr von Aufprallstrahlen an der gegenüberliegenden Wand und die Bildung von sogenannten "hot spots".The injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned at the beginning.

Da der hauptsächliche Mischprozess in den Wirbeln erfolgt und weitgehend unempfindlich gegen den Eindüsungsimpuls der Sekundärströmung ist, kann die Brennstoffeinspritzung flexibel gehalten werden und an andere Grenzbedingungen angepasst werden. So kann im ganzen Lastbereich der gleiche Eindüsungsimpuls beibehalten werden. Da das Mischen durch die Geometrie der Wirbel-Generatoren bestimmt wird, und nicht durch die Maschinenlast, im Beispielsfall die Gasturbinenleistung, arbeitet der so konfigurierte Brenner auch bei Teillastbedingungen optimal. Der Verbrennungsprozess wird durch Anpassen der Zündverzugszeit des Brennstoffs und Mischzeit der Wirbel optimiert, was eine Minimierung der Emissionen gewährleistet.Since the main mixing process takes place in the vortices and is largely insensitive to the injection pulse of the secondary flow, the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions. The combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.

Desweiteren bewirkt das wirkungsvolle Vermischen ein gutes Temperaturprofil über dem durchströmten Querschnitt und reduziert überdies die Möglichkeit des Auftretens von thermoakustischer Instabilität. Allein durch ihre Anwesenheit wirken die Wirbel-Generatoren als Dämpfungsmassnahme gegen thermoakustische Schwingungen.Furthermore, the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.

Bei den in den Fig. 6 bis 8 dargestellten Lösungen kann der gasförmige Brennstoff über Wandbohrungen eingedüst werden, die aus im Innern des Kanals angebrachten Ringleitungen angespeist sind. Selbstverständlich können zudem in Abweichung zur in Fig. 4 dargestellen radial eingeführten Lanze ebensogut zentrale Lanzen für flüssigen Brennstoff vorgesehen sein, von denen eine Mehrzahl über dem Umfang des Ringkanals verteilt ist.In the solutions shown in FIGS. 6 to 8, the gaseous fuel can be injected through wall bores which are fed from ring lines provided in the interior of the channel. Of course, in contrast to the radially inserted lance shown in FIG. 4, central lances for liquid fuel can also be provided be, a plurality of which is distributed over the circumference of the ring channel.

Fig. 6 zeigt eine Konfiguration wie Fig. 3, jedoch mit kleineren Radien der Ringwände und grosser Kanalhöhe. Die Höhe der einander gegenüberliegenden Wirbel-Generatoren wird dadurch stark unterschiedlich.Fig. 6 shows a configuration like Fig. 3, but with smaller radii of the ring walls and large channel height. The height of the opposing vortex generators is very different.

In der Regel wird man die Höhe h der Verbindungskante 16 so mit der Kanalhöhe H oder der Höhe des Kanalteils, welchem dem Wirbel-Generator zugeordnet ist, abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Kanalhöhe H ausgefüllt wird, was zu einer gleichmässigen Geschwindigkeitsverteilung in dem beaufschlagten Querschnitt führt. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der Druckverlustbeiwert ansteigt.As a rule, the height h of the connecting edge 16 will be coordinated with the channel height H or the height of the channel part, which is assigned to the vortex generator, in such a way that the vortex generated immediately downstream of the vortex generator already reaches such a size that the full channel height H is filled, which leads to a uniform speed distribution in the applied cross section. Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.

Bei den in Fig. 7 gezeigten Wirbel-Generatoren liegen die Verbindungskanten von zwei gegenüberliegenden Wirbel-Generatoren um eine halbe Teilung versetzt. Dadurch wird die Wirbelstruktur stromabwärts der Wirbel-Generatoren dahingehend geändert, dass die seitengleichen erzeugten Wirbel den gleichen Drehsinn aufweisen und u.U. zu einem grossen Wirbel verschmelzen, der den ganzen Kanalquerschnitt im entsprechenden Winkelsektor ausfüllt. Dadurch kann zum einen die Mischqualität noch verbessert und zum andern eine grösseren Lebensdauer des Wirbels erreicht werden. Diese Lösung bietet die nicht gezeigte Möglichkeit, die Höhe der inneren Wirbel-Generatoren anzuheben, so dass deren Spitze zwischen die Seitenwände der beiden gegenüberliegenden Wirbel-Generatoren eingreifen kann.In the vortex generators shown in FIG. 7, the connecting edges of two opposite vortex generators are offset by half a division. As a result, the vortex structure downstream of the vortex generators is changed such that the vortices generated on the same side have the same direction of rotation and may merge into one large vortex that fills the entire channel cross section in the corresponding angular sector. On the one hand, this allows the mixing quality to be improved and, on the other hand, a longer lifespan of the vortex can be achieved. This solution offers the possibility, not shown, of raising the height of the inner vortex generators so that their tips can engage between the side walls of the two opposite vortex generators.

In Fig. 8 sind an beiden Ringwänden sogenannte "halbe" Wirbel-Generatoren 9a in Umfangsrichtung aneinandergereiht. Wie aus den Pfeilen erkennbar, kombinieren sich die einzelnen Wirbel, die alle den gleichen Drehsinn aufweisen, zu einem grossen, den ganzen Kanal beaufschlagenden rotierenden Wirbel.In Fig. 8 so-called "half" vortex generators 9a are strung together in the circumferential direction on both ring walls. As can be seen from the arrows, the individual vertebrae, which all have the same direction of rotation, combine to form a large rotating vertebra that acts on the entire channel.

Die drei nachstehend beschriebenen Anordnungen eignen sich vorzüglich zum Ersteinbau oder als "retrofit"-Massnahme in Vormischkammern mit Kreisquerschnitt des durchströmtem Kanals 20. Die bisherigen Düsengitter oder Mischrohre für den gasförmigen Brennstoff werden einfach ersetzt durch eine im Innern der Vormischkammer angeordnete Ringleitung 25, aus der die Schlitze oder Bohrungen 22e vor den Wirbel-Generatoren angespeist werden. Auch eine zentrale Brennstofflanze könnte in diesem Verbund angeordnet werden.The three arrangements described below are particularly suitable for initial installation or as a "retrofit" measure in premixing chambers with a circular cross section of the channel 20 through which flow passes. The previous nozzle grids or mixing tubes for the gaseous fuel are simply replaced by a ring line 25 arranged in the interior of the premixing chamber, from which the slots or bores 22e are fed in front of the vortex generators. A central fuel lance could also be arranged in this network.

Gemäss Fig. 9 sind an der Wand 21a vier Wirbel-Generatoren 9 im Umfangsrichtung so aneinandergereiht, dass keine Zwischenräume an der Kanalwand freigelassen werden. Die Wirkungsweise der Elemente in einem solchen Verbund entspricht jener der äusseren Wirbel-Generatoren in Fig. 3.According to FIG. 9, four vortex generators 9 are strung together on the wall 21a in the circumferential direction in such a way that no gaps are left on the channel wall. The mode of operation of the elements in such a network corresponds to that of the outer vortex generators in FIG. 3.

In der Fig. 10 verläuft bei gleicher Grundanordnung der Wirbel-Generatoren 9 deren Symmetrieachse 17 schräg zur Kanalachse. Die beiden Seitenflächen weisen somit gegenüber der Hauptströmung eine unterschiedliche Pfeilung auf. Es enstehen damit auf beiden Seiten des Wirbel-Generators Wirbel mit unterschiedlicher Drallzahl. Dies führt dazu, dass der Strömung stromabwärts der Elemente ein Drall anhaftet.10 runs with the same basic arrangement of the vortex generators 9 whose axis of symmetry 17 obliquely to the channel axis. The two side surfaces thus have a different sweep compared to the main flow. This creates vortices with different swirl numbers on both sides of the vortex generator. As a result, there is a twist in the flow downstream of the elements.

Mit der Lösung nach Fig. 11 wird der ganze durchströmte Querschnitt werwirbelt. Die Anordnung besteht aus 4 Gruppen von je 3 Wirbel-Generatoren 9a nach Fig. 2. In einer Gruppe sind die drei Wirbel-Generatoren mit zunehmender Höhe ausgestattet. Sämtliche erzeugten Wirbel sind rotationsgleich.With the solution according to FIG. 11, the entire cross-section through which flow passes is whirled. The arrangement consists of 4 groups of 3 vortex generators 9a each according to FIG. 2. In one group the three vortex generators are equipped with increasing height. All vortices generated are the same rotation.

In Fig. 12 sind wiederum 4 Wirbel-Generatoren über dem Umfang angeordnet. In Abweichung zu der in Fig. 9 gezeigten Lage ist hier jedoch die jeweilige Verbindungskante 16 jene Stelle, die von der Kanalströmung zuerst beaufschlagt wird. Die Elemente sind im Vergleich mit Fig. 9 um 180° gedreht. Wie aus der Darstellung erkennbar, haben die beiden gegenläufigen Wirbel ihren Drehsinn geändert. Sie rotieren oberhalb der Dachfläche des Wirbel-Generators entlang und streben der Wand zu, auf welcher der Wirbel-Generator montiert ist. Diese Lösung bietet an sich für den Einbau einer zentralen Lanze 24, mit welcher der Brennstoff in die Radialen eingedüst wird, in denen die Symmetrieachsen der Wirbel-Generatoren verlaufen. Der Brennstoff gelangt direkt in die gegen Wand rotierenden Wirbel.12, in turn, 4 vortex generators are arranged over the circumference. In a departure from the position shown in FIG. 9, however, the respective connecting edge 16 is the point which is first acted upon by the channel flow. The elements are rotated by 180 ° in comparison with FIG. 9. As can be seen from the illustration, the two opposite vortices have changed their sense of rotation. They rotate above the roof surface of the vortex generator and strive towards the wall on which the vortex generator is mounted. This solution offers itself for the installation of a central lance 24 with which the fuel is injected into the radials in which the axes of symmetry of the vortex generators run. The fuel goes directly into the vortices rotating against the wall.

In Fig. 13 schliesslich wird eine Variante mit Wirbel-Generatoren 9 gezeigt, die sich vorzüglich als Austauscheinheit in zylindrischen Vormischkammern eignet. Zudem ist sie für den Dualbetrieb konzipiert, d.h. es kann sowohl flüssiger als auch gasförmiger Brennstoff in die Verbrennungsluft eingemischt werden. Der axial in das nicht gezeigte Vormischrohr einführbare Bausatz besteht aus einer zentralen Lanze 24, die an ihrem Ende mit Wirbel-Generatoren 9 versehen ist. Der flüssige Brennstoff gelangt über eine in der zentralen Lanze 24 angeordnete Ölleitung 26 zum Einspritzkopf, aus dem er über Düsen in den Kanal eingespritzt wird. Die Düsen sind gemäss Pfeilrichtung in die Symmetrielinie der Wirbel-Generatoren gerichtet. Der Brennstoff wird so von den aufsteigenden Wirbeln erfasst. Der gasförmige Brennstoff, der ebenfalls über die Gasleitung 29 in der zentralen Lanze herangeführt wird, gelangt über hohl Rippen 27 in einen Gasring 28, mit welchem das System im Rohr zentriert und fixiert ist. Aus diesem Gasring 28 wird der Brennstoff der Hauptströmung zugegeben.Finally, FIG. 13 shows a variant with vortex generators 9 which is particularly suitable as an exchange unit in cylindrical premixing chambers. It is also designed for dual operation, which means that both liquid and gaseous fuel can be mixed into the combustion air. The kit which can be inserted axially into the premixing tube (not shown) consists of a central lance 24 which is provided with vortex generators 9 at its end. The liquid fuel passes through an oil line 26 arranged in the central lance 24 to the injection head, from which it is injected into the channel via nozzles. The nozzles are directed in the direction of the arrow in the symmetry line of the vortex generators. The fuel is captured by the rising vortices. The gaseous fuel, which is also supplied via the gas line 29 in the central lance, passes via hollow ribs 27 into a gas ring 28 with which the system is centered and fixed in the tube. The fuel is added to the main flow from this gas ring 28.

Selbstverständlich ist die Erfindung nicht auf die beschriebenen und gezeigten Beispiele beschränkt. Bezüglich der Anordnung der Wirbel-Generatoren im Verbund sind viele Kombinationen möglich, ohne den Rahmen der Erfindung zu verlassen. Auch die Einführung der Sekundärströmung in die Hauptströmung kann auf vielfältige Weise vorgenommen werden. Selbstverständlich eignet sich beispielsweise die Variante nach Fig. 9 ebenfalls in Brennkammmern des "can"-Prinzips.Of course, the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention. The introduction of the secondary flow into the main flow can also be carried out in a variety of ways. Of course, the variant according to FIG. 9 is also suitable, for example, in combustion chambers of the "can" principle.

