EP0623786B1 - Combustion chamber - Google Patents

Combustion chamber Download PDF

Info

Publication number
EP0623786B1
EP0623786B1 EP94103551A EP94103551A EP0623786B1 EP 0623786 B1 EP0623786 B1 EP 0623786B1 EP 94103551 A EP94103551 A EP 94103551A EP 94103551 A EP94103551 A EP 94103551A EP 0623786 B1 EP0623786 B1 EP 0623786B1
Authority
EP
European Patent Office
Prior art keywords
channel
combustion chamber
vortex
vortex generators
chamber according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103551A
Other languages
German (de)
French (fr)
Other versions
EP0623786A1 (en
Inventor
Rolf Dr. Althaus
Alexander Dr. Beeck
Yau-Pin Dr. Chyou
Adnan Eroglu
Burkhard Dr. Schulte-Werning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0623786A1 publication Critical patent/EP0623786A1/en
Application granted granted Critical
Publication of EP0623786B1 publication Critical patent/EP0623786B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/408Flow influencing devices in the air tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43171Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons

Definitions

  • the invention relates to a combustion chamber according to the preamble of patent claim 1.
  • a delta wing that is employed in a channelized flow can be regarded as a vortex generator in the broadest sense. If such wings are flown from the tip, a dead water area is created on the one hand downstream of the wing, and on the other hand the flow through the employed surface experiences a not inconsiderable drop in pressure.
  • the arrangement of such a delta wing in a channel must be carried out using flow-restricting aids such as struts, ribs or the like.
  • problems arise with the cooling of such elements in a hot gas flow for example.
  • Such delta wings cannot be used as mixing elements of two or more flows.
  • the mixing of a secondary flow with a main flow present in a channel usually takes place by radial injection of the secondary flow into the channel.
  • the momentum of the secondary flow is so small, however, that an almost complete mixing only takes place after a distance of approx. 100 channel heights.
  • a combustion chamber of the type mentioned at the outset is known from EP-0 521 788 A1.
  • a main flow is led outside around vortex generators, several of which are arranged next to one another over the circumference of the flowed-through channel. These vortex generators expand in the direction of flow and their height is at least 50% of the height of the flowed channel.
  • a secondary flow is conducted into the vortex generators at the upstream end and mixed with fuel therein.
  • a first combustion takes place within the vortex generators.
  • the smoke gases emerge into the channel and swirl in the main flow around the vortex generators to form a lean combustion mixture.
  • the invention is therefore based on the object of equipping a combustion chamber of the type mentioned at the outset with a device with which longitudinal vortices can be generated in the flowed-through channel without a recirculation area.
  • the new static mixer which is represented by the 3-dimensional vortex generators, it is possible to achieve extraordinarily short mixing distances in the combustion chamber with a low pressure drop.
  • a coarse mixing of the two streams takes place after just one full vortex revolution, while a fine mixing due to turbulent flow and molecular diffusion processes occurs after a distance that corresponds to a few channel heights.
  • the advantage of such an element can be seen in its particular simplicity in every respect.
  • the element consisting of three walls with flow around it is completely problem-free.
  • the roof surface can be joined with the two side surfaces in a variety of ways.
  • the element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area.
  • the element due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.
  • the two side surfaces enclosing the arrow angle ⁇ form an at least approximately sharp connecting edge with one another, which together with the longitudinal edges of the roof surface forms a tip, the flow cross-section is hardly impaired by blocking.
  • the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, the non-formation of a wake area achieved thereby is advantageous.
  • a vertical connecting edge also leads to side surfaces that are also perpendicular to the channel wall, which gives the vortex generator the simplest possible form that is most favorable in terms of production technology.
  • the angle of attack ⁇ of the roof surface and / or the arrow angle ⁇ of the side surfaces are selected such that the vortex generated by the flow bursts in the region of the vortex generator.
  • FIGS. 1, 5 and 6 do not show the actual channel through which a main flow symbolized by a large arrow flows.
  • a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the two side surfaces 11 and 13 are perpendicular to the channel wall 21, it being noted that this is not mandatory.
  • the side walls which consist of right-angled triangles, are fixed with their long sides on this channel wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle ⁇ .
  • the joint is designed as a sharp connecting edge 16 and is also perpendicular to the channel wall 21 with which the side surfaces are flush.
  • the two side surfaces 11, 13 including the arrow angle ⁇ are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 (FIGS. 3b, 4b). This axis of symmetry 17 is rectified like the channel axis.
  • the roof surface 10 lies against the same channel wall 21 as the side walls 11, 13 with an edge 15 which runs across the channel and is very pointed.
  • the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21.
  • a floor area is not related to the mode of operation of the element.
  • the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator.
  • the edge 15 of the roof surface 10 which runs transversely to the flow through the channel is thus the edge which is first acted upon by the channel flow.
  • the vortex generator works as follows: When flowing around edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. The number of swirls and the location of the vortex breakdown (if the latter is desired at all) are determined by appropriate selection of the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself. Depending on the application, these two angles ⁇ and ⁇ are predetermined by the structural conditions and by the process itself. Only the length L of the element (FIG. 3b) and the height h of the connecting edge 16 (FIG. 3a) then have to be adjusted.
  • FIGS. 3a and 4a in which the channel through which flow is indicated is 20, it can be seen that the vortex generator can have different heights compared to the channel height H.
  • the height h of the connecting edge 16 will be coordinated with the channel height H in such a way that the vortex generated immediately downstream of the vortex generator already has such a size that the full channel height H is filled, which results in a uniform velocity distribution in the applied Cross section leads.
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.
  • the sharp connecting edge 16 in FIG. 2 is the point which is first acted upon by the channel flow.
  • the element is rotated by 180 °.
  • the two opposite vortices have changed their sense of rotation.
  • Fig. 3 it is shown how several, here 3 vortex generators are arranged side by side without gaps across the width of the flow channel 20.
  • the channel 20 has a rectangular shape in this case, but this is not essential to the invention.
  • FIG. 4 An embodiment variant with two full and two half vortex generators adjoining it on both sides is shown in FIG. 4.
  • the elements differ in particular by their greater height h. If the angle of attack remains the same, this inevitably leads to a greater length L of the element and consequently - because of the same division - to a smaller arrow angle ⁇ .
  • the vortices generated will have a lower swirl strength, but will fill the channel cross section completely within a shorter interval. If in In both cases a vortex burst is intended, for example to stabilize the flow, this will take place later in the vortex generator according to FIG. 4 than in that according to FIG. 3.
  • the channels shown in FIGS. 3 and 4 represent rectangular combustion chambers. It is pointed out once again that the shape of the channel through which the flow passes is not essential for the mode of operation of the invention. Instead of the rectangle shown, the channel could also be a ring segment, i.e. the walls 21a and 21b would be curved. In such a case, the above statement that the side surfaces are perpendicular to the channel wall must of course be relativized. It is important that the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be aligned radially, as is shown in FIG. 7.
  • FIGS. 7 and 8 show in simplified form a combustion chamber with an annular flow through channel 20.
  • an equal number of vortex generators are lined up in the circumferential direction in such a way that the connecting edges 16 of two opposite vortex generators lie in the same radial .
  • FIG. 7 shows that the vortex generators on the inner channel ring 21b have a smaller arrow ⁇ .
  • In the longitudinal section in FIG. 8 it can be seen that this could be compensated for by a larger angle of attack ⁇ if swirl-like vortices in the inner and outer ring cross-section are desired.
  • two vortex pairs are generated, each with smaller vertebrae, which leads to a shorter mixing length.
  • the fuel could be in this version according to the methods of 5 or 6 to be described later are introduced into the main flow.
  • the secondary flow in the form of a liquid fuel, for example, has a substantially smaller mass flow than the main flow. It is introduced vertically into the main flow in the immediate area of the vortex generators.
  • this injection takes place via individual bores 22a, which are made in the wall 21a.
  • the wall 21a is the wall on which the vortex generators are arranged.
  • the bores 22a are located on the line of symmetry 17 downstream behind the connecting edge 16 of each vortex generator. With this configuration, the fuel is fed into the already existing large-scale vortices.
  • FIG. 4 shows an embodiment variant of a combustion chamber in which the secondary flow is also injected via wall bores 22b. These are located downstream of the vortex generators in that wall 21b on which the vortex generators are not arranged, that is to say on the wall opposite the wall 21a.
  • the wall bores 22b are each made centrally between the connecting edges 16 of two adjacent vortex generators, as can be seen in FIG. 4. In this way, the fuel reaches the vortex in the same way as in the embodiment according to FIG. 3, but with the difference that it is no longer mixed into the vortex of a pair of vertebrae produced by the same vortex generator, but in one each Vortex of two neighboring vortex generators. Because the neighboring vortex generators Meanwhile, are arranged without a space and produce vortex pairs with the same direction of rotation, the injections according to FIGS. 3 and 4 have the same effect.
  • FIGS. 5 and 6 show further possible forms of introducing the secondary flow into the main flow.
  • the secondary flow is introduced here through means not shown through the channel wall 21 into the hollow interior of the vortex generator.
  • the secondary flow is injected into the main flow via a wall bore 22e, the bore being arranged in the region of the tip 18 of the vortex generator.
  • the injection takes place via wall bores 22d, which are located in the side surfaces 11 and 13 on the one hand in the region of the longitudinal edges 12 and 14 and on the other hand in the region of the connecting edge 16.
  • FIGS. 9 to 14 show different installation options for the vortex generators.
  • FIG. 9 shows an annular channel 20 in which an equal number of vortex generators 9 are lined up in the circumferential direction both on the outer ring wall 21a and on the inner ring wall 21b. 7, however, the connecting edges 16 of two opposite vortex generators are offset by half a division. This arrangement offers the possibility of increasing the height h of the individual element. Downstream of the vortex generators, the generated vortexes are combined with one another, which on the one hand improves the mixing quality and on the other hand leads to a longer lifespan of the vortex.
  • the ring channel is segmented by means of radially extending ribs 23.
  • a vortex generator 9 is arranged on the ribs 23 in each of the circular ring segments formed in this way.
  • the two vortex generators are designed to fill the entire channel height. This solution simplifies the fuel supply that can be made through the hollow ribs. This means that there is no impairment of the flow by centrally arranged fuel lances.
  • vortex generators are also attached to the ring walls 21a and 21b.
  • the connecting edges of the side elements run at half the channel height, those of the upper and lower in a radial at half the segment width. In terms of how it works, this is a very good solution.
  • the elements here cannot fill the entire channel height. It is therefore not to be overlooked that the cooling that may be required is structurally complex, since cooling air supply from the ring walls is not readily possible for the lateral elements.
  • the vortex generators 9 in FIG. 12 are arranged off-center on the radial ribs 23 and on the ring walls 21a, 21b.
  • One side surface of each vortex generator lies against a corner of the circular ring segment, from where the lateral vortex generators can also be supplied with cooling air from the radially outer ring wall 21a, on the one hand, and from the inner ring wall 21b, on the other hand.
  • FIG. 13 Another embodiment according to FIG. 13 is also in respect of a simple cooling possibility Segment of the circular channel, the vortex generators 9 are arranged directly in the segment corners.
  • FIGS. 6, 11 and 14 show an additional central introduction of the secondary flow in a mixed arrangement of the variants dealt with in FIGS. 6, 11 and 14.
  • the fuel usually oil
  • vortex generators of different geometries are used in the rectangular channel, which of course could just as well be a circular ring segment.
  • the vortex generators that follow one another in the “circumferential direction” are slightly offset from one another. This, for example, to create the required space for the lance.
  • the secondary flow is partially injected via wall holes in the side surfaces of the vortex generators, as indicated by arrows.
  • the gas supply takes place via gas lines 25 running along the wall.
  • gas lines 25 running along the wall.
  • the mixture is ignited 26 at the point at which the vortex bursts (vortex break down).
  • a diffuser 27 is arranged in the plane behind the mixing zone at which the ignition takes place. The good temperature distribution downstream of the vortex generators achieved as a result of the mixing elements avoids the risk of reignition, which is possible without the measure for introducing cooling air into the combustion air mentioned at the beginning.
  • the combustion chamber just described could also be a self-igniting post-combustion chamber downstream of a high-temperature gas turbine.
  • the high energy content of their exhaust gases enables self-ignition. Effective, rapid mixing of the hot gas flow with the injected fuel is a prerequisite for optimizing the combustion process, particularly with regard to minimizing emissions.
  • the vortex generators are designed in such a way that recirculation zones are largely avoided.
  • the residence time of the fuel particles in the hot zones is very short, which has a favorable effect on the minimal formation of NO x .
  • the injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned above.
  • the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in the example the gas turbine output, the afterburner configured in this way works optimally even under partial load conditions.
  • the combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.
  • the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.
  • FIGS. 16 and 17 show a top view of an embodiment variant of the vortex generator and a front view of its arrangement in a circular channel.
  • the two side surfaces 11 and 13 enclosing the arrow angle ⁇ have a different length.
  • the vortex generator then naturally has a different angle of attack stell across its width.
  • Such a variant has the effect that vortices with different strengths are generated. For example, this can act on a swirl adhering to the main flow. Or else through the different eddies it becomes original a swirl-free main flow downstream of the vortex generators, as indicated in FIG. 17.
  • Such a configuration works well as an independent, compact burner unit.
  • the swirl imposed on the main flow can be used to improve the cross-ignition behavior of the burner configuration, for example at partial load.
  • the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention.
  • the introduction of the secondary flow into the main flow can also be carried out in a variety of ways.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine Brennkammer gemäss Oberbegriff des Patentanspruchs 1.The invention relates to a combustion chamber according to the preamble of patent claim 1.

Stand der TechnikState of the art

In Brennkammern können sich kalte Strähnen in der Hauptströmung befinden, die beispielsweise durch das Einleiten von Kühlluft in die Verbrennungsluft entstehen. Solche Strähnen können zu ungenügendem Ausbrand in der Verbrennungszone führen. Es sind deshalb Massnahmen zu treffen, Verbrennungsluft, Kühlluft und Brennstoff innig zu vermischen.In the combustion chamber there can be cold streaks in the main flow, for example caused by the introduction of cooling air into the combustion air. Such strands can lead to insufficient burnout in the combustion zone. Measures must therefore be taken to mix combustion air, cooling air and fuel intimately.

Als Wirbel-Generator im weitesten Sinn kann ein Deltaflügel angesehen werden, der in einer kanalisierten Strömung angestellt ist. Werden derartige Flügel von der Spitze her angeströmt, so ensteht einerseits stromabwärts des Flügels ein Totwassergebiet und andererseits erfährt die Strömung durch die angestellte Fläche einen nicht unbeträchtlichen Druckabfall. Das Anordnen eines solchen Deltaflügels in einem Kanal muss über strömungsbeeinträchtigende Hilfsmittel wie Streben, Rippen oder dergleichen erfolgen. Darüberhinaus ergeben sich beispielsweise in einer Heissgasströmung Probleme mit der Kühlung solcher Elemente.A delta wing that is employed in a channelized flow can be regarded as a vortex generator in the broadest sense. If such wings are flown from the tip, a dead water area is created on the one hand downstream of the wing, and on the other hand the flow through the employed surface experiences a not inconsiderable drop in pressure. The arrangement of such a delta wing in a channel must be carried out using flow-restricting aids such as struts, ribs or the like. In addition, problems arise with the cooling of such elements in a hot gas flow, for example.

Als Mischelemente von zwei oder mehreren Strömungen sind derartige Deltaflügel nicht brauchbar. Die Mischung einer Sekundärströmung mit einer in einem Kanal vorliegenden Hauptströmung geschieht in der Regel durch radiale Eindüsung der Sekundärströmung in den Kanal. Der Impuls der Sekundärströmung ist indes so gering, dass eine nahezu vollständige Durchmischung erst nach einer Strecke von ca. 100 Kanalhöhen erfolgt ist.Such delta wings cannot be used as mixing elements of two or more flows. The mixing of a secondary flow with a main flow present in a channel usually takes place by radial injection of the secondary flow into the channel. The momentum of the secondary flow is so small, however, that an almost complete mixing only takes place after a distance of approx. 100 channel heights.

Eine Brennkammer der eingangs genannten Art ist bekannt aus der EP-0 521 788 Al. Dort wird eine Hauptströmung aussen um Wirbel-Generatoren geführt, von denen über dem Umfang des durchströmten Kanals mehrere nebeneinander angeordnet sind. Diese Wirbel-Generatoren erweitern sich in Strömungsrichtung und ihre Höhe beträgt mindestens 50% der Höhe des durchströmten Kanals. Eine Sekundärströmung wird am stromaufwärtigen Ende der Wirbel-Generatoren in diese hineingeleitet und darin mit Brennstoff vermischt. Innerhalb der Wirbel-Generatoren findet eine erste Verbrennung statt. Am stromabwärtigen der Ende Wirbel-Generatoren treten die entstandenden Rauchgase in den Kanal aus und verwirbeln darin mit der die Wirbel-Generatoren umströmenden Hauptströmung zwecks Bildung eines mageren Verbrennungsgemisches.A combustion chamber of the type mentioned at the outset is known from EP-0 521 788 A1. There, a main flow is led outside around vortex generators, several of which are arranged next to one another over the circumference of the flowed-through channel. These vortex generators expand in the direction of flow and their height is at least 50% of the height of the flowed channel. A secondary flow is conducted into the vortex generators at the upstream end and mixed with fuel therein. A first combustion takes place within the vortex generators. At the downstream end of the vortex generators, the smoke gases emerge into the channel and swirl in the main flow around the vortex generators to form a lean combustion mixture.

Darstellung der ErfindungPresentation of the invention

Die Erfindung liegt deshalb die Aufgabe zugrunde, eine Brennkammer der eingangs genannten Art mit einer Vorrichtung auszustatten, mit der im durchströmten Kanal Längswirbel ohne Rezirkulationsgebiet erzeugt werden können.The invention is therefore based on the object of equipping a combustion chamber of the type mentioned at the outset with a device with which longitudinal vortices can be generated in the flowed-through channel without a recirculation area.

Erfindungsgemäss wird dies mit den kennzeichnenden Merkmalen des Patentanspruchs 1 erreicht.According to the invention this is achieved with the characterizing features of patent claim 1.

Mit dem neuen statischen Mischer, den die 3-dimensionalen Wirbel-Generatoren darstellen, ist es möglich, in der Brennkammer ausserordentlich kurze Mischstrecken bei gleichzeitig geringem Druckverlust zu erzielen. Bereits nach einer vollen Wirbelumdrehung ist eine grobe Durchmischung der beiden Ströme vollzogen, während eine Feinmischung infolge von turbulenter Strömung und molekularer Diffusionsprozesse nach einer Strecke vorliegt, die einigen wenigen Kanalhöhen entspricht.With the new static mixer, which is represented by the 3-dimensional vortex generators, it is possible to achieve extraordinarily short mixing distances in the combustion chamber with a low pressure drop. A coarse mixing of the two streams takes place after just one full vortex revolution, while a fine mixing due to turbulent flow and molecular diffusion processes occurs after a distance that corresponds to a few channel heights.

Ein Wirbel-Generator zeichnet sich weiter dadurch aus,

  • dass die Dachfläche mit einer quer zum durchströmten Kanal verlaufenden Kante an der gleichen Kanalwand anliegt wie die Seitenwände,
  • und dass die längsgerichteten Kanten der Dachfläche, die bündig sind mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen unter einem Anstellwinkel Θ zur Kanalwand verlaufen.
A vortex generator is further characterized by
  • that the roof surface rests on the same channel wall as the side walls, with an edge running transversely to the flow channel,
  • and that the longitudinal edges of the roof surface, which are flush with the longitudinal edges of the side surfaces projecting into the flow channel, extend at an angle of attack Θ to the channel wall.

Der Vorteil eines solchen Elementes ist in seiner besonderen Einfachheit in jeder Hinsicht zu sehen. Fertigungstechnisch ist das aus drei umströmten Wänden bestehende Element völlig problemlos. Die Dachfläche kann mit den beiden Seitenflächen auf verschiedenste Arten zusammengefügt werden. Auch die Fixierung des Elementes an ebenen oder gekrümmten Kanalwänden kann im Falle von schweissbaren Materialien durch einfache Schweissnähte erfolgen. Vom strömungstechnischen Standpunkt her weist das Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet. Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.The advantage of such an element can be seen in its particular simplicity in every respect. In terms of production technology, the element consisting of three walls with flow around it is completely problem-free. The roof surface can be joined with the two side surfaces in a variety of ways. The element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area. Finally, due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.

Es ist angebracht, das Verhältnis Höhe der Verbindungskante der beiden Seitenflächen zur Kanalhöhe so zu wählen, dass das erzeugte Wirbelpaar unmittelbar stromabwärts des Wirbel-Generators die volle Kanalhöhe oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausfüllt.It is appropriate to choose the ratio of the height of the connecting edge of the two side surfaces to the channel height so that that the generated vortex pair fills the full channel height or the full height of the channel part assigned to the vortex generator immediately downstream of the vortex generator.

Dadurch, dass über der Breite des durchströmten Kanals mehrere Wirbel-Generatoren ohne Zwischenräume nebeneinander angeordnet sind, wird bereits kurz hinter den Wirbel-Generatoren der ganze Kanalquerschnitt von den Wirbeln voll beaufschlagt.Due to the fact that several vortex generators are arranged side by side without gaps across the width of the channel through which flow flows, the entire channel cross-section is fully loaded by the vortexes just behind the vortex generators.

Es ist sinnvoll, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen symmetrisch um eine Symmetrieachse angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.It makes sense if the two side surfaces including the arrow angle α are arranged symmetrically about an axis of symmetry. This creates swirls of equal swirl.

Wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen eine zumindest annähernd scharfe Verbindungskante miteinander bilden, die mit den Längskanten der Dachfläche zusammen eine Spitze bildet, wird der Durchströmquerschnitt kaum durch Sperrung beeinträchtigt.If the two side surfaces enclosing the arrow angle α form an at least approximately sharp connecting edge with one another, which together with the longitudinal edges of the roof surface forms a tip, the flow cross-section is hardly impaired by blocking.

Ist die scharfe Verbindungskante die austrittsseitige Kante des Wirbel-Generators und verläuft sie senkrecht zu jener Kanalwand, mit welcher die Seitenflächen bündig sind, so ist die dadurch erreichte Nichtbildung eines Nachlaufgebietes von Vorteil. Eine senkrechte Verbindungskante führt überdies zu ebenfalls senkrecht auf der Kanalwand stehenden Seitenflächen, was dem Wirbel-Generator die einfachst mögliche und fertigungstechnisch günstigste Form verleiht.If the sharp connecting edge is the exit-side edge of the vortex generator and it runs perpendicular to the channel wall with which the side surfaces are flush, the non-formation of a wake area achieved thereby is advantageous. A vertical connecting edge also leads to side surfaces that are also perpendicular to the channel wall, which gives the vortex generator the simplest possible form that is most favorable in terms of production technology.

Wenn die Symmetrieachse parallel zur Kanalachse verläuft, und die Verbindungskante der beiden Seitenflächen die stromabwärtige Kante des Wirbel-Generators bildet, während demzufolge die quer zum durchströmten Kanal verlaufende Kante der Dachfläche die von der Kanalströmung zuerst beaufschlagte Kante ist, so werden an einem Wirbel-Generator zwei gleiche gegenläufige Wirbel erzeugt. Es liegt ein drallneutrales Strömungsbild vor, bei welchem der Drehsinn der beiden Wirbel im Bereich der Verbindungskante aufsteigend ist.If the axis of symmetry runs parallel to the channel axis, and the connecting edge of the two side surfaces forms the downstream edge of the vortex generator, whereas the edge of the roof surface which runs transversely to the channel through which the flow is flowing is the edge first acted upon by the channel flow, then a vortex generator two generated the same opposite vortex. There is a swirl-neutral flow pattern in which the direction of rotation of the two vortices is ascending in the area of the connecting edge.

Es ist für gewisse Anwendungen zweckmässig, wenn der Anstellwinkel Θ der Dachfläche und/oder der Pfeilwinkel α der Seitenflächen so gewählt sind, dass noch im Bereich des Wirbel-Generators der von der Strömung erzeugte Wirbel aufplatzt. Mit der möglichen Variation der beiden Winkel hat man ein einfaches aerodynamisches Stabilsierungsmittel in der Hand, unabhängig von der Querschnittsform des durchströmten Kanals, welcher sowohl breit und niedrig als auch schmal und hoch sein kann, und mit ebenen oder gekrümmten Kanalwänden versehen sein kann.For certain applications it is expedient if the angle of attack Θ of the roof surface and / or the arrow angle α of the side surfaces are selected such that the vortex generated by the flow bursts in the region of the vortex generator. With the possible variation of the two angles, you have a simple aerodynamic stabilizing means in your hand, regardless of the cross-sectional shape of the flow channel, which can be both wide and low as well as narrow and high, and can be provided with flat or curved channel walls.

Weitere Vorteile der Erfindung, insbesondere im Zusammenhang mit der Anordnung der Wirbel-Generatoren und der Einführung der Sekundärströmung ergeben sich aus den Unteransprüchen.Further advantages of the invention, in particular in connection with the arrangement of the vortex generators and the introduction of the secondary flow, result from the subclaims.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung schematisch dargestellt.
Es zeigen:

Fig. 1
eine perspektivische Darstellung eines Wirbel-Generators;
Fig. 2
eine Anordnungsvariante des Wirbel-Generators;
Fig. 3a-c
die gruppenweise Anordnung von Wirbel-Generatoren in einem Kanal im Längsschnitt, in einer Draufsicht und in einer Hinteransicht;
Fig. 4a-c
eine Ausführungsvariante einer gruppenweisen Anordnung von Wirbel-Generatoren in gleicher Darstellung wie Fig. 3 mit einer Variante der Sekundarströmungs-führung;
Fig. 5
eine zweite Variante der Sekundarströmungs-führung;
Fig. 6
eine dritte Variante der Sekundarströmungs-führung;
Fig. 7
die Ringbrennkammer einer Gasturbine mit eingebauten Wirbel-Generatoren;
Fig. 8
einen teilweisen Längsschnitt durch eine Brennkammer nach Linie 8-8 in Fig. 7
Fig. 9
eine zweite Anordnungsvariante für die Wirbel-Generatoren;
Fig. 10
eine dritte Anordnungsvariante für die Wirbel-Generatoren;
Fig. 11
eine vierte Anordnungsvariante für die Wirbel-Generatoren;
Fig. 12
eine fünfte Anordnungsvariante für die Wirbel-Generatoren;
Fig. 13
eine sechste Anordnungsvariante für die Wirbel-Generatoren;
Fig. 14
eine siebte Anordnungsvariante für die Wirbel-Generatoren in einer Draufsicht;
Fig. 15a-c
eine weitere Brennkammer im Längsschnitt, in einer Draufsicht und in einer Hinteransicht.
Fig. 16
eine weitere Ausführungsvariante des Wirbel-Generators;
Fig. 17
eine Anordnungsvariante des Wirbel-Generators nach Fig 16.
Several exemplary embodiments of the invention are shown schematically in the drawing.
Show it:
Fig. 1
a perspective view of a vortex generator;
Fig. 2
a variant of the arrangement of the vortex generator;
3a-c
the grouped arrangement of vortex generators in a channel in longitudinal section, in a plan view and in a rear view;
4a-c
an embodiment variant of a group arrangement of vortex generators in the same representation as FIG. 3 with a variant of the secondary flow guide;
Fig. 5
a second variant of the secondary flow guide;
Fig. 6
a third variant of the secondary flow guide;
Fig. 7
the ring combustion chamber of a gas turbine with built-in vortex generators;
Fig. 8
7 shows a partial longitudinal section through a combustion chamber according to line 8-8 in FIG. 7
Fig. 9
a second arrangement variant for the vortex generators;
Fig. 10
a third arrangement variant for the vortex generators;
Fig. 11
a fourth arrangement variant for the vortex generators;
Fig. 12
a fifth arrangement variant for the vortex generators;
Fig. 13
a sixth arrangement variant for the vortex generators;
Fig. 14
a seventh arrangement variant for the vortex generators in a plan view;
15a-c
another combustion chamber in longitudinal section, in a plan view and in a rear view.
Fig. 16
a further embodiment of the vortex generator;
Fig. 17
a variant of the arrangement of the vortex generator according to FIG. 16.

Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet. In den verschiedenen Figuren sind die gleichen Elemente jeweils mit den gleichen Bezugszeichen versehen. Erfindungsunwesentliche Elemente wie Gehäuse, Befestigungen, Leitungsdurchführungen und dergleichen sind fortgelassen.The direction of flow of the work equipment is indicated by arrows. In the various figures, the same elements are provided with the same reference symbols. Elements not essential to the invention, such as housings, fastenings, cable bushings and the like, have been omitted.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Bevor auf die eigentliche Brennkammer eingegangen wird, wird zunächst der für die Wirkungswweise der Erfindung wesentliche Wirbel-Generator beschrieben.Before going into the actual combustion chamber, the vortex generator essential for the mode of operation of the invention is first described.

In den Figuren 1, 5 und 6 ist der eigentliche Kanal, der von einer mit grossem Pfeil symbolisierten Hauptströmung durchströmt wird, nicht dargestellt. Gemäss diesen Figuren besteht ein Wirbel-Generator im wesentlichen aus drei frei umströmten dreieckigen Flächen. Es sind dies eine Dachfläche 10 und zwei Seitenflächen 11 und 13. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.FIGS. 1, 5 and 6 do not show the actual channel through which a main flow symbolized by a large arrow flows. According to these figures, a vortex generator essentially consists of three free-flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.

In sämtlichen gezeigten Beispielen stehen die beiden Seitenflächen 11 und 13 senkrecht auf der Kanalwand 21, wobei angemerkt wird, dass dies nicht zwingend ist. Die Seitenwände, welche aus rechtwinkligen Dreiecken bestehen, sind mit ihren Längsseiten auf dieser Kanalwand 21 fixiert, vorzugsweise gasdicht. Sie sind so orientiert, dass sie an ihren Schmalseiten einen Stoss bilden unter Einschluss eines Pfeilwinkels α. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht ebenfalls senkrecht zu jener Kanalwand 21, mit welcher die Seitenflächen bündig sind. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11, 13 sind symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieachse 17 angeordnet (Fig 3b, 4b). Diese Symmetrieachse 17 ist gleichgerichtet wie die Kanalachse.In all of the examples shown, the two side surfaces 11 and 13 are perpendicular to the channel wall 21, it being noted that this is not mandatory. The side walls, which consist of right-angled triangles, are fixed with their long sides on this channel wall 21, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle α. The joint is designed as a sharp connecting edge 16 and is also perpendicular to the channel wall 21 with which the side surfaces are flush. The two side surfaces 11, 13 including the arrow angle α are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17 (FIGS. 3b, 4b). This axis of symmetry 17 is rectified like the channel axis.

Die Dachfläche 10 liegt mit einer quer zum durchströmten Kanal verlaufenden und sehr spitz ausgebildeten Kante 15 an der gleichen Kanalwand 21 an wie die Seitenwände 11, 13.The roof surface 10 lies against the same channel wall 21 as the side walls 11, 13 with an edge 15 which runs across the channel and is very pointed.

Ihre längsgerichteten Kanten 12, 14 sind bündig mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen. Die Dachfläche verläuft unter einem Anstellwinkel Θ zur Kanalwand 21. Ihre Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 eine Spitze 18.Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow channel. The roof surface extends at an angle of inclination Θ to the channel wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.

Selbstverständlich kann der Wirbel-Generator auch mit einer Bodenfläche versehen sein, mit welcher er auf geeignete Art an der Kanalwand 21 befestigt ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Elementes.Of course, the vortex generator can also be provided with a bottom surface with which it is fastened in a suitable manner to the channel wall 21. However, such a floor area is not related to the mode of operation of the element.

In Fig. 1 bildet die Verbindungskante 16 der beiden Seitenflächen 11, 13 die stromabwärtige Kante des Wirbel-Generators. Die quer zum durchströmten Kanal verlaufende Kante 15 der Dachfläche 10 ist somit die von der Kanalströmung zuerst beaufschlagte Kante.In Fig. 1, the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator. The edge 15 of the roof surface 10 which runs transversely to the flow through the channel is thus the edge which is first acted upon by the channel flow.

Die Wirkungsweise des Wirbel-Generators ist folgende: Beim Umströmen der Kanten 12 und 14 wird die Hauptströmung in ein Paar gegenläufiger Wirbel umgewandelt. Deren Wirbelachsen liegen in der Achse der Hauptströmung. Die Drallzahl und der Ort des Wirbelaufplatzens (vortex break down), sofern letzteres überhaupt gewünscht wird, werden bestimmt durch entsprechende Wahl des Anstellwinkels Θ und des Pfeilwinkels α. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel Θ und α durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden müssen dann nur noch die Länge L des Elementes (Fig. 3b) sowie die Höhe h der Verbindungskante 16 (Fig. 3a).The vortex generator works as follows: When flowing around edges 12 and 14, the main flow is converted into a pair of opposing vortices. Their vortex axes lie in the axis of the main flow. The number of swirls and the location of the vortex breakdown (if the latter is desired at all) are determined by appropriate selection of the angle of attack Θ and the arrow angle α. With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex bursting moves upstream into the area of the vortex generator itself. Depending on the application, these two angles Θ and α are predetermined by the structural conditions and by the process itself. Only the length L of the element (FIG. 3b) and the height h of the connecting edge 16 (FIG. 3a) then have to be adjusted.

In den Fig 3a und 4a, in welchen der durchströmte Kanal mit 20 bezeichnet ist, ist erkennbar, dass der Wirbel-Generator unterschiedliche Höhen gegenüber der Kanalhöhe H aufweisen kann. In der Regel wird man die Höhe h der Verbindungskante 16 so mit der Kanalhöhe H abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Kanalhöhe H ausgefüllt wird, was zu einer gleichmässigen Geschwindigkeitsverteilung in dem beaufschlagten Querschnitt führt. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der Druckverlustbeiwert ansteigt.In FIGS. 3a and 4a, in which the channel through which flow is indicated is 20, it can be seen that the vortex generator can have different heights compared to the channel height H. As a rule, the height h of the connecting edge 16 will be coordinated with the channel height H in such a way that the vortex generated immediately downstream of the vortex generator already has such a size that the full channel height H is filled, which results in a uniform velocity distribution in the applied Cross section leads. Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.

Im Gegensatz zu Fig. 1 ist in Fig. 2 die scharfe Verbindungskante 16 jene Stelle, die von der Kanalströmung zuerst beaufschlagt wird. Das Element ist um 180° gedreht. Wie aus der Darstellung erkennbar, haben die beiden gegenläufigen Wirbel ihren Drehsinn geändert.In contrast to FIG. 1, the sharp connecting edge 16 in FIG. 2 is the point which is first acted upon by the channel flow. The element is rotated by 180 °. As can be seen from the illustration, the two opposite vortices have changed their sense of rotation.

In Fig. 3 ist gezeigt, wie über der Breite des durchströmten Kanals 20 mehrere, hier 3 Wirbel-Generatoren ohne Zwischenräume nebeneinanderangeordnet sind. Der Kanal 20 hat in diesem Fall Rechteckform, was jedoch erfindungsunwesentlich ist.In Fig. 3 it is shown how several, here 3 vortex generators are arranged side by side without gaps across the width of the flow channel 20. The channel 20 has a rectangular shape in this case, but this is not essential to the invention.

Eine Ausführungsvariante mit 2 vollen und beidseitig daran angrenzenden 2 halben Wirbel-Generatoren ist in Fig. 4 gezeigt. Bei gleicher Kanalhöhe H und gleichem Anstellwinkel Θ der Dachfläche 10 wie in Fig. 3 unterscheiden sich die Elemente insbesondere durch ihre grössere Höhe h. Bei gleichbleibendem Anstellwinkel führt dies zwangsläufig zu einer grösseren Länge L des Elementes und demzufolge auch - wegen der gleichen Teilung - zu einem kleineren Pfeilwinkel α. Im Vergleich mit Fig. 3 werden die erzeugten Wirbel eine geringere Drallstärke aufweisen, jedoch innert kürzerem Intervall den Kanalquerschnitt voll ausfüllen. Falls in beiden Fällen ein Wirbelaufplatzen beabsichtigt ist, beispielsweise zum Stabilisieren der Strömung, wird dies beim Wirbel-Generator nach Fig. 4 später erfolgen als bei jenem nach Fig. 3.An embodiment variant with two full and two half vortex generators adjoining it on both sides is shown in FIG. 4. With the same duct height H and the same angle of attack Θ of the roof surface 10 as in FIG. 3, the elements differ in particular by their greater height h. If the angle of attack remains the same, this inevitably leads to a greater length L of the element and consequently - because of the same division - to a smaller arrow angle α. In comparison with FIG. 3, the vortices generated will have a lower swirl strength, but will fill the channel cross section completely within a shorter interval. If in In both cases a vortex burst is intended, for example to stabilize the flow, this will take place later in the vortex generator according to FIG. 4 than in that according to FIG. 3.

Die in den Fig. 3 und 4 dargestellten Kanäle stellen rechteckige Brennkammern dar. Es wird noch einmal darauf hingewiesen, dass die Form des durchströmten Kanals für die Wirkungsweise der Erfindung nicht wesentlich ist. Statt des gezeigten Rechtecks könnte es sich beim Kanal auch um ein Ringsegment handeln, d.h. die Wände 21a und 21b wären gekrümmt. Die obige Aussage, dass die Seitenflächen senkrecht auf der Kanalwand stehen, muss in einem solchen Fall selbstverständlich relativiert werden. Massgebend ist, dass die auf der Symmetrielinie 17 liegende Verbindungskante 16 senkrecht auf der entsprechenden Wand steht. Im Fall von ringförmigen Wänden würde die Verbindungskante 16 somit radial ausgerichtet sein, wie dies in Fig. 7 dargestellt ist.The channels shown in FIGS. 3 and 4 represent rectangular combustion chambers. It is pointed out once again that the shape of the channel through which the flow passes is not essential for the mode of operation of the invention. Instead of the rectangle shown, the channel could also be a ring segment, i.e. the walls 21a and 21b would be curved. In such a case, the above statement that the side surfaces are perpendicular to the channel wall must of course be relativized. It is important that the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be aligned radially, as is shown in FIG. 7.

Die Figuren 7 und 8 zeigen vereinfacht eine Brennkammer mit ringförmig durchströmtem Kanal 20. An beiden Kanalwänden 21a und 21b ist jeweils eine gleiche Anzahl von Wirbel-Generatoren im Umfangsrichtung so aneinandergereiht, dass die Verbindungskanten 16 von zwei gegenüberliegenden Wirbel-Generatoren in der gleichen Radialen liegen. Werden gleiche Höhen h für gegenüberliegende Wirbel-Generatoren vorausgesetzt, so zeigt Fig. 7, dass die Wirbel-Generatoren am inneren Kanalring 21b eine kleinere Pfeilung α haben. Im Längsschnitt in Fig. 8 ist erkennbar, dass dies durch einen grösseren Anstellwinkel Θ kompensiert werden könnte, wenn drallgleiche Wirbel im inneren und äusserern Ringquerschnitt erwünscht sind. Bei dieser Lösung werden, wie in Fig. 7 angedeutet, zwei Wirbelpaare mit jeweils kleineren Wirbeln erzeugt, was zu einer kürzeren Mischlänge führt. Der Brennstoff könnte bei dieser Ausführung nach den Methoden der später zu beschreibenden Fig. 5 oder 6 in die Hauptströmung eingeführt werden.FIGS. 7 and 8 show in simplified form a combustion chamber with an annular flow through channel 20. On both channel walls 21a and 21b, an equal number of vortex generators are lined up in the circumferential direction in such a way that the connecting edges 16 of two opposite vortex generators lie in the same radial . If the same heights h are assumed for opposite vortex generators, FIG. 7 shows that the vortex generators on the inner channel ring 21b have a smaller arrow α. In the longitudinal section in FIG. 8 it can be seen that this could be compensated for by a larger angle of attack Θ if swirl-like vortices in the inner and outer ring cross-section are desired. In this solution, as indicated in FIG. 7, two vortex pairs are generated, each with smaller vertebrae, which leads to a shorter mixing length. The fuel could be in this version according to the methods of 5 or 6 to be described later are introduced into the main flow.

In den bereits beschriebenen Fig. 3 und 4 werden mit Hilfe der Wirbel-Generatoren 9 zwei Strömungen miteinander gemischt. Die Hauptströmung in Form von Brennluft - oder Brenngas, je nach Brennkammertyp - attackiert in Pfeilrichtung die quergerichteten Eintrittskanten 15. Die Sekundärströmung in Form eines beispielsweise flüssigen Brennstoffs weist einen wesentlich kleineren Massenstrom auf als die Hauptströmung. Sie wird im unmittelbaren Bereich der Wirbel-Generatoren senkrecht in die Hauptströmung eingeleitet.3 and 4, two flows are mixed with one another with the help of the vortex generators 9. The main flow in the form of combustion air - or fuel gas, depending on the type of combustion chamber - attacks the transverse inlet edges 15 in the direction of the arrow. The secondary flow in the form of a liquid fuel, for example, has a substantially smaller mass flow than the main flow. It is introduced vertically into the main flow in the immediate area of the vortex generators.

Gemäss Fig. 3 geschieht diese Eindüsung über Einzelbohrungen 22a, die in der Wand 21a angebracht sind. Bei der Wand 21a handelt es sich um jene Wandung, an der die Wirbel-Generatoren angeordnet sind. Die Bohrungen 22a befinden sich auf der Symmetrielinie 17 stromabwärts hinter der Verbindungskante 16 jedes Wirbel-Generators. Bei dieser Konfiguration wird der Brennstoff in die bereits bestehenden gross-skaligen Wirbel eingegeben.3, this injection takes place via individual bores 22a, which are made in the wall 21a. The wall 21a is the wall on which the vortex generators are arranged. The bores 22a are located on the line of symmetry 17 downstream behind the connecting edge 16 of each vortex generator. With this configuration, the fuel is fed into the already existing large-scale vortices.

Die Fig. 4 zeigt eine Ausführungsvariante einer Brennkammer, bei der die Sekundärströmung ebenfalls über Wandbohrungen 22b eingedüst wird. Diese befinden sich stromabwärts der Wirbel-Generatoren in jener Wand 21b, an der die Wirbel-Generatoren nicht angeordnet sind, also an der der Wand 21a gegenüberliegenden Wand. Die Wandbohrungen 22b sind jeweils mittig zwischen den Verbindungskanten 16 zweier benachbarter Wirbel-Generatoren angebracht, wie aus Fig. 4 ersichtlich. Auf diese Weise gelangt der Brennstoff auf die gleiche Art in die Wirbel wie bei der Ausführung nach Fig. 3. Allerdings mit dem Unterschied, dass er nicht mehr in die Wirbel eines von einem gleichen Wirbel-Generator erzeugten Wirbelpaares eingemischt wird, sondern in je einen Wirbel zweier benachbarter Wirbel-Generatoren. Da die benachbarten Wirbel-Generatoren indes ohne Zwischenraum angeordnet sind und Wirbelpaare mit gleichen Drehsinn erzeugen, sind die Eindüsungen nach den Fig. 3 und 4 wirkungsgleich.4 shows an embodiment variant of a combustion chamber in which the secondary flow is also injected via wall bores 22b. These are located downstream of the vortex generators in that wall 21b on which the vortex generators are not arranged, that is to say on the wall opposite the wall 21a. The wall bores 22b are each made centrally between the connecting edges 16 of two adjacent vortex generators, as can be seen in FIG. 4. In this way, the fuel reaches the vortex in the same way as in the embodiment according to FIG. 3, but with the difference that it is no longer mixed into the vortex of a pair of vertebrae produced by the same vortex generator, but in one each Vortex of two neighboring vortex generators. Because the neighboring vortex generators Meanwhile, are arranged without a space and produce vortex pairs with the same direction of rotation, the injections according to FIGS. 3 and 4 have the same effect.

Die Figuren 5 und 6 zeigen weitere mögliche Formen der Einführung der Sekundärströmung in die Hauptströmung. Die Sekundärströmung wird hier über nicht gezeigte Mittel durch die Kanalwand 21 ins hohle Innere des Wirbel-Generators eingeleitet.FIGS. 5 and 6 show further possible forms of introducing the secondary flow into the main flow. The secondary flow is introduced here through means not shown through the channel wall 21 into the hollow interior of the vortex generator.

Gemäss Fig. 5 wird die Sekundärströmung über eine Wandbohrung 22e in die Hauptströmung eingedüst, wobei die Bohrung im Bereich der Spitze 18 des Wirbel-Generators angeordnet ist.5, the secondary flow is injected into the main flow via a wall bore 22e, the bore being arranged in the region of the tip 18 of the vortex generator.

In Fig. 6 geschieht die Eindüsung über Wandbohrungen 22d, die sich in den Seitenflächen 11 und 13 einerseits im Bereich der Längskanten 12 und 14 und andererseits im Bereich der Verbindungskante 16 befinden.6, the injection takes place via wall bores 22d, which are located in the side surfaces 11 and 13 on the one hand in the region of the longitudinal edges 12 and 14 and on the other hand in the region of the connecting edge 16.

In den Figuren 9 bis 14 sind schliesslich unterschiedliche Einbaumöglichkeiten der Wirbel-Generatoren gezeigt.Finally, FIGS. 9 to 14 show different installation options for the vortex generators.

Die Teilansicht in Fig. 9 zeigt wie Fig. 7 einen ringförmigen Kanal 20, bei dem sowohl an der äussseren Ringwand 21a als auch an der inneren Ringwand 21b eine gleiche Anzahl von Wirbel-Generatoren 9 im Umfangsrichtung aneinandergereiht sind. In Abweichung zu Fig. 7 sind hier jedoch die Verbindungskanten 16 von je zwei gegenüberliegenden Wirbel-Generatoren um eine halbe Teilung gegeneinander versetzt sind. Diese Anordnung bietet die Möglichkeit, die Höhe h des einzelnen Elementes zu vergrössern. Stromabwärts der Wirbel-Generatoren werden die erzeugten Wirbel miteinander kombiniert, was zum einen die Mischqualität noch verbessert und zum anderen zu einer grösseren Lebensdauer des Wirbels führt.Like FIG. 7, the partial view in FIG. 9 shows an annular channel 20 in which an equal number of vortex generators 9 are lined up in the circumferential direction both on the outer ring wall 21a and on the inner ring wall 21b. 7, however, the connecting edges 16 of two opposite vortex generators are offset by half a division. This arrangement offers the possibility of increasing the height h of the individual element. Downstream of the vortex generators, the generated vortexes are combined with one another, which on the one hand improves the mixing quality and on the other hand leads to a longer lifespan of the vortex.

In der Teilansicht nach Fig. 10 ist der Ringkanal mittels radial verlaufender Rippen 23 segmentiert. In den derart gebildeten Kreisringsegmenten ist je ein Wirbel-Generator 9 an den Rippen 23 angeordnet. Im gezeigten Fall sind die beiden Wirbel-Generatoren so ausgelegt, dass sie die ganze Kanalhöhe ausfüllen. Diese Lösung vereinfacht die Brennstoffzufuhr, welche durch die hohl gestalteten Rippen vorgenommen werden kann. Eine Beeinträchtigung der Strömung durch zentral angeordnete Brennstofflanzen entfällt damit.In the partial view according to FIG. 10, the ring channel is segmented by means of radially extending ribs 23. A vortex generator 9 is arranged on the ribs 23 in each of the circular ring segments formed in this way. In the case shown, the two vortex generators are designed to fill the entire channel height. This solution simplifies the fuel supply that can be made through the hollow ribs. This means that there is no impairment of the flow by centrally arranged fuel lances.

In der Teilansicht nach Fig. 11 sind zusätzlich zu den seitlichen Wirbel-Generatoren wie bei Fig. 10 auch noch Wirbelerzeuger an den Ringwänden 21a und 21b angebracht. Die Verbindungskanten der seitlichen Elemente verlaufen auf halber Kanalhöhe, jene der oberen und unteren in einer Radialen auf halber Segmentbreite. Von der Wirkungsweise her ist dies eine sehr gute Lösung. Im Gegensatz zur Variante nach Fig. 10 können hier die Elemente die ganze Kanalhöhe nicht ausfüllen. Es ist deshalb nicht zu verkennen, dass die gegebenenfalls erforderliche Kühlung konstruktiv aufwendig ist, da für die seitlichen Elemente eine Kühluftzufuhr aus den Ringwänden nicht ohne weiteres möglich ist.11, in addition to the lateral vortex generators as in FIG. 10, vortex generators are also attached to the ring walls 21a and 21b. The connecting edges of the side elements run at half the channel height, those of the upper and lower in a radial at half the segment width. In terms of how it works, this is a very good solution. In contrast to the variant according to FIG. 10, the elements here cannot fill the entire channel height. It is therefore not to be overlooked that the cooling that may be required is structurally complex, since cooling air supply from the ring walls is not readily possible for the lateral elements.

Um dem abzuhelfen, sind in Abweichung zu Fig. 11 die Wirbel-Generatoren 9 in Fig. 12 an den radialen Rippen 23 und an den Ringwänden 21a, 21b aussermittig angeordnet. Dabei liegt jeweils eine Seitenfläche jedes Wirbel-Generators an einer Ecke des Kreisringsegmentes an, von wo aus auch die seitlichen Wirbel-Generatoren mit Kühlluft einerseits aus der radial äusseren Ringwand 21a, andererseits aus der inneren Ringwand 21b versorgt werden können.In order to remedy this, in contrast to FIG. 11, the vortex generators 9 in FIG. 12 are arranged off-center on the radial ribs 23 and on the ring walls 21a, 21b. One side surface of each vortex generator lies against a corner of the circular ring segment, from where the lateral vortex generators can also be supplied with cooling air from the radially outer ring wall 21a, on the one hand, and from the inner ring wall 21b, on the other hand.

Ebenfalls hinsichlich einer einfachen Kühlmöglichkeit sind einer noch anderen Ausführung gemäss Fig. 13 sind in jedem Segment des Kreisringkanals die Wirbel-Generatoren 9 direkt in den Segmentecken angeordnet.Another embodiment according to FIG. 13 is also in respect of a simple cooling possibility Segment of the circular channel, the vortex generators 9 are arranged directly in the segment corners.

In der Draufsicht nach Fig. 14 ist die Möglichkeit erkennbar, die Wirbel-Generatoren nicht in einer gleichen Ebene unterzubringen. Von den an einer Kanalwand mit ihren Seitenwänden aneinandergereihten Wirbel-Generatoren sind je zwei benachbarte Elemene in Längsrichtung des Kanals 20 gegeneinander versetzt sind. Bei dieser Variante findet eine Wirbelüberlappung in Umfangsrichtung statt. Es handelt sich um eine Massnahme, die zur Optimierung der Kombination von Wirbelpaaren geeignet ist. Für die hintereinandergeschalteten Wirbel-Generatoren können unterschiedliche Geometrien gewählt werden. Die Anordnung in verschiedenen Ebenen des Kanals wirkt sich überdies günstig aus gegen das Anfachen von akustischen Schwingungen.14 shows the possibility of not accommodating the vortex generators in the same plane. Of the vortex generators strung together on a channel wall with their side walls, two adjacent elements are offset from one another in the longitudinal direction of the channel 20. In this variant, a vortex overlap takes place in the circumferential direction. It is a measure that is suitable for optimizing the combination of vertebral pairs. Different geometries can be selected for the vortex generators connected in series. The arrangement in different levels of the channel also has a favorable effect against the ignition of acoustic vibrations.

In den Fig. 15a-c ist in einer gemischten Anordnung der zu den Fig. 6, 11 und 14 behandelten Varianten eine zusätzliche zentrale Einführung der Sekundärströmung gezeigt. Der Brennstoff, in der Regel Öl wird über eine zentrale Brennstofflanze 24 eingedüst, deren Mündung sich stromabwärts der Wirbel-Generatoren 9 im Bereich deren Spitze 18 befinden. Beim rechteckigen Kanal, der selbstverständlich genau so gut ein Kreisringsegment sein könnte, sind einerseits Wirbel-Generatoren unterschiedlicher Geometrie verwendet. Desweiteren sind die in "Umfangsrichtung" aufeinanderfolgenden Wirbel-Generatoren leicht gegeneinander versetzt. Dies, um beispielsweise den erforderlichen Platz für die Lanze zu schaffen. Schliesslich geschieht die teilweise Eindüsung der Sekundärströmung über Wandbohrungen in den Seitenflächen der Wirbel-Generatoren, wie dies durch Pfeile angedeutet ist. Die Gaszufuhr geschieht über längs der Wandung verlaufende Gasleitungen 25. Mit der gezeigten Konfiguration würde sich eine solche Brennkammer gut für den Dual-Betrieb mit Vormischverbrennung eignen. Bei einem Druckabfallkoffizienten von 3 wird eine gute Durchmischung bereits nach ca. 3 Kanalhöhen erreicht. Die Zündung 26 des Gemischs erfolgt an der Stelle, an der der Wirbel aufplatzt (vortex break down). Zur zusätzlichen Flammenstabilisierung ist in der Ebene hinter der Mischzone, an der die Zündung erfolgt, ein Diffusor 27 angeordnet. Die infolge der Mischelemente erzielte gute Temperaturverteilung stromabwärts der Wirbel-Generatoren vermeidet die Gefahr von Rückzündungen, die ohne die Massnahme bei dem eingangs erwähnten Einleiten von Kühlluft in die Verbrennungsluft möglich sind.15a-c show an additional central introduction of the secondary flow in a mixed arrangement of the variants dealt with in FIGS. 6, 11 and 14. The fuel, usually oil, is injected via a central fuel lance 24, the mouth of which is located downstream of the vortex generators 9 in the area of the tip 18 thereof. On the one hand, vortex generators of different geometries are used in the rectangular channel, which of course could just as well be a circular ring segment. Furthermore, the vortex generators that follow one another in the “circumferential direction” are slightly offset from one another. This, for example, to create the required space for the lance. Finally, the secondary flow is partially injected via wall holes in the side surfaces of the vortex generators, as indicated by arrows. The gas supply takes place via gas lines 25 running along the wall. With the configuration shown, such a combustion chamber would be good for dual operation with premix combustion own. With a pressure drop coefficient of 3, thorough mixing is achieved after only 3 duct heights. The mixture is ignited 26 at the point at which the vortex bursts (vortex break down). For additional flame stabilization, a diffuser 27 is arranged in the plane behind the mixing zone at which the ignition takes place. The good temperature distribution downstream of the vortex generators achieved as a result of the mixing elements avoids the risk of reignition, which is possible without the measure for introducing cooling air into the combustion air mentioned at the beginning.

Bei der soeben geschilderten Brennkammer könnte es sich desweiteren um eine selbstzündende Nachbrennkammer stromabwärts einer Hochtemperatur-Gasturbine handeln. Der hohe Energieinhalt deren Abgase ermöglicht die Selbstzündung. Voraussetzung für eine Optimierung des Verbrennungsprozesses, insbesondere hinsichtlich einer Minimierung der Emissionen, ist ein effektives, schnelles Mischen der Heissgasströmung mit dem eingedüsten Brennstoff.The combustion chamber just described could also be a self-igniting post-combustion chamber downstream of a high-temperature gas turbine. The high energy content of their exhaust gases enables self-ignition. Effective, rapid mixing of the hot gas flow with the injected fuel is a prerequisite for optimizing the combustion process, particularly with regard to minimizing emissions.

Wird eine Wirbel-Generator-Konfiguration gemäss Fig. 15a-c mit zentraler Eindüsung des Brennstoffs über eine Lanze zugrundegelegt, so werden die Wirbel-Generatoren so ausgelegt, dass Rezirkulationszonen grösstenteils vermieden werden. Dadurch ist die Verweilzeit der Brennstoffpartikel in den heissen Zonen sehr kurz, was sich günstig auf mimimale Bildung von NOx auswirkt. Der eingedüste Brennstoff wird von den Wirbeln mitgeschleppt und mit der Hauptströmung vermischt. Er folgt dem schraubenförmigen Verlauf der Wirbel und wird stromabwärts der Wirbel in der Kammer gleichmässig feinverteilt. Dadurch reduziert sich die - bei der eingangs erwähnten radialen Eindüsung von Brennstoff in eine unverwirbelte Strömung - Gefahr von Aufprallstrahlen an der gegenüberliegenden Wand und die Bildung von sogenannten "hot spots".If a vortex generator configuration according to FIGS. 15a-c with central injection of the fuel via a lance is used as a basis, the vortex generators are designed in such a way that recirculation zones are largely avoided. As a result, the residence time of the fuel particles in the hot zones is very short, which has a favorable effect on the minimal formation of NO x . The injected fuel is dragged along by the vortices and mixed with the main flow. It follows the helical course of the vertebrae and is evenly finely distributed in the chamber downstream of the vertebrae. This reduces the risk of impinging jets on the opposite wall and the formation of so-called "hot spots" - in the case of the radial injection of fuel into an undisturbed flow mentioned above.

Da der hauptsächliche Mischprozess in den Wirbeln erfolgt und weitgehend unempfindlich gegen den Eindüsungsimpuls der Sekundärströmung ist, kann die Brennstoffeinspritzung flexibel gehalten werden und an andere Grenzbedingungen angepasst werden. So kann im ganzen Lastbereich der gleiche Eindüsungsimpuls beibehalten werden. Da das Mischen durch die Geometrie der Wirbel-Generatoren bestimmt wird, und nicht durch die Maschinenlast, im Beispielsfall die Gasturbinenleistung, arbeitet der so konfigurierte Nachbrenner auch bei Teillastbedingungen optimal. Der Verbrennungsprozess wird durch Anpassen der Zündverzugszeit des Brennstoffs und Mischzeit der Wirbel optimiert, was eine Minimierung der Emissionen gewährleistet.Since the main mixing process takes place in the vortices and is largely insensitive to the injection pulse of the secondary flow, the fuel injection can be kept flexible and adapted to other boundary conditions. In this way, the same injection pulse can be maintained throughout the load range. Since the mixing is determined by the geometry of the vortex generators and not by the machine load, in the example the gas turbine output, the afterburner configured in this way works optimally even under partial load conditions. The combustion process is optimized by adjusting the ignition delay time of the fuel and mixing time of the vortices, which ensures a minimization of emissions.

Desweiteren bewirkt das wirkungsvolle Vermischen ein gutes Temperaturprofil über dem durchströmten Querschnitt und reduziert überdies die Möglichkeit des Auftretens von thermoakustischer Instabilität. Allein durch ihre Anwesenheit wirken die Wirbel-Generatoren als Dämpfungsmassnahme gegen thermoakustische Schwingungen.Furthermore, the effective mixing results in a good temperature profile over the cross section through which the flow is flowing and also reduces the possibility of the occurrence of thermoacoustic instability. Due to their presence alone, the vortex generators act as a damping measure against thermoacoustic vibrations.

Die Figuren 16 und 17 zeigen in einer Draufsicht eine Ausführungsvariante des Wirbel-Generators und in einer Vorderansicht seine Anordnung in einem kreisförmigen Kanal. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11 und 13 weisen eine unterschiedliche Länge auf. Dies bedeutet, dass die Dachfläche 10 mit einer schräg zum durchströmten Kanal verlaufenden Kante 15a an der gleichen Kanalwand anliegt wie die Seitenwände. Über seiner Breite weist der Wirbel-Generator dann selbstverständlich einen unterschiedlichen Anstellwinkel Θ auf. Eine derartige Variante hat die Wirkung, dass Wirbel mit unterschiedlicher Stärke erzeugt werden. Beispielsweise kann damit auf einen der Hauptströmung anhaftenden Drall eingewirkt werden. Oder aber durch die unterschiedlichen Wirbel wird der ursprünglich drallfreien Hauptströmung stromabwärts der Wirbel-Generatoren ein Drall aufgezwungen, wie dies in Fig. 17 angedeutet ist. Eine derartige Konfiguration eignet sich gut als eigenständige, kompakte Brennereinheit. Bei der Verwendung von mehreren solcher Einheiten, beispielsweise in einer Gasturbinen-Ringbrennkammmer, kann der der Hauptströmung aufgezwungene Drall ausgenutzt werden, um das Querzündverhalten der Brennerkonfiguration, z.B. bei Teillast, zu verbesern.FIGS. 16 and 17 show a top view of an embodiment variant of the vortex generator and a front view of its arrangement in a circular channel. The two side surfaces 11 and 13 enclosing the arrow angle α have a different length. This means that the roof surface 10 rests with an edge 15a running obliquely to the flow through the channel on the same channel wall as the side walls. The vortex generator then naturally has a different angle of attack stell across its width. Such a variant has the effect that vortices with different strengths are generated. For example, this can act on a swirl adhering to the main flow. Or else through the different eddies it becomes original a swirl-free main flow downstream of the vortex generators, as indicated in FIG. 17. Such a configuration works well as an independent, compact burner unit. When using several such units, for example in a gas turbine ring combustor, the swirl imposed on the main flow can be used to improve the cross-ignition behavior of the burner configuration, for example at partial load.

Selbstverständlich ist die Erfindung nicht auf die beschriebenen und gezeigten Beispiele beschränkt. Bezüglich der Anordnung der Wirbel-Generatoren im Verbund sind viele Kombinationen möglich, ohne den Rahmen der Erfindung zu verlassen. Auch die Einführung der Sekundärströmung in die Hauptströmung kann auf vielfältige Weise vorgenommen werden.Of course, the invention is not limited to the examples described and shown. With regard to the arrangement of the vortex generators in the network, many combinations are possible without leaving the scope of the invention. The introduction of the secondary flow into the main flow can also be carried out in a variety of ways.

BezugszeichenlisteReference list

99
Wirbel-GeneratorVortex generator
1010th
DachflächeRoof area
1111
SeitenflächeSide surface
1212th
LängskanteLong edge
1313
SeitenflächeSide surface
1414
LängskanteLong edge
1515
quer verlaufenden Kante von 10transverse edge of 10
1616
VerbindungskanteConnecting edge
1717th
SymmetrielinieLine of symmetry
1818th
Spitzetop
20, a20, a
Kanalchannel
21, a,b21, a, b
KanalwandCanal wall
22, a,b,c,d22, a, b, c, d
WandbohrungWall hole
2323
Ripperib
2424th
BrennstofflanzeFuel lance
2525th
GasleitungGas pipe
2626
FremdzündungSpark ignition
2727
DiffusorDiffuser
ΘΘ
AnstellwinkelAngle of attack
αα
PfeilwinkelArrow angle
hH
Höhe von 16Height of 16
HH
KanalhöheChannel height
LL
Länge des Wirbel-GeneratorsLength of the vortex generator

Claims (20)

  1. Combustion chamber, in which a gaseous or liquid fuel is injected as a secondary flow into a gaseous, channellized main flow, the secondary flow having a considerably lower mass flow rate than the main flow,
    - and in which the main flow is passed via vortex generators (9), a plurality of which are arranged side by side over the width or circumference of the channel (20) through which the flow passes, preferably without any interspaces, and whose height is at least 50 % of the height of the channel through which the flow passes or of that part of the channel associated with the vortex of generator [sic],
    - and in which the secondary flow is introduced into the channel (20) in the immediate vicinity of the vortex generators (9),
    characterized in that one vortex generator (9) has three surfaces around which the flow passes freely and which extend in the flow direction, one of which forms the top surface (10) and the two others form the side surfaces (11, 13), and in that the side surfaces (11, 13) are flush with an identical channel wall (21) and enclose the sweepback angle (α) between them.
  2. Combustion chamber according to Claim 1, characterized in that
    - the top surface (10) has an edge (15) which rests against the same channel wall (21) as the side walls and runs transversely with respect to the channel (20) through which the flow passes,
    - and in that the longitudinally directed edges (12, 14) of the top surface, which are flush with those longitudinally directed edges of the side surfaces (11, 13) which project into the flow channel, run at an incidence angle (θ) to the channel wall (21).
  3. Combustion chamber according to Claim 2, characterized in that the two side surfaces (11, 13) of the vortex generator (9) which enclose the sweepback angle (α) are arranged symmetrically around an axis of symmetry (17).
  4. Combustion chamber according to Claim 2, characterized in that the two side surfaces (11, 13) of the vortex generator (9) which enclose the sweepback angle (α) have a different length, so that the top surface (10) has an edge (15) which rests against the same channel wall (21) as the side walls and runs obliquely with respect to the channel (20) through which the flow passes, and said top surface (10) has a different incidence angle (θ) over the width of the vortex generator (9). (Figs. 16, 17)
  5. Combustion chamber according to Claim 3, characterized in that the two side surfaces (11, 13) which enclose the sweepback angle (α) embrace a connecting edge (16) with one another which, together with the longitudinally directed edges (12, 14) of the top surface (10), form a tip (18), and in that the connecting edge preferably runs at right angles to that channel wall (21) with which the side surfaces (11, 13) are flush.
  6. Combustion chamber according to Claim 3, characterized in that the connecting edge (16) and/or the longitudinally directed edges (12, 14) of the top surface (10) are constructed to be at least approximately sharp.
  7. Combustion chamber according to Claim 3 and 5, characterized in that the axis of symmetry (17) of the vortex generator (9) runs parallel to the channel axis, the connecting edge (16) of the two side surfaces (11, 13) forming the downstream edge of the vortex generator (9) and that edge (15) of the top surface (10) which runs transversely with respect to the channel (20) through which the flow passes being the edge on which the main flow acts first.
  8. Combustion chamber according to Claim 2, characterized in that the channel is annular, in that channel wall on which a plurality of vortex generators (9) are arranged in a row in the circumferential direction is the inner or outer annular wall (21a, 21b), and in that the secondary flow is injected via wall holes (22a) of which in each case one is located on the line of symmetry (17), directly downstream behind the connecting edge (16), in the same annular wall (21a, 21b) on which the vortex generators (9) are arranged. (Fig. 3)
  9. Combustion chamber according to Claim 2, characterized in that the channel (20) is annular, in that channel wall on which a plurality of vortex generators are arranged in a row in the circumferential direction is the inner and/or outer annular wall (21a, 21b), and in that the secondary flow is injected via wall holes (22b) which are arranged downstream of the vortex generators in that annular wall (21b, 21a) on which the vortex generators (9) are not arranged, the wall holes (22b) in each case being incorporated centrally between the connecting edges (16) of two adjacent vortex generators. (Fig. 4)
  10. Combustion chamber according to Claim 2, characterized in that the channel (20) is annular and in that an identical number of vortex generators (9) are arranged in a row in the circumferential direction both on the outer annular wall (21a) and on the inner annular wall (21b), the connecting edges (16) of in each case two opposite vortex generators (9) lying on the same radial. (Fig. 7)
  11. Combustion chamber according to Claim 2, characterized in that the channel (20) is annular and in that an identical number of vortex generators (9) are arranged in a row in the circumferential direction both on the outer annular wall (21a) and on the inner annular wall (21b), the connecting edges (16) of in each case two opposite vortex generators (9) being offset by half the spacing with respect to one another. (Fig. 9)
  12. Combustion chamber according to Claim 2, characterized in that the channel (20) is a circular-ring channel, which is segmented by means of radial ribs (23), at least in the plane in which the vortex generators (9) are located, in each case one vortex generator (9) being arranged on the radial ribs (23) and/or on the annular walls (21a, 21b) in one circular-ring segment. (Figs. 10, 11)
  13. Combustion chamber according to Claim 12, characterized in that the vortex generators (9) are arranged centrally on the radial ribs (23) and on the annular walls (21a, 21b). (Fig. 11)
  14. Combustion chamber according to Claim 12, characterized in that the vortex generators (9) are arranged eccentrically on the radial ribs (23) and on the annular walls (21a, 21b), one side surface (11, 13) of each vortex generator (9) in each case resting against a corner of the circular-ring segment. (Fig. 12)
  15. Combustion chamber according to Claim 2, characterized in that the channel (20) is a circular-ring channel, which is segmented by means of radial ribs (23), at least in the plane in which the vortex generators (9) are located, one vortex generator (9) in each case being arranged in the corners in one circular-ring segment. (Fig. 13)
  16. Combustion chamber according to Claim 2, characterized in that, of the vortex generators (9) which are arranged in a row with their side walls against a channel wall, two adjacent vortex generators (9) are in each case offset with respect to one another in the longitudinal direction of the channel (20). (Fig. 14)
  17. Combustion chamber according to Claim 5, characterized in that the secondary flow is injected via wall holes (22c, 22d) which are located in the side walls (11, 13) of the vortex generator (9) in the region of the longitudinally directed edges (12, 14) of the top surface and/or of the connecting edge (16). (Fig. 6)
  18. Combustion chamber according to Claim 2, characterized in that the secondary flow is injected via wall holes (22e) which are located in the region of the tip (18) of the vortex generator (9). (Fig. 5)
  19. Combustion chamber according to Claim 2, characterized in that the secondary flow is injected via fuel lances (24) whose mouths are located downstream of the vortex generator (9), in the region of its tip (18). (Fig. 15)
  20. Combustion chamber according to Claim 2, characterized in that said combustion chamber is a combustion chamber with premixing combustion, a diffusor (27) being arranged in the plane on which the external ignition (26) is effected, for flame stabilization downstream of the vortex generators (9). (Fig. 15)
EP94103551A 1993-04-08 1994-03-09 Combustion chamber Expired - Lifetime EP0623786B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1078/93 1993-04-08
CH107893 1993-04-08

Publications (2)

Publication Number Publication Date
EP0623786A1 EP0623786A1 (en) 1994-11-09
EP0623786B1 true EP0623786B1 (en) 1997-05-21

Family

ID=4201952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103551A Expired - Lifetime EP0623786B1 (en) 1993-04-08 1994-03-09 Combustion chamber

Country Status (4)

Country Link
US (1) US5513982A (en)
EP (1) EP0623786B1 (en)
JP (1) JP3527280B2 (en)
DE (1) DE59402803D1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH687832A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Fuel supply for combustion.
DE4411622A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
DE4446541A1 (en) * 1994-12-24 1996-06-27 Abb Management Ag Combustion chamber
GB2297151B (en) * 1995-01-13 1998-04-22 Europ Gas Turbines Ltd Fuel injector arrangement for gas-or liquid-fuelled turbine
DE19510744A1 (en) * 1995-03-24 1996-09-26 Abb Management Ag Combustion chamber with two-stage combustion
DE19520291A1 (en) * 1995-06-02 1996-12-05 Abb Management Ag Combustion chamber
DE19527452A1 (en) * 1995-07-27 1997-01-30 Abb Management Ag Multi-stage steam turbine with compact secondary steam injectors - has injectors shaped to generate vortices in space between high- and medium-pressure regions of stator for efficient thermal control
DE19536672A1 (en) * 1995-09-30 1997-04-03 Abb Research Ltd Method for burning fuel in main stream of combustion air
DE19544816A1 (en) * 1995-12-01 1997-06-05 Abb Research Ltd Mixing device
DE59704739D1 (en) * 1996-12-20 2001-10-31 Siemens Ag BURNER FOR FLUIDIC FUELS
EP0924462A1 (en) 1997-12-15 1999-06-23 Asea Brown Boveri AG Burner for operating a heat exchanger
DE19757189B4 (en) * 1997-12-22 2008-05-08 Alstom Method for operating a burner of a heat generator
DE19820992C2 (en) * 1998-05-11 2003-01-09 Bbp Environment Gmbh Device for mixing a gas stream flowing through a channel and method using the device
EP1048898B1 (en) * 1998-11-18 2004-01-14 ALSTOM (Switzerland) Ltd Burner
DE10128063A1 (en) 2001-06-09 2003-01-23 Alstom Switzerland Ltd burner system
DE10330023A1 (en) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Vortex generator used in the swirling and mixing of fuel/air mixtures in pre-mixing combustion chambers comprises an outlet opening for targeted introduction of a secondary flow into the core flow of the wake produced
GB0219461D0 (en) * 2002-08-21 2002-09-25 Rolls Royce Plc Fuel injection arrangement
DE10250208A1 (en) * 2002-10-28 2004-06-03 Rolls-Royce Deutschland Ltd & Co Kg Assembly to stabilise flame development in a lean-burn gas turbine engine uses concentric array of turbolators downstream from turbine vanes
US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
US7407381B2 (en) * 2003-10-21 2008-08-05 Pac, Lp Combustion apparatus and methods for making and using same
WO2007067085A1 (en) * 2005-12-06 2007-06-14 Siemens Aktiengesellschaft Method and apparatus for combustion of a fuel
US7637720B1 (en) 2006-11-16 2009-12-29 Florida Turbine Technologies, Inc. Turbulator for a turbine airfoil cooling passage
DE102007014226B4 (en) * 2007-03-24 2014-02-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for homogenizing an inlet flow into a fan-shaped inlet with a flat inlet cross-section
EP2116766B1 (en) 2008-05-09 2016-01-27 Alstom Technology Ltd Burner with fuel lance
AT506577B1 (en) * 2008-06-26 2009-10-15 Gruber & Co Group Gmbh STATIC MIXING DEVICE
EP2199674B1 (en) 2008-12-19 2012-11-21 Alstom Technology Ltd Burner of a gas turbine having a special lance configuration
EP2253888B1 (en) 2009-05-14 2013-10-16 Alstom Technology Ltd Burner of a gas turbine having a vortex generator with fuel lance
EP2261566A1 (en) * 2009-05-28 2010-12-15 Siemens AG Burner and method for avoiding self-induced flame vibrations in a burner
EP2496884B1 (en) 2009-11-07 2016-12-28 General Electric Technology GmbH Reheat burner injection system
EP2496883B1 (en) * 2009-11-07 2016-08-10 Alstom Technology Ltd Premixed burner for a gas turbine combustor
WO2011054739A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
WO2011054760A1 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd A cooling scheme for an increased gas turbine efficiency
EP2496882B1 (en) 2009-11-07 2018-03-28 Ansaldo Energia Switzerland AG Reheat burner injection system with fuel lances
EP2420731B1 (en) * 2010-08-16 2014-03-05 Alstom Technology Ltd Reheat burner
US8881500B2 (en) * 2010-08-31 2014-11-11 General Electric Company Duplex tab obstacles for enhancement of deflagration-to-detonation transition
US8690536B2 (en) * 2010-09-28 2014-04-08 Siemens Energy, Inc. Turbine blade tip with vortex generators
EP2522912B1 (en) * 2011-05-11 2019-03-27 Ansaldo Energia Switzerland AG Flow straightener and mixer
US9297532B2 (en) * 2011-12-21 2016-03-29 Siemens Aktiengesellschaft Can annular combustion arrangement with flow tripping device
US9140214B2 (en) * 2012-02-28 2015-09-22 United Technologies Corporation Method of using an afterburner to reduce high velocity jet engine noise
WO2014029512A2 (en) 2012-08-24 2014-02-27 Alstom Technology Ltd Sequential combustion with dilution gas mixer
EP2728258A1 (en) * 2012-11-02 2014-05-07 Alstom Technology Ltd Gas Turbine
US20140123653A1 (en) * 2012-11-08 2014-05-08 General Electric Company Enhancement for fuel injector
EP2789915A1 (en) * 2013-04-10 2014-10-15 Alstom Technology Ltd Method for operating a combustion chamber and combustion chamber
US20150159878A1 (en) * 2013-12-11 2015-06-11 Kai-Uwe Schildmacher Combustion system for a gas turbine engine
US9358557B2 (en) * 2013-12-20 2016-06-07 Young Living Essential Oils, Lc Liquid diffuser
CN103877837B (en) * 2014-02-26 2016-01-27 中国科学院过程工程研究所 A kind of flue ozone distributor and arrangement thereof being applied to low-temperature oxidation denitration technology
WO2015134010A1 (en) * 2014-03-05 2015-09-11 Siemens Aktiengesellschaft Combustor inlet flow static mixing system for conditioning air being fed to the combustor in a gas turbine engine
EP2993404B1 (en) * 2014-09-08 2019-03-13 Ansaldo Energia Switzerland AG Dilution gas or air mixer for a combustor of a gas turbine
US9777635B2 (en) 2014-12-31 2017-10-03 General Electric Company Engine component
US11039550B1 (en) * 2020-04-08 2021-06-15 Google Llc Heat sink with turbulent structures
US11454396B1 (en) 2021-06-07 2022-09-27 General Electric Company Fuel injector and pre-mixer system for a burner array
JP2024013988A (en) * 2022-07-21 2024-02-01 三菱重工業株式会社 Gas turbine combustor and gas turbine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1022493A (en) * 1910-08-31 1912-04-09 Curtis C Meigs Apparatus for making sulfuric acid.
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
US3051452A (en) * 1957-11-29 1962-08-28 American Enka Corp Process and apparatus for mixing
US3404869A (en) * 1966-07-18 1968-10-08 Dow Chemical Co Interfacial surface generator
US3974646A (en) * 1974-06-11 1976-08-17 United Technologies Corporation Turbofan engine with augmented combustion chamber using vorbix principle
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
DE3520772A1 (en) * 1985-06-10 1986-12-11 INTERATOM GmbH, 5060 Bergisch Gladbach Mixing appliance
DE3534268A1 (en) * 1985-09-26 1987-04-02 Deutsche Forsch Luft Raumfahrt Surface designed to avoid flow separation on a body around which a fluid flows
DE59104727D1 (en) * 1991-12-23 1995-03-30 Asea Brown Boveri Device for mixing two gaseous components and burner in which this device is used.
CH687831A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Premix burner.
DE59401295D1 (en) * 1993-04-08 1997-01-30 Abb Management Ag Mixing chamber

Also Published As

Publication number Publication date
JP3527280B2 (en) 2004-05-17
EP0623786A1 (en) 1994-11-09
DE59402803D1 (en) 1997-06-26
US5513982A (en) 1996-05-07
JPH06323540A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
EP0623786B1 (en) Combustion chamber
EP0619457B1 (en) Premix burner
EP0619133B1 (en) Mixing receptacle
EP0675322B1 (en) Premix burner
EP0619456B1 (en) Fuel supply system for combustion chamber
EP0620403B1 (en) Mixing and flame stabilizing device in a combustion chamber with premixing combustion
EP0733861A2 (en) Combustor for staged combustion
DE2338673C2 (en) Afterburner arrangement for a gas turbine jet engine
EP2156095B1 (en) Swirling-free stabilising of the flame of a premix burner
EP0694740A2 (en) Combustion chamber
DE4411623A1 (en) Premix burner
CH707771A2 (en) System with multi-tube fuel nozzle having a plurality of fuel injectors.
CH707770A2 (en) System for air conditioning to pipe level in a Mehrrohrbrennstoffdüse.
EP0718558B1 (en) Combustor
EP1382379A2 (en) Vortex generator with controlled downstream flowpattern
EP0775869B1 (en) Premix burner
EP0718561A2 (en) Combustor
EP0742411B1 (en) Air supply for a premix combustor
EP2171354B1 (en) Burner
DE4412315A1 (en) Method of operating gas turbine combustion chamber
EP0730121A2 (en) Premix burner
EP0961905B1 (en) Fuel combustion device and method
CH687827A5 (en) Gas turbine plant with a pressure wave machine.
CH688868A5 (en) Through-flow channel with eddy generator
DE19948673A1 (en) Procedure to produce hot gases in combustion unit, especially for driving of gas turbines, entails creating in gas stream areas with different mean flow speeds, and injecting into these areas fuel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19950405

17Q First examination report despatched

Effective date: 19951103

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 59402803

Country of ref document: DE

Date of ref document: 19970626

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970730

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59402803

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59402803

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130225

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130328

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59402803

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140311

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140308