EP1382379A2 - Vortex generator with controlled downstream flowpattern - Google Patents

Vortex generator with controlled downstream flowpattern Download PDF

Info

Publication number
EP1382379A2
EP1382379A2 EP03405505A EP03405505A EP1382379A2 EP 1382379 A2 EP1382379 A2 EP 1382379A2 EP 03405505 A EP03405505 A EP 03405505A EP 03405505 A EP03405505 A EP 03405505A EP 1382379 A2 EP1382379 A2 EP 1382379A2
Authority
EP
European Patent Office
Prior art keywords
flow
vortex generator
vortex
side surfaces
wake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03405505A
Other languages
German (de)
French (fr)
Other versions
EP1382379B1 (en
EP1382379A3 (en
Inventor
Peter Dr. Flohr
Ephraim Prof. Dr. Gutmark
Bettina Paikert
Christian Oliver Prof. Dr. Paschereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Publication of EP1382379A2 publication Critical patent/EP1382379A2/en
Publication of EP1382379A3 publication Critical patent/EP1382379A3/en
Application granted granted Critical
Publication of EP1382379B1 publication Critical patent/EP1382379B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43171Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/044Numerical composition values of components or mixtures, e.g. percentage of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/222Improvement of heat transfer by creating turbulence

Definitions

  • the invention relates to a vortex generator in one of one fluid medium acted upon flow channel and a Process for controlling the wake flow of such Vortex generator.
  • a particular field of application of the invention is the swirling and mixing of fuel / air mixtures in premix burners.
  • Static mixers for shortening the mixing distance of flowing fluid media are known in a variety of designs.
  • a design of such mixers, which allows an intensive mixing of flowing fluid media with a comparatively low pressure drop, is the subject of EP 0 623 786.
  • the static mixers discussed here, hereinafter referred to as vortex generators represent tetrahedron-like bodies which have one of at least one lateral surface the fluid channel acted upon flow channel are arranged. They comprise three freely flowing active surfaces that extend in the direction of flow, a roof surface facing the flow channel and two side surfaces.
  • the side surfaces connected to the wall of the flow duct enclose an arrow angle ⁇ with one another, whereas the roof surface runs at an angle of inclination ⁇ to the duct wall.
  • the size and strength of the wake are functions of the element height h, the element length l, the angle of attack wink and the arrow angle ⁇ . Varying these parameters provides a simple means of aerodynamically stabilizing a flow. With relatively large angles of attack ⁇ and / or arrow angles ⁇ , the vortex strength of the wake vortices increases to such an extent that an area with low flow velocity forms in their core, which under changing flow conditions harbors the risk of a breakdown of the vortex with the formation of a backflow .
  • the design of the vortex generators is therefore always a compromise, on the one hand, to make the vortices so strong that the components involved are mixed as quickly as possible in the wake, but on the other hand not to make the vortices so strong that an area of low flow velocity or is formed at the core even a backflow.
  • the invention has for its object to provide a vortex generator, who avoids the disadvantages mentioned and the Formation of a backflow zone in the core of the wake vortex even under changing flow conditions in the flow channel excludes safely and thus allows use and expand variability of these vortex generators. Furthermore, the invention is based on the object Process for controlling the wake flow of such vortex generators provide.
  • the basic idea of the invention is to increase the axial speed in the vortex core by specifically introducing an axial pulse into the core flow of the wake vortex.
  • this axial impulse is introduced in the immediate area of the core flow by introducing a secondary flow oriented at least approximately in the flow direction.
  • one of the components to be mixed is introduced into the flow channel as a secondary flow. It has proven to be advantageous to introduce the secondary flow into the core flow of the wake vortex via outlet openings on the vortex generator.
  • the outlet openings of the secondary medium are expediently arranged in the region of the side surfaces of the vortex generator or on its downstream edge. According to a particularly favorable embodiment, the outlet opening is arranged half the chord length of the side surface below the trailing edge.
  • the secondary flow can be introduced into the core flow from a single opening on the vortex generator or from a number of outlet openings which are aligned with the vortex core.
  • the cooling bores arranged on or near the vortex generators be used in a targeted manner to introduce an additional axial pulse. This can be achieved by modifying part of the cooling bores in such a way that an increased axial pulse is introduced into the core flow of the wake vortices.
  • the geometry of the outlet openings is configured accordingly, for example with regard to their orientation and / or their throughput.
  • the measures according to the invention are also suitable as a retrofit measure for retrofitting already installed vortex generators according to the prior art by introducing appropriate outlet openings and providing means for supplying a secondary fluid into the hollow interior of the vortex generators.
  • Vortex generators which are already equipped with means for supplying a secondary fluid and with outlet openings for cooling or admixing purposes, can be retrofitted with a modified design of the geometry of the outlet openings (FIGS. 4b; 5b). Since the amount of secondary fluid that can be fed in is variably adjustable, the invention allows to react actively to temporarily or permanently changed flow conditions.
  • the mass flow of the secondary flow is very low. It is between 0.1% and 5%, in particular between 0.5% and 1.5%, based on the total mass flow.
  • FIG. 1 and 2 show in principle the mode of operation of a vortex generator (2) acted upon by a flow (1) according to the prior art.
  • a vortex generator (2) has three freely flowing surfaces in the direction of flow, two side surfaces (3) and (4) and perpendicularly a roof surface (5), the side surfaces (3) and (4) being a right-angled triangle and the roof surface (5) form an isosceles triangle.
  • the side surfaces (3) and (4) are substantially perpendicular to the channel wall (6), without this being a mandatory requirement, and are preferably fixed gas-tight to one of their catheter sides on the channel wall (6).
  • the side surfaces (3) and (4) are dimensioned essentially congruent.
  • the roof surface (5) which assumes an acute angle of attack ⁇ with respect to the channel wall (6), is supported on the hypotenuse sides thereof, which are increasingly moving away from the channel wall (6) in the direction of flow. With a butt edge (8) running transversely to the direction of flow, it abuts the channel wall (6).
  • the flush abutting edges between the two side surfaces (3) and (4) and the roof surface (5) form trailing edges (9) and (10).
  • the axis of symmetry of the vortex generators (2) is aligned parallel to the direction of flow.
  • the vortex generator (2) can also be provided with a bottom surface, with the aid of which it is fixed in a suitable manner on the channel wall (6).
  • Such a floor area is, however, unrelated to the mode of operation of the vortex generator.
  • the mode of operation of the vortex generator (2) is essentially the one set out below.
  • a channel flow (1) flows towards the vortex generator (2) and is deflected by its roof surface (5).
  • Fig.3 represents the basic principle of the highly schematic described solution.
  • Starting from a suitable Place on the vortex generator (2) is in the wake vortex (11) an axial pulse was introduced to influence the core flow.
  • a secondary flow (13) in the An additional impulse is generated near the vortex core, which through the inductive effect of the swirl flow in the area of the vortex core is drawn in.
  • the impulse is directed parallel to the main flow, so the Vortex (11) and the wake flow is accelerated.
  • the Vortex breakdown is delayed and postponed downstream.
  • the vortex generator (2) with at least one Outlet opening (12) for a fluid medium in the area of Side surface (3) equipped.
  • the outlet opening (12) is arranged and aligned in this way, for example in half chord length below the trailing edge (9) that the emerging fluid jet (13) in the core flow of the wake vortex (11) penetrates and the axial speed in reinforced this area.
  • FIG 5 shows an alternative way of introducing a Secondary flow is shown schematically.
  • Fig. 7 it is shown that despite acceleration of the vortex core the vortex strength is not weakened. Im auseke even up to 50% downstream of the vortex generator.
  • the Varinate A represents the reference case of a vortex generator that is so heavily employed that there arises in the wake Area of low flow velocity.
  • the variants B and C give the conditions for a vortex generator according to the invention again, in which a secondary current in half the chord length of one side surface (variant B) or on the downstream abutting edge (variant C) is applied.
  • the vortex generators shown here (2) are arranged symmetrically and parallel to the direction of flow. Swirl-like vortices (11) are thus generated. Regardless of this, it is of course also within the framework the invention to design the vortex generators (2) asymmetrically, for example in the form of a half vortex generator, in which only one of the two side surfaces (3) or (4) fixed with an arrow angle ⁇ / 2 on the channel wall (6) whereas the other side surface (3) or (4) is parallel is aligned to the direction of flow. In contrast to the symmetrical Vortex generator (2) is used instead of one Pair of opposite vertebrae (11) only one trailing vertebra (11) generated on the arrowed side. As a result, the main flow (1) a spin imposed.

Abstract

Vortex generator (2) in a flow channel loaded with fluid medium has free surfaces extending in the main flow direction (1). At least two surfaces form side surfaces (3, 4) supported on a channel wall (6). These side surfaces taper toward each other in the flow direction and meet at an acute angle (alpha) at a common edge forming the downstream edge of the vortex generator. At least one surface forms a top surface which lies at an acute angle from the channel wall in the flow direction and forms with the side surfaces flow-off edges. The vortex generator has at least one outlet opening for targeted introduction of a secondary flow (13) into the core flow of the wake (11) produced. An Independent claim is also included for a process for controlling the wake of a vortex generator in a flow channel loaded with fluid medium.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung betrifft einen Wirbelgenerator in einem von einem fluiden Medium beaufschlagten Strömungskanal sowie ein Verfahren zur Kontrolle der Nachlaufströmung eines solchen Wirbelgenerators. Ein besonderes Anwendungsgebiet der Erfindung ist die Verwirbelung und Durchmischung von Brennstoff/Luft-Gemischen in Vormischbrennern.The invention relates to a vortex generator in one of one fluid medium acted upon flow channel and a Process for controlling the wake flow of such Vortex generator. A particular field of application of the invention is the swirling and mixing of fuel / air mixtures in premix burners.

STAND DER TECHNIKSTATE OF THE ART

Statische Mischer zur Verkürzung der Mischstrecke strömender fluider Medien sind in vielfältiger Gestaltung bekannt.
Eine Gestaltungsform derartiger Mischer, die eine intensive Vermischung strömender fluider Medien bei vergleichsweise geringem Druckverlust erlaubt, ist Gegenstand von EP 0 623 786. Die an dieser Stelle diskutierten statischen Mischer, nachfolgend Wirbelgeneratoren genannt, stellen tetraederähnliche Körper dar, welche an mindestens einer Mantelfläche eines von dem fluiden Medium beaufschlagten Strömungskanals angeordnet sind. Sie umfassen drei frei umströmte, sich in Strömungsrichtung erstreckende Wirkflächen, eine in den Strömungskanal weisende Dachfläche und zwei Seitenflächen. Die mit der Wand des Strömungskanals verbundenen Seitenflächen schliessen untereinander einen Pfeilwinkel α ein, wohingegen die Dachfläche unter einem Anstellwinkel  zur Kanalwand verläuft.
Durch die Erzeugung von Längswirbeln ohne Rezirkulationsgebiet wird bereits nach einer äusserst kurzen Mischstrecke von einer Wirbelumdrehung eine Grobdurchmischung erzielt, während nach einer Strecke von wenigen Kanalhöhen infolge der turbulenten Strömung eine Feinmischung vorliegt.
Diese Wirbelgeneratoren zeichnen sich durch eine besondere Einfachheit sowohl im Hinblick auf ihre Herstellung wie auch ihre technische Wirksamkeit aus. Die Fertigung und Zusammenfügung der drei Wirkflächen sowie die Verbindung mit einer ebenen oder gekrümmten Kanalwand kann ohne weiteres durch einfache Fügemethoden, in aller Regel Schweissen, erfolgen. Vom strömungstechnischen Standpunkt her weisen diese Generatoren einen sehr geringen Druckverlust auf und erzeugen bei entsprechender Auslegung Nachlaufwirbel ohne Totwassergebiet. Grösse und Stärke der Nachlaufwirbel sind Funktionen der Elementhöhe h, der Elementlänge l, des Anstellwinkels  sowie des Pfeilwinkels α.
Durch Variation dieser Parameter ist damit ein einfaches Mittel zur aerodynamischen Stabilisierung einer Strömung an die Hand gegeben.
Bei relativ grossen Anstellwinkeln  und/oder Pfeilwinkeln α steigt die Wirbelstärke der Nachlaufwirbel in einem solchen Masse an, dass sich in deren Kern ein Gebiet mit niedriger Strömungsgeschwindigkeit ausbildet, welches unter wechselnden Strömungsbedingungen die Gefahr eines Zusammenbruchs des Wirbels unter Ausbildung einer Rückströmung in sich birgt. Die Auslegung der Wirbelgeneratoren stellt daher stets einen Kompromiss dar, einerseits die Wirbel so stark auszubilden, dass in möglichst kurzem Nachlauf eine maximale Durchmischung der beteiligten Komponenten erfolgt, andererseits aber wiederum die Wirbel nicht so stark auszubilden, dass sich im Kern ein Gebiet niedriger Strömungsgeschwindigkeit oder sogar eine Rückströmung ausprägt.
Da es sich bei der Einbindung dieser Wirbelgeneratoren in den Strömungsweg um apparative Massnahmen handelt, sind diese, einmal installiert, unveränderlich. Das heisst, eine aktive Einflussnahme auf dauerhaft oder vorübergehend veränderte Strömungsbedingungen ist nicht ohne weiteres möglich.
Gerade bei einem Einsatz dieser Wirbelgeneratoren in modernen Gasturbinenanlagen zur Durchmischung und Verwirbelung eines Brennstoff-/Luftgemisches kann dieses Verhalten negative Auswirkungen auf die Flammenstabilität haben und zu einer unerwünschten Verschiebung der Flammenlage führen.
Static mixers for shortening the mixing distance of flowing fluid media are known in a variety of designs.
A design of such mixers, which allows an intensive mixing of flowing fluid media with a comparatively low pressure drop, is the subject of EP 0 623 786. The static mixers discussed here, hereinafter referred to as vortex generators, represent tetrahedron-like bodies which have one of at least one lateral surface the fluid channel acted upon flow channel are arranged. They comprise three freely flowing active surfaces that extend in the direction of flow, a roof surface facing the flow channel and two side surfaces. The side surfaces connected to the wall of the flow duct enclose an arrow angle α with one another, whereas the roof surface runs at an angle of inclination  to the duct wall.
By generating longitudinal vortices without a recirculation area, a rough mixing is achieved after a very short mixing distance of one vortex revolution, while fine mixing occurs after a distance of a few channel heights due to the turbulent flow.
These vortex generators are characterized by a particular simplicity, both in terms of their manufacture and their technical effectiveness. The manufacture and assembly of the three active surfaces as well as the connection to a flat or curved duct wall can be easily carried out using simple joining methods, usually welding. From a fluidic point of view, these generators have a very low pressure loss and, if appropriately designed, generate wake vortices without a dead water area. The size and strength of the wake are functions of the element height h, the element length l, the angle of attack wink and the arrow angle α.
Varying these parameters provides a simple means of aerodynamically stabilizing a flow.
With relatively large angles of attack  and / or arrow angles α, the vortex strength of the wake vortices increases to such an extent that an area with low flow velocity forms in their core, which under changing flow conditions harbors the risk of a breakdown of the vortex with the formation of a backflow , The design of the vortex generators is therefore always a compromise, on the one hand, to make the vortices so strong that the components involved are mixed as quickly as possible in the wake, but on the other hand not to make the vortices so strong that an area of low flow velocity or is formed at the core even a backflow.
Since the integration of these vortex generators into the flow path involves equipment measures, once installed, they cannot be changed. This means that it is not possible to actively influence permanently or temporarily changed flow conditions.
Especially when these vortex generators are used in modern gas turbine systems for mixing and swirling a fuel / air mixture, this behavior can have negative effects on the flame stability and lead to an undesirable shift in the flame position.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

In Weiterentwicklung des genannten Standes der Technik liegt der Erfindung die Aufgabe zugrunde, einen Wirbelgenerator bereitzustellen, der die genannten Nachteile vermeidet und die Ausbildung einer Rückströmzone im Kern des Nachlaufwirbels auch unter wechselnden Strömungsverhältnissen im Strömungskanal sicher ausschliesst und es damit gestattet, Einsatzbereich und Variabilität dieser Wirbelgeneratoren zu erweitern. Des weiteren liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Kontrolle der Nachlaufströmung solcher Wirbelgeneratoren bereitzustellen.Further development of the state of the art mentioned the invention has for its object to provide a vortex generator, who avoids the disadvantages mentioned and the Formation of a backflow zone in the core of the wake vortex even under changing flow conditions in the flow channel excludes safely and thus allows use and expand variability of these vortex generators. Furthermore, the invention is based on the object Process for controlling the wake flow of such vortex generators provide.

Erfindungsgemäss werden diese Aufgaben durch einen Wirbelgenerator sowie ein Verfahren gemäss der in den unabhängigen Ansprüchen genannten Art gelöst.
Vorteilhafte Ausführungsformen des Wirbelgenerators und des Verfahrens geben die abhängigen Ansprüche wieder.
According to the invention, these tasks are solved by a vortex generator and a method according to the type mentioned in the independent claims.
Advantageous embodiments of the vortex generator and the method reflect the dependent claims.

Der Grundgedanke der Erfindung besteht darin, durch gezieltes Einbringen eines Axialimpulses in die Kernströmung des Nachlaufwirbels die Axialgeschwindigkeit im Wirbelkern zu erhöhen.
Nach einer bevorzugten Ausführungsform der Erfindung wird dieser Axialimpuls mittels Einleitung einer zumindest annähernd in Strömungsrichtung ausgerichteten Sekundärströmung im unmittelbaren Bereich der Kernströmung eingebracht.
In vorzugsweiser Ausgestaltung wird eine der zu mischenden Komponenten als Sekundärströmung in den Strömungskanal eingeleitet.
Als vorteilhaft hat es sich dabei erwiesen, die Sekundärströmung über Austrittsöffnungen am Wirbelgenerator in die Kernströmung des Nachlaufwirbels einzuleiten. In zweckmässiger Weise werden die Austrittsöffnungen des Sekundärmediums im Bereich der Seitenflächen des Wirbelgenerators oder an dessen stromabwärtiger Kante angeordnet.
Nach einer besonders günstigen Ausführungsart ist die Austrittsöffnung in halber Sehnenlänge der Seitenfläche unterhalb der Abströmkante angeordnet.
Dabei kann die Sekundärströmung aus einer Einzelöffnung am Wirbelgenerator in die Kernströmung eingeleitet werden oder aus einer Anzahl von Austrittsöffnungen, welche auf den Wirbelkern ausgerichtet sind.
Nach einer zweckmässigen Ergänzung der Erfindung wird ferner vorgeschlagen, die an oder nahe den Wirbelgeneratoren angeordneten Kühlbohrungen gezielt zur Einbringung eines zusätzlichen Axialimpulses heranzuziehen. Dies kann dadurch erreicht werden, dass ein Teil der Kühlbohrungen derart modifiziert wird, dass ein erhöhter Axialimpuls in die Kernströmung der Nachlaufwirbel eingebracht wird. Zu diesem Zweck werden die Austrittsöffnungen in ihrer Geometrie entsprechend konfiguriert, beispielsweise hinsichtlich ihrer Ausrichtung und/oder ihres Durchsatzes.
The basic idea of the invention is to increase the axial speed in the vortex core by specifically introducing an axial pulse into the core flow of the wake vortex.
According to a preferred embodiment of the invention, this axial impulse is introduced in the immediate area of the core flow by introducing a secondary flow oriented at least approximately in the flow direction.
In a preferred embodiment, one of the components to be mixed is introduced into the flow channel as a secondary flow.
It has proven to be advantageous to introduce the secondary flow into the core flow of the wake vortex via outlet openings on the vortex generator. The outlet openings of the secondary medium are expediently arranged in the region of the side surfaces of the vortex generator or on its downstream edge.
According to a particularly favorable embodiment, the outlet opening is arranged half the chord length of the side surface below the trailing edge.
The secondary flow can be introduced into the core flow from a single opening on the vortex generator or from a number of outlet openings which are aligned with the vortex core.
According to an expedient addition to the invention, it is also proposed that the cooling bores arranged on or near the vortex generators be used in a targeted manner to introduce an additional axial pulse. This can be achieved by modifying part of the cooling bores in such a way that an increased axial pulse is introduced into the core flow of the wake vortices. For this purpose, the geometry of the outlet openings is configured accordingly, for example with regard to their orientation and / or their throughput.

Die erfindungsgemässen Massnahmen eignen sich ohne weiteres auch als Retrofit-Massnahme zum Nachrüsten bereits installierter Wirbelgeneratoren nach dem Stand der Technik, indem entsprechende Austrittsöffnungen eingebracht sowie Mittel zur Zufuhr eines Sekundärfluids in den hohlen Innenraum der Wirbelgeneratoren vorgesehen werden. Wirbelgeneratoren, die zu Kühl- oder Zumischzwecken bereits mit Mitteln zur Zuleitung eines Sekundärfluids sowie mit Austrittsöffnungen ausgerüstet sind, können durch eine modifizierte Gestaltung der Geometrie der Austrittsöffnungen nachgerüstet werden (Fig.4b; 5b). Indem die Menge an einspeisbarem Sekundärfluid variabel einstellbar ist, erlaubt es die Erfindung, aktiv auf vorübergehend oder dauerhaft veränderte Strömungsverhältnisse zu reagieren.
Der Massenstrom der Sekundärströmung ist dabei sehr gering. Er liegt in einer Grössenordnung zwischen 0,1% und 5%, insbesondere zwischen 0,5% und 1,5%, bezogen auf den Gesamtmassenstrom.
The measures according to the invention are also suitable as a retrofit measure for retrofitting already installed vortex generators according to the prior art by introducing appropriate outlet openings and providing means for supplying a secondary fluid into the hollow interior of the vortex generators. Vortex generators, which are already equipped with means for supplying a secondary fluid and with outlet openings for cooling or admixing purposes, can be retrofitted with a modified design of the geometry of the outlet openings (FIGS. 4b; 5b). Since the amount of secondary fluid that can be fed in is variably adjustable, the invention allows to react actively to temporarily or permanently changed flow conditions.
The mass flow of the secondary flow is very low. It is between 0.1% and 5%, in particular between 0.5% and 1.5%, based on the total mass flow.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung seien nachfolgend anhand der Zeichnungen erläutert. Es werden nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche oder einander entsprechende Elemente figurieren unter demselben Bezugszeichen.Further features, advantages and details of the invention are explained below with reference to the drawings. It will only the elements essential to the invention are shown. The same or corresponding elements figure below the same reference number.

Hierbei zeigenShow here

Fig.1Fig.1
Wirbelgenerator nach dem Stand der TechnikVortex generator according to the prior art
Fig.2Fig.2
Geschwindigkeitsfeld (normierte axiale Geschwindigkeit) einer Kanalströmung im Nachlauf eines Wirbelgenerators nach dem Stand der TechnikVelocity field (standardized axial velocity) a channel flow in the wake of a Vortex generator according to the prior art
Fig.3Figure 3
Prinzipskizze der Wirkungsweise der Erfindung Outline of the principle of operation of the invention
Fig.4a,b4a, b
eine erste Ausführungsvariante eines erfindungsgemässen Wirbelgeneratorsa first embodiment of a vortex generator according to the invention
Fig.5a,b5a, b
eine weitere Ausführungsvariante eins erfindungsgemässen Wirbelgeneratorsa further embodiment variant of a vortex generator according to the invention
Fig.6Figure 6
Geschwindigkeitsfeld (normierte axiale Geschwindigkeit) einer Kanalströmung im Nachlauf eines Wirbelgenerators nach der ErfindungVelocity field (standardized axial velocity) a channel flow in the wake of a vortex generator according to the invention
Fig.7Figure 7
Massengemittelte Wirbelstärke stromab des WirbelgeneratorsMass averaged vortex strength downstream of the vortex generator
WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Die Fig.1 und 2 geben in prinzipieller Weise die Wirkungsweise eines von einer Strömung (1) beaufschlagten Wirbelgenerators (2) nach dem Stand der Technik wieder.
Ein solcher Wirbelgenerator (2) besitzt drei frei umströmte, in Strömungsrichtung verlaufende Flächen, zwei Seitenflächen (3) und (4) sowie dazu senkrecht eine Dachfläche (5), wobei die Seitenflächen (3) und (4) ein rechtwinkliges Dreieck und die Dachfläche (5) ein gleichschenkliges Dreieck bilden. Die Seitenflächen (3) und (4) stehen im wesentlichen senkrecht zur Kanalwand (6), ohne dass dies eine zwingende Voraussetzung darstellt, und sind mit einer ihrer Kathetenseiten an der Kanalwand (6) vorzugsweise gasdicht fixiert. Sie sind so orientiert, dass sie mit den zweiten Kathetenseiten an einer Stosskante (7) unter Einschluss eines vorzugsweise spitzen Pfeilwinkels α zusammentreffen, welche Stosskante (7) gleichzeitig das stromabwärtige Ende des Wirbelgenerators (2) darstellt und senkrecht zur Kanalwand (6) ausgerichtet ist. Die Seitenflächen (3) und (4) sind im wesentlichen deckungsgleich dimensioniert. Auf deren Hypotenusenseiten, die sich in Strömungsrichtung zunehmend von der Kanalwand (6) entfernen, stützt sich die Dachfläche (5) ab, welche gegenüber der Kanalwand (6) einen spitzen Anstellwinkel  einnimmt. Mit einer quer zur Strömungsrichtung verlaufenden Stosskante (8) liegt sie an der Kanalwandung (6) an. Die bündigen Stosskanten zwischen den beiden Seitenflächen (3) und (4) und der Dachfläche (5) bilden Abströmkanten (9) und (10).
Die Symmetrieachse der Wirbelgeneratoren (2) ist parallel zur Strömungsrichtung ausgerichtet.
Selbstverständlich kann der Wirbelgenerator (2) auch mit einer Bodenfläche versehen sein, mit deren Hilfe er auf geeignete Weise an der Kanalwand (6) fixiert ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Wirbelgenerators.
Die Wirkungsweise des Wirbelgenerators (2) ist im wesentlichen die nachfolgend dargelegte. Eine Kanalströmung (1) strömt den Wirbelgenerator (2) an und wird durch dessen Dachfläche (5) abgelenkt. Durch die plötzliche Querschnittserweiterung beim Überströmen der Abströmkanten (9) und (10) bildet sich ein Paar gegenläufiger Nachlaufwirbel (11) aus, deren Achsen in der Achse der Hauptströmung liegen. Wirbelstärke und Drallzahl werden massgeblich von dem Anstellwinkel  und dem Pfeilwinkel α bestimmt. Mit steigenden Winkeln werden Wirbelstärke und Drallzahl erhöht und im Kern der Nachlaufwirbel bildet sich unmittelbar hinter dem Wirbelgenerator (2) zunehmend ein Gebiet niedrigerer Axialgeschwindigkeit (dunkle Flächen in Fig.2), das bis zu einem "vortex breakdown" führen kann.
1 and 2 show in principle the mode of operation of a vortex generator (2) acted upon by a flow (1) according to the prior art.
Such a vortex generator (2) has three freely flowing surfaces in the direction of flow, two side surfaces (3) and (4) and perpendicularly a roof surface (5), the side surfaces (3) and (4) being a right-angled triangle and the roof surface (5) form an isosceles triangle. The side surfaces (3) and (4) are substantially perpendicular to the channel wall (6), without this being a mandatory requirement, and are preferably fixed gas-tight to one of their catheter sides on the channel wall (6). They are oriented in such a way that they meet with the second sides of the catheter at a butt edge (7), including a preferably acute arrow angle α, which butt edge (7) simultaneously represents the downstream end of the vortex generator (2) and is oriented perpendicular to the channel wall (6) , The side surfaces (3) and (4) are dimensioned essentially congruent. The roof surface (5), which assumes an acute angle of attack  with respect to the channel wall (6), is supported on the hypotenuse sides thereof, which are increasingly moving away from the channel wall (6) in the direction of flow. With a butt edge (8) running transversely to the direction of flow, it abuts the channel wall (6). The flush abutting edges between the two side surfaces (3) and (4) and the roof surface (5) form trailing edges (9) and (10).
The axis of symmetry of the vortex generators (2) is aligned parallel to the direction of flow.
Of course, the vortex generator (2) can also be provided with a bottom surface, with the aid of which it is fixed in a suitable manner on the channel wall (6). Such a floor area is, however, unrelated to the mode of operation of the vortex generator.
The mode of operation of the vortex generator (2) is essentially the one set out below. A channel flow (1) flows towards the vortex generator (2) and is deflected by its roof surface (5). Due to the sudden widening of the cross-section when flowing over the trailing edges (9) and (10), a pair of opposing wake vortices (11) is formed, the axes of which lie in the axis of the main flow. The vortex strength and swirl number are largely determined by the angle of attack  and the arrow angle α. With increasing angles, the vortex strength and swirl number are increased and in the core of the wake vortex, an area of lower axial speed (dark areas in FIG. 2) is formed immediately behind the vortex generator (2), which can lead to a "vortex breakdown".

Fig.3 stellt stark schematisiert das grundlegende Prinzip der beschriebenen Lösung dar. Ausgehend von einer geeigneten Stelle am Wirbelgenerator (2) wird in den Nachlaufwirbel (11) ein Axialimpuls zur Beeinflussung der Kernströmung eingebracht. Dabei wird durch eine Sekundärströmung (13) in der Nähe des Wirbelkerns ein zusätzlicher Impuls generiert, welcher durch die induktive Wirkung der Drallströmung in den Bereich des Wirbelkerns eingezogen wird. Richtet sich der Impuls parallel zur Hauptströmung, so stabilisiert sich der Wirbel (11) und die Nachlaufströmung wird beschleunigt. Der Vortex-Breakdown verzögert sich und wird stromabwärts verschoben.Fig.3 represents the basic principle of the highly schematic described solution. Starting from a suitable Place on the vortex generator (2) is in the wake vortex (11) an axial pulse was introduced to influence the core flow. A secondary flow (13) in the An additional impulse is generated near the vortex core, which through the inductive effect of the swirl flow in the area of the vortex core is drawn in. The impulse is directed parallel to the main flow, so the Vortex (11) and the wake flow is accelerated. The Vortex breakdown is delayed and postponed downstream.

Nach einer bevorzugten Ausführungsform gemäss Fig. 4 ist zu diesem Zweck der Wirbelgenerator (2) mit mindestens einer Austrittsöffnung (12) für ein fluides Medium im Bereich der Seitenfläche (3) ausgerüstet. Die Austrittsöffnung (12) ist dabei derart angeordnet und ausgerichtet, beispielsweise in halber Sehnenlänge unterhalb der Abströmkante (9), dass der austretende Fluidstrahl (13) in die Kernströmung des Nachlaufwirbels (11) eindringt und die Axialgeschwindigkeit in diesem Bereich verstärkt. Durch Erhöhung der Strömungsgeschwindigkeit im Kernbereich des Nachlaufwirbels (11) wird der Ort des Wirbelaufplatzens stromabwärts verschoben.According to a preferred embodiment according to FIG. 4 is closed for this purpose the vortex generator (2) with at least one Outlet opening (12) for a fluid medium in the area of Side surface (3) equipped. The outlet opening (12) is arranged and aligned in this way, for example in half chord length below the trailing edge (9) that the emerging fluid jet (13) in the core flow of the wake vortex (11) penetrates and the axial speed in reinforced this area. By increasing the flow rate in the core area of the trailing vertebra (11) the location of the vertebral burst is shifted downstream.

In Fig.5 ist eine alternative Möglichkeit zur Einbringung einer Sekundärströmung schematisch wiedergegeben. Danach ist die mindestens eine Austrittsöffnung (12) zur Einbringung der Sekundärströmung im Bereich der stromabwärtigen Stosskante (7) des Wirbelgenerators (2) angeordnet. Hierbei kann es sich um eine kreisförmige Austrittsöffnung (12) in halber Höhe des Wirbelerzeugers (2) handeln, eine Anzahl solcher Öffnungen in diesem Bereich oder eine schlitzförmige Austrittsöffnung (12).5 shows an alternative way of introducing a Secondary flow is shown schematically. After that is the at least one outlet opening (12) for introducing the Secondary flow in the area of the downstream edge (7) of the vortex generator (2) arranged. It can be around a circular outlet opening (12) halfway up the Vortex generator (2) act a number of such openings in this area or a slit-shaped outlet opening (12).

Wie aus Fig.6 zu erkennen ist, ist die Folge der gezielten Eindüsung eines Sekundärfluids in die Wirbelkernströmung ein deutlich ausgeglicheneres Geschwindigkeitsfeld im Nachlauf des Wirbelgenerators (2).As can be seen from Fig. 6, the consequence of the targeted Injection of a secondary fluid into the vortex core flow significantly more balanced speed field in the wake the vortex generator (2).

In Fig.7 ist dargestellt, dass trotz Beschleunigung des Wirbelkerns die Wirbelstärke nicht geschwächt wird. Im ausgeke stromab des Wirbelgenerators sogar um bis zu 50%. Die Varinate A stellt dabei den Referenzfall eines Wirbelgenerators dar, der so stark angestellt ist, dass sich im Nachlauf ein Gebiet niedriger Strömungsgeschwindigkeit ausbildet. Die Varianten B und C geben die Verhältnisse bei einem Wirbelgenerator gemäss der Erfindung wieder, bei dem ein Sekundärstrom in halber Sehnenlänge einer Seitenfläche (Variante B) oder an der stromabwärtigen Stosskante (Variante C) aufgebracht wird.In Fig. 7 it is shown that despite acceleration of the vortex core the vortex strength is not weakened. Im auseke even up to 50% downstream of the vortex generator. The Varinate A represents the reference case of a vortex generator that is so heavily employed that there arises in the wake Area of low flow velocity. The variants B and C give the conditions for a vortex generator according to the invention again, in which a secondary current in half the chord length of one side surface (variant B) or on the downstream abutting edge (variant C) is applied.

Es ist vorteilhaft, die hier dargestellten Wirbelgeneratoren (2) symmetrisch und parallel zur Strömungsrichtung anzuordnen. Damit werden drallgleiche Wirbel (11) erzeugt. Ungeachtet dessen liegt es selbstverständlich auch im Rahmen der Erfindung, die Wirbelgeneratoren (2) asymmetrisch zu gestalten, beispielsweise in Form eines halben Wirbelgenerators, bei welchem nur eine der beiden Seitenflächen (3) oder (4) mit einem Pfeilwinkel α/2 an der Kanalwand (6) fixiert ist, wohingegen die andere Seitenfläche (3) oder (4) parallel zur Strömungsrichtung ausgerichtet ist. Im Gegensatz zum symmetrischen Wirbelgenerator (2) wird hierbei anstelle eines Paares gegenäufiger Wirbel (11) nur ein Nachlaufwirbel (11) an der gepfeilten Seite erzeugt. Im Ergebnis wird der Hauptströmung (1) ein Drall aufgezwungen. It is advantageous to use the vortex generators shown here (2) to be arranged symmetrically and parallel to the direction of flow. Swirl-like vortices (11) are thus generated. Regardless of this, it is of course also within the framework the invention to design the vortex generators (2) asymmetrically, for example in the form of a half vortex generator, in which only one of the two side surfaces (3) or (4) fixed with an arrow angle α / 2 on the channel wall (6) whereas the other side surface (3) or (4) is parallel is aligned to the direction of flow. In contrast to the symmetrical Vortex generator (2) is used instead of one Pair of opposite vertebrae (11) only one trailing vertebra (11) generated on the arrowed side. As a result, the main flow (1) a spin imposed.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Hauptströmungmainstream
22
Wirbelgeneratorvortex generator
33
Seitenflächeside surface
44
Seitenflächeside surface
55
Dachflächeroof
66
Kanalwandchannel wall
77
Stosskanteabutment edge
88th
Stosskanteabutment edge
99
Abströmkantetrailing edge
1010
Abströmkantetrailing edge
1111
Nachlaufwirbelwake vortex
1212
Austrittsöffnungoutlet opening
1313
Sekundärströmungsecondary flow

Claims (15)

Wirbelgenerator in einem von einem fluiden Medium beaufschlagten Strömungskanal, welcher Wirbelgenerator (2) frei umströmte, sich in Richtung der Hauptströmung (1) erstreckende Flächen aufweist, von denen wenigstens zwei Flächen sich auf der Kanalwand (6) abstützende Seitenflächen (3) und (4) bilden, welche Seitenflächen (3) und (4) sich in Strömungsrichtung annähern und unter einem spitzen Winkel α in einer gemeinsamen Kante (7), welche die stromabwärtige Kante (7) des Wirbelgenerators (2) bildet, zusammentreffen und von denen wenigstens eine Fläche eine Dachfläche (5) bildet, welche sich in Strömungsrichtung in einem spitzen Winkel  von der Kanalwand (6) entfernt und mit den Seitenflächen (3) und (4) Abströmkanten (9) und (10) bildet, dadurch gekennzeichnet, dass der Wirbelgenerator (2) wenigstens eine Austrittsöffnung (12) für eine gezielte Einbringung einer Sekundärströmung (13) in die Kernströmung des sich ausbildenden Nachlaufwirbels (11) aufweist.Vortex generator in a flow channel acted upon by a fluid medium, which flow freely around the vortex generator (2) and has surfaces extending in the direction of the main flow (1), of which at least two surfaces have side surfaces (3) and (4) supported on the channel wall (6) ) form which side surfaces (3) and (4) approach in the direction of flow and meet at an acute angle α in a common edge (7), which forms the downstream edge (7) of the vortex generator (2), and at least one of which Surface forms a roof surface (5), which in the flow direction at an acute angle  from the channel wall (6) and forms with the side surfaces (3) and (4) trailing edges (9) and (10), characterized in that the Vortex generator (2) has at least one outlet opening (12) for the targeted introduction of a secondary flow (13) into the core flow of the wake vortex (11) that is formed. Wirbelgenerator nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine Austrittsöffnung (12) im Bereich der Seitenflächen (3) bzw. (4) angeordnet ist.Vortex generator according to claim 1, characterized in that the at least one outlet opening (12) is arranged in the region of the side surfaces (3) or (4). Wirbelgenerator nach Anspruch 2, dadurch gekennzeichnet, dass die Austrittsöffnung (12) in halber Sehnenlänge unmittelbar unterhalb der Abströmkante (9) bzw. (10) angeordnet ist.Vortex generator according to claim 2, characterized in that the outlet opening (12) is arranged in half chord length immediately below the trailing edge (9) or (10). Wirbelgenerator nach Anspruch 2, dadurch gekennzeichnet, dass wenigstens eine Seitenfläche (3) oder (4) mit einer Mehrzahl von Austrittsöffnungen (12) unterschiedlicher geometrischer Konfiguration ausgerüstet ist, beispielsweise hinsichtlich Ausrichtung und/oder Durchsatz.Vortex generator according to claim 2, characterized in that at least one side surface (3) or (4) is equipped with a plurality of outlet openings (12) of different geometric configuration, for example with regard to alignment and / or throughput. Wirbelgenerator nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eine Austrittsöffnung (12) an der stromabwärtige Kante (7) des Wirbelgenerators (2) angeordnet ist.Vortex generator according to claim 1, characterized in that at least one outlet opening (12) is arranged on the downstream edge (7) of the vortex generator (2). Wirbelgenerator nach Anspruch 5, dadurch gekennzeichnet, dass die stromabwärtige Kante (7) eine Mehrzahl von Austrittsöffnungen (12) aufweist.Vortex generator according to claim 5, characterized in that the downstream edge (7) has a plurality of outlet openings (12). Wirbelgenerator nach Anspruch 6, dadurch gekennzeichnet, dass die stromabwärtige Kante (7) eine Mehrzahl von Austrittsöffnungen unterschiedlicher geometrischer Konfiguration aufweist.Vortex generator according to claim 6, characterized in that the downstream edge (7) has a plurality of outlet openings of different geometric configuration. Wirbelgenerator nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine Austrittsöffnung (12) mit einem kreisförmigen Querschnitt ausgebildet ist.Vortex generator according to claim 1, characterized in that the at least one outlet opening (12) is formed with a circular cross section. Wirbelgenerator nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine Austrittsöffnung (12) schlitzförmig ausgebildet ist.Vortex generator according to claim 1, characterized in that the at least one outlet opening (12) is slot-shaped. Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators in einem von einem fluiden Medium beaufschlagten Strömungskanal, welcher Wirbelgenerator im wesentlichen drei frei umströmte, sich in Strömungsrichtung erstreckende Flächen umfasst, von denen wenigstens zwei Flächen sich auf der Kanalwand abstützende Seitenflächen (3;4) bilden, welche sich in Strömungsrichtung annähern und unter einem spitzen Winkel α in einer gemeinsamen Kante (7) zusammentreffen und von denen wenigstens eine Fläche eine Dachfläche (5) bildet, die sich in Strömungsrichtung in einem spitzen Winkel  von der Kanalwand entfernt und mit den Seitenflächen (3;4) Abströmkanten (9;10) bildet, wobei das strömende Fluid stromab der Abströmkanten (9;10) ein Paar gegenläufiger Wirbel (11) ausbildet, deren Wirbelachsen in der Achse der Hauptströmung (1) liegen, dadurch gekennzeichnet, dass in den Bereich der Kernströmung der sich ausbildenden Nachlaufwirbel (11) ein Axialimpuls wenigstens annähernd in Richtung der Hauptströmung (1) eingebracht wird.Method for controlling the wake flow of a vortex generator in a flow channel acted upon by a fluid medium, which vortex generator essentially comprises three freely flowing surfaces which extend in the direction of flow and of which at least two surfaces form side surfaces (3; 4) which are supported on the channel wall and which approach each other in the direction of flow and meet at an acute angle α in a common edge (7) and of which at least one surface forms a roof surface (5), which in the direction of flow is at an acute angle entfernt away from the channel wall and with the side surfaces (3 ; 4) trailing edges (9; 10), wherein the flowing fluid downstream of the trailing edges (9; 10) forms a pair of opposing vortices (11), the vortex axes of which lie in the axis of the main flow (1), characterized in that in the In the area of the core flow of the wake vortices (11) that are formed, at least one axial pulse is introduced approximately in the direction of the main flow (1). Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass eine Sekundärströmung (13) gezielt in die Kernströmung des Nachlaufwirbels (11) eingebracht wird.A method according to claim 10, characterized in that a secondary flow (13) is specifically introduced into the core flow of the wake vortex (11). Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass über Austrittsöffnungen (12) am Wirbelgenerator (2) ein Sekundärfluid in die Wirbelkernströmung eingebracht wird.A method according to claim 11, characterized in that a secondary fluid is introduced into the vortex core flow via outlet openings (12) on the vortex generator (2). Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Durchsatz des Sekundärmediums (13) variabel einstellbar ist.A method according to claim 12, characterized in that the throughput of the secondary medium (13) is variably adjustable. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Sekundärfluid eine in die Hauptströmung (1) einzumischende Komponente ist.A method according to claim 11, characterized in that the secondary fluid is a component to be mixed into the main flow (1). Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Massenanteil der Sekundärströmung (13) gegenüber der Hauptströmung (1) 0,1% bis 5%, vorzugsweise 0,5% bis 1,5% beträgt.A method according to claim 11, characterized in that the mass fraction of the secondary flow (13) compared to the main flow (1) is 0.1% to 5%, preferably 0.5% to 1.5%.
EP03405505A 2002-07-20 2003-07-07 Process for controlling the downstream flowpattern of a vortex generator Expired - Fee Related EP1382379B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10233111 2002-07-20
DE10233111 2002-07-20

Publications (3)

Publication Number Publication Date
EP1382379A2 true EP1382379A2 (en) 2004-01-21
EP1382379A3 EP1382379A3 (en) 2004-05-12
EP1382379B1 EP1382379B1 (en) 2007-05-30

Family

ID=29762099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03405505A Expired - Fee Related EP1382379B1 (en) 2002-07-20 2003-07-07 Process for controlling the downstream flowpattern of a vortex generator

Country Status (4)

Country Link
US (1) US20040037162A1 (en)
EP (1) EP1382379B1 (en)
JP (1) JP2004069061A (en)
DE (2) DE10330023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2071155A2 (en) * 2007-12-14 2009-06-17 United Technologies Corporation Nacelle assembly with turbulators
CN108121864A (en) * 2017-12-15 2018-06-05 北京理工大学 A kind of horizontal secondary method of flow control of end wall based on vortex generator
CN115362333A (en) * 2020-03-31 2022-11-18 西门子能源全球有限两合公司 Burner part for a burner and burner for a gas turbine having such a burner part

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383850B2 (en) * 2005-01-18 2008-06-10 Peerless Mfg. Co. Reagent injection grid
US7350963B2 (en) * 2005-02-04 2008-04-01 Hamilton Beach Brands, Inc. Blender jar
US7797944B2 (en) 2006-10-20 2010-09-21 United Technologies Corporation Gas turbine engine having slim-line nacelle
US7870721B2 (en) * 2006-11-10 2011-01-18 United Technologies Corporation Gas turbine engine providing simulated boundary layer thickness increase
US8727267B2 (en) * 2007-05-18 2014-05-20 United Technologies Corporation Variable contraction ratio nacelle assembly for a gas turbine engine
US8402739B2 (en) * 2007-06-28 2013-03-26 United Technologies Corporation Variable shape inlet section for a nacelle assembly of a gas turbine engine
US9228534B2 (en) 2007-07-02 2016-01-05 United Technologies Corporation Variable contour nacelle assembly for a gas turbine engine
US7900871B2 (en) * 2007-07-20 2011-03-08 Textron Innovations, Inc. Wing leading edge having vortex generators
US9004399B2 (en) 2007-11-13 2015-04-14 United Technologies Corporation Nacelle flow assembly
US8192147B2 (en) 2007-12-14 2012-06-05 United Technologies Corporation Nacelle assembly having inlet bleed
ATE554346T1 (en) * 2009-03-16 2012-05-15 Alstom Technology Ltd BURNER FOR A GAS TURBINE AND METHOD FOR THE LOCAL COOLING OF HOT GAS STREAMS PASSING THROUGH A BURNER
US8528601B2 (en) * 2009-03-30 2013-09-10 The Regents Of The University Of Michigan Passive boundary layer control elements
US8870124B2 (en) * 2009-07-10 2014-10-28 Peter Ireland Application of elastomeric vortex generators
KR101005661B1 (en) * 2009-09-08 2011-01-05 김낙회 Propulsion device using fluid flow
US8434723B2 (en) * 2010-06-01 2013-05-07 Applied University Research, Inc. Low drag asymmetric tetrahedral vortex generators
US8881500B2 (en) * 2010-08-31 2014-11-11 General Electric Company Duplex tab obstacles for enhancement of deflagration-to-detonation transition
US8746053B2 (en) 2010-12-16 2014-06-10 Inventus Holdings, Llc Method for determining optimum vortex generator placement for maximum efficiency on a retrofitted wind turbine generator of unknown aerodynamic design
RU2561956C2 (en) 2012-07-09 2015-09-10 Альстом Текнолоджи Лтд Gas-turbine combustion system
KR20140018036A (en) * 2012-08-03 2014-02-12 김낙회 Propulsion device using fluid flow
CN105431632A (en) * 2012-11-30 2016-03-23 伦斯勒理工学院 Methods and systems of modifying air flow at building structures
RU2596077C2 (en) * 2014-12-15 2016-08-27 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Slot-type injector-vortex generator and operation method thereof
EP3081862B1 (en) 2015-04-13 2020-08-19 Ansaldo Energia Switzerland AG Vortex generating arrangement for a pre-mixing burner of a gas turbine and gas turbine with such vortex generating arrangement
JP6377569B2 (en) * 2015-04-28 2018-08-22 住友金属鉱山株式会社 Fluid blowing apparatus and chemical reaction apparatus using the same
US9982915B2 (en) 2016-02-23 2018-05-29 Gilles Savard Air heating unit using solar energy
CN108536907B (en) * 2018-03-01 2021-11-30 华北电力大学 Wind turbine far-field wake flow analytic modeling method based on simplified momentum theorem
CN108629461B (en) * 2018-05-14 2021-11-12 华北电力大学 Near-field wake flow prediction model based on simplified momentum theorem
JP7063973B1 (en) * 2020-11-27 2022-05-09 三菱重工業株式会社 Manufacturing method of vortex generator for wind turbine blades, wind turbine blades and wind power generators, and wind turbine blades

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623786A1 (en) * 1993-04-08 1994-11-09 ABB Management AG Combustion chamber
EP0745809A1 (en) * 1995-06-02 1996-12-04 ABB Management AG Vortex generator for combustion chamber
CH688868A5 (en) * 1993-04-08 1998-04-30 Asea Brown Boveri Through-flow channel with eddy generator

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
SE320225B (en) * 1968-06-17 1970-02-02 Svenska Flygmotorer Ab
US3671208A (en) * 1970-10-09 1972-06-20 Wayne G Medsker Fluid mixing apparatus
US4026527A (en) * 1976-05-03 1977-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Vortex generator for controlling the dispersion of effluents in a flowing liquid
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
DE3043239C2 (en) * 1980-11-15 1985-11-28 Balcke-Dürr AG, 4030 Ratingen Method and device for mixing at least two fluid partial flows
US4899772A (en) * 1988-10-20 1990-02-13 Rockwell International Corporation Mixing aids for supersonic flows
US5422443A (en) * 1991-10-18 1995-06-06 Hughes Missile Systems Company Rocket exhaust disrupter shapes
US5361828A (en) * 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
EP0620403B1 (en) * 1993-04-08 1996-12-04 ABB Management AG Mixing and flame stabilizing device in a combustion chamber with premixing combustion
DE59401295D1 (en) * 1993-04-08 1997-01-30 Abb Management Ag Mixing chamber
CH687831A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Premix burner.
EP0619133B1 (en) * 1993-04-08 1996-11-13 ABB Management AG Mixing receptacle
CH687832A5 (en) * 1993-04-08 1997-02-28 Asea Brown Boveri Fuel supply for combustion.
DE4411622A1 (en) * 1994-04-02 1995-10-05 Abb Management Ag Premix burner
DE4417538A1 (en) * 1994-05-19 1995-11-23 Abb Management Ag Combustion chamber with self-ignition
DE4426351B4 (en) * 1994-07-25 2006-04-06 Alstom Combustion chamber for a gas turbine
DE19510744A1 (en) * 1995-03-24 1996-09-26 Abb Management Ag Combustion chamber with two-stage combustion
DE19544816A1 (en) * 1995-12-01 1997-06-05 Abb Research Ltd Mixing device
DE19820992C2 (en) * 1998-05-11 2003-01-09 Bbp Environment Gmbh Device for mixing a gas stream flowing through a channel and method using the device
DE19905996A1 (en) * 1999-02-15 2000-08-17 Abb Alstom Power Ch Ag Fuel lance for injecting liquid and / or gaseous fuels into a combustion chamber
AR023745A1 (en) * 1999-04-19 2002-09-04 Koch Glitsch Inc VORTICIAL STATIC MIXER AND METHOD FOR USE
US6886973B2 (en) * 2001-01-03 2005-05-03 Basic Resources, Inc. Gas stream vortex mixing system
FI116147B (en) * 2001-02-21 2005-09-30 Metso Paper Inc Mixing flows in papermaking process involves by feeding first flow through a tube, and feeding second flow into first flow via feed opening which is in connection with space limited by the tube
EP1439349A1 (en) * 2003-01-14 2004-07-21 Alstom Technology Ltd Combustion method and burner for carrying out the method
US6907919B2 (en) * 2003-07-11 2005-06-21 Visteon Global Technologies, Inc. Heat exchanger louver fin
ATE466651T1 (en) * 2004-02-27 2010-05-15 Haldor Topsoe As DEVICE FOR MIXING FLUID STREAMS
PL1681090T3 (en) * 2005-01-17 2007-10-31 Balcke Duerr Gmbh Apparatus and method for mixing of a fluid flow in a flow channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623786A1 (en) * 1993-04-08 1994-11-09 ABB Management AG Combustion chamber
CH688868A5 (en) * 1993-04-08 1998-04-30 Asea Brown Boveri Through-flow channel with eddy generator
EP0745809A1 (en) * 1995-06-02 1996-12-04 ABB Management AG Vortex generator for combustion chamber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2071155A2 (en) * 2007-12-14 2009-06-17 United Technologies Corporation Nacelle assembly with turbulators
EP2071155A3 (en) * 2007-12-14 2012-02-22 United Technologies Corporation Nacelle assembly with turbulators
CN108121864A (en) * 2017-12-15 2018-06-05 北京理工大学 A kind of horizontal secondary method of flow control of end wall based on vortex generator
CN108121864B (en) * 2017-12-15 2021-05-25 北京理工大学 End wall transverse secondary flow control method based on vortex generator
CN115362333A (en) * 2020-03-31 2022-11-18 西门子能源全球有限两合公司 Burner part for a burner and burner for a gas turbine having such a burner part
CN115362333B (en) * 2020-03-31 2023-08-25 西门子能源全球有限两合公司 Combustor component of a combustor and combustor of a gas turbine having such a combustor component

Also Published As

Publication number Publication date
EP1382379B1 (en) 2007-05-30
DE10330023A1 (en) 2004-02-05
EP1382379A3 (en) 2004-05-12
US20040037162A1 (en) 2004-02-26
DE50307355D1 (en) 2007-07-12
JP2004069061A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
EP1382379A2 (en) Vortex generator with controlled downstream flowpattern
EP0619457B1 (en) Premix burner
EP0620403B1 (en) Mixing and flame stabilizing device in a combustion chamber with premixing combustion
EP0619133B1 (en) Mixing receptacle
EP0623786B1 (en) Combustion chamber
DE10303858B4 (en) Fuel injector assembly with induced turbulence
DE19608349A1 (en) Pressure atomizer nozzle
DE3419423A1 (en) Spray nozzle
DE69817720T2 (en) Cooled gas turbine blade with turbulators
CH680467A5 (en)
EP1243343A1 (en) Dual fluid spray nozzle
WO2007098865A1 (en) Two-component nozzle with secondary air nozzles arranged in circular form
CH687832A5 (en) Fuel supply for combustion.
DE19547912A1 (en) Burners for a heat generator
EP0807213B1 (en) Flow-guiding body for gas turbine combustion chambers
EP0924460B1 (en) Two-stage pressurised atomising nozzle
EP0994300A1 (en) Burner for operating a heat generator
EP0924461B1 (en) Two-stage pressurised atomising nozzle
DE19841401C2 (en) Two-component flat jet nozzle
EP0903540B1 (en) Burner for operating a heat generator
EP0833104B1 (en) Burner for operating a combustion chamber
DE69931519T2 (en) METHOD AND DEVICE FOR MIXING FLOWING GASES AND POWDER MATERIALS
EP0730121A2 (en) Premix burner
EP0913630A1 (en) Burner for the operation of a heat generator
DE4206715A1 (en) Mixing or impregnating of liquid flowing in duct with a gas - by introducing gas into liq. such that it is conc. near outer surface of flowing liq., then accelerating mixt. in tapered duct section

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041030

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20050503

RTI1 Title (correction)

Free format text: PROCESS FOR CONTROLLING THE DOWNSTREAM FLOWPATTERN OF A VORTEX GENERATOR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50307355

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307355

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307355

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307355

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307355

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307355

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170719

Year of fee payment: 15

Ref country code: DE

Payment date: 20170724

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307355

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180707

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201