BezugszeichenlisteReference list

9, 9a9, 9a
Wirbel-GeneratorVortex generator
1010th
DachflächeRoof area
1111
SeitenflächeSide surface
1212th
LängskanteLong edge
1313
SeitenflächeSide surface
1414
LängskanteLong edge
1515
quer verlaufenden Kante von 10transverse edge of 10
1616
VerbindungskanteConnecting edge
1717th
SymmetrielinieLine of symmetry
1818th
Spitzetop
20,20,
Kanalchannel
21, a,b21, a, b
KanalwandCanal wall
22, a,b,c22, a, b, c
WandbohrungWall hole
22e22e
Wandbohrung oder WandschlitzWall hole or wall slot
2424th
BrennstofflanzeFuel lance
2525th
RingleitungLoop
2626
ÖlleitungOil pipe
2727
Ripperib
2828
GasringGas ring
2929
GasleitungGas pipe
ΘΘ
AnstellwinkelAngle of attack
aa
PfeilwinkelArrow angle
hH
Höhe von 16Height of 16
HH
KanalhöheChannel height
LL
Länge des Wirbel-GeneratorsLength of the vortex generator

Claims (16)

  1. Fuel supply system with premixing combustion in which a gaseous and/or liquid fuel is introduced as a secondary flow into a gaseous, ducted main flow, the secondary flow having a substantially smaller mass flow than the main flow and the premixing duct through which flow takes place having curved walls, characterized in that
    - the main flow is guided via vortex generators (9) of which a plurality are arranged adjacent to one another over the periphery of the duct (20) through which flow takes place on at least one duct wall, and in that the secondary flow is fed into the duct (20) in the immediate region of the vortex generators (9),
    - in that the vortex generators (9) have three surfaces around which flow can take place freely, which surfaces extend in the flow direction, one of them forming the top surface (10) and the two others forming the side surfaces (11, 13),
    - characterized in that the side surfaces (11, 13) abut the same duct wall (21) and enclose a V-angle (α) between them,
    - characterized in that a top surface (10) edge (15) extending transverse to the duct (20) through which flow takes place is in contact with the same duct wall (21) as the side walls,
    - and characterized in that the longitudinally directed edges (12, 14) of the top surface, which abut the longitudinally directed edges of the side surfaces (11, 13) protruding into the flow duct, extend at an angle of incidence (θ) to the duct wall (21).
  2. Fuel supply system according to Claim 1, characterized in that the fuel is introduced via wall holes or slots (22e) which are arranged upstream of the vortex generators and which are fed from an annular duct (25) fitted within the duct wall.
  3. Fuel supply system according to Claim 1, characterized in that the fuel is introduced via wall holes (22a, 22b) in the duct wall (21).
  4. Fuel supply system according to Claim 1, characterized in that the fuel is introduced via wall holes (22c) which are located in one or a plurality of surfaces (10, 11, 13) of the vortex generator (9).
  5. Fuel supply system according to Claim 1, characterized in that the fuel is introduced via a central fuel lance (24) whose openings are located in the plane of the downstream edge of the vortex generator (9).
  6. Fuel supply system according to Claim 1, characterized in that the fuel distribution means and the vortex generators are conceived as an exchange unit.
  7. Fuel supply system according to Claim 1, characterized in that the two vortex generator (9) side surfaces (11, 13) enclosing the V-angle (α) are arranged symmetrically about an axis of symmetry (17).
  8. Fuel supply system according to Claim 1, characterized in that only one of the two side surfaces of the vortex generator (9) is provided with a V-angle (α, αh) whereas the other side surface is straight and is directed in the flow direction.
  9. Fuel supply system according to Claim 1, characterized in that the two side surfaces (11, 13) enclosing the V-angle (α, αh) include between them a connecting edge (16) which, together with the longitudinally directed edges (12, 14) of the top surface (10), form [sic] a point (18), and in that the connecting edge extends in the radial of the curved walls.
  10. Fuel supply system according to Claim 9, characterized in that the connecting edge (16) and/or the longitudinally directed edges (12, 14) of the top surface (10) are configured to be at least approximately sharp.
  11. Fuel supply system according to Claim 9, characterized in that the axis of symmetry (17) of the vortex generator (9) extends parallel to the duct axis, the connecting edge (16) of the two side surfaces (11, 13) forming the downstream edge of the vortex generator (9) and the top surface (10) edge (15) extending transverse to the duct (20) through which flow takes place being the edge which the main flow meets first.
  12. Fuel supply system according to Claim 1, characterized in that the ratio of the height (h) of the vortex generator to the duct height (H) is selected in such a way that the vortex generated fills the full duct height, or the full height of the duct part associated with the vortex generator, immediately downstream of the vortex generator (9).
  13. Fuel supply system according to Claim 7 or 8, characterized in that the duct (20) is annular and in that an equal number of vortex generators (9) are arranged in a row in the peripheral direction both on the outer annular wall (21a) and on the inner annular wall (21b), the connecting edges (16) of each two opposite vortex generators (9) being located on the same radial.
  14. Fuel supply system according to Claim 7 or 8, characterized in that the duct (20) is annular and in that an equal number of vortex generators (9) are arranged in a row in the peripheral direction both on the outer annular wall (21a) and on the inner annular wall (21b), the connecting edges (16) of each two opposite vortex generators (9) being offset by half a pitch relative to one another.
  15. Fuel supply system according to Claim 7 or 8 and 9, characterized in that the duct (20) is circular and in that a plurality of vortex generators (9, 9a) are arranged in a row in the peripheral direction on the wall (21a), preferably without intermediate spaces.
  16. Fuel supply system according to Claim 14, characterized in that the axis of symmetry (17) of the vortex generators extends oblique to the duct axis. (Fig. 10)
EP94103408A 1993-04-08 1994-03-07 Fuel supply system for combustion chamber Expired - Lifetime EP0619456B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1088/93 1993-04-08
CH01088/93A CH687832A5 (en) 1993-04-08 1993-04-08 Fuel supply for combustion.

Publications (2)

Publication Number Publication Date
EP0619456A1 EP0619456A1 (en) 1994-10-12
EP0619456B1 true EP0619456B1 (en) 1997-10-08

Family

ID=4202193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103408A Expired - Lifetime EP0619456B1 (en) 1993-04-08 1994-03-07 Fuel supply system for combustion chamber

Country Status (6)

Country Link
US (1) US5658358A (en)
EP (1) EP0619456B1 (en)
JP (1) JP3527278B2 (en)
CH (1) CH687832A5 (en)
DE (1) DE59404243D1 (en)
RU (1) RU2118756C1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4446541A1 (en) * 1994-12-24 1996-06-27 Abb Management Ag Combustion chamber
WO1996023981A1 (en) * 1995-02-03 1996-08-08 Bmw Rolls-Royce Gmbh Flow-guiding body for gas turbine combustion chambers
DE19507088B4 (en) * 1995-03-01 2005-01-27 Alstom premix
DE19512645A1 (en) * 1995-04-05 1996-10-10 Bmw Rolls Royce Gmbh Fuel preparation device for gas turbine combustion chamber
DE19520291A1 (en) * 1995-06-02 1996-12-05 Abb Management Ag Combustion chamber
GB2305498B (en) * 1995-09-25 2000-03-01 Europ Gas Turbines Ltd Fuel injector arrangement for a combustion apparatus
DE19543701A1 (en) * 1995-11-23 1997-05-28 Abb Research Ltd Premix burner
US8979525B2 (en) 1997-11-10 2015-03-17 Brambel Trading Internacional LDS Streamlined body and combustion apparatus
DE10158295B4 (en) * 2001-11-23 2005-11-24 Bramble-Trading Internacional Lda, Funchal flow body
US6192939B1 (en) * 1999-07-01 2001-02-27 Industrial Technology Research Institute Apparatus and method for driving a microflow
DE10101816A1 (en) * 2001-01-17 2002-07-18 Peter Ueberall Flat diffuser for altering cross section of flow in a flow channel has multiple single diffusers as divergent rectangular channels fitted alongside each other over the cross section of flow.
DE10330023A1 (en) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Vortex generator used in the swirling and mixing of fuel/air mixtures in pre-mixing combustion chambers comprises an outlet opening for targeted introduction of a secondary flow into the core flow of the wake produced
DE10250208A1 (en) * 2002-10-28 2004-06-03 Rolls-Royce Deutschland Ltd & Co Kg Assembly to stabilise flame development in a lean-burn gas turbine engine uses concentric array of turbolators downstream from turbine vanes
US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
US20050056313A1 (en) * 2003-09-12 2005-03-17 Hagen David L. Method and apparatus for mixing fluids
US8266911B2 (en) * 2005-11-14 2012-09-18 General Electric Company Premixing device for low emission combustion process
US7520272B2 (en) * 2006-01-24 2009-04-21 General Electric Company Fuel injector
EP2112433A1 (en) 2008-04-23 2009-10-28 Siemens Aktiengesellschaft Mixing chamber
US8459861B2 (en) * 2008-11-26 2013-06-11 Calgon Carbon Corporation Method and apparatus for use of mixing elements in wastewater / recycle water UV disinfection system
EP2253888B1 (en) * 2009-05-14 2013-10-16 Alstom Technology Ltd Burner of a gas turbine having a vortex generator with fuel lance
ES2462974T3 (en) * 2010-08-16 2014-05-27 Alstom Technology Ltd Reheating burner
US9435537B2 (en) * 2010-11-30 2016-09-06 General Electric Company System and method for premixer wake and vortex filling for enhanced flame-holding resistance
US8863525B2 (en) * 2011-01-03 2014-10-21 General Electric Company Combustor with fuel staggering for flame holding mitigation
US9297532B2 (en) * 2011-12-21 2016-03-29 Siemens Aktiengesellschaft Can annular combustion arrangement with flow tripping device
GB2500873A (en) * 2012-03-22 2013-10-09 Corac Energy Technologies Ltd Pipeline compression system
US20140123653A1 (en) * 2012-11-08 2014-05-08 General Electric Company Enhancement for fuel injector
DE102013018146B4 (en) * 2013-12-04 2021-02-25 Arianegroup Gmbh Injection element for a rocket combustion chamber
US9358557B2 (en) * 2013-12-20 2016-06-07 Young Living Essential Oils, Lc Liquid diffuser
WO2015134009A1 (en) * 2014-03-05 2015-09-11 Siemens Aktiengesellschaft Gas turbine engine with compressor exhaust flow static mixing system
EP2993404B1 (en) * 2014-09-08 2019-03-13 Ansaldo Energia Switzerland AG Dilution gas or air mixer for a combustor of a gas turbine
EP3301368A1 (en) 2016-09-28 2018-04-04 Siemens Aktiengesellschaft Swirler, combustor assembly, and gas turbine with improved fuel/air mixing
RU2685629C2 (en) * 2017-05-24 2019-04-22 Шор Борис Иосифович Liquid activator
US10969107B2 (en) * 2017-09-15 2021-04-06 General Electric Company Turbine engine assembly including a rotating detonation combustor
US10767866B2 (en) * 2018-07-11 2020-09-08 General Electric Company Micromixer for use with liquid fuel
KR102164619B1 (en) * 2019-04-08 2020-10-12 두산중공업 주식회사 Combuster and gas turbine having the same
US20210108801A1 (en) * 2019-10-14 2021-04-15 General Electric Company System for Rotating Detonation Combustion
CN114608032B (en) * 2022-03-01 2023-04-07 中国航发四川燃气涡轮研究院 Combustor with widened stability boundary

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1312147A (en) * 1919-08-05 Josiah mowek wallwilir
US875175A (en) * 1907-06-04 1907-12-31 Herbert F Tyler Air and gas mixer.
BE522350A (en) * 1952-09-23
NL98183C (en) * 1954-11-24
US3244221A (en) * 1963-12-23 1966-04-05 Johns Manville Gas mixing device
GB1096624A (en) * 1964-01-30 1967-12-29 Bristol Siddeley Engines Ltd Diffusers for fluid flows
US3835886A (en) * 1972-12-14 1974-09-17 Rockwell International Corp Porous tube injector
US3879939A (en) * 1973-04-18 1975-04-29 United Aircraft Corp Combustion inlet diffuser employing boundary layer flow straightening vanes
US3829279A (en) * 1973-08-20 1974-08-13 Modine Mfg Co Dual fuel burner apparatus
DE2508665A1 (en) * 1975-02-28 1976-09-09 Klaus Dipl Ing Matzke Burner without air and fuel premixer - has streamlined fuel supply profiles in air flow channel to burner
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
US4160640A (en) * 1977-08-30 1979-07-10 Maev Vladimir A Method of fuel burning in combustion chambers and annular combustion chamber for carrying same into effect
US4189914A (en) * 1978-06-19 1980-02-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Supercritical fuel injection system
US4812049A (en) * 1984-09-11 1989-03-14 Mccall Floyd Fluid dispersing means
DE3520772A1 (en) * 1985-06-10 1986-12-11 INTERATOM GmbH, 5060 Bergisch Gladbach Mixing appliance
DK155175C (en) * 1985-06-24 1989-09-18 Danfoil Aps atomizer
US4845952A (en) * 1987-10-23 1989-07-11 General Electric Company Multiple venturi tube gas fuel injector for catalytic combustor
US4981368A (en) * 1988-07-27 1991-01-01 Vortab Corporation Static fluid flow mixing method
DE68923413T2 (en) * 1988-09-07 1996-04-04 Hitachi Ltd Fuel-air premixing device for a gas turbine.
US4951463A (en) * 1988-09-16 1990-08-28 General Electric Company Hypersonic scramjet engine fuel injector
US5099644A (en) * 1990-04-04 1992-03-31 General Electric Company Lean staged combustion assembly
JP2852110B2 (en) * 1990-08-20 1999-01-27 株式会社日立製作所 Combustion device and gas turbine device
DE4121067A1 (en) * 1991-06-26 1993-01-14 Balcke Duerr Ag DEVICE FOR BURNING FLAMMABLE SUBSTANCES
ATE130220T1 (en) * 1991-07-30 1995-12-15 Sulzer Chemtech Ag MIXING DEVICE FOR SMALL QUANTITIES OF FLUID.
DE59104727D1 (en) * 1991-12-23 1995-03-30 Asea Brown Boveri Device for mixing two gaseous components and burner in which this device is used.
US5267851A (en) * 1992-03-16 1993-12-07 General Electric Company Swirl gutters for isolating flow fields for combustion enhancement at non-baseload operating conditions
US5240409A (en) * 1992-04-10 1993-08-31 Institute Of Gas Technology Premixed fuel/air burners
DE59402803D1 (en) * 1993-04-08 1997-06-26 Asea Brown Boveri Combustion chamber
EP0620403B1 (en) * 1993-04-08 1996-12-04 ABB Management AG Mixing and flame stabilizing device in a combustion chamber with premixing combustion
DE59401018D1 (en) * 1993-04-08 1996-12-19 Abb Management Ag Mixing chamber
EP0619134B1 (en) * 1993-04-08 1996-12-18 ABB Management AG Mixing receptacle
CH687831A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Premix burner.

Also Published As

Publication number Publication date
JP3527278B2 (en) 2004-05-17
EP0619456A1 (en) 1994-10-12
JPH0771758A (en) 1995-03-17
CH687832A5 (en) 1997-02-28
RU2118756C1 (en) 1998-09-10
US5658358A (en) 1997-08-19
DE59404243D1 (en) 1997-11-13

Similar Documents

Publication Publication Date Title
EP0619456B1 (en) Fuel supply system for combustion chamber
EP0619457B1 (en) Premix burner
EP0623786B1 (en) Combustion chamber
EP0675322B1 (en) Premix burner
EP0619133B1 (en) Mixing receptacle
EP0620403B1 (en) Mixing and flame stabilizing device in a combustion chamber with premixing combustion
DE60310170T2 (en) Fuel injection device
DE4426351B4 (en) Combustion chamber for a gas turbine
DE4438495B4 (en) Injection system and associated tricoaxial injection elements
DE4411623A1 (en) Premix burner
EP0733861A2 (en) Combustor for staged combustion
EP0718561B1 (en) Combustor
EP0775869B1 (en) Premix burner
DE4446611A1 (en) Combustion chamber
EP0394800B1 (en) Premix burner for generating a hot gas
EP0924460B1 (en) Two-stage pressurised atomising nozzle
EP0924461B1 (en) Two-stage pressurised atomising nozzle
DE19507088B4 (en) premix
EP0807787B1 (en) Burner
EP0961905B1 (en) Fuel combustion device and method
CH687827A5 (en) Gas turbine plant with a pressure wave machine.
DE19547914A1 (en) Premix burner for a heat generator
EP2252831B1 (en) Burner arrangement, and use of such a burner arrangement
CH688868A5 (en) Through-flow channel with eddy generator
DE2407484A1 (en) Flame tube for gas turbine engine - has variable primary air intake comprising adjustable radial guide vanes on tube dome

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19950307

17Q First examination report despatched

Effective date: 19960930

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 59404243

Country of ref document: DE

Date of ref document: 19971113

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ALSTOM (SWITZERLAND) LTD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ABB SCHWEIZ HOLDING AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120320

Year of fee payment: 19

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20120709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59404243

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59404243

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130225

Year of fee payment: 20

Ref country code: FR

Payment date: 20130315

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130328

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130312

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59404243

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140307

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140308

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140306