EP0620403B1 - Mixing and flame stabilizing device in a combustion chamber with premixing combustion - Google Patents

Mixing and flame stabilizing device in a combustion chamber with premixing combustion Download PDF

Info

Publication number
EP0620403B1
EP0620403B1 EP94103385A EP94103385A EP0620403B1 EP 0620403 B1 EP0620403 B1 EP 0620403B1 EP 94103385 A EP94103385 A EP 94103385A EP 94103385 A EP94103385 A EP 94103385A EP 0620403 B1 EP0620403 B1 EP 0620403B1
Authority
EP
European Patent Office
Prior art keywords
mixing
angle
vortex generator
vortex
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103385A
Other languages
German (de)
French (fr)
Other versions
EP0620403A1 (en
Inventor
Yau-Pin Dr. Chyou
Adnan Eroglu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0620403A1 publication Critical patent/EP0620403A1/en
Application granted granted Critical
Publication of EP0620403B1 publication Critical patent/EP0620403B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers

Definitions

  • the invention relates to a mixing and flame stabilization device in a combustion chamber with premix combustion, in which a gaseous and / or liquid fuel is injected into the combustion air.
  • premix combustion requires extremely good mixing of the combustion air and fuel.
  • the invention is therefore based on the object of providing a measure in a combustion chamber with premix combustion with which intimate mixing of combustion air and fuel is achieved within the shortest distance and with which the flame can be stabilized aerodynamically at the same time.
  • the advantage of the vortex generators according to the invention can be seen in the particular simplicity of the element in every respect.
  • the element consisting of three walls with flow around it is completely problem-free.
  • the roof surface can be joined with the two side surfaces in a variety of ways.
  • the element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area.
  • the element due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.
  • the angle of attack ⁇ of the roof surface and / or the arrow angle ⁇ of the side surfaces are selected such that the vortex generated by the flow bursts in the region of the vortex generator.
  • the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, then the non-formation of a wake area is advantageous.
  • a vertical connecting edge also leads to side surfaces that are also perpendicular to the channel wall, which gives the vortex generator the simplest possible form and the most favorable form in terms of production technology.
  • a plurality of vortex generators are arranged side by side across the width of the channel through which the flow passes. With this measure, shortly after the vortex generators, the entire channel cross section is fully loaded by the vortexes.
  • the edge of the roof surface which runs transversely to the flow through the channel is the edge which is first acted upon by the channel flow, so two identical opposing vortices are generated on a vortex generator.
  • a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the two side surfaces 11, 11v, 11h and 13, 13v, 13h are perpendicular to the channel wall 21, it being noted that this is not mandatory.
  • the side walls, which in the projection consist of essentially right-angled triangles, are fixed with their long sides on this channel wall 21, preferably gas-tight. They are oriented in such a way that they form a joint on their narrow sides, including an arrow angle ⁇ , ⁇ v, ⁇ h.
  • the joint is designed as a sharp connecting edge 16 and is also perpendicular to the channel wall 21 with which the side surfaces are flush.
  • the two side surfaces 11, 11v, 11h and 13, 13v, 13h enclosing the arrow angle ⁇ , ⁇ h, ⁇ v are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 which lies in the channel axis.
  • the roof surface 10, 10v lies with a very narrow edge 15 running transversely to the channel through which it flows, on the same channel wall 21 as the side walls 11, 11v, and 13, 13v ,. Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow channel.
  • the roof surface runs at an angle of attack ⁇ , ⁇ v to the duct wall 21. Your Longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.
  • the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21.
  • a floor area is not related to the mode of operation of the element.
  • the vortex generators 9 are designed so that their angle of attack of the roof surface and their arrow angle of the side surfaces increase in the direction of flow.
  • this is done on the one hand by dividing the roof area into two sub-areas 10v, 10h with different positions ( ⁇ v, ⁇ h).
  • the increase in the arrow angle of the side surfaces is carried out by dividing them into two with different swept ( ⁇ v, ⁇ h) partial surfaces 11v, 11h, 13v, 13h.
  • the connecting edge 16 of the two side surfaces 11, 11h and 13, 13h forms the downstream edge of the vortex generator.
  • the edge 15 of the roof surface 10, 10v running transversely to the flow through the channel is thus the edge first acted upon by the channel flow.
  • the vortex generator works as follows: When flowing around the edges 12 and 14, the main flow coming from the edge 15 is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow.
  • the swirl number and the location of the vortex burst are determined by appropriate selection of the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself.
  • these two angles ⁇ and ⁇ are predetermined by the structural conditions and by the process itself. Then only the length L of the element and the height h of the connecting edge 16 need to be adjusted (FIG. 9).
  • the front inflow parts of the vortex generator designated by v are set at a flat angle ⁇ v and have a relatively sharp arrow ⁇ v.
  • the vortex generator has a large pitch Anh and a wide arrow angle ⁇ h. This provokes the vortex runways, which are favorable for flame stabilization.
  • the downstream angles ⁇ h and ⁇ h are approximately twice as large as the angles ⁇ v and ⁇ v on the downstream side.
  • FIG. 3 shows a so-called half "vortex generator" based on a vortex generator according to FIG. 1, in which only one of the two side surfaces of the vortex generator 9 has an arrow angle ⁇ v / 2 and ⁇ h / which varies in the direction of flow. 2 is provided. The other side surface is straight and oriented in the direction of flow. In contrast to the symmetrical vortex generator, only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator, but a dall is imposed on the flow.
  • the vortex generators are used on the one hand as a mixer for two flows.
  • the main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow.
  • the secondary flow in the form of a gaseous and / or liquid fuel has a substantially smaller mass flow than the main flow. It is introduced into the main flow in the immediate area of the vortex generators.
  • the introduction into the flow channel of the gaseous and / or liquid fuel to be mixed into the combustion air can be designed in many ways according to FIGS. 4 to 6b.
  • the outflow into the combustion air takes place via wall bores 22a, which are staggered in the longitudinal edges 12 and 14 (or at least in their immediate area).
  • the fuel thus goes directly into the resulting vortex, which rises in the injection area.
  • There are defined flow conditions here. 5 the fuel flows out of individual bores 22b which are provided in the region of the tip 18 of the vortex generator.
  • the agent is injected directly into the fully developed vertebra and also in its ascending branch.
  • the gas is injected from wall bores 22c, which are located in the channel wall 21 along the edge 15 of the vortex generator.
  • the injection angle is selected (FIG. 1b) so that the gas flows around the roof surface of the vortex generator as a film before it is mixed in.
  • This "cold" film forms a protective layer for the roof surface in the case of a hot main flow.
  • the liquid fuel here oil, is injected via a single bore 22f opening directly at the edge 15, preferably at the same injection angle as the gas. This oil is also distributed as a film over the roof surface before being atomized in the vortex.
  • a slot 22d (not shown here) could also be used, as can be seen in FIG. 6b to be described later.
  • the combustion chamber channel 20 through which flow is rectangular.
  • the channel could also be a ring segment, i.e. the walls and would be curved.
  • the narrow boundary walls of the cross-section flowed through would be radial ribs which segment the circular ring.
  • the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be aligned radially, as is shown in FIG. 8.
  • a vortex generator 9 are arranged on the two narrow walls of the rectangle or possibly on the radial ribs, which extend over the entire narrow side. In the case of rectangular channels, this arrangement has that Bumping the floor surface at a corner, the advantage that the fuel supply and a coolant for the vortex generators could come from the longitudinal walls and would not have to be done via otherwise necessary hollow ribs.
  • a vortex generator is arranged on each of the two longitudinal walls. This configuration is the best possible of the vortex formation. It can be seen from FIG. 6b that measures have been taken here that contribute to different vortex formation.
  • vortex generators of different geometries are used.
  • the vortex generators of the long side are not arranged in the same plane with their connecting edge. This is advantageous, for example, if space for a central fuel lance would have to be provided in the middle of the tips.
  • the vortex generators in the network have different heights, their height relative to the height of the channel part assigned to the corresponding vortex generator is at least approximately the same.
  • the height h of the connecting edge 16 will be coordinated with the channel height H in such a way that the vortex generated immediately downstream of the vortex generator already reaches such a size that the full channel height H is filled, which results in a uniform V distribution in the applied Cross section leads.
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the larger the ratio h / H, the higher the pressure loss coefficient.
  • the fuel is supplied from the oil and gas lines 25 which run in the wall.
  • the injection into the channel 20 takes place as in the solution described in FIG. 1, with instead of individual wall bores here a slot 22f is provided along the edge 15 for the gas.
  • the injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned at the beginning.
  • the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions.
  • the combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.
  • the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.
  • a diffuser 26 here a shock diffuser
  • Fig. 7 two "half" vortex generators are arranged symmetrically in a circular combustion chamber. Its straight long side lies against the wall of the cylindrical channel, while the swept side surface protrudes into the flow. Depending on the design of the vortex generators, it is possible that the vortex generated downstream form a single vortex that fills the circular cross section, which imposes a swirl on the flow.
  • the fuel is injected via a wall slot 22d (gas) and a single bore 22f (oil) arranged in the middle of the edge 15. The path of the fuel until it is mixed is shown using the self-explanatory arrows.
  • FIG. 8 shows a combustion chamber with a channel 20 through which flow flows in a simplified manner.
  • an equal number of vortex generators according to FIG. 2 are lined up in the circumferential direction without free spaces so that the connecting edges 16 are separated by two opposite vortex Generators lie in the same radial.
  • FIG. 8 shows that the vortex generators on the inner channel ring 21b have a smaller arrow ⁇ .
  • this could be compensated for by a larger angle of attack ⁇ if swirl-like vortices in the inner and outer ring cross-section are desired.
  • two vortex pairs are generated, each with smaller vertebrae, which leads to a shorter mixing length.
  • the liquid fuel is injected here via a central fuel lance 24, the mouth of which is located are located downstream of the vortex generators 9 in the area of their tip 18.
  • the gaseous fuel is injected twice.
  • the invention is not limited to the examples described and shown.
  • many combinations are possible without leaving the scope of the invention.
  • the introduction of the secondary flow into the main flow can also be carried out in a variety of ways.
  • the connecting edges of which lie on the same radial the connecting edges of two opposite vortex generators could also be offset by half a division. This would change the vortex structure downstream of the vortex generators such that the vortices generated on the same side then have the same direction of rotation and possibly merge into a large vortex that fills the entire channel cross section.

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine Misch- und Flammenstabilisierungsvorrichtung in einer Brennkammer mit Vormischverbrennung, in welcher ein gasförmiger und/oder flüssiger Brennstoff in die Verbrennungsluft eingedüst wird.The invention relates to a mixing and flame stabilization device in a combustion chamber with premix combustion, in which a gaseous and / or liquid fuel is injected into the combustion air.

Stand der TechnikState of the art

Die Vormischverbrennung erfordert hinsichtlich niedriger Emissionen eine ausserordentlich gute Vermischung von Brenn Luft und Brennstoff.With regard to low emissions, premix combustion requires extremely good mixing of the combustion air and fuel.

In Brennkammern können sich kalte Strähnen in der Hauptströmung befinden, die beispielsweise durch das Einleiten von Kühlluft in die Verbrennungsluft entstehen. Solche Strähnen können zu ungenügendem Ausbrand in der Verbrennungszone führen. Es sind deshalb Massnahmen zu treffen, Verbrennungsluft, Kühlluft und Brennstoff innig zu vermischen. Die Mischung einer Sekundärströmung mit einer in einem Kanal vorliegenden Hauptströmung geschieht in der Regel durch radiale Eindüsung der Sekundärströmung in den Kanal. Der Impuls der Sekundärströmung ist indes so gering, dass eine nahezu vollständige Durchmischung erst nach einer Strecke von ca. 100 Kanalhöhen erfolgt ist.In the combustion chamber there can be cold streaks in the main flow, for example caused by the introduction of cooling air into the combustion air. Such strands can lead to insufficient burnout in the combustion zone. Measures must therefore be taken to mix combustion air, cooling air and fuel intimately. The mixing of a secondary flow with a main flow present in a channel usually takes place by radial injection of the secondary flow into the channel. The momentum of the secondary flow is so small, however, that an almost complete mixing only takes place after a distance of approx. 100 channel heights.

Darstellung der ErfindungPresentation of the invention

Die Erfindung liegt deshalb die Aufgabe zugrunde, bei einer Brennkammer mit Vormischverbrennung eine Massnahme zu schaffen, mit welcher innert kürzester Strecke eine innige Vermischung von Brennluft und Brennstoff erzielt wird und mit welcher gleichzeitig die Flamme aerodynamisch stabilisiert werden kann.The invention is therefore based on the object of providing a measure in a combustion chamber with premix combustion with which intimate mixing of combustion air and fuel is achieved within the shortest distance and with which the flame can be stabilized aerodynamically at the same time.

Erfindungsgemäss wird diese Aufgabe mit den Merkmalen des Patentanspruchs 1 gelöst.According to the invention, this object is achieved with the features of patent claim 1.

Zwar ist es bereits aus der US-3 974 646 bekannt, bei einer Brennkammer einen Teil der Verbrennungsluft über Wirbel-Generatoren zu leiten und sie dann in einer Anreicherungszone innerhalb der Brennzone in verwirbeltem Zustand mit dem aus einem weiteren Kanal zuströmendem Brennstoff zu mischen. Bei diesen Wirbel-Generatoren handelt es sich indes um Halbdeltas, mit welchen keine gegenläufigen Wirbel produziert werden.It is already known from US Pat. No. 3,974,646 to pass part of the combustion air in a combustion chamber via vortex generators and then to mix it in a swirling state in an enrichment zone within the combustion zone with the fuel flowing in from another channel. These vortex generators, however, are half deltas with which no opposing vortexes are produced.

Mit dem neuen statischen Mischer, den die Wirbel-Generatoren darstellen, ist es möglich, ausserordentlich kurze Mischstrecken bei gleichzeitig geringem Druckverlust zu erzielen. Bereits nach einer vollen Wirbelumdrehung ist eine grobe Durchmischung der beiden Ströme vollzogen, während eine Feinmischung infolge von turbulenter Strömung und molekularer Diffusionsprozesse nach einer Strecke vorliegt, die einigen wenigen Kanalhöhen entspricht.With the new static mixer, which the vortex generators represent, it is possible to achieve extremely short mixing distances with low pressure loss. A coarse mixing of the two streams takes place after just one full vortex revolution, while a fine mixing due to turbulent flow and molecular diffusion processes occurs after a distance that corresponds to a few channel heights.

Der Vorteil der erfindungsgemassen Wirbel-Generatoren ist in der besonderen Einfachheit des Elementes in jeder Hinsicht zu sehen. Fertigungstechnisch ist das aus drei umströmten Wänden bestehende Element völlig problemlos. Die Dachfläche kann mit den beiden Seitenflächen auf verschiedenste Arten zusammengefügt werden. Auch die Fixierung des Elementes an ebenen oder gekrümmten Kanalwänden kann im Falle von schweissbaren Materialien durch einfache Schweissnähte erfolgen. Vom strömungstechnischen Standpunkt her weist das Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet. Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.The advantage of the vortex generators according to the invention can be seen in the particular simplicity of the element in every respect. In terms of production technology, the element consisting of three walls with flow around it is completely problem-free. The roof surface can be joined with the two side surfaces in a variety of ways. The element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area. Finally, due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.

