EP0619457B1 - Premix burner - Google Patents

Premix burner Download PDF

Info

Publication number
EP0619457B1
EP0619457B1 EP94103873A EP94103873A EP0619457B1 EP 0619457 B1 EP0619457 B1 EP 0619457B1 EP 94103873 A EP94103873 A EP 94103873A EP 94103873 A EP94103873 A EP 94103873A EP 0619457 B1 EP0619457 B1 EP 0619457B1
Authority
EP
European Patent Office
Prior art keywords
gap
vortex
flow
height
side surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103873A
Other languages
German (de)
French (fr)
Other versions
EP0619457A1 (en
Inventor
Klaus Dr. Döbbeling
Adnan Eroglu
Thomas Dr. Sattelmayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0619457A1 publication Critical patent/EP0619457A1/en
Application granted granted Critical
Publication of EP0619457B1 publication Critical patent/EP0619457B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers, e.g. vortex valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43171Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43172Profiles, pillars, chevrons, i.e. long elements having a polygonal cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/02Baffles or deflectors for air or combustion products; Flame shields in air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to premix burners according to the double-cone principle with essentially two hollow, conical partial bodies nested one inside the other in the direction of flow, the respective central axes of which are offset from one another, the adjacent walls of the two partial bodies in their longitudinal extension forming tangential gaps for the combustion air, and in the area of the tangential ones Gaps in the walls of the two partial bodies are provided in the longitudinal direction distributed gas inflow openings.
  • Such double-cone burners are known, for example, from EP-B1-0 321 809 and are described later in relation to FIGS. 1 and 2.
  • the fuel there natural gas, is injected into the combustion air flowing in from the compressor through a series of injector nozzles. As a rule, these are evenly distributed over the entire gap.
  • the invention is based on the object of equipping a double-cone burner of the type mentioned at the outset with a device with which longitudinal vortices can be generated without a recirculation area in the inlet gap through which flow passes.
  • the new static mixer which is represented by the 3-dimensional vortex generators, it is possible to achieve extraordinarily short mixing distances at the inlet to the burner with a low pressure drop.
  • a coarse mixing of the two streams takes place after just one full vortex revolution, while a fine mixing due to turbulent flow occurs after a distance that corresponds to a few gap heights.
  • This type of mixture is particularly suitable for mixing the fuel into the combustion air at a relatively low admission pressure and with great dilution.
  • a low admission pressure of the fuel is particularly advantageous when using medium and low calorific fuel gases.
  • the energy required for mixing is largely drawn from the flow energy of the fluid with the higher volume flow, namely the combustion air.
  • the advantage of such an element can be seen in its particular simplicity in every respect.
  • the element consisting of three walls with flow around it is completely problem-free.
  • the roof surface can be joined with the two side surfaces in a variety of ways.
  • the element can also be fixed to flat or curved gap walls in the case of weldable materials by simple weld seams.
  • the vortex generators can also be cast together with the limiting walls. From a fluidic point of view The element has a very low flow around it Pressure loss and it creates vortices without a dead water area.
  • the element can be cooled in a variety of ways and with various means.
  • the combustion air flows evenly into the inlet gaps, it is appropriate to choose the ratio of the height h of the connecting edge of the two side faces to the gap height H so that the generated vortex immediately downstream of the vortex generator is the full gap height or the full height of the vortex generator fills the assigned gap part.
  • premix burners 101 are arranged in the dome-shaped end of a combustion chamber in the combustion chamber wall 100.
  • Gas is preferably used as fuel.
  • the combustion air passes from an annular air inlet 102 into the housing interior 103, from where it flows into the burner 101 in the direction of the arrow.
  • the schematically illustrated premix burner 101 according to FIGS. 1 and 2 is a so-called double-cone burner, as is known for example from EP-B1-0 321 809. It essentially consists of two hollow, conical partial bodies 111, 112 which are nested one inside the other in the direction of flow. The respective central axes 113, 114 of the two partial bodies are offset from one another. The adjacent walls of the two partial bodies in their longitudinal extent form tangential slots 20 for the combustion air, which in this way reaches the interior of the burner. A first fuel nozzle 116 for liquid fuel is arranged there. The fuel is injected into the hollow cone at an acute angle. The resulting conical fuel profile is enclosed by the combustion air flowing in tangentially.
  • the concentration of the fuel is continuously reduced in the axial direction due to the mixing with the combustion air.
  • the burner is also operated with gaseous fuel.
  • gas inflow openings 117 distributed in the longitudinal direction are provided in the region of the tangential slots 20 in the walls of the two partial bodies.
  • the mixture formation begins with the combustion air thus already in the zone of the inlet slots 20. It goes without saying that mixed operation with both types of fuel is also possible in this way.
  • a fuel concentration that is as homogeneous as possible is established over the loaded cross-section in the form of a ring.
  • a defined dome-shaped return flow zone is created at the burner outlet, at the tip of which the ignition takes place.
  • a vortex generator 9 essentially consists of three freely flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the two side surfaces 11 and 13 are perpendicular to the gap wall 21, it being noted that this is not mandatory.
  • the side walls which consist of right-angled triangles, are fixed with their long sides on this gap wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle ⁇ .
  • the joint is designed as a sharp connecting edge 16 and is also perpendicular to the gap wall 21 with which the side surfaces are flush.
  • the two side surfaces 11 enclosing the arrow angle ⁇ , 13 are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 (Fig. 6b, 7b). This axis of symmetry 17 is rectified like the gap axis.
  • the roof surface 10 abuts the same gap wall 21 as the side walls 11, 13 with a very pointed edge 15 running transversely to the inlet gap and its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow gap.
  • the roof surface extends at an angle of inclination ⁇ to the gap wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.
  • the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the gap wall 21.
  • a floor area is not related to the mode of operation of the element.
  • the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator.
  • the edge 15 of the roof surface 10 which runs transversely to the inlet gap through which it flows is thus the edge which is first acted upon by the gap flow.
  • the vortex generator 9 works as follows: When flowing around the edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. There is a swirl-neutral flow pattern in which the direction of rotation of the two vortices is ascending in the area of the connecting edge. The number of twists and the location of the vortex breakdown (vortex break down), if the latter is desired at all, are determined by a corresponding choice of the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself. Depending on the application, these two angles ⁇ and ⁇ are predetermined by the structural conditions and by the process itself. All that then has to be adjusted is the height h of the connecting edge 16 (FIG. 6a).
  • the vortex generator can have different heights compared to the slit height H.
  • the height h of the connecting edge 16 will be coordinated with the gap height H in such a way that the vortex generated immediately downstream of the vortex generator already has such a size that the full gap height H is filled.
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.
  • FIG. 4 shows a so-called half "vortex generator" 9a based on a vortex generator 9 according to FIG. 3, in which only the one of the two side surfaces is provided with the arrow angle ⁇ / 2. The other side surface is straight and oriented in the direction of flow. In contrast to the symmetrical vortex generator 9, only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator 9a, but a swirl is imposed on the flow if the vortex generator 9a is alone.
  • the sharp connecting edge 16 of the vortex generator 9 is the point which is first acted upon by the gap flow.
  • the element is rotated by 180 °.
  • the two opposite vortices have changed their sense of rotation.
  • FIG. 6 shows how a plurality of vortex generators 9, here 3 vortex generators 9, are arranged side by side without gaps across the width of the inlet gap 20.
  • the entry gap 20 has a rectangular shape, but this is not essential to the invention.
  • FIG. 7 An embodiment variant with two full (9) and two half (9a) vortex generators adjoining it on both sides is shown in FIG. 7.
  • the elements differ in particular by their greater height h. If the angle of attack remains the same, this inevitably leads to a greater length L of the element and consequently - because of the same division - to a smaller arrow angle ⁇ .
  • the vortices produced will have a lower swirl strength, but will completely fill the gap cross section within a shorter interval. If in both cases a vortex burst is intended, for example to stabilize the flow, this will be done later with the vortex generator according to FIG. 7 than with that according to FIG. 6.
  • the ducts shown in FIGS. 6 and 7 represent rectangular low-pressure air ducts. It is pointed out once again that the shape of the inlet gap through which the air flows is not essential for the mode of operation of the invention. With the help of the vortex generators 9, 9a, two flows are mixed together. The main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow. The secondary flow in the form of fuel has a substantially smaller mass flow than the main flow. and will in the immediate Area of the vortex generators introduced into the main flow.
  • this injection takes place via individual bores 22a which are made in the wall 21a.
  • the wall 21a is the wall on which the vortex generators are arranged.
  • the bores 22a are located on the line of symmetry 17 downstream behind the connecting edge 16 of each vortex generator. With this configuration, the fuel is fed into the already existing large-scale vortices.
  • FIG. 7 shows an embodiment variant of an inlet gap in which the fuel is also injected via wall bores 22b. These are located downstream of the vortex generators in that wall 21b on which the vortex generators are not arranged, that is to say on the wall opposite the wall 21a.
  • the wall bores 22b are each made centrally between the connecting edges 16 of two adjacent vortex generators, as can be seen in FIG. 4.
  • the fuel reaches the vortex in the same way as in the embodiment according to FIG. 6, but with the difference that it is no longer mixed into the vortex of a pair of vertebrae generated by the same vortex generator, but in one each Vortex of two neighboring vortex generators. Since the adjacent vortex generators are arranged without a gap and generate vortex pairs with the same direction of rotation, the injections according to FIGS. 6 and 7 have the same effect.
  • the vortex generators all have the same sweep and the same angle of attack, which according to FIGS. 2A and 2B leads to different lengths of the vortex generators for a given height. If one wants to carry out the fuel supply according to the rules given in FIG. 6 in the plane of the connecting edges, this naturally leads also to an uneven distance and consequently the diameter of the individual holes.
  • the axis of symmetry of the vortex generators runs in the direction of flow, i.e. at a certain angle to the longitudinal axis of the gap.
  • the vortex generators have the same arrow angles but different angles of attack.
  • the length of all elements is the same.
  • the holes for the fuel injection are equidistant.
  • the injected fuel is dragged along by the vortices and mixed with the air. It follows the helical course of the vertebrae and is evenly finely distributed in the interior of the Benner downstream of the vertebrae. This reduces the risk of impact jets on the opposite wall and the formation of so-called “hot spots” —with the previously customary radial injection of fuel into a swirling flow.
  • the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions.
  • the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention.
  • the introduction of the secondary flow into the main flow can also be carried out in a variety of ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft Vormischbrenner nach dem Doppelkegelprinzip mit im wesentlichen zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern, deren jeweiligen Mittelachsen gegeneinander versetzt sind, wobei die benachbarten Wandungen der beiden Teilkörper in deren Längserstreckung tangentiale Spalte für die Verbrennungsluft bilden, und wobei im Bereich der tangentialen Spalte in den Wandungen der beiden Teilkörper in Längsrichtung verteilte Gaseinströmöffnungen vorgesehen sind.The invention relates to premix burners according to the double-cone principle with essentially two hollow, conical partial bodies nested one inside the other in the direction of flow, the respective central axes of which are offset from one another, the adjacent walls of the two partial bodies in their longitudinal extension forming tangential gaps for the combustion air, and in the area of the tangential ones Gaps in the walls of the two partial bodies are provided in the longitudinal direction distributed gas inflow openings.

Stand der TechnikState of the art

Derartige Doppelkegelbrenner sind beispielsweise aus der EP-B1-0 321 809 bekannt und werden später zu Fig. 1 und 2 beschrieben. Der Brennstoff, dort Erdgas, wird in den Eintrittsspalten in die vom Verdichter heranströmende Verbrennungsluft über eine Reihe von Injektordüsen eingespritzt. Diese sind in der Regel über den ganzen Spalt gleichmässig verteilt.Such double-cone burners are known, for example, from EP-B1-0 321 809 and are described later in relation to FIGS. 1 and 2. The fuel, there natural gas, is injected into the combustion air flowing in from the compressor through a series of injector nozzles. As a rule, these are evenly distributed over the entire gap.

Um eine verlässliche Zündung des Gemischs in der nachgeschalteten Brennkammer und einen genügenden Ausbrand zu erzielen, ist eine innige Mischung des Brennstoffs mit der Luft erforderlich. Eine gute Durchmischung trägt auch dazu bei, sogenannte "hot spots" in der Brennkammer zu vermeiden, die unter anderem zur Bildung des unerwünschten NOX führen.In order to achieve a reliable ignition of the mixture in the downstream combustion chamber and a sufficient burnout, an intimate mixture of the fuel with the air is required. Good mixing also helps to avoid so-called "hot spots" in the combustion chamber, which lead, among other things, to the formation of the undesired NO x .

Die oben erwähnte Eindüsung des Brennstoffs über klassische Mittel wie beispielsweise Querstrahlmischer ist schwierig, da der Brennstoff selbst einen ungenügenden Impuls aufweist, um die erforderliche gross-skalige Verteilung und die feinskalige Mischung zu erreichen.The above-mentioned injection of the fuel using conventional means, such as, for example, a cross-jet mixer, is difficult since the fuel itself has an insufficient impulse to achieve the required large-scale distribution and the fine-scale mixture.

Aus der EP-B-0 520 163 sind Vorrichtungen zum intensiven Vermischen von Brennstoff und Verbrennungsluft bekannt. Es handelt sich dabei um Wirbeleinbauflächen in Form Deltaflügeln, die in einer kanalisierten Strömung angestellt sind. Werden derartige Flügel von der Spitze her angeströmt, so ensteht einerseits stromabwärts des Flügels ein Totwassergebiet und andererseits erfährt die Strömung durch die angestellte Fläche einen nicht unbeträchtlichen Druckabfall. Das Anordnen eines solchen Deltaflügels in einem Kanal muss über strömungsbeeinträchtigende Hilfsmittel wie Streben, Rippen oder dergleichen erfolgen. Darüberhinaus ergeben sich beispielsweise in einer Heissgasströmung Probleme mit der Kühlung solcher Elemente.Devices for intensive mixing of fuel and combustion air are known from EP-B-0 520 163. These are vortex installation surfaces in the form of delta wings, which are set in a channelized flow. If such wings are flown from the tip, a dead water area arises on the one hand downstream of the wing and on the other hand the flow through the employed surface experiences a not inconsiderable drop in pressure. The arrangement of such a delta wing in a channel must be carried out using flow-restricting aids such as struts, ribs or the like. In addition, problems arise with the cooling of such elements in a hot gas flow, for example.

Darstellung der ErfindungPresentation of the invention

Die Erfindung liegt die Aufgabe zugrunde, einen Doppelkegelbrenner der eingangs genannten Art mit einer Vorrichtung auszustatten, mit der im durchströmten Eintrittsspalt Längswirbel ohne Rezirkulationsgebiet erzeugt werden können.The invention is based on the object of equipping a double-cone burner of the type mentioned at the outset with a device with which longitudinal vortices can be generated without a recirculation area in the inlet gap through which flow passes.

Erfindungsgemäss wird dies mit den kennzeichnenden Merkmalen des Patentanspruchs 1 erreicht.According to the invention this is achieved with the characterizing features of patent claim 1.

Mit dem neuen statischen Mischer, den die 3-dimensionalen Wirbel-Generatoren darstellen, ist es möglich, am Eintritt in den Brenner ausserordentlich kurze Mischstrecken bei gleichzeitig geringem Druckverlust zu erzielen. Bereits nach einer vollen Wirbelumdrehung ist eine grobe Durchmischung der beiden Ströme vollzogen, während eine Feinmischung infolge von turbulenter Strömung nach einer Strecke vorliegt, die einigen wenigen Spalthöhen entspricht.With the new static mixer, which is represented by the 3-dimensional vortex generators, it is possible to achieve extraordinarily short mixing distances at the inlet to the burner with a low pressure drop. A coarse mixing of the two streams takes place after just one full vortex revolution, while a fine mixing due to turbulent flow occurs after a distance that corresponds to a few gap heights.

Diese Art der Mischung ist besonders geeignet, um den Brennstoff mit relativ geringem Vordruck unter grosser Verdünnung in die Verbrennungsluft einzumischen. Ein geringer Vordruck des Brennstoffes ist insbesondere bei der Verwendung von mittel- und niederkalorischen Brenngasen von Vorteil. Die zur Mischung erforderliche Energie wird dabei zu einem wesentlichen Teil aus der Strömungsenergie des Fluides mit dem höheren Volumenstrom, eben der Verbrennungsluft, entnommen.This type of mixture is particularly suitable for mixing the fuel into the combustion air at a relatively low admission pressure and with great dilution. A low admission pressure of the fuel is particularly advantageous when using medium and low calorific fuel gases. The energy required for mixing is largely drawn from the flow energy of the fluid with the higher volume flow, namely the combustion air.

Der Vorteil eines solchen Elementes ist in seiner besonderen Einfachheit in jeder Hinsicht zu sehen. Fertigungstechnisch ist das aus drei umströmten Wänden bestehende Element völlig problemlos. Die Dachfläche kann mit den beiden Seitenflächen auf verschiedenste Arten zusammengefügt werden. Auch die Fixierung des Elementes an ebenen oder gekrümmten Spaltwänden kann im Falle von schweissbaren Materialien durch einfache Schweissnähte erfolgen. Selbstverständlich können die Wirbel-Generatoren auch zusammen mit den begrenzenden Wandungen vergossen werden. Vom strömungstechnischen Standpunkt her weist das Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet. Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.The advantage of such an element can be seen in its particular simplicity in every respect. In terms of production technology, the element consisting of three walls with flow around it is completely problem-free. The roof surface can be joined with the two side surfaces in a variety of ways. The element can also be fixed to flat or curved gap walls in the case of weldable materials by simple weld seams. Of course, the vortex generators can also be cast together with the limiting walls. From a fluidic point of view The element has a very low flow around it Pressure loss and it creates vortices without a dead water area. Finally, due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.

Bei gleichmässiger Zuströmung der Verbrennungsluft in den Eintrittsspalten ist es angebracht, das Verhältnis Höhe h der Verbindungskante der beiden Seitenflächen zur Spalthöhe H so zu wählen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators die volle Spalthöhe oder die volle Höhe des dem Wirbel-Generators zugeordneten Spaltteils ausfüllt.If the combustion air flows evenly into the inlet gaps, it is appropriate to choose the ratio of the height h of the connecting edge of the two side faces to the gap height H so that the generated vortex immediately downstream of the vortex generator is the full gap height or the full height of the vortex generator fills the assigned gap part.

Dadurch, dass über der Breite des durchströmten Eintrittsspalts mehrere Wirbel-Generatoren ohne Zwischenräume nebeneinander angeordnet sind, wird bereits kurz hinter den Wirbel-Generatoren der ganze Spaltquerschnitt von den Wirbeln voll beaufschlagt.Due to the fact that several vortex generators are arranged side by side without gaps across the width of the inlet gap, the entire gap cross section is fully acted upon by the vortexes shortly behind the vortex generators.

Bei variierendem Geschwindigkeitsfeld in den Eintrittsspalten ist es sinnvoll, unterschiedliche Höhen für die nebeneinander angeordneten Wirbel-Generatoren vorzusehen, derart, dass der absolute Druckverlust entlang der Eintrittsspalte konstant bleibt.With a varying speed field in the inlet gaps, it makes sense to provide different heights for the vortex generators arranged next to one another in such a way that the absolute pressure loss along the inlet column remains constant.

Es ist sinnvoll, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen symmetrisch um eine Symmetrieachse angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.It makes sense if the two side surfaces including the arrow angle α are arranged symmetrically about an axis of symmetry. This creates swirls of equal swirl.

Weitere Vorteile der Erfindung, insbesondere im Zusammenhang mit der Anordnung der Wirbel-Generatoren ergeben sich aus den Unteransprüchen.Further advantages of the invention, in particular in connection with the arrangement of the vortex generators, result from the subclaims.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung schematisch dargestellt. Es zeigen:

Fig. 1
einen Teillängsschnitt einer Brennkammer;
Fig. 2A
einen Querschnitt durch einen Vormischbrenner im Bereich des Brenneraustritts;
Fig. 2B
einen Querschnitt durch einen Vormischbrenner im Bereich der Kegelspitze;
Fig. 3
eine perspektivische Darstellung eines Wirbel-Generators;
Fig. 4
eine Ausführungsvariante des Wirbel-Generators;
Fig. 5
eine Anordnungsvariante des Wirbel-Generators nach Fig. 3;
Fig. 6a-c
die gruppenweise Anordnung von Wirbel-Generatoren in einem Eintrittsspalt im Längsschnitt, in einer Draufsicht und in einer Hinteransicht;
Fig. 7a-c
eine Ausführungsvariante einer gruppenweisen Anordnung von Wirbel-Generatoren in gleicher Darstellung wie Fig. 3 mit einer Variante der Brennstofführung;
Fig. 8
eine Vorderansicht eines Eintrittsspaltes mit eingebauten Wirbel-Generatoren;
Fig. 9
eine Anordnungvariante der Wirbel-Generatoren im Eintrittsspalt.
Several exemplary embodiments of the invention are shown schematically in the drawing. Show it:
Fig. 1
a partial longitudinal section of a combustion chamber;
Figure 2A
a cross section through a premix burner in the region of the burner outlet;
Figure 2B
a cross section through a premix burner in the region of the cone tip;
Fig. 3
a perspective view of a vortex generator;
Fig. 4
a variant of the vortex generator;
Fig. 5
a variant of the arrangement of the vortex generator of FIG. 3;
6a-c
the grouped arrangement of vortex generators in an inlet gap in longitudinal section, in a plan view and in a rear view;
7a-c
an embodiment of a group arrangement of vortex generators in the same representation as Figure 3 with a variant of the fuel management.
Fig. 8
a front view of an entrance slit with built-in vortex generators;
Fig. 9
an arrangement variant of the vortex generators in the inlet gap.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet. In den verschiedenen Figuren sind die gleichen Elemente jeweils mit den gleichen Bezugszeichen versehen. Erfindungsunwesentliche Elemente wie Gehäuse, Befestigungen, Leitungsdurchführungen, die Brennstoffbereitstellung, die Regeleinrichtungen und dergleichen sind fortgelassen.Only the elements essential for understanding the invention are shown. The direction of flow of the work equipment is indicated by arrows. In the various figures, the same elements are provided with the same reference symbols. Elements not essential to the invention such as Housing, fastenings, line bushings, the fuel supply, the control devices and the like are omitted.

Weg zur Ausführung der ErfindungWay of carrying out the invention

In Fig.1 sind im domförmigen Abschluss einer Brennkammer in der Brennkammerwand 100 mehrere Vormischbrenner 101 angeordnet. Als Brennstoff gelangt vorzugsweise Gas zur Annwendung. Die Verbrennungluft gelangt aus einem ringförmigen Lufteintritt 102 in das Gehäuseinnere 103 geleitet, von wo aus sie in Pfeilrichtung in die Brenner 101 einströmt.In FIG. 1, several premix burners 101 are arranged in the dome-shaped end of a combustion chamber in the combustion chamber wall 100. Gas is preferably used as fuel. The combustion air passes from an annular air inlet 102 into the housing interior 103, from where it flows into the burner 101 in the direction of the arrow.

Beim schematisch dargestellten Vormischbrenner 101 nach den Fig. 1 und 2 handelt es sich um einen sogenannten Doppelkegelbrenner, wie er beispielsweise aus der EP-B1-0 321 809 bekannt ist. Im wesentlichen besteht er aus zwei hohlen, kegelförmigen Teilkörpern 111, 112, die in Strömungsrichtung ineinandergeschachtelt sind. Dabei sind die jeweiligen Mittelachsen 113, 114 der beiden Teilkörper gegeneinander versetzt. Die benachbarten Wandungen der beiden Teilkörper bilden in deren Längserstreckung tangentiale Schlitze 20 für die Verbrennungsluft, die auf diese Weise in das Brennerinnere gelangt. Dort ist eine erste Brennstoffdüse 116 für flüssigen Brennstoff angeordnet. Der Brennstoff wird in einem spitzen Winkel in die Hohlkegel eingedüst. Das entstehende kegelige Brennstoffprofil wird von der tangential einströmenden Verbrennungsluft umschlossen. In axialer Richtung wird die Konzentration des Brennstoffes fortlaufend infolge der Vermischung mit der Verbrennungsluft abgebaut. Im Beispielsfall wird der Brenner ebenfalls mit gasförmigem Brennstoff betrieben. Hierzu sind im Bereich der tangentialen Schlitze 20 in den Wandungen der beiden Teilkörper in Längsrichtung verteilte Gaseinströmöffnungen 117 vorgesehen. Im Gasbetrieb beginnt die Gemischbildung mit der Verbrennungsluft somit bereits in der Zone der Eintrittsschlitze 20. Es versteht sich, dass auf diese Weise auch ein Mischbetrieb mit beiden Brennstoffarten möglich ist.The schematically illustrated premix burner 101 according to FIGS. 1 and 2 is a so-called double-cone burner, as is known for example from EP-B1-0 321 809. It essentially consists of two hollow, conical partial bodies 111, 112 which are nested one inside the other in the direction of flow. The respective central axes 113, 114 of the two partial bodies are offset from one another. The adjacent walls of the two partial bodies in their longitudinal extent form tangential slots 20 for the combustion air, which in this way reaches the interior of the burner. A first fuel nozzle 116 for liquid fuel is arranged there. The fuel is injected into the hollow cone at an acute angle. The resulting conical fuel profile is enclosed by the combustion air flowing in tangentially. The concentration of the fuel is continuously reduced in the axial direction due to the mixing with the combustion air. In the example, the burner is also operated with gaseous fuel. For this purpose, gas inflow openings 117 distributed in the longitudinal direction are provided in the region of the tangential slots 20 in the walls of the two partial bodies. In gas operation, the mixture formation begins with the combustion air thus already in the zone of the inlet slots 20. It goes without saying that mixed operation with both types of fuel is also possible in this way.

Am Brenneraustritt 118 stellt sich eine möglichst homogene Brennstoffkonzentration über dem beaufschlagten kreiringförmigen Querschnitt ein. Es entsteht am Brenneraustritt eine definierte kalottenförmige Rückströmzone, an deren Spitze die Zündung erfolgt.At the burner outlet 118, a fuel concentration that is as homogeneous as possible is established over the loaded cross-section in the form of a ring. A defined dome-shaped return flow zone is created at the burner outlet, at the tip of which the ignition takes place.

Soweit sind Doppelkegelbrenner aus der eingangs genannten EP-B1-0 321 809 bekannt. Bevor auf den Einbau der neuen Mischvorrichtung im Brenner eingegangen wird, wird zunächst der für die Wirkungsweise der Erfindung wesentliche Wirbel-Generator beschrieben.So far, double-cone burners are known from EP-B1-0 321 809 mentioned at the beginning. Before the installation of the new mixing device in the burner is discussed, the vortex generator essential for the mode of operation of the invention is first described.

In den Figuren 3-5 ist der eigentliche Eintrittsspalt, der von einer mit grossem Pfeil symbolisierten Hauptströmung durchströmt wird, nicht dargestellt. Gemäss diesen Figuren besteht ein Wirbel-Generator 9 im wesentlichen aus drei frei umströmten dreieckigen Flächen. Es sind dies eine Dachfläche 10 und zwei Seitenflächen 11 und 13. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.The actual inlet gap, through which a main flow symbolized by a large arrow flows, is not shown in FIGS. 3-5. According to these figures, a vortex generator 9 essentially consists of three freely flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.

In sämtlichen gezeigten Beispielen stehen die beiden Seitenflächen 11 und 13 senkrecht auf der Spaltwand 21, wobei angemerkt wird, dass dies nicht zwingend ist. Die Seitenwände, welche aus rechtwinkligen Dreiecken bestehen, sind mit ihren Längsseiten auf dieser Spaltwand 21 fixiert, vorzugsweise gasdicht. Sie sind so orientiert, dass sie an ihren Schmalseiten einen Stoss bilden unter Einschluss eines Pfeilwinkels α. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht ebenfalls senkrecht zu jener Spaltwand 21, mit welcher die Seitenflächen bündig sind. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11, 13 sind symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieachse 17 angeordnet (Fig 6b, 7b). Diese Symmetrieachse 17 ist gleichgerichtet wie die Spaltachse.In all the examples shown, the two side surfaces 11 and 13 are perpendicular to the gap wall 21, it being noted that this is not mandatory. The side walls, which consist of right-angled triangles, are fixed with their long sides on this gap wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle α. The joint is designed as a sharp connecting edge 16 and is also perpendicular to the gap wall 21 with which the side surfaces are flush. The two side surfaces 11 enclosing the arrow angle α, 13 are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 (Fig. 6b, 7b). This axis of symmetry 17 is rectified like the gap axis.

Die Dachfläche 10 liegt mit einer quer zum durchströmten Eintrittsspalt verlaufenden und sehr spitz ausgebildeten Kante 15 an der gleichen Spaltwand 21 an wie die Seitenwände 11, 13. Ihre längsgerichteten Kanten 12, 14 sind bündig mit den in den Strömungsspalt hineinragenden längsgerichteten Kanten der Seitenflächen. Die Dachfläche verläuft unter einem Anstellwinkel Θ zur Spaltwand 21. Ihre Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 eine Spitze 18.The roof surface 10 abuts the same gap wall 21 as the side walls 11, 13 with a very pointed edge 15 running transversely to the inlet gap and its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow gap. The roof surface extends at an angle of inclination Θ to the gap wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.

Selbstverständlich kann der Wirbel-Generator auch mit einer Bodenfläche versehen sein, mit welcher er auf geeignete Art an der Spaltwand 21 befestigt ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Elementes.Of course, the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the gap wall 21. However, such a floor area is not related to the mode of operation of the element.

In Fig. 3 bildet die Verbindungskante 16 der beiden Seitenflächen 11, 13 die stromabwärtige Kante des Wirbel-Generators. Die quer zum durchströmten Eintrittsspalt verlaufende Kante 15 der Dachfläche 10 ist somit die von der Spaltströmung zuerst beaufschlagte Kante.In Fig. 3, the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator. The edge 15 of the roof surface 10 which runs transversely to the inlet gap through which it flows is thus the edge which is first acted upon by the gap flow.

Die Wirkungsweise des Wirbel-Generators 9 ist folgende: Beim Umströmen der Kanten 12 und 14 wird die Hauptströmung in ein Paar gegenläufiger Wirbel umgewandelt. Deren Wirbelachsen liegen in der Achse der Hauptströmung. Es liegt ein drallneutrales Strömungsbild vor, bei welchem der Drehsinn der beiden Wirbel im Bereich der Verbindungskante aufsteigend ist. Die Drallzahl und der Ort des Wirbelaufplatzens (vortex break down), sofern letzteres überhaupt gewünscht wird, werden bestimmt durch entsprechende Wahl des Anstellwinkels Θ und des Pfeilwinkels α. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel Θ und α durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden muss dann nur noch die die Höhe h der Verbindungskante 16 (Fig. 6a).The vortex generator 9 works as follows: When flowing around the edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. There is a swirl-neutral flow pattern in which the direction of rotation of the two vortices is ascending in the area of the connecting edge. The number of twists and the location of the vortex breakdown (vortex break down), if the latter is desired at all, are determined by a corresponding choice of the angle of attack Θ and the arrow angle α. With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself. Depending on the application, these two angles Θ and α are predetermined by the structural conditions and by the process itself. All that then has to be adjusted is the height h of the connecting edge 16 (FIG. 6a).

In den Fig 6a und 6b, in welchen der durchströmte Eintrittsspalt mit 20 bezeichnet ist, ist erkennbar, dass der Wirbel-Generator unterschiedliche Höhen gegenüber der Spalthöhe H aufweisen kann. In der Regel wird man die Höhe h der Verbindungskante 16 so mit der Spalthöhe H abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Spalthöhe H ausgefüllt wird. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der Druckverlustbeiwert ansteigt.6a and 6b, in which the inlet slit through which flow is indicated by 20, it can be seen that the vortex generator can have different heights compared to the slit height H. As a rule, the height h of the connecting edge 16 will be coordinated with the gap height H in such a way that the vortex generated immediately downstream of the vortex generator already has such a size that the full gap height H is filled. Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.

In Fig. 4 ist ein sogenannter halber "Wirbel-Generator" 9a auf der Basis eines Wirbel-Generators 9 nach Fig. 3 gezeigt, bei welchen nur die eine der beiden Seitenflächen mit dem Pfeilwinkel α/2 versehen ist. Die andere Seitenfläche ist gerade und in Strömungsrichtung ausgerichtet. Im Gegensatz zum symmetrischen Wirbel-Generator 9 wird hier nur ein Wirbel an der gepfeilten Seite erzeugt. Es liegt demnach stromabwärts des Wirbel-Generators 9a kein wirbelneutrales Feld vor, sondern der Strömung wird ein Drall aufgezwungen sofern der Wirbel-Generator 9a in Alleinstellung ist..4 shows a so-called half "vortex generator" 9a based on a vortex generator 9 according to FIG. 3, in which only the one of the two side surfaces is provided with the arrow angle α / 2. The other side surface is straight and oriented in the direction of flow. In contrast to the symmetrical vortex generator 9, only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator 9a, but a swirl is imposed on the flow if the vortex generator 9a is alone.

Im Gegensatz zu Fig. 3 ist in Fig. 5 die scharfe Verbindungskante 16 des Wirbel-Generators 9 jene Stelle, die von der Spaltströmung zuerst beaufschlagt wird. Das Element ist um 180° gedreht. Wie aus der Darstellung erkennbar, haben die beiden gegenläufigen Wirbel ihren Drehsinn geändert.In contrast to FIG. 3, in FIG. 5 the sharp connecting edge 16 of the vortex generator 9 is the point which is first acted upon by the gap flow. The element is rotated by 180 °. As can be seen from the illustration, the two opposite vortices have changed their sense of rotation.

In Fig. 6 ist gezeigt, wie über der Breite des durchströmten Eintrittsspalts 20 mehrere, hier 3 Wirbel-Generatoren 9 ohne Zwischenräume nebeneinanderangeordnet sind. Der Eintrittsspalt 20 hat in diesem Fall Rechteckform, was jedoch erfindungsunwesentlich ist.FIG. 6 shows how a plurality of vortex generators 9, here 3 vortex generators 9, are arranged side by side without gaps across the width of the inlet gap 20. In this case, the entry gap 20 has a rectangular shape, but this is not essential to the invention.

Eine Ausführungsvariante mit 2 vollen (9) und beidseitig daran angrenzenden 2 halben (9a) Wirbel-Generatoren ist in Fig. 7 gezeigt. Bei gleicher Spalthöhe H und gleichem Anstellwinkel Θ der Dachfläche 10 wie in Fig. 6 unterscheiden sich die Elemente insbesondere durch ihre grössere Höhe h. Bei gleichbleibendem Anstellwinkel führt dies zwangsläufig zu einer grösseren Länge L des Elementes und demzufolge auch - wegen der gleichen Teilung - zu einem kleineren Pfeilwinkel α. Im Vergleich mit Fig. 6 werden die erzeugten Wirbel eine geringere Drallstärke aufweisen, jedoch innert kürzerem Intervall den Spaltquerschnitt voll ausfüllen. Falls in beiden Fällen ein Wirbelaufplatzen beabsichtigt ist, beispielsweise zum Stabilisieren der Strömung, wird dies beim Wirbel-Generator nach Fig. 7 später erfolgen als bei jenem nach Fig. 6.An embodiment variant with two full (9) and two half (9a) vortex generators adjoining it on both sides is shown in FIG. 7. With the same gap height H and the same angle of attack Θ of the roof surface 10 as in FIG. 6, the elements differ in particular by their greater height h. If the angle of attack remains the same, this inevitably leads to a greater length L of the element and consequently - because of the same division - to a smaller arrow angle α. In comparison with FIG. 6, the vortices produced will have a lower swirl strength, but will completely fill the gap cross section within a shorter interval. If in both cases a vortex burst is intended, for example to stabilize the flow, this will be done later with the vortex generator according to FIG. 7 than with that according to FIG. 6.

Die in den Fig. 6 und 7 dargestellten Kanäle stellen rechteckige Niederdruck-Luftkanäle dar. Es wird noch einmal darauf hingewiesen, dass die Form des durchströmten Eintrittsspalts für die Wirkungsweise der Erfindung nicht wesentlich ist. Mit Hilfe der Wirbel-Generatoren 9, 9a werden zwei Strömungen miteinander gemischt. Die Hauptströmung in Form von Brennluft attackiert in Pfeilrichtung die quergerichteten Eintrittskanten 15. Die Sekundärströmung in Form von Brennstoff weist einen wesentlich kleineren Massenstrom auf als die Hauptströmung. und wird im unmittelbaren Bereich der Wirbel-Generatoren in die Hauptströmung eingeleitet.The ducts shown in FIGS. 6 and 7 represent rectangular low-pressure air ducts. It is pointed out once again that the shape of the inlet gap through which the air flows is not essential for the mode of operation of the invention. With the help of the vortex generators 9, 9a, two flows are mixed together. The main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow. The secondary flow in the form of fuel has a substantially smaller mass flow than the main flow. and will in the immediate Area of the vortex generators introduced into the main flow.

Gemäss Fig. 6 geschieht diese Eindüsung über Einzelbohrungen 22a, die in der Wand 21a angebracht sind. Bei der Wand 21a handelt es sich um jene Wandung, an der die Wirbel-Generatoren angeordnet sind. Die Bohrungen 22a befinden sich auf der Symmetrielinie 17 stromabwärts hinter der Verbindungskante 16 jedes Wirbel-Generators. Bei dieser Konfiguration wird der Brennstoff in die bereits bestehenden gross-skaligen Wirbel eingegeben.6, this injection takes place via individual bores 22a which are made in the wall 21a. The wall 21a is the wall on which the vortex generators are arranged. The bores 22a are located on the line of symmetry 17 downstream behind the connecting edge 16 of each vortex generator. With this configuration, the fuel is fed into the already existing large-scale vortices.

Die Fig. 7 zeigt eine Ausführungsvariante eines Eintrittsspalts, bei der der Brennstoff ebenfalls über Wandbohrungen 22b eingedüst wird. Diese befinden sich stromabwärts der Wirbel-Generatoren in jener Wand 21b, an der die Wirbel-Generatoren nicht angeordnet sind, also an der der Wand 21a gegenüberliegenden Wand. Die Wandbohrungen 22b sind jeweils mittig zwischen den Verbindungskanten 16 zweier benachbarter Wirbel-Generatoren angebracht, wie aus Fig. 4 ersichtlich. Auf diese Weise gelangt der Brennstoff auf die gleiche Art in die Wirbel wie bei der Ausführung nach Fig. 6. Allerdings mit dem Unterschied, dass er nicht mehr in die Wirbel eines von einem gleichen Wirbel-Generator erzeugten Wirbelpaares eingemischt wird, sondern in je einen Wirbel zweier benachbarter Wirbel-Generatoren. Da die benachbarten Wirbel-Generatoren indes ohne Zwischenraum angeordnet sind und Wirbelpaare mit gleichen Drehsinn erzeugen, sind die Eindüsungen nach den Fig. 6 und 7 wirkungsgleich.FIG. 7 shows an embodiment variant of an inlet gap in which the fuel is also injected via wall bores 22b. These are located downstream of the vortex generators in that wall 21b on which the vortex generators are not arranged, that is to say on the wall opposite the wall 21a. The wall bores 22b are each made centrally between the connecting edges 16 of two adjacent vortex generators, as can be seen in FIG. 4. In this way, the fuel reaches the vortex in the same way as in the embodiment according to FIG. 6, but with the difference that it is no longer mixed into the vortex of a pair of vertebrae generated by the same vortex generator, but in one each Vortex of two neighboring vortex generators. Since the adjacent vortex generators are arranged without a gap and generate vortex pairs with the same direction of rotation, the injections according to FIGS. 6 and 7 have the same effect.

Beim Eintrittsspalt nach Fig. 8 wird vorausgesetzt, dass ein im Betrag variierendes Geschwindigkeitsfeld vorliegt. An der Kegelspitze im Brennerkopf ist die Geschwindigkeit etwa 1,5 bis 2 mal so hoch wie am Spaltende in der Nähe des Brenneraustritts. Damit variiert der dynamische Druck im Spalt etwa um den Faktor 3. Um die Strömung im Brennerinnern nicht zu stören, soll jedoch der absolute Druckverlust entlang des Eintrittsspaltes konstant sein. Dies wird durch die unterschiedlichen Höhen der in Fig. 8 dargestellten Wirbel-Generatoren erreicht. Die unterschiedlichen Höhen haben selbstverständlich auch einen unterschiedlichen Druckabfall zur Folge haben. Im Ergebnis ergibt sich nunmehr, dass der Druckverlust des Brenners lediglich um den Druckverlust der Wirbel-Generatoren erhöht wird. Insgesamt sind dies weniger als 10% des Brennerdruckverlustes.8 it is assumed that there is a speed field which varies in magnitude. At the tip of the cone in the burner head, the speed is about 1.5 to 2 times as high as at the end of the gap near the burner outlet. The dynamic pressure in the gap thus varies approximately by a factor of 3. In order not to disturb the flow inside the burner, the absolute pressure loss along the inlet gap should be constant. This is achieved by the different heights of the vortex generators shown in FIG. 8. Of course, the different heights also result in a different pressure drop. The result now is that the pressure loss of the burner is increased only by the pressure loss of the vortex generators. Overall, this is less than 10% of the burner pressure drop.

Es versteht sich, dass an dieser Stelle auf die Bekanntgabe von Absolutwerten verzichtet werden muss, da diese wegen ihrer Abhängigkeit von allzu zahlreichen Parametern ohnehin nicht aussagekräftig sind. Als Beispiel sei lediglich angegeben, dass Versuche an einer bestimmten Bauform von Wirbel-Generatoren ergeben haben, dass - bei einer gegebenen Geschwindigkeitsverteilung längs des rechteckigen Spaltes - eine Höhe der Wirbel-Generatoren von ca. 1/4 Spalthöhe im Kopf des Brenners etwa den gleichen Druckverlust ergibt wie Wirbel-Generatoren am Brennerende, die 3/4 der Spalthöhe ausfüllen. Im Bereich der Kegelspitze weisen die Wirbel-Generatoren deshalb eine Höhe auf, die nicht der empfohlenen Mindesthöhe von 50% der Spalthöhe entspricht. Die dort nicht erzielte optimale Mischung wird jedoch weiter stromab auf der relativ langen Mischstrecke bis zum Brennermund wieder ausgeglichen. Insgesamt kann bei unverändertem Brenner-Strömungsfeld eine perfekte Vormischung erwartet werden.It goes without saying that it is not necessary to disclose absolute values at this point, since these are not meaningful anyway due to their dependence on too many parameters. As an example, it should only be stated that tests on a certain design of vortex generators have shown that - with a given speed distribution along the rectangular gap - a height of the vortex generators of approximately 1/4 gap height in the head of the burner is approximately the same Pressure loss, like vortex generators at the end of the burner, fills 3/4 of the gap height. In the area of the cone tip, the vortex generators therefore have a height that does not correspond to the recommended minimum height of 50% of the gap height. However, the optimum mixture not achieved there is further balanced downstream on the relatively long mixing section up to the burner mouth. Overall, perfect premixing can be expected with the burner flow field unchanged.

In Fig. 8 weisen die Wirbel-Generatoren alle die gleiche Pfeilung und den gleichen Anstellwinkel auf, was gemäss Fig. 2A und 2B bei gegebener Höhe zu unterschiedlichen Längen der Wirbel-Generatoren führt. Will man die Brennstoffzufuhr nach den zu Fig. 6 angegebenen Regeln in der Ebene der Verbindungskanten durchführen, so führt dies selstverständlich auch zu einem ungleichmässigen Abstand und demzufolge Durchmesser der Einzelbohrungen.In FIG. 8, the vortex generators all have the same sweep and the same angle of attack, which according to FIGS. 2A and 2B leads to different lengths of the vortex generators for a given height. If one wants to carry out the fuel supply according to the rules given in FIG. 6 in the plane of the connecting edges, this naturally leads also to an uneven distance and consequently the diameter of the individual holes.

Beim Eintrittsspalt nach Fig. 9 wird vorausgesetzt, dass ein im Betrag und in Richtung variierendes Geschwindigkeitsfeld vorliegt. Neben der Anpassung des Druckabfalls ist hier darauf zu achten, dass der Winkel der zuströmenden Verbrennungsluft nicht verändert wird. Dementsprechend verläuft hier die Symmetrieachse der Wirbel-Generatoren in Strömungsrichtung, d.h. unter einem gewissen Winkel zur Längsachse des Spaltes. In diesem Beispiel weisen die Wirbel-Generatoren die gleichen Pfeilwinkel, jedoch unterschiedliche Anstellwinkel auf. Die Länge aller Elemente ist dadurch gleich. Die Bohrungen für die Brennstoffeindüsung sind äquidistant.9 it is assumed that there is a speed field which varies in magnitude and in the direction. In addition to adjusting the pressure drop, it is important to ensure that the angle of the incoming combustion air is not changed. Accordingly, the axis of symmetry of the vortex generators runs in the direction of flow, i.e. at a certain angle to the longitudinal axis of the gap. In this example, the vortex generators have the same arrow angles but different angles of attack. The length of all elements is the same. The holes for the fuel injection are equidistant.

Der eingedüste Brennstoff wird von den Wirbeln mitgeschleppt und mit der Luft vermischt. Er folgt dem schraubenförmigen Verlauf der Wirbel und wird stromabwärts der Wirbel im Bennerinnern gleichmässig feinverteilt. Dadurch reduziert sich die - bei der bisher üblichen radialen Eindüsung von Brennstoff in eine unverwirbelte Strömung - Gefahr von Aufprallstrahlen an der gegenüberliegenden Wand und die Bildung von sogenannten "hot spots".The injected fuel is dragged along by the vortices and mixed with the air. It follows the helical course of the vertebrae and is evenly finely distributed in the interior of the Benner downstream of the vertebrae. This reduces the risk of impact jets on the opposite wall and the formation of so-called “hot spots” —with the previously customary radial injection of fuel into a swirling flow.

Da der hauptsächliche Mischprozess in den Wirbeln erfolgt und weitgehend unempfindlich gegen den Eindüsungsimpuls des Brennstoffs ist, kann die Brennstoffeinspritzung flexibel gehalten werden und an andere Grenzbedingungen angepasst werden. So kann im ganzen Lastbereich der gleiche Eindüsungsimpuls beibehalten werden. Da das Mischen durch die Geometrie der Wirbel-Generatoren bestimmt wird, und nicht durch die Maschinenlast, im Beispielsfall die Gasturbinenleistung, arbeitet der so konfigurierte Brenner auch bei Teillastbedingungen optimal.Since the main mixing process takes place in the vortices and is largely insensitive to the injection pulse of the fuel, the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions.

Selbstverständlich ist die Erfindung nicht auf die beschriebenen und gezeigten Beispiele beschränkt. Bezüglich der Anordnung der Wirbel-Generatoren im Verbund sind viele Kombinationen möglich, ohne den Rahmen der Erfindung zu verlassen. Auch die Einführung der Sekundärströmung in die Hauptströmung kann auf vielfältige Weise vorgenommen werden.Of course, the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention. The introduction of the secondary flow into the main flow can also be carried out in a variety of ways.

BezugszeichenlisteReference list

100100
BrennkammerwandCombustion chamber wall
101101
VormischbrennerPremix burner
102102
LufteintrittAir intake
103103
GehäuseinnereInterior of the housing
111111
TeilkörperPartial body
112112
TeilkörperPartial body
113113
MittelachseCentral axis
114114
MittelachseCentral axis
116116
BrennstoffdüseFuel nozzle
117117
GaseinströmöffnungGas inflow opening
118118
Brenneraustritt = BrennraumBurner outlet = combustion chamber
2020th
tangentialer Spalt = Eintrittsspalttangential gap = entry gap
9, 9a9, 9a
Wirbel-GeneratorVortex generator
1010th
DachflächeRoof area
1111
SeitenflächeSide surface
1212th
LängskanteLong edge
1313
SeitenflächeSide surface
1414
LängskanteLong edge
1515
quer verlaufenden Kante von 10transverse edge of 10
1616
VerbindungskanteConnecting edge
1717th
SymmetrielinieLine of symmetry
1818th
Spitzetop
20, a20, a
EintrittsspaltEntrance gap
21, a,b21, a, b
SpaltwandGap wall
22, a,b22, a, b
WandbohrungWall hole
2424th
GaszufuhrGas supply
ΘΘ
AnstellwinkelAngle of attack
α, α/2α, α / 2
PfeilwinkelArrow angle
hH
Höhe von 16Height of 16
HH
SpalthöheGap height
LL
Länge des Wirbel-GeneratorsLength of the vortex generator

Claims (6)

  1. Premixing burner on the double-cone principle with, essentially, two hollow conical partial bodies (111, 112) which are interleaved in the flow direction and whose respective centre lines (113, 114) are offset relative to one another, the adjacent walls of the two partial bodies forming tangential gaps (20) in their longitudinal extent for the combustion air, and gas inlet openings (117) distributed in the longitudinal direction being provided in the region of the tangential gaps in the walls of the two partial bodies, characterized in that the air is guided into the tangential gaps (20) via vortex generators (9), of which a plurality are arranged adjacent to one another and preferably without intermediate spaces over the width or the periphery of the gap through which flow occurs, the height (h) of the vortex generators being at least 50% of the height (H) of the gap through which flow occurs, and in that the fuel is introduced into the gaps (20) in the immediate region of the vortex generators (9),
    - a vortex generator (9) having three surfaces around which flow can take place freely, which surfaces extend in the flow direction, one of them forming the top surface (10) and the two others forming the side surfaces (11, 13),
    - the side surfaces (11, 13) abutting the same gap wall (21) and enclosing the V-angle (a, ah) between them, d
    - and in that the top surface (10) edge (15) extending transversely to the inlet gap (20) through which flow occurs being in contact with the same gap wall (21) as the side walls,
    - and the longitudinally directed edges (12, 14) of the top surface, which abut the longitudinally directed edges of the side surfaces protruding into the flow gap, extending at an angle of incidence (θ) to the gap wall (21).
  2. Premixing burner according to Claim 1, characterized in that the ratio of the height (h) of the vortex generator (9, 9a) to the gap height (H) is selected in such a way that the vortex generated fills the complete gap height immediately downstream of the vortex generator.
  3. Premixing burner according to Claim 1, characterized in that the two vortex generator (9) side surfaces (11, 13) enclosing the V-angle (a) are arranged symmetrically about an axis of symmetry (17).
  4. Premixing burner according to Claim 1, characterized in that the two side surfaces (11, 13) enclosing the V-angle (a) include between them a connecting edge (16) which, together with the longitudinally directed edges (12, 14) of the top surface (10), form [sic] a point (18), and in that the connecting edge advantageously extends at right angles to the gap wall (21) which the side surfaces abut.
  5. Premixing burner according to Claim 4, characterized in that the connecting edge (16) and/or the longitudinally directed edges (12, 14) of the top surface are configured so as to be at least approximately sharp.
  6. Premixing burner according to Claim 1, characterized in that the vortex generators (9) arranged adjacent to one another in the gap (20) have different heights (h).
EP94103873A 1993-04-08 1994-03-14 Premix burner Expired - Lifetime EP0619457B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1082/93 1993-04-08
CH01082/93A CH687831A5 (en) 1993-04-08 1993-04-08 Premix burner.

Publications (2)

Publication Number Publication Date
EP0619457A1 EP0619457A1 (en) 1994-10-12
EP0619457B1 true EP0619457B1 (en) 1997-10-08

Family

ID=4202041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103873A Expired - Lifetime EP0619457B1 (en) 1993-04-08 1994-03-14 Premix burner

Country Status (6)

Country Link
US (1) US5433596A (en)
EP (1) EP0619457B1 (en)
JP (1) JPH0712313A (en)
CH (1) CH687831A5 (en)
DE (1) DE59404244D1 (en)
RU (1) RU2106573C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696959A (en) * 2015-03-03 2015-06-10 兆轩能科技有限公司 Burner and igniter thereof
RU2632749C1 (en) * 2016-11-08 2017-10-09 Эмель Борисович Ахметов Gas turbine engine

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620403B1 (en) * 1993-04-08 1996-12-04 ABB Management AG Mixing and flame stabilizing device in a combustion chamber with premixing combustion
CH687832A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Fuel supply for combustion.
DE59402803D1 (en) * 1993-04-08 1997-06-26 Asea Brown Boveri Combustion chamber
DE4411622A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
DE4411623A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
DE4417538A1 (en) * 1994-05-19 1995-11-23 Abb Management Ag Combustion chamber with self-ignition
DE4446541A1 (en) * 1994-12-24 1996-06-27 Abb Management Ag Combustion chamber
CA2209672C (en) * 1995-02-03 2006-06-06 Bmw Rolls-Royce Gmbh Flow guiding body for gas turbine combustion chambers
DE19507088B4 (en) * 1995-03-01 2005-01-27 Alstom premix
DE19510744A1 (en) * 1995-03-24 1996-09-26 Abb Management Ag Combustion chamber with two-stage combustion
DE19512645A1 (en) * 1995-04-05 1996-10-10 Bmw Rolls Royce Gmbh Fuel preparation device for gas turbine combustion chamber
DE19525044A1 (en) * 1995-07-10 1997-01-16 Linde Ag Method and device for introducing substances into flowing media
DE19527453B4 (en) * 1995-07-27 2009-05-07 Alstom premix
JP3492099B2 (en) * 1995-10-03 2004-02-03 三菱重工業株式会社 Burner
US5647215A (en) * 1995-11-07 1997-07-15 Westinghouse Electric Corporation Gas turbine combustor with turbulence enhanced mixing fuel injectors
DE19542521A1 (en) * 1995-11-15 1997-05-22 Ruhrgas Ag Air=fuel mixture combustion process
DE19545026A1 (en) * 1995-12-02 1997-06-05 Abb Research Ltd Premix burner
DE19548851A1 (en) * 1995-12-27 1997-07-03 Asea Brown Boveri Premix burner
DE19654009B4 (en) * 1996-12-21 2006-05-18 Alstom Premix burner for operating a combustion chamber with a liquid and / or gaseous fuel
DE19737997A1 (en) * 1997-08-30 1999-03-04 Asea Brown Boveri plenum
DE59709446D1 (en) * 1997-10-31 2003-04-10 Alstom Switzerland Ltd Burner for operating a heat generator
ATE244380T1 (en) * 1997-11-21 2003-07-15 Alstom BURNER FOR OPERATION OF A HEAT GENERATOR
BR9815994A (en) * 1998-08-28 2001-10-16 Kimberly Clarke Wolrdwide Inc Arrangement to combine different chains
EP1048898B1 (en) * 1998-11-18 2004-01-14 ALSTOM (Switzerland) Ltd Burner
DE10040869A1 (en) * 2000-08-21 2002-03-07 Alstom Power Nv Method and device for suppressing flow vortices within a fluid power machine
DE10128063A1 (en) * 2001-06-09 2003-01-23 Alstom Switzerland Ltd burner system
DE10330023A1 (en) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Vortex generator used in the swirling and mixing of fuel/air mixtures in pre-mixing combustion chambers comprises an outlet opening for targeted introduction of a secondary flow into the core flow of the wake produced
US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
EP1439349A1 (en) * 2003-01-14 2004-07-21 Alstom Technology Ltd Combustion method and burner for carrying out the method
WO2006058843A1 (en) * 2004-11-30 2006-06-08 Alstom Technology Ltd Method and device for burning hydrogen in a premix burner
US7437876B2 (en) * 2005-03-25 2008-10-21 General Electric Company Augmenter swirler pilot
GB2435508B (en) 2006-02-22 2011-08-03 Siemens Ag A swirler for use in a burner of a gas turbine engine
EP2112433A1 (en) * 2008-04-23 2009-10-28 Siemens Aktiengesellschaft Mixing chamber
WO2011054760A1 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd A cooling scheme for an increased gas turbine efficiency
WO2011054771A2 (en) * 2009-11-07 2011-05-12 Alstom Technology Ltd Premixed burner for a gas turbine combustor
WO2011054757A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system with fuel lances
WO2011054766A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
WO2011054739A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
US8434723B2 (en) * 2010-06-01 2013-05-07 Applied University Research, Inc. Low drag asymmetric tetrahedral vortex generators
US8881500B2 (en) * 2010-08-31 2014-11-11 General Electric Company Duplex tab obstacles for enhancement of deflagration-to-detonation transition
CH704829A2 (en) * 2011-04-08 2012-11-15 Alstom Technology Ltd Gas turbine group and associated operating method.
US9957609B2 (en) 2011-11-30 2018-05-01 Corning Incorporated Process for making of glass articles with optical and easy-to-clean coatings
RU2561956C2 (en) * 2012-07-09 2015-09-10 Альстом Текнолоджи Лтд Gas-turbine combustion system
EP2685160B1 (en) * 2012-07-10 2018-02-21 Ansaldo Energia Switzerland AG Premix burner of the multi-cone type for a gas turbine
EP2703721B1 (en) * 2012-08-31 2019-05-22 Ansaldo Energia IP UK Limited Premix burner
CN103962058A (en) 2013-01-30 2014-08-06 中国石油化工股份有限公司 Premixer, radial fixed-bed reactor and butaneoxidative dehydrogenation reaction system
CN103615723B (en) * 2013-11-08 2015-08-19 无锡锡州机械有限公司 Heat exchanger gas lid
DE112017006296B4 (en) * 2017-01-24 2023-02-02 Hitachi, Ltd. FLUID DEVICE
EP3889506A1 (en) * 2020-03-31 2021-10-06 Siemens Aktiengesellschaft Burner component of a burner and burner of a gas turbine with same
CN115362333B (en) * 2020-03-31 2023-08-25 西门子能源全球有限两合公司 Combustor component of a combustor and combustor of a gas turbine having such a combustor component
US11039550B1 (en) * 2020-04-08 2021-06-15 Google Llc Heat sink with turbulent structures
CA3113029A1 (en) * 2021-03-23 2022-09-23 De-Mission Inc. Vortex combustion burner
US11454396B1 (en) * 2021-06-07 2022-09-27 General Electric Company Fuel injector and pre-mixer system for a burner array

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
DE4121067A1 (en) * 1991-06-26 1993-01-14 Balcke Duerr Ag DEVICE FOR BURNING FLAMMABLE SUBSTANCES
DE59104727D1 (en) * 1991-12-23 1995-03-30 Asea Brown Boveri Device for mixing two gaseous components and burner in which this device is used.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696959A (en) * 2015-03-03 2015-06-10 兆轩能科技有限公司 Burner and igniter thereof
RU2632749C1 (en) * 2016-11-08 2017-10-09 Эмель Борисович Ахметов Gas turbine engine

Also Published As

Publication number Publication date
DE59404244D1 (en) 1997-11-13
CH687831A5 (en) 1997-02-28
JPH0712313A (en) 1995-01-17
US5433596A (en) 1995-07-18
RU2106573C1 (en) 1998-03-10
EP0619457A1 (en) 1994-10-12
RU94011631A (en) 1996-06-20

Similar Documents

Publication Publication Date Title
EP0619457B1 (en) Premix burner
EP0675322B1 (en) Premix burner
EP0623786B1 (en) Combustion chamber
EP0619456B1 (en) Fuel supply system for combustion chamber
EP0619133B1 (en) Mixing receptacle
EP0620403B1 (en) Mixing and flame stabilizing device in a combustion chamber with premixing combustion
EP1382379B1 (en) Process for controlling the downstream flowpattern of a vortex generator
DE2143012C3 (en) Burner arrangement in a gas turbine combustor
EP0794383B1 (en) Method of operating a pressurised atomising nozzle
DE4411623A1 (en) Premix burner
DE112004002704B4 (en) incinerator
EP0733861A2 (en) Combustor for staged combustion
EP0775869B1 (en) Premix burner
WO2006042796A2 (en) Gas turbine burner
EP3087323A1 (en) Burner, gas turbine having such a burner, and fuel nozzle
EP0718561A2 (en) Combustor
DE19905996A1 (en) Fuel lance for injecting liquid and / or gaseous fuels into a combustion chamber
EP0807213B1 (en) Flow-guiding body for gas turbine combustion chambers
DE19654116A1 (en) Burner for operating a combustion chamber with a liquid and / or gaseous fuel
EP0924461B1 (en) Two-stage pressurised atomising nozzle
EP0742411A2 (en) Air supply for a premix combustor
DE19654008A1 (en) Burner for liquid or gas fuel
DE19708218C2 (en) gas burner
DE4412315A1 (en) Method of operating gas turbine combustion chamber
EP0730121A2 (en) Premix burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19950307

17Q First examination report despatched

Effective date: 19960930

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59404244

Country of ref document: DE

Date of ref document: 19971113

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971210

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010313

Year of fee payment: 8

Ref country code: DE

Payment date: 20010313

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST