EP0620403B1 - Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible. - Google Patents

Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible. Download PDF

Info

Publication number
EP0620403B1
EP0620403B1 EP94103385A EP94103385A EP0620403B1 EP 0620403 B1 EP0620403 B1 EP 0620403B1 EP 94103385 A EP94103385 A EP 94103385A EP 94103385 A EP94103385 A EP 94103385A EP 0620403 B1 EP0620403 B1 EP 0620403B1
Authority
EP
European Patent Office
Prior art keywords
mixing
angle
vortex generator
vortex
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103385A
Other languages
German (de)
English (en)
Other versions
EP0620403A1 (fr
Inventor
Yau-Pin Dr. Chyou
Adnan Eroglu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0620403A1 publication Critical patent/EP0620403A1/fr
Application granted granted Critical
Publication of EP0620403B1 publication Critical patent/EP0620403B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers, e.g. vortex valves

Definitions

  • the invention relates to a mixing and flame stabilization device in a combustion chamber with premix combustion, in which a gaseous and / or liquid fuel is injected into the combustion air.
  • premix combustion requires extremely good mixing of the combustion air and fuel.
  • the invention is therefore based on the object of providing a measure in a combustion chamber with premix combustion with which intimate mixing of combustion air and fuel is achieved within the shortest distance and with which the flame can be stabilized aerodynamically at the same time.
  • the advantage of the vortex generators according to the invention can be seen in the particular simplicity of the element in every respect.
  • the element consisting of three walls with flow around it is completely problem-free.
  • the roof surface can be joined with the two side surfaces in a variety of ways.
  • the element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area.
  • the element due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.
  • the angle of attack ⁇ of the roof surface and / or the arrow angle ⁇ of the side surfaces are selected such that the vortex generated by the flow bursts in the region of the vortex generator.
  • the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, then the non-formation of a wake area is advantageous.
  • a vertical connecting edge also leads to side surfaces that are also perpendicular to the channel wall, which gives the vortex generator the simplest possible form and the most favorable form in terms of production technology.
  • a plurality of vortex generators are arranged side by side across the width of the channel through which the flow passes. With this measure, shortly after the vortex generators, the entire channel cross section is fully loaded by the vortexes.
  • the edge of the roof surface which runs transversely to the flow through the channel is the edge which is first acted upon by the channel flow, so two identical opposing vortices are generated on a vortex generator.
  • a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the two side surfaces 11, 11v, 11h and 13, 13v, 13h are perpendicular to the channel wall 21, it being noted that this is not mandatory.
  • the side walls, which in the projection consist of essentially right-angled triangles, are fixed with their long sides on this channel wall 21, preferably gas-tight. They are oriented in such a way that they form a joint on their narrow sides, including an arrow angle ⁇ , ⁇ v, ⁇ h.
  • the joint is designed as a sharp connecting edge 16 and is also perpendicular to the channel wall 21 with which the side surfaces are flush.
  • the two side surfaces 11, 11v, 11h and 13, 13v, 13h enclosing the arrow angle ⁇ , ⁇ h, ⁇ v are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 which lies in the channel axis.
  • the roof surface 10, 10v lies with a very narrow edge 15 running transversely to the channel through which it flows, on the same channel wall 21 as the side walls 11, 11v, and 13, 13v ,. Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow channel.
  • the roof surface runs at an angle of attack ⁇ , ⁇ v to the duct wall 21. Your Longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.
  • the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21.
  • a floor area is not related to the mode of operation of the element.
  • the vortex generators 9 are designed so that their angle of attack of the roof surface and their arrow angle of the side surfaces increase in the direction of flow.
  • this is done on the one hand by dividing the roof area into two sub-areas 10v, 10h with different positions ( ⁇ v, ⁇ h).
  • the increase in the arrow angle of the side surfaces is carried out by dividing them into two with different swept ( ⁇ v, ⁇ h) partial surfaces 11v, 11h, 13v, 13h.
  • the connecting edge 16 of the two side surfaces 11, 11h and 13, 13h forms the downstream edge of the vortex generator.
  • the edge 15 of the roof surface 10, 10v running transversely to the flow through the channel is thus the edge first acted upon by the channel flow.
  • the vortex generator works as follows: When flowing around the edges 12 and 14, the main flow coming from the edge 15 is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow.
  • the swirl number and the location of the vortex burst are determined by appropriate selection of the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself.
  • these two angles ⁇ and ⁇ are predetermined by the structural conditions and by the process itself. Then only the length L of the element and the height h of the connecting edge 16 need to be adjusted (FIG. 9).
  • the front inflow parts of the vortex generator designated by v are set at a flat angle ⁇ v and have a relatively sharp arrow ⁇ v.
  • the vortex generator has a large pitch Anh and a wide arrow angle ⁇ h. This provokes the vortex runways, which are favorable for flame stabilization.
  • the downstream angles ⁇ h and ⁇ h are approximately twice as large as the angles ⁇ v and ⁇ v on the downstream side.
  • FIG. 3 shows a so-called half "vortex generator" based on a vortex generator according to FIG. 1, in which only one of the two side surfaces of the vortex generator 9 has an arrow angle ⁇ v / 2 and ⁇ h / which varies in the direction of flow. 2 is provided. The other side surface is straight and oriented in the direction of flow. In contrast to the symmetrical vortex generator, only one vortex is generated on the arrowed side. Accordingly, there is no vortex-neutral field downstream of the vortex generator, but a dall is imposed on the flow.
  • the vortex generators are used on the one hand as a mixer for two flows.
  • the main flow in the form of combustion air attacks the transverse inlet edges 15 in the direction of the arrow.
  • the secondary flow in the form of a gaseous and / or liquid fuel has a substantially smaller mass flow than the main flow. It is introduced into the main flow in the immediate area of the vortex generators.
  • the introduction into the flow channel of the gaseous and / or liquid fuel to be mixed into the combustion air can be designed in many ways according to FIGS. 4 to 6b.
  • the outflow into the combustion air takes place via wall bores 22a, which are staggered in the longitudinal edges 12 and 14 (or at least in their immediate area).
  • the fuel thus goes directly into the resulting vortex, which rises in the injection area.
  • There are defined flow conditions here. 5 the fuel flows out of individual bores 22b which are provided in the region of the tip 18 of the vortex generator.
  • the agent is injected directly into the fully developed vertebra and also in its ascending branch.
  • the gas is injected from wall bores 22c, which are located in the channel wall 21 along the edge 15 of the vortex generator.
  • the injection angle is selected (FIG. 1b) so that the gas flows around the roof surface of the vortex generator as a film before it is mixed in.
  • This "cold" film forms a protective layer for the roof surface in the case of a hot main flow.
  • the liquid fuel here oil, is injected via a single bore 22f opening directly at the edge 15, preferably at the same injection angle as the gas. This oil is also distributed as a film over the roof surface before being atomized in the vortex.
  • a slot 22d (not shown here) could also be used, as can be seen in FIG. 6b to be described later.
  • the combustion chamber channel 20 through which flow is rectangular.
  • the channel could also be a ring segment, i.e. the walls and would be curved.
  • the narrow boundary walls of the cross-section flowed through would be radial ribs which segment the circular ring.
  • the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be aligned radially, as is shown in FIG. 8.
  • a vortex generator 9 are arranged on the two narrow walls of the rectangle or possibly on the radial ribs, which extend over the entire narrow side. In the case of rectangular channels, this arrangement has that Bumping the floor surface at a corner, the advantage that the fuel supply and a coolant for the vortex generators could come from the longitudinal walls and would not have to be done via otherwise necessary hollow ribs.
  • a vortex generator is arranged on each of the two longitudinal walls. This configuration is the best possible of the vortex formation. It can be seen from FIG. 6b that measures have been taken here that contribute to different vortex formation.
  • vortex generators of different geometries are used.
  • the vortex generators of the long side are not arranged in the same plane with their connecting edge. This is advantageous, for example, if space for a central fuel lance would have to be provided in the middle of the tips.
  • the vortex generators in the network have different heights, their height relative to the height of the channel part assigned to the corresponding vortex generator is at least approximately the same.
  • the height h of the connecting edge 16 will be coordinated with the channel height H in such a way that the vortex generated immediately downstream of the vortex generator already reaches such a size that the full channel height H is filled, which results in a uniform V distribution in the applied Cross section leads.
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the larger the ratio h / H, the higher the pressure loss coefficient.
  • the fuel is supplied from the oil and gas lines 25 which run in the wall.
  • the injection into the channel 20 takes place as in the solution described in FIG. 1, with instead of individual wall bores here a slot 22f is provided along the edge 15 for the gas.
  • the injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned at the beginning.
  • the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in this case the gas turbine output, the burner configured in this way works optimally even under partial load conditions.
  • the combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.
  • the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.
  • a diffuser 26 here a shock diffuser
  • Fig. 7 two "half" vortex generators are arranged symmetrically in a circular combustion chamber. Its straight long side lies against the wall of the cylindrical channel, while the swept side surface protrudes into the flow. Depending on the design of the vortex generators, it is possible that the vortex generated downstream form a single vortex that fills the circular cross section, which imposes a swirl on the flow.
  • the fuel is injected via a wall slot 22d (gas) and a single bore 22f (oil) arranged in the middle of the edge 15. The path of the fuel until it is mixed is shown using the self-explanatory arrows.
  • FIG. 8 shows a combustion chamber with a channel 20 through which flow flows in a simplified manner.
  • an equal number of vortex generators according to FIG. 2 are lined up in the circumferential direction without free spaces so that the connecting edges 16 are separated by two opposite vortex Generators lie in the same radial.
  • FIG. 8 shows that the vortex generators on the inner channel ring 21b have a smaller arrow ⁇ .
  • this could be compensated for by a larger angle of attack ⁇ if swirl-like vortices in the inner and outer ring cross-section are desired.
  • two vortex pairs are generated, each with smaller vertebrae, which leads to a shorter mixing length.
  • the liquid fuel is injected here via a central fuel lance 24, the mouth of which is located are located downstream of the vortex generators 9 in the area of their tip 18.
  • the gaseous fuel is injected twice.
  • the invention is not limited to the examples described and shown.
  • many combinations are possible without leaving the scope of the invention.
  • the introduction of the secondary flow into the main flow can also be carried out in a variety of ways.
  • the connecting edges of which lie on the same radial the connecting edges of two opposite vortex generators could also be offset by half a division. This would change the vortex structure downstream of the vortex generators such that the vortices generated on the same side then have the same direction of rotation and possibly merge into a large vortex that fills the entire channel cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Claims (14)

  1. Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible, dans laquelle un combustible gazeux et/ou liquide est pulvérisé dans l'air de combustion,
    - l'air de combustion étant acheminé par le biais des générateurs de turbulences (9), plusieurs d'entre eux étant disposés sur la largeur ou la périphérie du conduit (20) de la chambre de combustion traversé par le courant, et le combustible étant introduit dans le conduit (20) à proximité immédiate des générateurs de turbulences (9),
    - un générateur de turbulences (9) présentant trois surfaces de solénation libres qui s'étendent dans le sens du courant et dont l'une forme la surface supérieure (10) et les deux autres les surfaces latérales (11, 13),
    - les surfaces latérales (11, 13) renfermant entre elles l'angle de flèche (α) et étant à fleur d'une même paroi (21) du conduit, et entourant une arête de liaison (16) qui, avec les bords longitudinaux (12, 14) de la surface supérieure (10), forme une pointe (18),
    - un bord (15) de cette surface supérieure (10) s'étendant transversalement jusqu'au conduit (20) traversé par le courant, se trouvant sur la même paroi (21) du conduit que les parois latérales,
    - les bords longitudinaux (12, 14) de la surface supérieure qui sont à fleur des bords longitudinaux des surfaces latérales pénétrant dans le conduit traversé par le courant s'étendant selon un angle d'attaque (θ) par rapport à la paroi (21) du conduit,
    - et à la fois l'angle d'attaque (θ) et l'angle de flèche (α) variant dans le sens du courant.
  2. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que dans la partie en aval du générateur de turbulences (9), l'angle d'attaque (θ, θh) de la surface supérieure (10, 10h) et/ou l'angle de flèche (α, αh) des surfaces latérales (11, 11h, et 13, 13h) sont choisis de telle façon que le tourbillon généré par le courant éclate encore dans la zone du générateur de turbulences.
  3. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que l'angle d'attaque (θ) de la surface supérieure (10) et/ou l'angle de flèche (α) des surfaces latérales (11, 13) du générateur de turbulences (9) augmentent dans le sens du courant.
  4. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 3, caractérisé par le fait que l'augmentation de l'angle d'attaque de la surface supérieure est réalisée par sa division en deux surfaces partielles (10v, 10h) ayant des angles d'attaque (θv, θh) différents, et que l'augmentation de l'angle de flèche des surfaces latérales est réalisée par leur division en deux surfaces partielles (11v, 11h, 13v, 13h) ayant des angles de flèche (αv, αh) différents.
  5. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 3, caractérisé par le fait que l'augmentation de l'angle d'attaque de la surface supérieure (10) et/ou de l'angle de flèche (α) des surfaces latérales (11, 13) croît constamment depuis le bord (15) s'étendant transversalement jusqu'au conduit (20) traversé par le courant, jusqu'à la pointe (18).
  6. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que l'arête de liaison (16) du générateur de turbulence (9) s'étendant de la paroi (21) du conduit jusqu'à la pointe (18) est au moins presque vive.
  7. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que le rapport entre la hauteur (h) de l'arête de liaison (16) du générateur de turbulences (9) et la hauteur (H) du conduit est choisi de telle façon que le tourbillon généré remplisse, immédiatement en aval du générateur de turbulences, toute la hauteur du conduit ou toute la hauteur de la section du conduit affectée au générateur de turbulences.
  8. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 3, caractérisé par le fait qu'une seule des deux surfaces latérales du générateur de turbulences (9) présente l'angle de flèche (αv, αh) variant dans le sens du courant, alors que l'autre surface latérale est droite et orientée dans le sens du courant.
  9. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que les deux surfaces latérales (11, 13) du générateur de turbulences (9) renfermant l'angle de flèche (α) sont disposées symétriquement par rapport à un axe de symétrie (17), lequel s'étend parallèlement à l'axe du conduit.
  10. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que l'arête de liaison (16) des deux surfaces latérales (11, 13) forment le bord en aval du générateur de turbulences (9), le bord (15) de la surface supérieure (10) s'étendant transversalement jusqu'au conduit (20) traversé par le courant étant le bord exposé en premier au courant dans le conduit.
  11. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que le combustible est pulvérisé par le biais des orifices (22a) dans la paroi, lesquels se trouvent dans les parois latérales (11, 13) du générateur de turbulences (9) dans la zone des bords longitudinaux (12, 14) de la surface supérieure (10, 10v, 10h).
  12. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que le combustible est pulvérisé par le biais des orifices (22b) dans la paroi, lesquels se trouvent dans la zone de la pointe (18) du générateur de turbulences (9).
  13. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait que le combustible est pulvérisé par le biais des lances à combustible (24) dont les ouvertures se trouvent en aval du générateur de turbulences (9) dans la zone de sa pointe (18).
  14. Dispositif de mélange et de stabilisation de la flamme conforme à la revendication 1, caractérisé par le fait qu'un diffuseur (26) est disposé en aval des générateurs de turbulences (9) afin de stabiliser en plus la flamme.
EP94103385A 1993-04-08 1994-03-07 Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible. Expired - Lifetime EP0620403B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH108793 1993-04-08
CH1087/93 1993-04-08

Publications (2)

Publication Number Publication Date
EP0620403A1 EP0620403A1 (fr) 1994-10-19
EP0620403B1 true EP0620403B1 (fr) 1996-12-04

Family

ID=4202163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103385A Expired - Lifetime EP0620403B1 (fr) 1993-04-08 1994-03-07 Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible.

Country Status (4)

Country Link
US (1) US5498155A (fr)
EP (1) EP0620403B1 (fr)
JP (1) JPH0771757A (fr)
DE (1) DE59401177D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584616B2 (en) 2004-12-23 2009-09-08 Alstom Technology Ltd Method for the operation of a gas turbo group

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH687832A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Brennstoffzufuehreinrichtung fuer Brennkammer.
DE4446611A1 (de) * 1994-12-24 1996-06-27 Abb Management Ag Brennkammer
DE4446541A1 (de) * 1994-12-24 1996-06-27 Abb Management Ag Brennkammer
DE19520291A1 (de) * 1995-06-02 1996-12-05 Abb Management Ag Brennkammer
DE19536672A1 (de) * 1995-09-30 1997-04-03 Abb Research Ltd Verfahren und Vorrichtung zur Verbrennung von Brennstoffen
DE19544816A1 (de) * 1995-12-01 1997-06-05 Abb Research Ltd Mischvorrichtung
JP4127858B2 (ja) * 1996-12-20 2008-07-30 シーメンス アクチエンゲゼルシヤフト 液体燃料用バーナ
US6672862B2 (en) 2000-03-24 2004-01-06 North American Manufacturing Company Premix burner with integral mixers and supplementary burner system
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
GB0219461D0 (en) * 2002-08-21 2002-09-25 Rolls Royce Plc Fuel injection arrangement
US6786047B2 (en) 2002-09-17 2004-09-07 Siemens Westinghouse Power Corporation Flashback resistant pre-mix burner for a gas turbine combustor
US6848260B2 (en) 2002-09-23 2005-02-01 Siemens Westinghouse Power Corporation Premixed pilot burner for a combustion turbine engine
US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
US7370466B2 (en) * 2004-11-09 2008-05-13 Siemens Power Generation, Inc. Extended flashback annulus in a gas turbine combustor
WO2007067085A1 (fr) * 2005-12-06 2007-06-14 Siemens Aktiengesellschaft Procédé et appareil de combustion d’un carburant
EP2056826B1 (fr) * 2006-08-08 2014-01-08 Akarx, Inc. Compositions et méthodes pour l'augmentation de la concentration en plaquettes sanguines chez l'homme
EP1890083A1 (fr) * 2006-08-16 2008-02-20 Siemens Aktiengesellschaft Injecteur de carburant pour une turbine à gaz
EP2116766B1 (fr) * 2008-05-09 2016-01-27 Alstom Technology Ltd Brûleur avec lance à combustible
AT506577B1 (de) * 2008-06-26 2009-10-15 Gruber & Co Group Gmbh Statische mischvorrichtung
EP2230455B1 (fr) * 2009-03-16 2012-04-18 Alstom Technology Ltd Brûleur pour une turbine à gaz et procédé de refroidissement local d'un flux de gaz chauds passant par un brûleur
US20140123653A1 (en) * 2012-11-08 2014-05-08 General Electric Company Enhancement for fuel injector
US20150159878A1 (en) * 2013-12-11 2015-06-11 Kai-Uwe Schildmacher Combustion system for a gas turbine engine
EP2933559A1 (fr) * 2014-04-16 2015-10-21 Alstom Technology Ltd Agencement de mélange de carburant et chambre de combustion avec un tel agencement
EP2993404B1 (fr) * 2014-09-08 2019-03-13 Ansaldo Energia Switzerland AG Mélangeur de gaz ou d'air de dilution pour une chambre de combustion d'une turbine à gaz
CN104566462B (zh) * 2014-12-30 2018-02-23 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种预混喷嘴及燃气轮机
CN115362333B (zh) 2020-03-31 2023-08-25 西门子能源全球有限两合公司 燃烧器的燃烧器部件和燃气轮机的具有这种燃烧器部件的燃烧器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1022493A (en) * 1910-08-31 1912-04-09 Curtis C Meigs Apparatus for making sulfuric acid.
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
US3051452A (en) * 1957-11-29 1962-08-28 American Enka Corp Process and apparatus for mixing
US3404869A (en) * 1966-07-18 1968-10-08 Dow Chemical Co Interfacial surface generator
US3974646A (en) * 1974-06-11 1976-08-17 United Technologies Corporation Turbofan engine with augmented combustion chamber using vorbix principle
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
DE3520772A1 (de) * 1985-06-10 1986-12-11 INTERATOM GmbH, 5060 Bergisch Gladbach Mischvorrichtung
DE3534268A1 (de) * 1985-09-26 1987-04-02 Deutsche Forsch Luft Raumfahrt Zur vermeidung von stroemungsabloesungen ausgebildete oberflaeche eines umstroemten koerpers
US4887425A (en) * 1988-03-18 1989-12-19 General Electric Company Fuel spraybar
EP0548396B1 (fr) * 1991-12-23 1995-02-22 Asea Brown Boveri Ag Dispositif servant à mélanger deux composants gazeux et brûleur dans lequel ce dispositif est appliqué
DE59401295D1 (de) * 1993-04-08 1997-01-30 Abb Management Ag Mischkammer
CH687831A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Vormischbrenner.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584616B2 (en) 2004-12-23 2009-09-08 Alstom Technology Ltd Method for the operation of a gas turbo group

Also Published As

Publication number Publication date
DE59401177D1 (de) 1997-01-16
US5498155A (en) 1996-03-12
JPH0771757A (ja) 1995-03-17
EP0620403A1 (fr) 1994-10-19

Similar Documents

Publication Publication Date Title
EP0620403B1 (fr) Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible.
EP0619457B1 (fr) Brûleur à prémélange
EP0623786B1 (fr) Chambre de combustion
EP0619133B1 (fr) Chambre de mélanges
EP0619456B1 (fr) Système d'alimentation en carburant pour chambre de combustion
EP0675322B1 (fr) Brûleur à prémélange
EP1382379B1 (fr) Procédé pour le contrôle de fluide en aval d'un générateur de tourbillons
EP0433790B1 (fr) Brûleur
DE19510744A1 (de) Brennkammer mit Zweistufenverbrennung
DE4426351A1 (de) Brennkammer
CH678757A5 (fr)
DE4411623A1 (de) Vormischbrenner
CH680084A5 (fr)
EP0775869B1 (fr) Brûleur à prémélange
DE4446611A1 (de) Brennkammer
EP0347834A2 (fr) Tête de brûleur pour brûleur à gaz à soufflage
EP0394800B1 (fr) Brûleur à mélange préalable pour la génération de gaz chaud
DE19654116A1 (de) Brenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP0742411B1 (fr) Alimentation en air pour une chambre de combustion à prémélange
DE3007209C2 (fr)
DE19507088B4 (de) Vormischbrenner
DE4412315A1 (de) Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine
EP0807787A2 (fr) Brûleur
DE3920078A1 (de) Brennerkopf fuer einen geblaesegasbrenner
DE19547914A1 (de) Vormischbrenner für einen Wärmeerzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19950314

17Q First examination report despatched

Effective date: 19951025

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59401177

Country of ref document: DE

Date of ref document: 19970116

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970220

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010313

Year of fee payment: 8

Ref country code: FR

Payment date: 20010313

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST