EP0961905B1 - Fuel combustion device and method - Google Patents

Fuel combustion device and method Download PDF

Info

Publication number
EP0961905B1
EP0961905B1 EP98907987A EP98907987A EP0961905B1 EP 0961905 B1 EP0961905 B1 EP 0961905B1 EP 98907987 A EP98907987 A EP 98907987A EP 98907987 A EP98907987 A EP 98907987A EP 0961905 B1 EP0961905 B1 EP 0961905B1
Authority
EP
European Patent Office
Prior art keywords
fire tube
air line
air
burner according
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98907987A
Other languages
German (de)
French (fr)
Other versions
EP0961905A1 (en
Inventor
Anatolij Vladimirovic Sudarev
Jevgenij Dimitrijevic Vinogradov
Jurij Ivanovic Zacharov
Stanislav Vesely
Gustav Poslusny
Karl Peters
Karl-Heinz Scholz
Erik Zizow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ekol Spol Sro
EON Ruhrgas AG
Original Assignee
Ekol Spol Sro
Ruhrgas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ekol Spol Sro, Ruhrgas AG filed Critical Ekol Spol Sro
Publication of EP0961905A1 publication Critical patent/EP0961905A1/en
Application granted granted Critical
Publication of EP0961905B1 publication Critical patent/EP0961905B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2206/00Burners for specific applications
    • F23D2206/10Turbines

Definitions

  • the invention relates to a burner for spraying, in particular gaseous ones Fuels, with a substantially cylindrical flame tube, an am upstream end of the flame tube arranged flame tube cover, one fuel nozzle opening centrally in the flame tube cover and a plurality of first and second means for introducing combustion air into the flame tube.
  • Such a burner is known for example from FR-A2 272 338.
  • a flame tube has two combustion zones into which combustion air flows through a plurality of first and second openings.
  • the invention further relates to a method for operating the above-mentioned burner.
  • a combustion zone is usually formed in the head region of the burner, in which the combustion air through corresponding openings in the flame tube cover and in Flame tube is blown in, whereby the flame tube material is cooled. Further combustion air is supplied through scale-like openings that over the entire flame tube are distributed.
  • the invention is therefore based on the object, the temperature distribution equalize in the flame tube and thereby reduce the generation of pollutants.
  • the means for introducing combustion air into the flame tube as an air guide are formed so that the first and second air guide in the counterflow direction Axis of the flame tube are inclined so that the first air guide on the flame tube end while the second air guiding pipe extends into the flame tube, and that every second air guide stub a first air guide stub upstream directly assigned.
  • the method of the type mentioned is thereby to solve the problem characterized in that the combustion air is blown into the combustion zone in this way is that in a plane perpendicular to the axis of the flame tube a highly turbulent Toroidal vortex arises, its direction of rotation in the inner area in counterflow is directed to the flow of the combustion products in the axial direction.
  • the toroidal swirl or swirl ring generated in the head area of the burner creates a very intensive turbulent circulation and thus a good mixing of fuel and air.
  • Increasing the degree of homogeneity of the fuel-air mixture reduces the number of local areas which have stoichiometric or near-stoichiometric mixture concentrations and, because of their extreme temperatures, form the main sources of the NO x emissions.
  • the combustion chamber according to the invention belongs to the so-called diffusion chambers, in which the speed of the combustion process is determined by the speed of the fuel-air swirling and not by the speed of the chemical reactions. Therefore, the increased mixing intensity due to the highly turbulent toroidal vortex in the upstream area of the flame tube leads to a shorter residence time of the combustion products in the high-temperature area, which has a favorable effect on the reduction of the NO x generation.
  • the invention leads to increased penetration of the fuel flow through from the first and air jets emerging air jets, which preferably a significant proportion of the total combustion air form.
  • the inside of the flame tube protruding second air guiding connection contribute to the construction of the vertebrae. This creates an even air distribution achieved over the flame tube cross-section and on this Way a reduction in the irregularities of the gas temperature field in the combustion zone. This is particularly so essential even when the combustion chamber is used as a turbine combustion chamber, in which actually one of their main areas of application is. Temperature peaks place a significant load on the turbine blades and shorten their lifespan.
  • the air jets flowing out of the second air duct penetrate deep into the hot gas flow. You cool thereby the high temperature area up to the axis of the flame tube.
  • the second air guiding nozzles protrude into the combustion zone into it, however, the temperature load masters that every second air guide upstream first air guide and preferably also a downstream third air guiding nozzle directly is assigned adjacent.
  • the second air baffle will be So by the from the first air guide and if necessary. Air exiting from the third air duct is cooled.
  • the number of similar first and third air guiding spigots can be increased by the same fourth air guide nozzle be seen in the circumferential direction, each between Adjacent second air guide are arranged. It was found that the cross-sectional distribution between the uniformity of the two types of air guide Temperature distribution at the combustion chamber outlet increased significantly.
  • a critical value for training an optimal highly turbulent toroidal vertebra is in addition to the arrangement the air guide stub whose angle of inclination against the axis of the Flame tube.
  • An angle of inclination has proven to be very favorable from 55 to 60 °.
  • Is critical furthermore the axial distance of the first air guide stub from the Fuel nozzle. It was found that this distance from the Flame tube diameter depends and preferably about the 0.70- is up to 0.85 times the flame tube diameter.
  • the invention not only enables intensification the fuel-air swirling and thus the combustion process, but also a high level of stabilization the pilot light in all load ranges.
  • Additional combustion air can be in the area of the flame tube cover are fed and cool them. Further there is the possibility of combustion air downstream of the air guide through openings in the flame tube wall. This measure proves to be advantageous for the reduction of carbon monoxide production.
  • the burner according to FIGS. 1 and 2 has a flame tube cover 1, in the center of which is connected to a gas lance Fuel nozzle 2 opens. On the flame tube cover 1 is followed by a cylindrical flame tube 3, the Diameter is indicated with d.
  • a plurality of first and second are on the flame tube 3 Air guide 4 or 5 arranged.
  • the first air guiding pipe 4 an upstream first row 6 and the second air guide 5 an immediately adjacent downstream second row 7.
  • All air control sockets 4 and 5 are in countercurrent to the axis of the Flame tube 3 inclined, namely by a common angle ⁇ , which is 60 ° in the case of the exemplary embodiment.
  • the combustion air is predominantly introduced into the combustion zone through the air guide nozzles 4 and 5 in such a way that a highly turbulent toroidal vortex or vortex ring is formed, which is indicated in FIG. 1 by dashed arrow lines.
  • the intensive mixing leads to a homogeneous distribution of the fuel in the combustion air, with the result of reduced NO x formation due to the reduced time spent in the combustion zone, combined with an even temperature distribution in the flame tube.
  • the distance x between the air guide 4 of the first Row 6 and the fuel nozzle 2 is 0.70 times that Flame tube diameter d. This helps to stabilize the Vortex ring and also ensures a stable Ignition behavior over the entire performance range.
  • the mouths are aligned of the first air guide stub 4 with the first row 6 the flame tube, while the second air guide 5 of protrude second row 7 into the flame tube, namely around a distance y which is 0.17 times the diameter of the flame tube d is.
  • the emerging from the second air guide 5 Air jets penetrate to the axis of the flame tube 3 into the combustion zone, capture the central one Area of the combustion zone and then form in the course of their upstream movement along with those from the first air nozzle 4 emerging air jets the mentioned highly turbulent toroidal vertebrae. That kind of Injection of the combustion air via the balanced combination the air guide 4 and the air guide 5 guaranteed a very even distribution across the cross-section the combustion zone, which helps to even out the Temperature distribution contributes.
  • the main air entry takes place through the first air duct 4.
  • the arrangement of the air guide stubs 4 and 5 is such that that upstream of every second air guide 5 first air guide 4 is located.
  • the in the combustion zone protruding second air guide socket 5 are through the emerging from the assigned first air guide 4 Reliably cooled combustion air.
  • Another feature that is used for vortex formation or mixture formation and to homogenize the mixture and so to lower the temperature and make the Temperature distribution contributes is that the Cross section of the first air guiding nozzle 4 - in contrast to the cylindrical cross section of the second air guide stub 5 - Is elongated in the direction of the flame tube axis, so that So the air intake over a certain axial length extends.
  • Two vanes 8 in the first Air guiding 4 contribute to the combustion air initiate specifically in the flame tube 3.
  • the favorable flow also contributes to the fact that respective outlet mouth of the second air guide 5 of the second row 7 in a plane perpendicular to the axis of the associated Air guide is located.
  • the flame tube cover 1 forms on the inside a conical starting from the fuel nozzle 2 Extension to flame tube 3.
  • This design of the Flame tube cover area helps to stabilize the vortex flow at.
  • the gas is inclined outwards blown in, for which purpose the fuel nozzle outlet openings 9 has in the direction of flow away from the axis of the Flame tube 3 are inclined.
  • Figures 3 and 4 represent a very particularly advantageous Embodiment of the burner, which differs from the according to FIGS. 1 and 2 essentially differs in that that the second air guide 5 downstream third air guide 4 'are assigned.
  • the latter therefore deliver one proportional jet of air located at the downstream Side of the associated air duct 5 extended. This enhances the cooling effect and supports the rest of the Formation of the highly turbulent toroidal vertebra.
  • both embodiments have in common that, as from the Figures 2 and 4 can be seen, fourth air guide 4 '' provided are. Viewed in the axial direction, these are each between adjacent second air guide stub 5. At they are in the embodiment according to FIGS. 1 and 2 at the level of the first air guiding spout 4. In the embodiment according to Figures 3 and 4, they are aligned, in the circumferential direction seen, with the first and third air guide 4 and 4 '. Otherwise, they correspond to the angle of inclination and arrangement of the first and third air guide stubs.
  • the number of second air guide stubs is less than that the different types of air duct. This also applies to that Cross-sectional ratio. So the total cross section is second air guide nozzle 5 0.6 to 0.7 times the total cross section of the first and fourth air guiding pieces 4, 4 '' (Fig. 1 and 2) or the total cross section of the first, third and fourth air guide 4, 4 ', 4' '(Fig. 3 and 4).
  • the flame tube 3 has both exemplary embodiments further openings for Combustion air to reduce CO formation. Likewise openings in the flame tube cover 1 are not shown and in the upstream region of the flame tube 3, wherein the combustion air entering here mainly for cooling of flame tube cover and flame tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Gas Burners (AREA)
  • Fuel Cell (AREA)

Abstract

The fuel is fed centrally into a fire tube (3), where it is mixed with combustion air in a combustion zone. The air exits through first and second air line nozzles (4 or 5) which are arranged in two directly adjoining rows (6, 7) and inclined in the direction of counterflow at an angle of 60° to the axis of the fire tube. The distance (x) between the fuel nozzle (9) and the openings of the first air line nozzles (4) is 0.70 times the diameter of the fire tube. In addition, the second air line nozzles (5) extend into the fire tube by a distance (y) which is 0.17 times the diameter of the fire tube. The total cross-section of the second air line nozzles (5) is 0.6 times that of the first air line nozzles (4). A highly turbulent toroidal eddy forms inside the fire tube (3) which generates a very homogeneous mixture across the cross-section of said fire tube (3). This results in lower NOx values and even temperature distribution already inside the fire tube.

Description

Die Erfindung betrifft einen Brenner für zum Versprühen geeignete, insbesondere gasförmige Brennstoffe, mit einem im wesentlichen zylindrischen Flammrohr, einem am stromauf gelegenen Ende des Flammrohres angeordneten Flammrohrdeckel, einer zentral im Flammrohrdeckel mündenden Brennstoffdüse und einer Mehrzahl von ersten und zweiten Mitteln zum Einleiten von Verbrennungsluft in das Flammrohr.The invention relates to a burner for spraying, in particular gaseous ones Fuels, with a substantially cylindrical flame tube, an am upstream end of the flame tube arranged flame tube cover, one fuel nozzle opening centrally in the flame tube cover and a plurality of first and second means for introducing combustion air into the flame tube.

Derartige Bauformen finden vor allen Dingen als Standardbrenner für Gasturbinen Anwendung.Such designs are used above all as standard burners for gas turbines.

Ein derartiger Brenner ist beispielsweise aus der FR-A2 272 338 bekannt.
Ein Flammrohr weist zwei Verbrennungszonen auf, in die Verbrennungsluft durch eine Mehrzahl von ersten und zweiten Öffnungen strömt.
Such a burner is known for example from FR-A2 272 338.
A flame tube has two combustion zones into which combustion air flows through a plurality of first and second openings.

Ferner betrifft die Erfindung ein Verfahren zum Betrieb des obengenannten Brenners.The invention further relates to a method for operating the above-mentioned burner.

Ein wesentliches Ziel modemer Verbrennungstechnik besteht darin, Abgase mit geringen Schadstoffwerten zu erzeugen. Neben vollständigem Ausbrand zur Vermeidung von Kohlenmonoxid werden insbesondere niedrige NOx-Werte angestriebt.An essential goal of modern combustion technology is to produce exhaust gases with low pollutant values. In addition to complete burnout to avoid carbon monoxide, low NO x values in particular are driven.

Üblicherweise wird im Kopfbereich des Brenners eine Verbrennungszone gebildet, in die die Verbrennungsluft durch entsprechende Öffnungen im Flammrohrdeckel und im Flammrohr eingeblasen wird, wobei eine Kühlung des Flammrohrmaterials erfolgt. Weitere Verbrennungsluft wird durch schuppenartige Öffnungen zugeführt, die über das gesamte Flammrohr verteilt sind.A combustion zone is usually formed in the head region of the burner, in which the combustion air through corresponding openings in the flame tube cover and in Flame tube is blown in, whereby the flame tube material is cooled. Further combustion air is supplied through scale-like openings that over the entire flame tube are distributed.

Es wurde gefunden, daß derartige Vorrichtungen und Verfahren noch verbesserungsfähig sind. Der Erfindung liegt daher die Aufgabe zugrunde, die Temperaturverteilung im Flammrohr zu vergleichmäßigen und dadurch die Schadstofferzeugung zu vermindern.It has been found that such devices and methods can still be improved are. The invention is therefore based on the object, the temperature distribution equalize in the flame tube and thereby reduce the generation of pollutants.

Diese Aufgabe wird mit der Vorrichtung der eingangs genannten Art dadurch gelöst, daß die Mittel zum Einleiten von Verbrennungsluft in das Flammrohr als Luftleitstutzen ausgebildet sind, daß die ersten und zweiten Luftleitstutzen in Gegenstromrichtung zur Achse des Flammrohres hin geneigt sind, daß die ersten Luftleitstutzen am Flammrohr enden, während sich die zweiten Luftleitstutzen in das Flammrohr hineinerstrecken, und daß jedem zweiten Luftleitstutzen ein erster Luftleitstutzen stromauf direkt benachbart zugeordnet ist.This object is achieved with the device of the type mentioned at the outset by that the means for introducing combustion air into the flame tube as an air guide are formed so that the first and second air guide in the counterflow direction Axis of the flame tube are inclined so that the first air guide on the flame tube end while the second air guiding pipe extends into the flame tube, and that every second air guide stub a first air guide stub upstream directly assigned.

Das Verfahren der eingangs genannten Art ist zur Lösung der gestellten Aufgabe dadurch gekennzeichnet, daß die Verbrennungsluft derart in die Verbrennungszone eingeblasen wird, daß in einer Ebene senkrecht zur Achse des Flammrohres ein hochturbulenter toroidaler Wirbel entsteht, dessen Drehrichtung im inneren Bereich im Gegenstrom zur Strömung der Verbrennungsprodukte in Axialrichtung gerichtet ist.The method of the type mentioned is thereby to solve the problem characterized in that the combustion air is blown into the combustion zone in this way is that in a plane perpendicular to the axis of the flame tube a highly turbulent Toroidal vortex arises, its direction of rotation in the inner area in counterflow is directed to the flow of the combustion products in the axial direction.

Wesentliche Weiterbildungen der Erfindung ergeben sich aus den abhängigen Patentansprüchen.Significant developments of the invention result from the dependent claims.

Der im Kopfbereich des Brenners erzeugte toroidale Wirbel oder Wirbelring erzeugt eine sehr intensive turbulente Umwälzung und damit eine gute Vermischung von Brennstoff und Luft. Durch die Erhöhung des Homogenitätsgrades des Brennstoff-Luft-Gemisches vermindert sich die Anzahl derjenigen örtlichen Bereiche, die stöchiometrische oder nah-stöchiometrische Gemischkonzentrationen aufweisen und aufgrund ihrer extremen Temperaturen die Hauptquellen der NOx-Emmissionen bilden.The toroidal swirl or swirl ring generated in the head area of the burner creates a very intensive turbulent circulation and thus a good mixing of fuel and air. Increasing the degree of homogeneity of the fuel-air mixture reduces the number of local areas which have stoichiometric or near-stoichiometric mixture concentrations and, because of their extreme temperatures, form the main sources of the NO x emissions.

Die erfindungsgemäße Brennkammer gehört zu den sogenannten Diffusionskammem, in denen die Geschwindigkeit des Verbrennungsprozesses durch die Geschwindigkeit der Brennstoff-Luft-Verwirbelung bestimmt wird und nicht durch die Geschwindigkeit der chemischen Reaktionen. Daher führt die durch den hochturbulenten toroidalen Wirbel im stromauf gelegenen Bereich des Flammrohres gesteigerte Vermischungsintensität zu einer kürzeren Verweildauer der Verbrennungsprodukte im Hochtemperaturbereich, was sich günstig auf die Reduzierung der NOx-Erzeugung auswirkt. The combustion chamber according to the invention belongs to the so-called diffusion chambers, in which the speed of the combustion process is determined by the speed of the fuel-air swirling and not by the speed of the chemical reactions. Therefore, the increased mixing intensity due to the highly turbulent toroidal vortex in the upstream area of the flame tube leads to a shorter residence time of the combustion products in the high-temperature area, which has a favorable effect on the reduction of the NO x generation.

Außerdem führt die Erfindung zu einer verstärkten Durchdringung des Brennstoffstroms durch die aus den ersten und zweiten Luftleitstutzen austretenden Luftstrahlen, die vorzugsweise einen wesentlichen Anteil der gesamten Verbrennungsluft bilden. Insbesondere die ins Innere des Flammrohres hineinragenden zweiten Luftleitstutzen tragen zum Aufbau des Wirbels bei. Dadurch wird eine gleichmäßige Luftverteilung über dem Flammrohrquerschnitt erzielt und auf diese Weise eine Verringerung der Ungleichmäßigkeiten des Gastemperaturfeldes in der Verbrennungszone. Dies ist insbesondere auch dann von wesentlicher Bedeutung, wenn die Brennkammer als Turbinenbrennkammer eingesetzt wird, worin tatsächlich eines ihrer hauptsächlichen Anwendungsgebiete liegt. Temperaturspitzen stellen eine erhebliche Belastung der Turbinenschaufeln dar und verkürzen deren Lebenszeit.In addition, the invention leads to increased penetration of the fuel flow through from the first and air jets emerging air jets, which preferably a significant proportion of the total combustion air form. Especially the inside of the flame tube protruding second air guiding connection contribute to the construction of the vertebrae. This creates an even air distribution achieved over the flame tube cross-section and on this Way a reduction in the irregularities of the gas temperature field in the combustion zone. This is particularly so essential even when the combustion chamber is used as a turbine combustion chamber, in which actually one of their main areas of application is. Temperature peaks place a significant load on the turbine blades and shorten their lifespan.

Die aus dem zweiten Luftleitstutzen ausströmenden Luftstrahlen dringen tief in den Heißgasstrom ein. Sie kühlen dadurch den Hochtemperaturbereich bis zur Achse des Flammrohres.The air jets flowing out of the second air duct penetrate deep into the hot gas flow. You cool thereby the high temperature area up to the axis of the flame tube.

Zwar ragen die zweiten Luftleitstutzen in die Verbrennungszone hinein, jedoch wird die Temperaturbelastung dadurch beherrscht, daß jedem zweiten Luftleitstutzen ein stromauf gelegener erster Luftleitstutzen und vorzugsweise auch ein stromab gelegener dritter Luftleitstutzen direkt benachbart zugeordnet ist. Die zweiten Luftleitstutzen werden also durch die aus den ersten Luftleitstutzen und ggfs. aus den dritten Luftleitstutzen austretende Luft gekühlt. Die Zahl der gleichartigen ersten und dritten Luftleitstutzen kann noch durch gleichartige vierte Luftleitstutzen erhöht werden, die, gesehen in Umfangsrichtung, jeweils zwischen benachbarten zweiten Luftleitstutzen angeordnet sind. Es wurde gefunden, daß die Querschnittsverteilung zwischen den beiden Arten von Luftleitstutzen die Gleichmäßigkeit der Temperaturverteilung am Brennkammerausgang wesentlich erhöht. The second air guiding nozzles protrude into the combustion zone into it, however, the temperature load masters that every second air guide upstream first air guide and preferably also a downstream third air guiding nozzle directly is assigned adjacent. The second air baffle will be So by the from the first air guide and if necessary. Air exiting from the third air duct is cooled. The number of similar first and third air guiding spigots can be increased by the same fourth air guide nozzle be seen in the circumferential direction, each between Adjacent second air guide are arranged. It was found that the cross-sectional distribution between the uniformity of the two types of air guide Temperature distribution at the combustion chamber outlet increased significantly.

Ein kritischer Wert für die Ausbildung eines optimalen hochturbulenten toroidalen Wirbels ist neben der Anordnung der Luftleitstutzen deren Neigungswinkel gegen die Achse des Flammrohres. Als sehr günstig hat sich ein Neigungswinkel von 55 bis 60° herausgestellt. Von kritischer Bedeutung ist ferner der axiale Abstand der ersten Luftleitstutzen von der Brennstoffdüse. Es wurde gefunden, daß dieser Abstand vom Flammrohrdurchmesser abhängt und vorzugsweise ca. das 0,70- bis 0,85-fache des Flammrohrdurchmessers beträgt.A critical value for training an optimal highly turbulent toroidal vertebra is in addition to the arrangement the air guide stub whose angle of inclination against the axis of the Flame tube. An angle of inclination has proven to be very favorable from 55 to 60 °. Is critical furthermore the axial distance of the first air guide stub from the Fuel nozzle. It was found that this distance from the Flame tube diameter depends and preferably about the 0.70- is up to 0.85 times the flame tube diameter.

Die Erfindung ermöglicht nicht nur eine Intensivierung der Brennstoff-Luft-Verwirbelung und damit des Verbrennungsprozesses, sondern gleichzeitig auch eine hohe Stabilisierung der Zündflamme in allen Lastbereichen.The invention not only enables intensification the fuel-air swirling and thus the combustion process, but also a high level of stabilization the pilot light in all load ranges.

Für eine günstige Luftverteilung über dem Flammrohrquerschnitt und damit für ein sehr gleichmäßiges Gastemperaturfeld am Ausgang der Brennkammer ist neben der Anordnung der Luftleitstutzen deren Abstand von der Achse des Flammrohres von kritischer Bedeutung. Auch diese Werte orientieren sich wieder am Flammrohrdurchmesser. Während die Ausströmmündungen der ersten sowie ggfs. der dritten und vierten Luftleitstutzen mit dem Flammrohr fluchten, sollten die Ausströmmündungen der zweiten Luftleitstutzen in einem Abstand zum Flammrohr liegen, der vorzugsweise ca. das 0,15- bis 0,18-fache des Flammrohrdurchmessers beträgt. Kritisch ist in diesem Zusammenhang ferner das Verhältnis zwischen den Gesamtquerschnitten der beiden Arten von Luftleitstutzen. Dabei hat es sich als besonders vorteilhaft herausgestellt, daß der Gesamtquerschnitt der zweiten Luftleitstutzen ca. das 0,6- bis 0,7-fache des Gesamtquerschnitts der ersten sowie ggfs. der dritten und vierten Luftleitstutzen beträgt.For a favorable air distribution over the flame tube cross section and thus for a very uniform gas temperature field at the exit of the combustion chamber is next to the arrangement of Air guiding pipe their distance from the axis of the flame tube of critical importance. These values are also based again on the flame tube diameter. During the outflows the first and, if necessary, the third and fourth air guide stubs aligned with the flame tube, the outflows should the second air duct at a distance to the flame tube, which is preferably about 0.15 to 0.18 times the flame tube diameter. Is critical in this context also the relationship between the Total cross sections of the two types of air guiding spigot. It turned out to be particularly advantageous that the total cross section of the second air guiding spigot is approx. 0.6 to 0.7 times the total cross section of the first and if necessary, the third and fourth air guide spigot.

Zusätzliche Verbrennungsluft kann im Bereich des Flammrohrdeckels zugeführt werden und diesen dabei kühlen. Ferner besteht die Möglichkeit, stromab der Luftleitstutzen Verbrennungsluft durch Öffnungen in der Flammrohrwandung zuzuführen. Diese Maßnahme erweist sich als vorteilhaft zur Minderung der Kohlenmonoxiderzeugung. Additional combustion air can be in the area of the flame tube cover are fed and cool them. Further there is the possibility of combustion air downstream of the air guide through openings in the flame tube wall. This measure proves to be advantageous for the reduction of carbon monoxide production.

Die Erfindung wird im folgenden anhand eines bevorzugten Ausführungsbeispiels im Zusammenhang mit der beiliegenden Zeichnung näher erläutert. Die Zeichnung zeigt in:

Fig. 1
in schematischer Darstellung einen axialen Teilschnitt durch einen Brenner nach einer ersten Ausführungsform;
Fig. 2
eine Ansicht in Richtung des Pfeils A in Fig. 1;
Fig. 3
in schematischer Darstellung einen axialen Teilschnitt durch einen Brenner nach einer zweiten Ausführungsform;
Fig. 4
eine Ansicht in Richtung des Pfeils A in Fig. 3.
The invention is explained below with reference to a preferred embodiment in connection with the accompanying drawings. The drawing shows in:
Fig. 1
a schematic representation of a partial axial section through a burner according to a first embodiment;
Fig. 2
a view in the direction of arrow A in Fig. 1;
Fig. 3
a schematic representation of a partial axial section through a burner according to a second embodiment;
Fig. 4
a view in the direction of arrow A in Fig. 3rd

Der Brenner nach den Fig. 1 und 2 weist einen Flammrohrdeckel 1 auf, in dessen Zentrum eine an eine Gaslanze angeschlossene Brennstoffdüse 2 mündet. An den Flammrohrdeckel 1 schließt sich ein zylindrisches Flammrohr 3 an, dessen Durchmesser mit d angegeben ist.The burner according to FIGS. 1 and 2 has a flame tube cover 1, in the center of which is connected to a gas lance Fuel nozzle 2 opens. On the flame tube cover 1 is followed by a cylindrical flame tube 3, the Diameter is indicated with d.

Am Flammrohr 3 ist eine Mehrzahl von ersten und zweiten Luftleitstutzen 4 bzw. 5 angeordnet. Von diesen bilden die ersten Luftleitstutzen 4 eine stromauf gelegene erste Reihe 6 und die zweiten Luftleitstutzen 5 eine unmittelbar benachbarte stromab gelegene zweite Reihe 7. Sämtliche Luftleitstutzen 4 und 5 sind in Gegenstromrichtung zur Achse des Flammrohres 3 geneigt, und zwar um einen gemeinsamen Winkel ϕ, der im Falle des Ausführungsbeispiels 60° beträgt.A plurality of first and second are on the flame tube 3 Air guide 4 or 5 arranged. Of these, the first air guiding pipe 4 an upstream first row 6 and the second air guide 5 an immediately adjacent downstream second row 7. All air control sockets 4 and 5 are in countercurrent to the axis of the Flame tube 3 inclined, namely by a common angle ϕ, which is 60 ° in the case of the exemplary embodiment.

Die Verbrennungsluft wird überwiegend durch die Luftleitstutzen 4 und 5 derart in die Verbrennungszone eingeleitet, daß sich ein hochturbulenter toroidaler Wirbel oder Wirbelring bildet, der in Fig. 1 durch gestrichelte Pfeillinien angedeutet ist. Die intensive Durchmischung führt zu einer homogenen Verteilung des Brennstoffs in der Verbrennungsluft, mit dem Ergebnis verminderter NOx-Bildung aufgrund reduzierter Aufenthaltszeit in der Verbrennungszone, verbunden mit einer Vergleichmäßigung der Temperaturverteilung bereits im Flammrohr.The combustion air is predominantly introduced into the combustion zone through the air guide nozzles 4 and 5 in such a way that a highly turbulent toroidal vortex or vortex ring is formed, which is indicated in FIG. 1 by dashed arrow lines. The intensive mixing leads to a homogeneous distribution of the fuel in the combustion air, with the result of reduced NO x formation due to the reduced time spent in the combustion zone, combined with an even temperature distribution in the flame tube.

Der Abstand x zwischen den Luftleitstutzen 4 der ersten Reihe 6 und der Brennstoffdüse 2 beträgt das 0,70-fache des Flammrohrdurchmessers d. Dies trägt zur Stabilisierung des Wirbelrings bei und gewährleistet außerdem ein stabiles Zündverhalten über den gesamten Leistungsbereich.The distance x between the air guide 4 of the first Row 6 and the fuel nozzle 2 is 0.70 times that Flame tube diameter d. This helps to stabilize the Vortex ring and also ensures a stable Ignition behavior over the entire performance range.

Wie deutlich aus Fig. 1 ersichtlich, fluchten die Mündungen der ersten Luftleitstutzen 4 der ersten Reihe 6 mit dem Flammrohr, während die zweiten Luftleitstutzen 5 der zweiten Reihe 7 in das Flammrohr hineinragen, und zwar um einen Abstand y, der das 0,17-fache des Flammrohrdurchmessers d beträgt. Die aus den zweiten Luftleitstutzen 5 austretenden Luftstrahlen dringen also bis zur Achse des Flammrohres 3 in die Verbrennungszone ein, erfassen den zentralen Bereich der Verbrennungszone und bilden dann im Zuge ihrer stromaufwärts gerichteten Bewegung zusammen mit den aus den ersten Luftleitstutzen 4 austretenden Luftstrahlen den erwähnten hochturbulenten toroidalen Wirbel. Diese Art der Eindüsung der Verbrennungsluft über die ausgewogene Kombination der Luftleitstutzen 4 und der Luftleitstutzen 5 gewährleistet eine sehr gleichmäßige Verteilung über den Querschnitt der Verbrennungszone, was zur Vergleichmäßigung der Temperaturverteilung beiträgt. Der Hauptlufteintrag erfolgt durch die ersten Luftleitstutzen 4.As can be clearly seen from Fig. 1, the mouths are aligned of the first air guide stub 4 with the first row 6 the flame tube, while the second air guide 5 of protrude second row 7 into the flame tube, namely around a distance y which is 0.17 times the diameter of the flame tube d is. The emerging from the second air guide 5 Air jets penetrate to the axis of the flame tube 3 into the combustion zone, capture the central one Area of the combustion zone and then form in the course of their upstream movement along with those from the first air nozzle 4 emerging air jets the mentioned highly turbulent toroidal vertebrae. That kind of Injection of the combustion air via the balanced combination the air guide 4 and the air guide 5 guaranteed a very even distribution across the cross-section the combustion zone, which helps to even out the Temperature distribution contributes. The main air entry takes place through the first air duct 4.

Die Anordnung der Luftleitstutzen 4 und 5 ist so getroffen, daß sich stromauf jedes zweiten Luftleitstutzens 5 ein erster Luftleitstutzen 4 befindet. Die in die Verbrennungszone hineinragenden zweiten Luftleitstutzen 5 werden also durch die aus den zugeordneten ersten Luftleitstutzen 4 austretende Verbrennungsluft zuverlässig gekühlt.The arrangement of the air guide stubs 4 and 5 is such that that upstream of every second air guide 5 first air guide 4 is located. The in the combustion zone protruding second air guide socket 5 are through the emerging from the assigned first air guide 4 Reliably cooled combustion air.

Ein weiteres Merkmal, das zur Wirbelbildung bzw. Gemischbildung und zur Homogenisierung des Gemisches und damit zur Senkung der Temperatur und Vergleichmäßigung der Temperaturverteilung beiträgt, besteht darin, daß der Querschnitt der ersten Luftleitstutzen 4 - im Gegensatz zu dem zylindrischen Querschnitt der zweiten Luftleitstutzen 5 - in Richtung der Flammrohrachse langgestreckt ist, so daß sich also der Lufteintritt über eine gewisse axiale Länge erstreckt. Zwei Leitschaufeln 8 in den ersten Luftleitstutzen 4 tragen dazu bei, die Verbrennungsluft gezielt in das Flammrohr 3 einzuleiten.Another feature that is used for vortex formation or mixture formation and to homogenize the mixture and so to lower the temperature and make the Temperature distribution contributes is that the Cross section of the first air guiding nozzle 4 - in contrast to the cylindrical cross section of the second air guide stub 5 - Is elongated in the direction of the flame tube axis, so that So the air intake over a certain axial length extends. Two vanes 8 in the first Air guiding 4 contribute to the combustion air initiate specifically in the flame tube 3.

Zur günstigen Strömungsführung trägt ferner bei, daß die jeweilige Austrittsmündung der zweiten Luftleitstutzen 5 der zweiten Reihe 7 in einer Ebene senkrecht zur Achse des zugehörigen Luftleitstutzens liegt.The favorable flow also contributes to the fact that respective outlet mouth of the second air guide 5 of the second row 7 in a plane perpendicular to the axis of the associated Air guide is located.

Wie in Fig. 1 gezeigt, bildet der Flammrohrdeckel 1 innenseitig eine von der Brennstoffdüse 2 ausgehende konische Erweiterung bis zum Flammrohr 3 hin. Diese Gestaltung des Flammrohrdeckelbereichs trägt zur Stabilisierung der Wirbelströmung bei. In diese wird das Gas schräg nach außen hin eingeblasen, wozu die Brennstoffdüse Austrittsöffnungen 9 aufweist, die in Strömungsrichtung fort von der Achse des Flammrohres 3 geneigt sind.As shown in Fig. 1, the flame tube cover 1 forms on the inside a conical starting from the fuel nozzle 2 Extension to flame tube 3. This design of the Flame tube cover area helps to stabilize the vortex flow at. In this the gas is inclined outwards blown in, for which purpose the fuel nozzle outlet openings 9 has in the direction of flow away from the axis of the Flame tube 3 are inclined.

Die Figuren 3 und 4 stellen eine ganz besonders vorteilhafte Ausführungsform des Brenners dar, die sich von der nach den Figuren 1 und 2 im wesentlichen dadurch unterscheidet, daß den zweiten Luftleitstutzen 5 stromab dritte Luftleitstutzen 4' zugeordnet sind. Letztere liefern also einen anteiligen Luftstrahl, der sich an der stromab gelegenen Seite des zugehörigen Luftleitstutzens 5 entlangerstreckt. Dies verstärkt den Kühleffekt und unterstützt im übrigen die Ausbildung des hochturbulenten toroidalen Wirbels.Figures 3 and 4 represent a very particularly advantageous Embodiment of the burner, which differs from the according to FIGS. 1 and 2 essentially differs in that that the second air guide 5 downstream third air guide 4 'are assigned. The latter therefore deliver one proportional jet of air located at the downstream Side of the associated air duct 5 extended. This enhances the cooling effect and supports the rest of the Formation of the highly turbulent toroidal vertebra.

Beiden Ausführungsformen ist gemeinsam, daß, wie aus den Figuren 2 und 4 ersichtlich, vierte Luftleitstutzen 4'' vorgesehen sind. Diese liegen, in Axialrichtung gesehen, jeweils zwischen benachbarten zweiten Luftleitstutzen 5. Bei der Ausführungsform nach den Figuren 1 und 2 befinden sie sich auf der Höhe der ersten Luftleitstutzen 4. Bei der Ausführungsform nach den Figuren 3 und 4 fluchten sie, in Umfangsrichtung gesehen, mit den ersten und dritten Luftleitstutzen 4 und 4'. Im übrigen entsprechen sie nach Neigungswinkel und Anordnung den ersten und dritten Luftleitstutzen.Both embodiments have in common that, as from the Figures 2 and 4 can be seen, fourth air guide 4 '' provided are. Viewed in the axial direction, these are each between adjacent second air guide stub 5. At they are in the embodiment according to FIGS. 1 and 2 at the level of the first air guiding spout 4. In the embodiment according to Figures 3 and 4, they are aligned, in the circumferential direction seen, with the first and third air guide 4 and 4 '. Otherwise, they correspond to the angle of inclination and arrangement of the first and third air guide stubs.

Betrachtet man die beiden Arten der Luftleitstutzen, so ist die Anzahl der zweiten Luftleitstutzen geringer als die der andersartigen Luftleitstutzen. Dies gilt auch für das Querschnittsverhältnis. So beträgt der Gesamtquerschnitt der zweiten Luftleitstutzen 5 das 0,6- bis 0,7-fache des Gesamtquerschnitts der ersten und vierten Luftleitstutzen 4, 4'' (Fig. 1 und 2) bzw. des Gesamtquerschnitts der ersten, dritten und vierten Luftleitstutzen 4, 4', 4'' (Fig. 3 und 4).If one looks at the two types of air guide stubs, so the number of second air guide stubs is less than that the different types of air duct. This also applies to that Cross-sectional ratio. So the total cross section is second air guide nozzle 5 0.6 to 0.7 times the total cross section of the first and fourth air guiding pieces 4, 4 '' (Fig. 1 and 2) or the total cross section of the first, third and fourth air guide 4, 4 ', 4' '(Fig. 3 and 4).

Im übrigen weist das Flammrohr 3 beider Ausführungsbeispiele stromab der Luftleitstutzen weitere Öffnungen für Verbrennungsluft auf, um die CO-Bildung zu vermindern. Ebenfalls nicht dargestellt sind Öffnungen im Flammrohrdeckel 1 und im stromauf gelegenen Bereich des Flammrohres 3, wobei die hier eintretende Verbrennungsluft vorwiegend der Kühlung von Flammrohrdeckel und Flammrohr dient.Otherwise, the flame tube 3 has both exemplary embodiments further openings for Combustion air to reduce CO formation. Likewise openings in the flame tube cover 1 are not shown and in the upstream region of the flame tube 3, wherein the combustion air entering here mainly for cooling of flame tube cover and flame tube.

Im Rahmen der Erfindung sind durchaus Abwandlungsmöglichkeiten gegeben. So können die Luftleitstutzen unter unterschiedlichen Winkeln geneigt sein. Ferner besteht die Möglichkeit, den Brennstoff axial in das Flammrohr einzuführen. Im vorliegenden Ausführungsbeispiel wird die Verbrennungsluft vorrangig über die beiden Arten von Luftleitstutzen zugeführt. Alternativ dazu besteht die Möglichkeit, Teilluftmengen von stromauf an stromab gelegene Stellen zu verlagern.Within the scope of the invention there are possibilities for modification given. So the air guiding spigot under different Be inclined. Furthermore, there is Possibility of introducing the fuel axially into the flame tube. In the present embodiment, the combustion air primarily about the two types of air control spigot fed. Alternatively, you can Partial air volumes from upstream to downstream locations relocate.

Die Erfindung wurde anhand eines Gasbrenners beschrieben, da hier ihr bevorzugtes Anwendunsgebiet liegt. Sie läßt sich jedoch auch auf Brenner für dampfförmige, flüssige oder fließfähige feste Brennstoffe anwenden.The invention has been described with reference to a gas burner, since this is your preferred area of application. She leaves but also on burners for vaporous, liquid or use flowable solid fuels.

Claims (18)

  1. Burner for fuels suitable for spraying, in particular gaseous fuels, having
    a substantially cylindrical fire tube (3),
    a fire tube cover (1) arranged on the upstream end of the fire tube (3)
    a fuel nozzle (2) terminating centrally in the fire tube cover (1) and
    a plurality of first and second means to feed combustion air into the fire tube,
    characterised in that,
    the means to feed combustion air into the fire tube (3) are designed as air line nozzles (4 and 5),
    the first and second air line nozzles (4 and 5) are inclined in the direction of counterflow to the axis of the fire tube (3),
    the first air line nozzles (4) terminate at the fire tube (3) whilst the second air line nozzles (5) extend into the fire tube, and
    a first air line nozzle (4) is assigned to each second air line nozzle (5) and arranged upstream directly adjacent thereto.
  2. Burner according to claim 1, characterised in that a third air line nozzle (4') is assigned to each second air line nozzle (5) and arranged upstream directly adjacent thereto, the third air line nozzles (4') being inclined in the direction of counterflow to the axis of the fire tube (3) and terminating at the fire tube.
  3. Burner according to claim 1 or 2, characterised in that, viewed in the axial direction, a fourth air line nozzle (4") is arranged between each two adjacent second air line nozzles (5), the fourth air line nozzles (4") being inclined in the direction of counterflow to the axis of the fire tube (3) and terminating at the fire tube.
  4. Burner according to any one of claims 1 through 3, characterised in that the first air line nozzles (4) are arranged in a first axis-vertical row (6) and that the axial distance (x) between the fuel nozzle (2) and the openings of the first air line nozzles (4) is approx. 0.70 times to 0.85 times the fire tube diameter (d).
  5. Burner according to any one of claims 1 through 4, characterised in that the air line nozzles (4, 5, 4', 4") are inclined by the same angle (ϕ) to the axis of the fire tube (3).
  6. Burner according to claim 5, characterised in that the air line nozzles (4, 5, 4', 4") are inclined by approx. 55 to 60° to the axis of the fire tube (3).
  7. Burner according to any one of claims 1 through 6, characterised in that the openings of the second air line nozzles (5) extending into the fire tube (3) are at a distance (y) to the fire tube (3) which is approx. 0.15 times to 0.18 times the fire tube diameter (d).
  8. Burner according to any one of claims 1 through 7, characterised in that the total cross-section of the second air line nozzles (5) is approx. 0.6 times to 0.7 times the total cross-section of the first and optionally third and fourth air line nozzles (4, 4', 4").
  9. Burner according to any one of claims 1 through 8, characterised in that the first and optionally the third and fourth air line nozzles (4) exhibit different cross-sections, of which at least some are elongated in the direction of the axis of the fire tube (3).
  10. Burner according to claim 9, characterised in that the first and optionally the fourth air line nozzles (4, 4") each contain a maximum of two guide plates (8) which are preferably transverse to the axis of the fire tube (3).
  11. Burner according to any one of claims 1 through 10, characterised in that the relevant outlet opening of the second air line nozzles (5) is located in a plane perpendicular to the axis of the relevant air line nozzle (5).
  12. Burner according to any one of claims 1 through 11, characterised in that the fire tube cover (1) is flared inside, starting from the fuel nozzle (2), towards the fire tube (3).
  13. Burner according to any one of claims 1 through 12, characterised in that the fuel nozzle (2) exhibits a ring of outlet openings (9) which are inclined in the direction of flow away from the axis of the fire tube (3).
  14. Burner according to claim 13, characterised in that the angle of incline of the outlet openings (9) of the fuel nozzle (2) to the axis of the fire tube (3) is 40 - 45°.
  15. Burner according to any one of claims 1 through 14, characterised in that the fire tube (3) is provided downstream of the air line nozzles (4, 5, 4', 4") with several circularly arranged openings for combustion air.
  16. Method for operating a burner according to claim 1, the fuel being fed centrally into a combustion zone where it is mixed with combustion air,
    characterised in that
    combustion air is blown into the combustion zone in such a manner that a highly turbulent toroidal eddy forms in a plane perpendicular to the axis of the fire tube, the direction of rotation of the turbulent toroidal eddy inside being in counterflow to the flow of combustion products in the axial direction.
  17. Method according to claim 16, characterised in that the fuel is fed into the toroidal eddy substantially in the form of an opening cone.
  18. Method according to claim 16 or 17, characterised in that the highly turbulent toroidal eddy takes up the centre of the combustion area.
EP98907987A 1997-02-08 1998-01-24 Fuel combustion device and method Expired - Lifetime EP0961905B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19704802A DE19704802A1 (en) 1997-02-08 1997-02-08 Device and method for burning fuel
DE19704802 1997-02-08
PCT/EP1998/000398 WO1998035184A1 (en) 1997-02-08 1998-01-24 Fuel combustion device and method

Publications (2)

Publication Number Publication Date
EP0961905A1 EP0961905A1 (en) 1999-12-08
EP0961905B1 true EP0961905B1 (en) 2001-10-24

Family

ID=7819693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98907987A Expired - Lifetime EP0961905B1 (en) 1997-02-08 1998-01-24 Fuel combustion device and method

Country Status (13)

Country Link
US (1) US6193502B1 (en)
EP (1) EP0961905B1 (en)
AT (1) ATE207593T1 (en)
AU (1) AU6616098A (en)
CA (1) CA2280169A1 (en)
CZ (1) CZ292330B6 (en)
DE (2) DE19704802A1 (en)
EA (1) EA000904B1 (en)
ES (1) ES2163257T3 (en)
HU (1) HUP0001053A3 (en)
NO (1) NO993801L (en)
SK (1) SK106399A3 (en)
WO (1) WO1998035184A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2774745B1 (en) * 1998-02-10 2000-03-17 Air Liquide PROCESS FOR HEATING PRODUCTS IN AN ENCLOSURE AND BURNER FOR THE IMPLEMENTATION OF THIS PROCESS
US20050003316A1 (en) * 2003-05-31 2005-01-06 Eugene Showers Counterflow fuel injection nozzle in a burner-boiler system
CN101235970B (en) * 2007-01-31 2012-05-02 通用电气公司 Gas turbine combusting device possessing upstream injection device
US8677759B2 (en) * 2009-01-06 2014-03-25 General Electric Company Ring cooling for a combustion liner and related method
EP3026346A1 (en) * 2014-11-25 2016-06-01 Alstom Technology Ltd Combustor liner
US20190024895A1 (en) * 2017-07-18 2019-01-24 General Electric Company Combustor dilution structure for gas turbine engine
US11268438B2 (en) * 2017-09-15 2022-03-08 General Electric Company Combustor liner dilution opening

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974485A (en) * 1958-06-02 1961-03-14 Gen Electric Combustor for fluid fuels
US3574508A (en) * 1968-04-15 1971-04-13 Maxon Premix Burner Co Inc Internally fired industrial gas burner
US3643430A (en) * 1970-03-04 1972-02-22 United Aircraft Corp Smoke reduction combustion chamber
DE2018641C2 (en) * 1970-04-18 1972-05-10 Motoren Turbinen Union REVERSE COMBUSTION CHAMBER FOR GAS TURBINE ENGINES
US3831854A (en) * 1973-02-23 1974-08-27 Hitachi Ltd Pressure spray type fuel injection nozzle having air discharge openings
US3951584A (en) * 1974-05-23 1976-04-20 Midland-Ross Corporation Self-stabilizing burner
JPS5129726A (en) * 1974-09-06 1976-03-13 Mitsubishi Heavy Ind Ltd
FR2379028A1 (en) * 1977-02-01 1978-08-25 Gaz De France METAL GAS BURNER WITHOUT PREMIXING AND COUNTER-ROTATION
US4301657A (en) * 1978-05-04 1981-11-24 Caterpillar Tractor Co. Gas turbine combustion chamber
DE4012923A1 (en) * 1990-04-23 1991-10-24 Skoog Kurt DEVICE FOR BURNING FLUID, IN PARTICULAR LIQUID FUELS, LIKE OIL OR THE LIKE.
WO1994007086A1 (en) * 1992-09-18 1994-03-31 Luminis Pty Ltd. Variable flame burner configuration
AUPN156295A0 (en) * 1995-03-07 1995-03-30 Luminis Pty Limited Variable flame precessing jet nozzle
US5984662A (en) * 1997-07-31 1999-11-16 Superior Fireplace Company Karman vortex generating burner assembly

Also Published As

Publication number Publication date
US6193502B1 (en) 2001-02-27
DE59801858D1 (en) 2001-11-29
NO993801D0 (en) 1999-08-06
CA2280169A1 (en) 1998-08-13
HUP0001053A3 (en) 2001-05-28
EA199900730A1 (en) 2000-02-28
HUP0001053A2 (en) 2001-04-28
SK106399A3 (en) 2000-06-12
ATE207593T1 (en) 2001-11-15
ES2163257T3 (en) 2002-01-16
WO1998035184A1 (en) 1998-08-13
EP0961905A1 (en) 1999-12-08
AU6616098A (en) 1998-08-26
CZ292330B6 (en) 2003-09-17
NO993801L (en) 1999-09-15
DE19704802A1 (en) 1998-08-13
EA000904B1 (en) 2000-06-26
CZ262799A3 (en) 2000-04-12

Similar Documents

Publication Publication Date Title
EP0433790B1 (en) Burner
EP0436113B1 (en) Method for operating a combustion plant
EP0675322B1 (en) Premix burner
EP1802915B1 (en) Gas turbine burner
EP0503319B1 (en) Burner for a premixing combustion of a liquid and/or a gaseous fuel
EP0694740A2 (en) Combustion chamber
DE69011036T2 (en) Burners to reduce NOx emissions.
EP0629817B1 (en) Furnace
EP0777081B1 (en) Premix burner
DE19510744A1 (en) Combustion chamber with two-stage combustion
WO2008155373A1 (en) Non-rotational stabilization of the flame of a premixing burner
EP0724114A2 (en) Burner
EP0718561A2 (en) Combustor
DE2621496A1 (en) Eddy current burners for industrial furnaces, such as blast furnaces and the like
EP0641971A2 (en) Method for operating a premix burner
EP0394800B1 (en) Premix burner for generating a hot gas
EP0433789A1 (en) Method for a premix burning of a liquid fuel
DE19543701A1 (en) Premix burner
EP0816759B1 (en) Premix burner and method of operating the burner
EP2171354B1 (en) Burner
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
EP0961905B1 (en) Fuel combustion device and method
DE4242003A1 (en) Process heat generator
EP0777082A2 (en) Premix burner
DE4412315A1 (en) Method of operating gas turbine combustion chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010410

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011024

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011024

REF Corresponds to:

Ref document number: 207593

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011025

REF Corresponds to:

Ref document number: 59801858

Country of ref document: DE

Date of ref document: 20011129

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020115

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163257

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020117

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020124

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020130

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020227

Year of fee payment: 5

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030124

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030801

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59801858

Country of ref document: DE

Owner name: EKOL, SPOL SR.O., CZ

Free format text: FORMER OWNERS: E.ON RUHRGAS AG, 45131 ESSEN, DE; EKOL, SPOL SR.O., BRUENN/BRNO, CZ

Effective date: 20110415

Ref country code: DE

Ref legal event code: R081

Ref document number: 59801858

Country of ref document: DE

Owner name: OPEN GRID EUROPE GMBH, DE

Free format text: FORMER OWNERS: E.ON RUHRGAS AG, 45131 ESSEN, DE; EKOL, SPOL SR.O., BRUENN/BRNO, CZ

Effective date: 20110415

Ref country code: DE

Ref legal event code: R081

Ref document number: 59801858

Country of ref document: DE

Owner name: EKOL, SPOL SR.O., CZ

Free format text: FORMER OWNER: E.ON RUHRGAS AG, EKOL, SPOL SR.O., , CZ

Effective date: 20110415

Ref country code: DE

Ref legal event code: R081

Ref document number: 59801858

Country of ref document: DE

Owner name: OPEN GRID EUROPE GMBH, DE

Free format text: FORMER OWNER: E.ON RUHRGAS AG, EKOL, SPOL SR.O., , CZ

Effective date: 20110415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170124

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59801858

Country of ref document: DE