Es ist für die vorliegende Anwendungen zweckmässig, wenn der Anstellwinkel Θ der Dachfläche und/oder der Pfeilwinkel α der Seitenflächen so gewählt sind, dass noch im Bereich des Wirbel-Generators der von der Strömung erzeugte Wirbel aufplatzt. Mit der möglichen Variation der beiden Winkel hat man ein einfaches aerodynamisches Stabilsierungsmittel in der Hand, unabhängig von der Querschnittsform des durchströmten Kanals, welcher sowohl breit und niedrig als auch schmal und hoch sein kann, und mit ebenen oder gekrümmten Kanalwänden versehen sein kann.It is expedient for the present applications if the angle of attack Θ of the roof surface and / or the arrow angle α of the side surfaces are selected such that the vortex generated by the flow bursts in the region of the vortex generator. With the possible variation of the two angles, one has a simple aerodynamic stabilizing means in hand, regardless of the cross-sectional shape of the flowed channel, which can be both wide and low as well as narrow and high, and can be provided with flat or curved channel walls.

Es ist sinnvoll, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen symmetrisch um eine Symmetrieachse angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.It makes sense if the two side surfaces including the arrow angle α are arranged symmetrically about an axis of symmetry. This creates swirls of equal swirl.

Wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen eine zumindest annähernd scharfe Verbindungskante miteinander bilden, wird der Durchströmquerschnitt kaum durch Sperrung beeinträchtigt.If the two side surfaces enclosing the arrow angle α form an at least approximately sharp connecting edge with one another, the flow cross-section is hardly impaired by blocking.

Ist die scharfe Verbindungskante die austrittsseitige Kante des Wirbel-Generators und verläuft sie senkrecht zu jener Kanalwand, mit welcher die Seitenflächen bündig sind, so ist die Nichtbildung eines Nachlaufgebietes von Vorteil. Eine senkrechte Verbindungskante führt überdies zu ebenfalls senkrecht auf der Kanalwand stehenden Seitenflächen, was dem Wirbel-Generator die einfachst mögliche und fertigungstechnisch die günstigste Form verleiht.If the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, then the non-formation of a wake area is advantageous. A vertical connecting edge also leads to side surfaces that are also perpendicular to the channel wall, which gives the vortex generator the simplest possible form and the most favorable form in terms of production technology.

Es ist angebracht, das Verhältnis Höhe h der Verbindungskante der beiden Seitenflächen zur Kanalhöhe H so zu wählen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators die volle Kanalhöhe oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausfüllt. Die erzeugten gross-skaligen Wirbel sorgen dafür, dass in jeder Ebene hinter dem Wirbel-Generator die gleiche Geschwindigkeitsverteilung vorliegt.It is appropriate to choose the ratio of the height h of the connecting edge of the two side surfaces to the channel height H so that the vortex generated fills the full channel height or the full height of the channel part assigned to the vortex generator immediately downstream of the vortex generator. The large-scale vortices generated ensure that the same speed distribution is present on every level behind the vortex generator.

Vorzugsweise ohne Zwischenräume sind über der Breite des durchströmten Kanals mehrere Wirbel-Generatoren nebeneinanderangeordnet. Mit dieser Massnahme wird kurz hinter den Wirbel-Generatoren der ganze Kanalquerschnitt von den Wirbeln voll beaufschlagt.Preferably, without gaps, a plurality of vortex generators are arranged side by side across the width of the channel through which the flow passes. With this measure, shortly after the vortex generators, the entire channel cross section is fully loaded by the vortexes.

Wenn die Symmetrieachse parallel zur Kanalachse verläuft, und die Verbindungskante der beiden Seitenflächen die stromabwärtige Kante des Wirbel-Generators bildet, während die quer zum durchströmten Kanal verlaufende Kante der Dachfläche die von der Kanal strömung zuerst beaufschlagte Kante ist, so werden an einem Wirbel-Generator zwei gleiche gegenläufige Wirbel erzeugt. Es liegt ein drallneutrales Strömungsbild vor, bei welchem der Drehsinn der beiden Wirbel im Bereich der Verbindungskante aufsteigend ist, so dass die Wirbel auf die nicht mit Wirbel-Generatoren bestückte, gegenüberliegende Wand auftreffen, die auf diese Weise beispielsweise gekühlt werden kann.If the axis of symmetry runs parallel to the channel axis, and the connecting edge of the two side surfaces forms the downstream edge of the vortex generator, while the edge of the roof surface which runs transversely to the flow through the channel is the edge which is first acted upon by the channel flow, so two identical opposing vortices are generated on a vortex generator. There is a swirl-neutral flow pattern in which the direction of rotation of the two vortices is ascending in the region of the connecting edge, so that the vortices impinge on the opposite wall which is not equipped with vortex generators and which can be cooled in this way, for example.

Weitere Vorteile der Erfindung, insbesondere im Zusammenhang mit der Anordnung der Wirbel-Generatoren und der Einführung der Sekundärströmung ergeben sich aus den Unteransprüchen.Further advantages of the invention, in particular in connection with the arrangement of the vortex generators and the introduction of the secondary flow, result from the subclaims.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung schematisch dargestellt.
Es zeigen:

Fig. 1a-d
eine Darstellung eines Wirbel-Generators in der Perspektive, in einer Hinteransicht, einer Draufsicht und einer Seitenansicht mit Brennstoffeindüsung;
Fig. 2a-d
eine Ausführungsvariante des WirbelGenerators in gleicher Darstellung ohne Brennstoffeindüsung;
Fig. 3
einen "halben" Wirbel-Generator in einer Perspektive;
Fig. 4-5
mehrere Varianten der Brennstoffeindüsung;
Fig. 6-9
die gruppenweise Anordnung von Wirbel-Generatoren in einer rechteckigen, einer kreisförmigen und in einer kreisringförmigen Brennkammer;
Several exemplary embodiments of the invention are shown schematically in the drawing.
Show it:
1a-d
an illustration of a vortex generator in perspective, in a rear view, a plan view and a side view with fuel injection;
2a-d
a variant of the vortex generator in the same representation without fuel injection;
Fig. 3
a "half" vortex generator in one perspective;
Fig. 4-5
several variants of fuel injection;
Fig. 6-9
the grouped arrangement of vortex generators in a rectangular, a circular and an annular combustion chamber;

Weg zur Ausführung der ErfindungWay of carrying out the invention

In den Figuren 1 bis 5 ist der eigentliche Kanal, der von einer mit grossem Pfeil symbolisierten Hauptströmung durchströmt wird, nicht dargestellt. Gemäss diesen Figuren besteht ein Wirbel-Generator im wesentlichen aus drei frei umströmten dreieckigen Flächen. Es sind dies eine Dachfläche 10 und zwei Seitenflächen 11 und 13. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.The actual channel, through which a main flow symbolized by a large arrow flows, is not shown in FIGS. 1 to 5. According to these figures, a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.

In sämtlichen gezeigten Beispielen stehen die beiden Seitenflächen 11, 11v, 11h und 13, 13v, 13h senkrecht auf der Kanalwand 21, wobei angemerkt wird, dass dies nicht zwingend ist. Die Seitenwände, welche in der Projektion aus im wesentlichen rechtwinkligen Dreiecken bestehen, sind mit ihren Längsseiten auf dieser Kanalwand 21 fixiert, vorzugsweise gasdicht. Sie sind so orientiert, dass sie an ihren Schmalseiten einen Stoss bilden unter Einschluss eines Pfeilwinkels α, αv, αh. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht ebenfalls senkrecht zu jener Kanalwand 21, mit welcher die Seitenflächen bündig sind. Die beiden den Pfeilwinkel α, αh, αv einschliessenden Seitenflächen 11, 11v, 11h und 13, 13v, 13h sind symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieachse 17 angeordnet, die in der Kanalachse liegt.In all of the examples shown, the two side surfaces 11, 11v, 11h and 13, 13v, 13h are perpendicular to the channel wall 21, it being noted that this is not mandatory. The side walls, which in the projection consist of essentially right-angled triangles, are fixed with their long sides on this channel wall 21, preferably gas-tight. They are oriented in such a way that they form a joint on their narrow sides, including an arrow angle α, αv, αh. The joint is designed as a sharp connecting edge 16 and is also perpendicular to the channel wall 21 with which the side surfaces are flush. The two side surfaces 11, 11v, 11h and 13, 13v, 13h enclosing the arrow angle α, αh, αv are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 which lies in the channel axis.

Die Dachfläche 10, 10v, liegt mit einer quer zum durchströmten Kanal verlaufenden und sehr schmal ausgebildeten Kante 15 an der gleichen Kanalwand 21 an wie die Seitenwände 11, 11v, und 13, 13v,. Ihre längsgerichteten Kanten 12, 14 sind bündig mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen. Die Dachfläche verläuft unter einem Anstellwinkel Θ, Θv zur Kanalwand 21. Ihre Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 eine Spitze 18.The roof surface 10, 10v lies with a very narrow edge 15 running transversely to the channel through which it flows, on the same channel wall 21 as the side walls 11, 11v, and 13, 13v ,. Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow channel. The roof surface runs at an angle of attack Θ, Θv to the duct wall 21. Your Longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.

Selbstverständlich kann der Wirbel-Generator auch mit einer Bodenfläche versehen sein, mit welcher er auf geeignete Art an der Kanalwand 21 befestigt ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Elementes.Of course, the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21. However, such a floor area is not related to the mode of operation of the element.

Die Wirbel-Generatoren 9 sind so ausgebildet, dass ihr Anstellwinkel der Dachfläche und ihr Pfeilwinkel der Seitenflächen in Strömungsrichtung zunehmen.The vortex generators 9 are designed so that their angle of attack of the roof surface and their arrow angle of the side surfaces increase in the direction of flow.

Gemäss Fig. 1 geschieht dies einerseits durch Unterteilung der Dachfläche in zwei mit unterschiedlichen angestellten (Θv, Θh) Teilflächen 10v, 10h. Andererseits wird die Zunahme des Pfeilwinkel der Seitenflächen durch deren Unterteilung in zwei mit unterschiedlichen gepfeilten (αv, αh) Teilflächen 11v, 11h, 13v, 13h vorgenommen.According to FIG. 1, this is done on the one hand by dividing the roof area into two sub-areas 10v, 10h with different positions (Θv, Θh). On the other hand, the increase in the arrow angle of the side surfaces is carried out by dividing them into two with different swept (αv, αh) partial surfaces 11v, 11h, 13v, 13h.

Gemäss Fig. 2 verläuft die Zunahme des Anstellwinkels Θ der Dachfläche 10 und des Pfeilwinkels α der Seitenflächen 11, 13 von der quer zum durchströmten Kanal verlaufenden Kante 15 bis zur Spitze 18 stetig.2, the increase in the angle of attack Θ of the roof surface 10 and the arrow angle α of the side surfaces 11, 13 runs continuously from the edge 15 running transversely to the flow channel to the tip 18.

In allen Fig. bildet die Verbindungskante 16 der beiden Seitenflächen 11, 11h und 13, 13h die stromabwärtige Kante des Wirbel-Generators. Die quer zum durchströmten Kanal verlaufende Kante 15 der Dachfläche 10, 10v ist somit die von der Kanalströmung zuerst beaufschlagte Kante.In all of the figures, the connecting edge 16 of the two side surfaces 11, 11h and 13, 13h forms the downstream edge of the vortex generator. The edge 15 of the roof surface 10, 10v running transversely to the flow through the channel is thus the edge first acted upon by the channel flow.

Die Wirkungsweise des Wirbel-Generators ist folgende: Beim Umströmen der Kanten 12 und 14 wird die von der Kante 15 herkommende Hauptströmung in ein Paar gegenläufiger Wirbel umgewandelt. Deren Wirbelachsen liegen in der Achse der Hauptströmung. Die Drallzahl und der Ort des Wirbelaufplatzens (vortex breakdown) werden bestimmt durch entsprechende Wahl des Anstellwinkels Θ und des Pfeilwinkels α. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel Θ und α durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden müssen dann nur noch die Länge L des Elementes sowie die Höhe h der Verbindungskante 16 (Fig. 9).The vortex generator works as follows: When flowing around the edges 12 and 14, the main flow coming from the edge 15 is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. The swirl number and the location of the vortex burst (vortex breakdown) are determined by appropriate selection of the angle of attack Θ and the arrow angle α. With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself. Depending on the application, these two angles Θ and α are predetermined by the structural conditions and by the process itself. Then only the length L of the element and the height h of the connecting edge 16 need to be adjusted (FIG. 9).

In der Fig. 1 sind die mit v bezeichneten vorderen Anströmpartien des Wirbel-Generators mit flachem Winkel Θv angestellt und weisen eine relativ spitze Pfeilung αv auf. Auf diese Weise werden die für Mischzwecke erforderlichen grossskaligen Wirbel erzeugt. An der abströmseitigen Partei ist der Wirbel-Generator mit grosser Anstellung Θh und breiten Pfeilwinkel αh versehen. Dadurch wird das für die Flammenstabilisierung günstige Wirbelaufplatzen provoziert. Als Beispiel kann angegeben werden, dass die abströmseitgen Winkel Θh und αh etwa doppelt so gross sind wie sie anströmseitigen Winkel Θv und αv.In FIG. 1, the front inflow parts of the vortex generator designated by v are set at a flat angle Θv and have a relatively sharp arrow αv. In this way, the large-scale vortices required for mixing purposes are generated. At the downstream side, the vortex generator has a large pitch Anh and a wide arrow angle αh. This provokes the vortex runways, which are favorable for flame stabilization. As an example, it can be stated that the downstream angles Θh and αh are approximately twice as large as the angles Θv and αv on the downstream side.

In Fig. 3 ist ein sogenannter halber "Wirbel-Generator" auf der Basis eines Wirbel-Generators nach Fig. 1 gezeigt, bei welchen nur die eine der beiden Seitenflächen des Wirbel-Generators 9 mit in Strömungsrichtung variierendem Pfeilwinkel αv/2 und αh/2 versehen ist. Die andere Seitenfläche ist gerade und in Strömungsrichtung ausgerichtet. Im Gegensatz zum symmetrischen Wirbel-Generator wird hier nur ein Wirbel an der gepfeilten Seite erzeugt. Es liegt demnach stromabwärts des Wirbel-Generators kein wirbelneutrales Feld vor, sondern der Strömung wird ein Dall aufgezwungen.FIG. 3 shows a so-called half "vortex generator" based on a vortex generator according to FIG. 1, in which only one of the two side surfaces of the vortex generator 9 has an arrow angle αv / 2 and αh / which varies in the direction of flow. 2 is provided. The other side surface is straight and oriented in the direction of flow. In contrast to the symmetrical vortex generator, only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator, but a dall is imposed on the flow.

Die Wirbel-Generatoren sind zum einen als Mischer zweier Strömungen verwendet. Die Hauptströmung in Form von Brennluft attackiert in Pfeilrichtung die quergerichteten Eintrittskanten 15. Die Sekundärströmung in Form eines gasförmigen und/oder flüssigen Brennstoffs weist einen wesentlich kleineren Massenstrom auf als die Hauptströmung. Sie wird im unmittelbaren Bereich der Wirbel-Generatoren in die Hauptströmung eingeleitet.The vortex generators are used on the one hand as a mixer for two flows. The main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow. The secondary flow in the form of a gaseous and / or liquid fuel has a substantially smaller mass flow than the main flow. It is introduced into the main flow in the immediate area of the vortex generators.

Das Einleiten in den Strömungskanal des in die Verbrennungluft einzumischenden gasförmigen und/oder flüssigen Brennstoffs kann gemäss den Fig. 4 bis 6b vielfältig gestaltet sein.The introduction into the flow channel of the gaseous and / or liquid fuel to be mixed into the combustion air can be designed in many ways according to FIGS. 4 to 6b.

Gemäss Fig. 4 erfolgt die Ausströmung in die Verbrennungsluft über Wandhohrungen 22a, die gestaffelt in den Längskanten 12 und 14 (oder zumindest in deren unmittelbaren Bereich) angeordnet sind. Der Brennstoff gelangt somit direkt in den entstehenden Wirbel, der im Einspritzbereich aufsteigend ist. Es herrschen hier definierte Strömungsverhältnisse vor.
Nach Fig. 5 entströmt der Brennstoff aus Einzelbohrungen 22b, die im Bereich der Spitze 18 des Wirbel-Generators angebracht ist. Hier wird das Mittel direkt in den voll ausgebildeten Wirbel eingedüst und zwar ebenfalls in dessen aufsteigenden Ast.
4, the outflow into the combustion air takes place via wall bores 22a, which are staggered in the longitudinal edges 12 and 14 (or at least in their immediate area). The fuel thus goes directly into the resulting vortex, which rises in the injection area. There are defined flow conditions here.
5, the fuel flows out of individual bores 22b which are provided in the region of the tip 18 of the vortex generator. Here the agent is injected directly into the fully developed vertebra and also in its ascending branch.

Bei der in Fig. 1a, 1b und 1b dargestellten Variante wird das Gas aus Wandbohrungen 22c eingedüst, welche sich in der Kanalwand 21 längs der Kante 15 des Wirbel-Generators befinden. Der Einspritzwinkel ist so gewählt (Fig. 1b), dass das Gas vor seiner Einmischung die Dachfläche des Wirbel-Generators als Film umströmt. Dieser "kalte" Film bildet für die Dachfläche eine Schutzschicht im Falle einer heissen Hauptströmung. Die Lösung nach Fig. 1 eignet sich besonders für den Dual-Betrieb, bei welchem sowohl gasförmiger als auch flüssiger Brennstoff in die Hauptströmung eingemischt und später verbrannt wird. Der flüssige Brennstoff, hier Öl, wird über eine unmittelbar an der Kante 15 einmündende Einzelbohrung 22f eingedüst, vorzugsweise unter dem gleichen Einspritzwinkel wie das Gas. Auch dieses Öl verteilt sich vor seiner Vernebelung im Wirbel als Film über der Dachfläche.In the variant shown in FIGS. 1a, 1b and 1b, the gas is injected from wall bores 22c, which are located in the channel wall 21 along the edge 15 of the vortex generator. The injection angle is selected (FIG. 1b) so that the gas flows around the roof surface of the vortex generator as a film before it is mixed in. This "cold" film forms a protective layer for the roof surface in the case of a hot main flow. 1 is particularly suitable for dual operation, in which both gaseous and liquid fuel is mixed into the main flow and later burned. The liquid fuel, here oil, is injected via a single bore 22f opening directly at the edge 15, preferably at the same injection angle as the gas. This oil is also distributed as a film over the roof surface before being atomized in the vortex.

Anstelle der Wandbohrungen 22c könnte auch ein hier nicht dargestellter Schlitz 22d verwendet werden, wie dies in der später zu beschreibenden Fig. 6b zu erkennen ist.Instead of the wall bores 22c, a slot 22d (not shown here) could also be used, as can be seen in FIG. 6b to be described later.

Die Fig. 6 bis 9 zeigen unterschiedliche Anordnungsvarianten für die beschriebenen Wirbel-Generatoren6 to 9 show different arrangement variants for the vortex generators described

Nach Fig. 6 ist der durchströmte Brennkammerkanal 20 von Rechteckform. Es wird darauf hingewiesen, dass die Form des durchströmten Kanals für die Wirkungsweise der Erfindung nicht wesentlich ist. Statt des gezeigten Rechtecks könnte es sich beim Kanal auch um ein Ringsegment handeln, d.h. die Wände und wären gekrümmt. Die schmalen Begrenzungswände des durchströmten Querschnitts wären in diesem Fall radiale Rippen, die den Kreisring segmentieren. Die obige Aussage, dass die Seitenflächen senkrecht auf der Kanalwand stehen, muss in einem solchen Fall selbstverständlich relativiert werden. Massgebend ist, dass die auf der Symmetrielinie 17 liegende Verbindungskante 16 senkrecht auf der entsprechenden Wand steht. Im Fall von ringförmigen Wänden würde die Verbindungskante 16 somit radial ausgerichtet sein, wie dies in Fig. 8 dargestellt ist.According to FIG. 6, the combustion chamber channel 20 through which flow is rectangular. It is pointed out that the shape of the flow channel is not essential to the operation of the invention. Instead of the rectangle shown, the channel could also be a ring segment, i.e. the walls and would be curved. In this case, the narrow boundary walls of the cross-section flowed through would be radial ribs which segment the circular ring. In such a case, the above statement that the side surfaces are perpendicular to the channel wall must of course be relativized. It is important that the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be aligned radially, as is shown in FIG. 8.

In Fig. 6 sind an den beiden Schmalwänden des Rechteckes oder ggfs. an den radialen Rippen je ein Wirbel-Generator 9 angeordnet, die sich über die ganze Schmalseite erstrecken. Im Fall von Rechteckkanälen hat diese Anordnung, d.h. das Anstossen der Bodenfläche an einer Ecke, den Vorteil, dass die Brennstoffversorgung sowie ein Kühlmittel für die Wirbel-Generatoren aus den Längswänden erfolgen könnte und nicht über sonst notwendige hohle Rippen erfolgen müsste. Zusätzlich sind an den beiden Längswänden je ein Wirbel-Generator angeordnet. Diese Konfiguration ist von der Wirbelbildung der die bestmögliche. Zu erkennen ist aus Fig. 6b, dass hier Massnahmen getroffen sind, die zu unterschiedlicher Wirbelbildung beitragen. Es sind zunächst WirbelGeneratoren unterschiedlicher Geometrie verwendet. Ferner sind die Wirbel-Generatoren der Längsseite mit ihrer Verbindungskante nicht in der gleichen Ebene angeordnet. Dies ist z.B. günstig, wenn inmitten der Spitzen Platz für die Unterbringung einer zentralen Brennstofflanze vorgesehen werden müsste.In Fig. 6 a vortex generator 9 are arranged on the two narrow walls of the rectangle or possibly on the radial ribs, which extend over the entire narrow side. In the case of rectangular channels, this arrangement has that Bumping the floor surface at a corner, the advantage that the fuel supply and a coolant for the vortex generators could come from the longitudinal walls and would not have to be done via otherwise necessary hollow ribs. In addition, a vortex generator is arranged on each of the two longitudinal walls. This configuration is the best possible of the vortex formation. It can be seen from FIG. 6b that measures have been taken here that contribute to different vortex formation. First, vortex generators of different geometries are used. Furthermore, the vortex generators of the long side are not arranged in the same plane with their connecting edge. This is advantageous, for example, if space for a central fuel lance would have to be provided in the middle of the tips.

Obschon die Wirbel-Generatoren im Verbund unterschiedliche Höhen aufweisen, ist ihre Höhe relativ zur Höhe des dem entsprechenden Wirbel-Generator zugeordneten Kanalteils zumindest annähernd gleich. In der Regel wird man die Höhe h der Verbindungskante 16 so mit der Kanalhöhe H abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Kanalhöhe H ausgefüllt wird, was zu einer gleichmässigen Vverteilung in dem beaufschlagten Querschnitt führt. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhälltnis h/H auch der Druckverlustbeiwert ansteigt.Although the vortex generators in the network have different heights, their height relative to the height of the channel part assigned to the corresponding vortex generator is at least approximately the same. As a rule, the height h of the connecting edge 16 will be coordinated with the channel height H in such a way that the vortex generated immediately downstream of the vortex generator already reaches such a size that the full channel height H is filled, which results in a uniform V distribution in the applied Cross section leads. Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the larger the ratio h / H, the higher the pressure loss coefficient.

Die Brennstoffzufuhr erfolgt in Fig. 6 für den Dualbetrieb aus den Öl-und Gasleitungen 25, die in der Wandung verlaufen. Das Eindüsen in den Kanal 20 erfolgt wie bei der in Fig. 1 beschriebenen Lösung, wobei statt einzelner Wandbohrungen hier für das Gas ein Schlitz 22f längs der Kante 15 vorgesehen ist.6 for dual operation, the fuel is supplied from the oil and gas lines 25 which run in the wall. The injection into the channel 20 takes place as in the solution described in FIG. 1, with instead of individual wall bores here a slot 22f is provided along the edge 15 for the gas.

Der eingedüste Brennstoff wird von den Wirbeln mitgeschleppt und mit der Hauptströmung vermischt. Er folgt dem schraubenförmigen Verlauf der Wirbel und wird stromabwärts der Wirbel in der Kammer gleichmässig feinverteilt. Dadurch reduziert sich die - bei der eingangs erwähnten radialen Eindüsung von Brennstoff in eine unverwirbelte Strömung - Gefahr von Aufprallstrahlen an der gegenüberliegenden Wand und die Bildung von sogenannten "hot spots".The injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned at the beginning.

Da der hauptsächliche Mischprozess in den Wirbeln erfolgt und weitgehend unempfindlich gegen den Eindüsungsimpuls der Sekundärströmung ist, kann die Brennstoffeinspritzung flexibel gehalten werden und an andere Grenzbedingungen angepasst werden. So kann im ganzen Lastbereich der gleiche Eindüsungsimpuls beibehalten werden. Da das Mischen durch die Geometrie der Wirbel-Generatoren bestimmt wird, und nicht durch die Maschinenlast, im Beispielsfall die Gasturbinenleistung, arbeitet der so konfigurierte Brenner auch bei Teillastbedingungen optimal. Der Verbrennungsprozess wird durch Anpassen der Zündverzugszeit des Brennstoffs und Mischzeit der Wirbel optimiert, was eine Minimierung der Emissionen gewährleistet.Since the main mixing process takes place in the vortices and is largely insensitive to the injection pulse of the secondary flow, the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions. The combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.

Desweiteren bewirkt das wirkungsvolle Vermischen ein gutes Temperaturprofil über dem durchströmten Querschnitt und reduziert überdies die Möglichkeit des Auftretens von thermoakustischer Instabilität. Allein durch ihre Anwesenheit wirken die Wirbel-Generatoren als Dämpfungsmassnahme gegen thermoakustische Schwingungen.Furthermore, the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.

Um die Flamme zusätzlich zu stabilisiern, wird stromabwärts der Wirbel-Generatoren in der Ebene, in der die nichtdargestellte Zündung erfolgt, ein Diffusor 26, hier ein Stossdiffusor, angeordnet.To further stabilize the flame, the vortex generators are located downstream in the plane where the not shown Ignition takes place, a diffuser 26, here a shock diffuser, is arranged.

In Fig. 7 sind in einer kreisförmigen Brennkammer zwei "halbe" Wirbel-Generatoren symmetrisch angeordnet. Ihre gerade Längsseite liegt an der Wandung des zylindrischen Kanals an, während die gepfeilte Seitenfläche in die Strömung hineinragt. Je nach Auslegung der Wirbel-Generatoren ist es möglich, dass die erzeugten Wirbel stromabwärts einen einzigen, den Kreisquerschnitt ausfüllenden Wirbel bilden, welcher der Strömung einen Drall aufzwingt. Das Eindüsen des Brennstoffs erfolgt wie bei der Lösung nach Fig. 6 über einem Wandschlitz 22d (Gas) und eine in der Mitte der Kante 15 angeordnete Einzelbohrung 22f (Öl). Den Weg des Brennstoffs bis zu seiner Vermischung ist anhand der selbsterklärenden Pfeile dargestellt.In Fig. 7, two "half" vortex generators are arranged symmetrically in a circular combustion chamber. Its straight long side lies against the wall of the cylindrical channel, while the swept side surface protrudes into the flow. Depending on the design of the vortex generators, it is possible that the vortex generated downstream form a single vortex that fills the circular cross section, which imposes a swirl on the flow. As in the solution according to FIG. 6, the fuel is injected via a wall slot 22d (gas) and a single bore 22f (oil) arranged in the middle of the edge 15. The path of the fuel until it is mixed is shown using the self-explanatory arrows.

Die Fig. 8 zeigt vereinfacht eine Brennkammer mit ringförmig durchströmtem Kanal 20. An beiden Kanalwänden 21a und 21b ist jeweils eine gleiche Anzahl von Wirbel-Generatoren gemäss Fig. 2 im Umfangsrichtung ohne freien Zwischenräume so aneinandergereiht, dass die Verbindungskanten 16 von zwei gegenüberliegenden Wirbel-Generatoren in der gleichen Radialen liegen. Werden gleiche Höhen h für gegenüberliegende Wirbel-Generatoren vorausgesetzt, so zeigt Fig. 8, dass die Wirbel-Generatoren am inneren Kanalring 21b eine kleinere Pfeilung α haben. Im Längsschnitt in Fig. 9 ist erkennbar, dass dies durch einen grösseren Anstellwinkel Θ kompensiert werden könnte, wenn drallgleiche Wirbel im inneren und äusserern Ringquerschnitt erwünscht sind. Bei dieser Lösung werden, wie in Fig. 8 angedeutet, zwei Wirbelpaare mit jeweils kleineren Wirbeln erzeugt, was zu einer kürzeren Mischlänge führt.FIG. 8 shows a combustion chamber with a channel 20 through which flow flows in a simplified manner. On both channel walls 21a and 21b, an equal number of vortex generators according to FIG. 2 are lined up in the circumferential direction without free spaces so that the connecting edges 16 are separated by two opposite vortex Generators lie in the same radial. If the same heights h are assumed for opposite vortex generators, FIG. 8 shows that the vortex generators on the inner channel ring 21b have a smaller arrow α. In the longitudinal section in FIG. 9 it can be seen that this could be compensated for by a larger angle of attack Θ if swirl-like vortices in the inner and outer ring cross-section are desired. In this solution, as indicated in FIG. 8, two vortex pairs are generated, each with smaller vertebrae, which leads to a shorter mixing length.

Gemäss Fig. 9 wird hier der flüssige Brennstoff über eine zentrale Brennstofflanze 24 eingedüst, deren Mündung sich stromabwärts der Wirbel-Generatoren 9 im Bereich deren Spitze 18 befinden. Die Eindüsung des gasförmigen Brennstoffs geschieht bei diesem Beispiel zweifach. Zum einen, wie dies durch Pfeile angedeutet ist, über Wandbohrungen in den Wirbel-Generatoren selbst nach der Methoden gemäss Fig. 4 und zum andern über Wandbohrungen 22e in der Kanalwand 21b hinter den Wirbel-Generatoren, wobei diese Wandbohrungen über eine Ringleitung versorgt werden können.According to FIG. 9, the liquid fuel is injected here via a central fuel lance 24, the mouth of which is located are located downstream of the vortex generators 9 in the area of their tip 18. In this example, the gaseous fuel is injected twice. On the one hand, as indicated by arrows, via wall bores in the vortex generators themselves according to the methods according to FIG. 4 and on the other hand via wall bores 22e in the channel wall 21b behind the vortex generators, these wall bores being able to be supplied via a ring line .

Selbstverständlich ist die Erfindung nicht auf die beschriebenen und gezeigten Beispiele beschränkt. Bezüglich der Anordnung der Wirbel-Generatoren im Verbund sind viele Kombinationen möglich, ohne den Rahmen der Erfindung zu verlassen. Auch die Einführung der Sekundärströmung in die Hauptströmung kann auf vielfältige Weise vorgenommen werden. In Abweichung von den in Fig. 8 gezeigten Wirbel-Generatoren, deren Verbindungskanten auf einer gleichen Radialen liegen, könnten die Verbindungskanten von zwei gegenüberliegenden Wirbel-Generatoren auch um eine halbe Teilung versetzt sein. Dies würde die Wirbelstruktur stromabwärts der Wirbel-Generatoren dahingehend ändern, dass die seitengleichen erzeugten Wirbel dann den gleichen Drehsinn aufweisen und u.U. zu einem grossen Wirbel verschmelzen, der den ganzen Kanalquerschnitt ausfüllt.Of course, the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention. The introduction of the secondary flow into the main flow can also be carried out in a variety of ways. In a departure from the vortex generators shown in FIG. 8, the connecting edges of which lie on the same radial, the connecting edges of two opposite vortex generators could also be offset by half a division. This would change the vortex structure downstream of the vortex generators such that the vortices generated on the same side then have the same direction of rotation and possibly merge into a large vortex that fills the entire channel cross section.

BezugszeichenlisteReference list

99
Wirbel-GeneratorVortex generator
1010th
DachflächeRoof area
1111
SeitenflächeSide surface
1212th
LängskanteLong edge
1313
SeitenflächeSide surface
1414
LängskanteLong edge
1515
quer verlaufenden Kante von 10transverse edge of 10
1616
VerbindungskanteConnecting edge
1717th
SymmetrielinieLine of symmetry
1818th
Spitzetop
2020th
Kanalchannel
21, a,b21, a, b
KanalwandCanal wall
22, a,b,c,e22, a, b, c, e
Wandbohrung für GasWall hole for gas
22, d22, d
WandschlitzWall slot
22, f22, f
Wandbohrung für ÖlWall hole for oil
2424th
BrennstofflanzeFuel lance
2525th
Leitungmanagement
2626
DiffusorDiffuser
Θ, v,hΘ, v, h
AnstellwinkelAngle of attack
α, v,hα, v, h
PfeilwinkelArrow angle
hH
Höhe von 16Height of 16
HH
KanalhöheChannel height
LL
Länge des Wirbel-GeneratorsLength of the vortex generator

Claims (14)

  1. Mixing and flame stabilization appliance in a combustion chamber with premixed combustion in which a gaseous and/or liquid fuel is introduced into the combustion air,
    - the combustion air being guided by means of vortex generators (9) of which a plurality are arranged adjacent to one another over the width or the periphery of the combustion chamber duct (20) through which flow takes place and the fuel being introduced into the duct (20) in the immediate region of the vortex generators (9),
    - in that a vortex generator (9) has three surfaces around which flow can take place freely, which surfaces extend in the flow direction, one of them forming the top surface (10) and the two others forming the side surfaces (11, 13),
    - in that the side surfaces (11, 13) enclose between them the V-angle (α) and abut the same duct wall (21), and in that they include between them a connecting edge (16) which, together with the longitudinally directed edges (12, 14) of the top surface (10), forms a point (18),
    - said top surface (10) being in contact, by means of an edge (15) extending transversely to the duct (20) through which flow takes place, with the same duct wall (21) as the side walls,
    - the longitudinally directed top surface edges (12, 14), which abut the longitudinally directed side surface edges protruding into the flow duct, extending at an angle of incidence (θ) to the duct wall (21),
    - and the angle of incidence (θ) as well as the V-angle (α) varying in the flow direction.
  2. Mixing and flame stabilization appliance according to Claim 1, characterized in that, in the downstream part of the vortex generator (9), the angle of incidence (θ, θh) of the top surface (10, 10h) and/or the V-angle (α, αh) of the side surfaces (11, 11h and 13, 13h) are selected in such a way that the vortex generated by the flow has already broken down in the region of the vortex generator.
  3. Mixing and flame stabilization appliance according to Claim 1, characterized in that the angle of incidence (θ) of the top surface (10) and/or the V-angle (α) of the side surfaces (11, 13) of the vortex generator (9) increase in the flow direction.
  4. Mixing and flame stabilization appliance according to Claim 3, characterized in that the increase in the angle of incidence of the top surface is undertaken by its subdivision into two partial surfaces (10v, 10h) with different incidences (θv, θh), and in that the increase in the V-angle of the side surfaces is undertaken by their subdivision into two partial surfaces (11v, 11h, 13v, 13h) with different V-angles (αv, αh).
  5. Mixing and flame stabilization appliance according to Claim 3, characterized in that the increase in the angle of incidence of the top surface (10) and/or of the V-angle (α) of the side surfaces (11, 13) is undertaken continuously to the point (18) from the edge (15) extending transversely to the duct (20) through which flow takes place.
  6. Mixing and flame stabilization appliance according to Claim 1, characterized in that the vortex generator (9) connecting edge (16) extending from the duct wall (21) to the point (18) is configured so that it is at least approximately sharp.
  7. Mixing and flame stabilization appliance according to Claim 1, characterized in that the ratio between the height (h) of the connecting edge (16) of the vortex generator (9) and the duct height (H) is selected in such a way that the vortex generated fills the complete duct height, or the complete height of the duct part associated with the vortex generator, directly downstream of the vortex generator.
  8. Mixing and flame stabilization appliance according to Claim 3, characterized in that only one of the two side surfaces of the vortex generator (9) is provided with a V-angle (αv, αh) which varies in the flow direction, whereas the other side surface is straight and is directed in the flow direction.
  9. Mixing and flame stabilization appliance according to Claim 1, characterized in that the two vortex generator (9) side surfaces (11, 13) enclosing the V-angle (α) are arranged symmetrically about an axis of symmetry (17) which extends parallel to the duct axis.
  10. Mixing and flame stabilization appliance according to Claim 1, characterized in that the connecting edge (16) of the two side surfaces (11, 13) forms the downstream edge of the vortex generator (9) and the top surface (10) edge (15) extending transversely to the duct (20) through which flow takes place is the edge which the duct flow meets first.
  11. Mixing and flame stabilization appliance according to Claim 1, characterized in that the fuel is introduced via wall holes (22a) which are located in the side walls (11, 13) of the vortex generator (9) in the region of the longitudinally directed edges (12, 14) of the top surface (10, 10v, 10h).
  12. Mixing and flame stabilization appliance according to Claim 1, characterized in that the fuel is introduced via wall holes (22b) which are located in the region of the point (18) of the vortex generator (9).
  13. Mixing and flame stabilization appliance according to Claim 1, characterized in that the fuel is introduced via fuel lances (24) whose openings are located downstream of the vortex generator (9) in the region of its point (18).
  14. Mixing and flame stabilization appliance according to Claim 1, characterized in that a diffuser (26) is arranged downstream of the vortex generators (9) for additional flame stabilization.
EP94103385A 1993-04-08 1994-03-07 Mixing and flame stabilizing device in a combustion chamber with premixing combustion Expired - Lifetime EP0620403B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1087/93 1993-04-08
CH108793 1993-04-08

Publications (2)

Publication Number Publication Date
EP0620403A1 EP0620403A1 (en) 1994-10-19
EP0620403B1 true EP0620403B1 (en) 1996-12-04

Family

ID=4202163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103385A Expired - Lifetime EP0620403B1 (en) 1993-04-08 1994-03-07 Mixing and flame stabilizing device in a combustion chamber with premixing combustion

Country Status (4)

Country Link
US (1) US5498155A (en)
EP (1) EP0620403B1 (en)
JP (1) JPH0771757A (en)
DE (1) DE59401177D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584616B2 (en) 2004-12-23 2009-09-08 Alstom Technology Ltd Method for the operation of a gas turbo group

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH687832A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Fuel supply for combustion.
DE4446541A1 (en) * 1994-12-24 1996-06-27 Abb Management Ag Combustion chamber
DE4446611A1 (en) * 1994-12-24 1996-06-27 Abb Management Ag Combustion chamber
DE19520291A1 (en) * 1995-06-02 1996-12-05 Abb Management Ag Combustion chamber
DE19536672A1 (en) * 1995-09-30 1997-04-03 Abb Research Ltd Method for burning fuel in main stream of combustion air
DE19544816A1 (en) * 1995-12-01 1997-06-05 Abb Research Ltd Mixing device
DE59704739D1 (en) * 1996-12-20 2001-10-31 Siemens Ag BURNER FOR FLUIDIC FUELS
US6672862B2 (en) 2000-03-24 2004-01-06 North American Manufacturing Company Premix burner with integral mixers and supplementary burner system
DE10330023A1 (en) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Vortex generator used in the swirling and mixing of fuel/air mixtures in pre-mixing combustion chambers comprises an outlet opening for targeted introduction of a secondary flow into the core flow of the wake produced
GB0219461D0 (en) * 2002-08-21 2002-09-25 Rolls Royce Plc Fuel injection arrangement
US6786047B2 (en) 2002-09-17 2004-09-07 Siemens Westinghouse Power Corporation Flashback resistant pre-mix burner for a gas turbine combustor
US6848260B2 (en) 2002-09-23 2005-02-01 Siemens Westinghouse Power Corporation Premixed pilot burner for a combustion turbine engine
US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
US7370466B2 (en) * 2004-11-09 2008-05-13 Siemens Power Generation, Inc. Extended flashback annulus in a gas turbine combustor
WO2007067085A1 (en) * 2005-12-06 2007-06-14 Siemens Aktiengesellschaft Method and apparatus for combustion of a fuel
ES2452032T3 (en) * 2006-08-08 2014-03-31 Akarx, Inc. Compositions and methods to increase blood platelet levels in humans
EP1890083A1 (en) * 2006-08-16 2008-02-20 Siemens Aktiengesellschaft Fuel injector for a gas turbine engine
EP2116766B1 (en) * 2008-05-09 2016-01-27 Alstom Technology Ltd Burner with fuel lance
AT506577B1 (en) * 2008-06-26 2009-10-15 Gruber & Co Group Gmbh STATIC MIXING DEVICE
ATE554346T1 (en) 2009-03-16 2012-05-15 Alstom Technology Ltd BURNER FOR A GAS TURBINE AND METHOD FOR THE LOCAL COOLING OF HOT GAS STREAMS PASSING THROUGH A BURNER
US20140123653A1 (en) * 2012-11-08 2014-05-08 General Electric Company Enhancement for fuel injector
US20150159878A1 (en) * 2013-12-11 2015-06-11 Kai-Uwe Schildmacher Combustion system for a gas turbine engine
EP2933559A1 (en) * 2014-04-16 2015-10-21 Alstom Technology Ltd Fuel mixing arragement and combustor with such a fuel mixing arrangement
EP2993404B1 (en) * 2014-09-08 2019-03-13 Ansaldo Energia Switzerland AG Dilution gas or air mixer for a combustor of a gas turbine
CN104566462B (en) * 2014-12-30 2018-02-23 北京华清燃气轮机与煤气化联合循环工程技术有限公司 A kind of premixing nozzle and gas turbine
WO2021197654A1 (en) * 2020-03-31 2021-10-07 Siemens Aktiengesellschaft Burner component of a burner, and burner of a gas turbine having a burner component of this type

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1022493A (en) * 1910-08-31 1912-04-09 Curtis C Meigs Apparatus for making sulfuric acid.
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
US3051452A (en) * 1957-11-29 1962-08-28 American Enka Corp Process and apparatus for mixing
US3404869A (en) * 1966-07-18 1968-10-08 Dow Chemical Co Interfacial surface generator
US3974646A (en) * 1974-06-11 1976-08-17 United Technologies Corporation Turbofan engine with augmented combustion chamber using vorbix principle
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
DE3520772A1 (en) * 1985-06-10 1986-12-11 INTERATOM GmbH, 5060 Bergisch Gladbach Mixing appliance
DE3534268A1 (en) * 1985-09-26 1987-04-02 Deutsche Forsch Luft Raumfahrt Surface designed to avoid flow separation on a body around which a fluid flows
US4887425A (en) * 1988-03-18 1989-12-19 General Electric Company Fuel spraybar
DE59104727D1 (en) * 1991-12-23 1995-03-30 Asea Brown Boveri Device for mixing two gaseous components and burner in which this device is used.
EP0619134B1 (en) * 1993-04-08 1996-12-18 ABB Management AG Mixing receptacle
CH687831A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Premix burner.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584616B2 (en) 2004-12-23 2009-09-08 Alstom Technology Ltd Method for the operation of a gas turbo group

Also Published As

Publication number Publication date
DE59401177D1 (en) 1997-01-16
JPH0771757A (en) 1995-03-17
US5498155A (en) 1996-03-12
EP0620403A1 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
EP0620403B1 (en) Mixing and flame stabilizing device in a combustion chamber with premixing combustion
EP0619457B1 (en) Premix burner
EP0623786B1 (en) Combustion chamber
EP0619133B1 (en) Mixing receptacle
EP0619456B1 (en) Fuel supply system for combustion chamber
EP0675322B1 (en) Premix burner
EP1382379B1 (en) Process for controlling the downstream flowpattern of a vortex generator
EP0433790B1 (en) Burner
DE19510744A1 (en) Combustion chamber with two-stage combustion
DE4426351A1 (en) Combustion chamber
CH678757A5 (en)
DE4411623A1 (en) Premix burner
CH680084A5 (en)
EP0775869B1 (en) Premix burner
DE4446611A1 (en) Combustion chamber
EP0394800B1 (en) Premix burner for generating a hot gas
DE19654116A1 (en) Burner for operating a combustion chamber with a liquid and / or gaseous fuel
EP0742411B1 (en) Air supply for a premix combustor
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
DE3007209C2 (en)
DE4412315A1 (en) Method of operating gas turbine combustion chamber
DE19507088B4 (en) premix
EP0807787A2 (en) Burner
DE19547914A1 (en) Premix burner for a heat generator
DE19505614A1 (en) Operating method for pre-mixing burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19950314

17Q First examination report despatched

Effective date: 19951025

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59401177

Country of ref document: DE

Date of ref document: 19970116

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970220

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010313

Year of fee payment: 8

Ref country code: FR

Payment date: 20010313

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST