EP0724114A2 - Burner - Google Patents

Burner Download PDF

Info

Publication number
EP0724114A2
EP0724114A2 EP96810023A EP96810023A EP0724114A2 EP 0724114 A2 EP0724114 A2 EP 0724114A2 EP 96810023 A EP96810023 A EP 96810023A EP 96810023 A EP96810023 A EP 96810023A EP 0724114 A2 EP0724114 A2 EP 0724114A2
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
flow
burner according
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96810023A
Other languages
German (de)
French (fr)
Other versions
EP0724114A3 (en
Inventor
Alfred Häusermann
Jörg Schmidli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0724114A2 publication Critical patent/EP0724114A2/en
Publication of EP0724114A3 publication Critical patent/EP0724114A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a burner according to the preamble of claim 1.
  • LBTU gas In steel production, a by-product is a fuel gas with a low calorific value (2-4 MJ / kg).
  • This so-called LBTU gas has so far been burned in gas turbines with thermal outputs of up to 300 MW using a single burner.
  • individual burners In order to burn this gas in modern gas turbines, which are equipped, for example, with an annular combustion chamber, individual burners are required which have a thermal output of the order of less than 20 MW.
  • the difficulty in realizing a burner that can be operated with LBTU is that the mass ratio of air to fuel is of the order of 1: 1, in contrast to a natural gas-fired burner, in which the ratio is 30: 1.
  • a burner has become known from EP-0 321 809, which permits premix-like combustion, and also has a number of other advantages, which are described in detail in this document are.
  • This burner essentially consists of at least two hollow, conical, part-bodies nested one inside the other in the direction of flow, the respective longitudinal axes of symmetry of which are offset with respect to one another in such a way that the adjacent walls of the part bodies form tangential channels for a combustion air flow in their longitudinal extension.
  • a liquid fuel is preferably injected into the cavity formed by the partial bodies via a central nozzle, while a gaseous fuel is introduced via the further nozzles in the area of the tangential channels in the longitudinal direction.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, is based on the object of proposing precautions for a burner of the type mentioned at the outset which permit operation of this burner with LBTU gas and the inherent advantages of this burner are not lost therefrom.
  • the main advantage of the invention can be seen in the fact that the burner allows operation with LBTU gas, that an optimal mixture formation is provided, and that the combustion continues at the exit of the burner with formation of a backflow zone and with minimization of the pollutant emissions at maximum efficiency.
  • FIG. 3 is used simultaneously with FIG. 1. Furthermore, in order not to make FIG. 1 unnecessarily confusing, the guide plates 19, 20 shown schematically according to FIG. 3 have only been hinted at in it. In the description of FIG. 1, reference is made to FIG. 3 as required below.
  • the burner 1 according to FIG. 1 consists of two hollow conical partial bodies 2, 3, which are nested in one another offset.
  • the offset of the respective central axis or longitudinal axis of symmetry 2a, 3a (see FIG. 3) of the conical partial bodies 2, 3 to one another creates a tangential air inlet slot 2b, 3b on both sides, in a mirror-image arrangement (see FIG. 3) which flows the combustion air 4 into the interior of the burner 1, ie into the cone cavity 5.
  • the conical shape of the partial bodies 2, 3 shown in the flow direction has a certain fixed angle.
  • the partial body 2, 3 may have an increasing or decreasing cone inclination in the flow direction, similar to a trumpet or. Tulip.
  • the two tapered partial bodies 2, 3 each have a cylindrical starting part 2c, 3c, which, similarly to the tapered partial bodies 2, 3, also run offset from one another, so that the tangential air inlet slots 2b, 3b are present over the entire length of the burner 1.
  • the burner 1 can be designed to be purely conical, that is to say without cylindrical starting parts 2c, 3c.
  • the two conical partial bodies 2, 3 each have an inwardly displaced and also tangentially guided channel 6, 7 (cf. also FIG. 3), through which a gaseous fuel 8 is fed into the cone cavity 5.
  • the two flows namely the combustion air 4 and the gaseous fuel 8 are guided separately up to the region of the tangential air inlet slots 2b, 3b by means of a partition 6a, 7a (cf. FIG. 3).
  • this can be achieved by placing a fuel-carrying chamber on the respective partial body 2, 3, which chamber has a continuous tangential opening in the area of the air inlet slots 2b, 3b mentioned. It is thereby achieved that two parallel currents flow into the cone cavity 5 at the same time.
  • the flow openings of the two channels towards the cone cavity 5 are to be designed in such a way that they allow the flow of an approximately equal mass flow, which is always necessary when the burner 1 is operated with an LBTU gas.
  • the gas-carrying duct (6, 7) is guided on the cone cavity side with respect to the flow of the combustion air 4.
  • the flow of media 4, 8 can be interchanged.
  • the mixing of the two media 4, 8 in the cone cavity 5 takes place very intensively due to the mutually forming shear forces in the inflow into the cone cavity 5 guided by partition walls 6a, 7a.
  • an optimal, homogeneous mixture 9 is achieved across the cross section at the end of the burner 1. If the combustion air 4 is additionally preheated or enriched with a recirculated exhaust gas, this supports the degree of mixing of the two media 4, 8 sustainably.
  • the critical swirl number should be set at the outlet of the burner 1:
  • a backflow zone (vortex breakdown) 10 is also formed, which triggers a stabilizing effect on the flame front 11, the
  • the cross-sectional expansion specified there between the flow cross-section of the burner 1 and the combustion chamber 12 triggers peripheral vortex detachments, which further stabilize the flame front 11, in such a way that radial flattening of the backflow zone 10 and back-ignition of the flame 11 into the interior of the burner 1 are prevented.
  • the critical swirl number given the Keqel configuration of the partial bodies 2, 3, is reduced of the tangential air inlet slots 2b, 3b sets faster, so that the backflow zone 10 coinciding with the critical number of swirls may set up even before the burner 1 exits.
  • the axial speed within the burner 1 can, however, be changed by a correspondingly large supply of an axial combustion air flow 4a.
  • the design of the burner 1 is furthermore excellently suitable for changing the size of the tangential air inlet slots 2b, 3b, with which a relatively large operational bandwidth can be recorded without changing the overall length of the burner 1.
  • the partial bodies 2, 3 can also be displaced relative to one another in another plane, as a result of which even an overlap thereof can be initiated.
  • FIG. 2 shows the same burner structure according to FIG. 1, this burner 1a being equipped with a central fuel nozzle 15 which acts as the head stage of this burner la.
  • this nozzle 15 can also be operated with a gaseous fuel.
  • it is also possible to operate this nozzle with a liquid fuel 16 the operation of this burner la being carried out solely via said nozzle 15 or in cooperation with the gaseous fuel 8 which is introduced via the slots provided tangentially therefor (see FIG . 1, 3).
  • a liquid fuel 16 is introduced via the nozzle 15, a conical fuel profile 18 is formed in the cone cavity 5 due to the acute angle 17 set there, which is encased by the combustion air 4 flowing in tangentially and swirling.
  • the concentration of the fuel 16 is continuously reduced to a mixture by the incoming combustion air 4. Even when a liquid fuel 16 is used via said nozzle 15, the optimum, homogeneous concentration over the cross section is achieved at the outlet of the burner 1a. If the combustion air 4 is preheated or enriched with a recirculated exhaust gas, the evaporation of the liquid fuel 16 is markedly increased in such a way that a return flow zone 10 and a flame front 11 also form at the outlet of the burner 1 a, as already shown in FIG. 1 Explanation came. In the case of lean gases in particular, it can be introduced by one Difficult to accomplish nozzle because of the large fuel mass required for this. With such specifications, the configuration according to FIG. 1 is used.
  • baffles 19, 20 have a flow introduction function, and they can be designed in various ways.
  • the channeling of the combustion air 4 into the cone cavity 5 can be optimized accordingly by opening or closing these guide plates 19, 20, for example about a pivot point (not shown) in the region of the tangential air inlet slots 2b, 3b.
  • these dynamic arrangements can also be provided statically, in that guide baffles corresponding to requirements form a fixed component with the conical partial bodies 2, 3.
  • the burner can also be operated without baffles, or other aids can be provided for this.
  • 3 also shows how the inflow of the gaseous fuel 8, on the inside of the combustion air 4, is determined.
  • the partition walls 6a, 7a tapped under FIG. 1, which accomplish the respective channel formation for the two media 4, 8, can now be clearly seen from FIG. 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Spray-Type Burners (AREA)

Abstract

The longitudinal axes of symmetry (2a,3a) of the burner parts (2,3) are staggered in their relative position. The walls of the burner parts in their longitudinal direction form tangential ducts (2b,3b) for combustion air (4) flowing into the burner's (1,1a) interior (5). A second duct (6,7) parallel or quasi-parallel to the tangential air-conducting ducts conveys fuel (8) into the interior of the burner. The size of the through-flow cross-section of the fuel-conducting ducts as against those of the air-conducting ducts depends on the calorific value of the fuel injected.

Description

Technisches GebietTechnical field

Die vorliegende Erfindung betrifft einen Brenner gemäss Oberbegriff des Anspruchs 1.The present invention relates to a burner according to the preamble of claim 1.

Stand der TechnikState of the art

Bei der Stahlproduktion entsteht als Nebenprodukt ein Brenngas mit einem niederen Heizwert (2-4 MJ/kg). Dieses sogenannte LBTU-Gas wird bis anhin in Gasturbinen mit thermischen Leistungen bis zu 300 MW mit einem Einzelbrenner verfeuert. Um dieses Gas in modernen Gasturbinen zu verfeuern, welche besipielsweise mit einer Ringbrennkammer bestückt sind, sind Einzelbrenner erforderlich, welche eine thermische Leistung in der Grössenordnung von weniger als 20 MW aufweisen. Die Schwierigkeit bei der Realisierung eines mit LBTU betreibbaren Brenners besteht darin, dass das Massenverhältnis Luft zu Brennstof in der Grössenordnung 1:1 liegt, dies im Gegensatz zu einem erdgasbefeuerten Brenner, bei welchem mit einem Verhältnis von 30:1 gefahren wird.In steel production, a by-product is a fuel gas with a low calorific value (2-4 MJ / kg). This so-called LBTU gas has so far been burned in gas turbines with thermal outputs of up to 300 MW using a single burner. In order to burn this gas in modern gas turbines, which are equipped, for example, with an annular combustion chamber, individual burners are required which have a thermal output of the order of less than 20 MW. The difficulty in realizing a burner that can be operated with LBTU is that the mass ratio of air to fuel is of the order of 1: 1, in contrast to a natural gas-fired burner, in which the ratio is 30: 1.

Es ist aus EP-0 321 809 ein Brenner bekanntgeworden, der eine vormischartige Verbrennung zulässt, und sonst noch eine Reihe von Vorzügen aufweist, welche in dieser Schrift eingehend gewürdigt sind. Dieser Brenner besteht im wesentlichen aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern, deren jeweilige Längssymmetrieachsen gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle für einen Verbrennungsluftstrom bilden. Vorzugsweise wird im von den Teilkörpern gebildeten Hohlraum über eine zentrale Düse ein flüssiger Brennstoff eingedüst, während über die im Bereich der tangentialen Kanäle in Längserstreckung vorhandenen weiteren Düsen ein gasförmiger Brennstoff eingebracht wird.A burner has become known from EP-0 321 809, which permits premix-like combustion, and also has a number of other advantages, which are described in detail in this document are. This burner essentially consists of at least two hollow, conical, part-bodies nested one inside the other in the direction of flow, the respective longitudinal axes of symmetry of which are offset with respect to one another in such a way that the adjacent walls of the part bodies form tangential channels for a combustion air flow in their longitudinal extension. A liquid fuel is preferably injected into the cavity formed by the partial bodies via a central nozzle, while a gaseous fuel is introduced via the further nozzles in the area of the tangential channels in the longitudinal direction.

Selbst wenn bei einem solchen Brenner über sämtlich vorhandene Brennstoffdüse ein LBTU-Gas eingebracht würde, liesse sich das dafür erforderliche Massenverhältnis Luft zu Brennstoff nicht erzielen.Even if an LBTU gas were introduced into all of the fuel nozzles in such a burner, the required mass ratio of air to fuel could not be achieved.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Vorkehrungen vorzuschlagen, welche ein Betrieb dieses Brenners mit LBTU-Gas zulassen, und die angestammten Vorteile dieses Brenners hieraus nicht verloren gehen.The invention seeks to remedy this. The invention, as characterized in the claims, is based on the object of proposing precautions for a burner of the type mentioned at the outset which permit operation of this burner with LBTU gas and the inherent advantages of this burner are not lost therefrom.

Der wesentliche Vorteil der Erfindung ist darin zu sehen, dass der Brenner ein Betrieb mit LBTU-Gas zulässt, dass eine optimale Gemischbildung bereitgestellt wird, und dass die Verbrennung nach wie vor am Ausgang des Brenners unter Bildung einer Rückströmzone und unter Minimierung der Schadstoff-Emissionen bei maxiertem Wirkungsgrad vonstatten geht.The main advantage of the invention can be seen in the fact that the burner allows operation with LBTU gas, that an optimal mixture formation is provided, and that the combustion continues at the exit of the burner with formation of a backflow zone and with minimization of the pollutant emissions at maximum efficiency.

Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren abhängigen Ansprüchen gekennzeichnet.Advantageous and expedient developments of the task solution according to the invention are characterized in the further dependent claims.

Im folgenden wird anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.Exemplary embodiments of the invention are explained in more detail below with reference to the drawings. All elements not necessary for the immediate understanding of the invention have been omitted. Identical elements are provided with the same reference symbols in the various figures. The direction of flow of the media is indicated by arrows.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigt:

Fig. 1
einen Brenner in perspektivischer Darstellung, entsprechend aufgeschnitten und
Fig. 2
einen weiteren Brenner mit einer zentralen Brennstoffdüse und
Fig. 3
einen schematischen Schnitt durch den Brenner gemäss Fig. 1.
It shows:
Fig. 1
a burner in perspective, cut accordingly and
Fig. 2
another burner with a central fuel nozzle and
Fig. 3
2 shows a schematic section through the burner according to FIG. 1.

Wege zur Ausführung der Erfindung, gewerbliche VerwertbarkeitWays of carrying out the invention, commercial usability

Um den Aufbau des Brenners 1 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 1 die Figur 3 herangezogen wird. Des weiteren, um Fig. 1 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach Figur 3 schematisch gezeigten Leitbleche 19, 20 nur andeutungsweise aufgenommen worden. Im folgenden wird bei der Beschreibung von Fig. 1 nach Bedarf auf die Figur 3 hingewiesen.In order to better understand the structure of the burner 1, it is advantageous if FIG. 3 is used simultaneously with FIG. 1. Furthermore, in order not to make FIG. 1 unnecessarily confusing, the guide plates 19, 20 shown schematically according to FIG. 3 have only been hinted at in it. In the description of FIG. 1, reference is made to FIG. 3 as required below.

Der Brenner 1 nach Fig. 1 besteht aus zwei hohlen kegelförmigen Teilkörpern 2, 3, die versetzt zueinander ineinandergeschachtelt sind. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachse 2a, 3a (Vgl. Fig. 3) der kegeligen Teilkörper 2, 3 zueinander schafft auf beiden Seiten, in spiegelbildlicher Anordnung, jeweils einen tangentialen Lufteintrittsschlitz 2b, 3b frei (Vgl. Fig. 3), durch welche die Verbrennungsluft 4 in Innenraum des Brenners 1, d.h. in den Kegelhohlraum 5 strömt. Die Kegelform der gezeigten Teilkörper 2, 3 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 2, 3 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 2, 3 weisen je einen zylindrischen Anfangsteil 2c, 3c auf, die ebenfalls, analog den kegeligen Teilkörpern 2, 3, versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittsschlitze 2b, 3b über die ganze Länge des Brenners 1 vorhanden sind. Selbstverständlich kann der Brenner 1 rein kegelig, also ohne zylindrische Anfangsteile 2c, 3c, ausgebildet sein. Die beiden kegelförmigen Teilkörper 2, 3 weisen je einen nach innen versetzten und ebenfalls tangential geführten Kanal 6, 7 (Vgl. auch Fig. 3) auf, durch welche ein gasförmiger Brennstoff 8 in den Kegelhohlraum 5 geführt wird. Die beiden Ströme, nämlich die Verbrennungsluft 4 und der gasförmige Brennstoff 8, werden bis im Bereich der tangentialen Lufteintrittsschlitze 2b, 3b anhand einer Trennwand 6a, 7a (Vgl. Fig. 3) separat geführt. Konstruktiv lässt sich dies erreichen, indem dem jeweiligen Teilkörper 2, 3 eine brennstofführende Kammer aufgesetzt wird, welche eine durchgehende tangentiale Oeffnung im Bereich der genannten Lufteintrittsschlitze 2b, 3b aufweist. Damit wird erzielt, dass zwei parallele Ströme gleichzeitig in den Kegelhohlraum 5 einströmen. Die Durchflussöffnungen der beiden Kanäle Richtung Kegelhohlraum 5 sind so zu gestalten, dass sie die Durchströmung eines ungefähr gleichen Massenstromes zulassen, der immer notwendig ist, wenn der Brenner 1 mit einem LBTU-Gas betrieben wird. Vorliegend ist der gasführende Kanal (6, 7) gegenüber der Strömung der Verbrennungsluft 4 kegelhohlraumseitig geführt. Selbstverständlich kann die Strömungsführung der Medien 4, 8 zueinander vertauscht werden. Die Vermischung der beiden Medien 4, 8 im Kegelhohlraum 5 erfolgt durch die sich dort wechselseitig bildenden Scherkräfte bei der durch Trennwände 6a, 7a geleiteten Einströmung in den Kegelhohlraum 5 recht intensiv. Bei einer solcherart eingeleiteten Zumischung von Verbrennungsluft 4 und LBTU-Gas 8 wird am Ende des Brenners 1 ein optimales, homogenes Gemisch 9 über den Querschnitt erreicht. Ist die Verbrennungsluft 4 zusätzlich vorgeheizt oder mit einem rückgeführten Abgas angereichert, so unterstützt dies den Vermischungsgrad der beiden Medien 4, 8 nachhaltig. Bei der Gestaltung der kegeligen Teilkörper 2, 3 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 2b, 3b sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Gemisches 9 am Ausgang des Brenners 1 einstellen kann. Dieses Strömungsfeld steht in Abhängigkeit der sich im Brenner 1 selbst einstellenden Drallzahlen. Ziel bei dieser Auslegung ist es, dass sich die kritische Drallzahl am Ausgang des Brenners 1 einstellen soll: In der Ebene der kritischen Drallzahl bildet sich auch eine Rückströmzone (Vortex- Breakdown) 10, welche eine stabilisierende Wirkung auf die Flammenfront 11 auslöst, wobei die dort vorgegebene Querschnittserweiterung zwischen Durchflussquerschnitt des Brenners 1 und Brennraum 12 periphäre Wirbelablösungen auslöst, welche die Flammenfront 11 weiter stabilisieren, dergestalt, dass eine radiale Abflachung der Rückströmzone 10 sowie eine Rückzündung der Flamme 11 ins Innere des Brenners 1 verhindert wird. Allgemein ist zu sagen, dass sich die kritische Drallzahl, bei vorgegebenen Keqel-Konfiguration der Teilkörper 2, 3, durch eine Verkleinerung der tangentialen Lufteintrittsschlitze 2b, 3b schneller einstellt, so dass sich die mit der kritischen Drallzahl zusammenfallende Rückströmzone 10 unter Umständen bereits vor dem Ausgang des Brenners 1 einstellt. Die Axialgeschwindigkeit innerhalb des Brenners 1 lässt sich indessen durch eine entsprechend grosse Zuführung eines axialen Verbrennungsluftstromes 4a verändern. Die Konstruktion des Brenners 1 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 2b, 3b zu verändern, womit ohne Veränderung der Baulänge des Brenners 1 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 2, 3 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben eingeleitet werden kann. Es ist des weiteren möglich, die Teilkörper 2, 3 durch eine gegenläufige drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 2b, 3b beliebig zu variieren, womit der Brenner 1 wiederum ohne Veränderung seiner Baulänge breite Betriebsbedingungen abdecken kann. Was die Form resp. die Konfiguration der tangentialen Lufteintrittsschlitze 2b, 3b betrifft, so können diese ohne weiteres zur weiteren Beeinflussung der kritischen Drallzahl in Strömungsrichtung eine konisch abnehmende (Verjüngung) oder zunehmende Durchflussform (Verbreiterung) einnehmen. Zum besseren Verständnis sei beispielsweise die Verjüngung der Lufteintrittsschlitze in Strömungsrichtung durchleuchtet: Hier herrscht auf der Achse ein zunehmender Massenstrom, womit die axiale Komponente grösser als die radiale ausfällt. Auf die Drallzahl übertragen hat dies die Wirkung, dass eine verjüngende Schlitzbreite in Strömungsrichtung die Rückströmzone 10 stromauf verschiebt. Da vorliegend zwischen den tangentialen Lufteintrittsschlitzen 2b, 3b zur Einströmung der Verbrennungsluft 4 und denjenigen 6, 7 zur Einbringung eines LBTU-Gas 8, was die Durchflussmenge betrifft, eine Interdependenz besteht, sind die Formen und die Grösse der jeweiligen Schlitze zueinander entsprechend anzupassen. Etwa in der Ebene der Rückströmzone 10 geht die Ausgangsöffnung des Brenners 1 in eine Frontwand 13 über, in welcher eine Anzahl Bohrungen 14 vorhanden sind. Diese treten bei Bedarf in Funktion und sorgen dafür, dass Verdünnungs- oder Kühlluft 4b der Anfangszone des Brennraums 12 zugeführt wird. Die verschiedene Luftströme 4, 4a, 4b müssen nicht notwendigerweise den gleichen Druck, die gleiche Temperatur oder die gleiche Zusammensetzung aufweisen.The burner 1 according to FIG. 1 consists of two hollow conical partial bodies 2, 3, which are nested in one another offset. The offset of the respective central axis or longitudinal axis of symmetry 2a, 3a (see FIG. 3) of the conical partial bodies 2, 3 to one another creates a tangential air inlet slot 2b, 3b on both sides, in a mirror-image arrangement (see FIG. 3) which flows the combustion air 4 into the interior of the burner 1, ie into the cone cavity 5. The conical shape of the partial bodies 2, 3 shown in the flow direction has a certain fixed angle. Of course, depending on the operational use, the partial body 2, 3 may have an increasing or decreasing cone inclination in the flow direction, similar to a trumpet or. Tulip. The last two forms are not included in the drawing, since they can be easily understood by a person skilled in the art. The two tapered partial bodies 2, 3 each have a cylindrical starting part 2c, 3c, which, similarly to the tapered partial bodies 2, 3, also run offset from one another, so that the tangential air inlet slots 2b, 3b are present over the entire length of the burner 1. Of course, the burner 1 can be designed to be purely conical, that is to say without cylindrical starting parts 2c, 3c. The two conical partial bodies 2, 3 each have an inwardly displaced and also tangentially guided channel 6, 7 (cf. also FIG. 3), through which a gaseous fuel 8 is fed into the cone cavity 5. The two flows, namely the combustion air 4 and the gaseous fuel 8, are guided separately up to the region of the tangential air inlet slots 2b, 3b by means of a partition 6a, 7a (cf. FIG. 3). In terms of construction, this can be achieved by placing a fuel-carrying chamber on the respective partial body 2, 3, which chamber has a continuous tangential opening in the area of the air inlet slots 2b, 3b mentioned. It is thereby achieved that two parallel currents flow into the cone cavity 5 at the same time. The flow openings of the two channels towards the cone cavity 5 are to be designed in such a way that they allow the flow of an approximately equal mass flow, which is always necessary when the burner 1 is operated with an LBTU gas. In the present case, the gas-carrying duct (6, 7) is guided on the cone cavity side with respect to the flow of the combustion air 4. Of course, the flow of media 4, 8 can be interchanged. The mixing of the two media 4, 8 in the cone cavity 5 takes place very intensively due to the mutually forming shear forces in the inflow into the cone cavity 5 guided by partition walls 6a, 7a. With such an admixture of combustion air 4 and LBTU gas 8, an optimal, homogeneous mixture 9 is achieved across the cross section at the end of the burner 1. If the combustion air 4 is additionally preheated or enriched with a recirculated exhaust gas, this supports the degree of mixing of the two media 4, 8 sustainably. When designing the conical partial bodies 2, 3 with regard to the cone angle and the width of the tangential air inlet slots 2b, 3b, strict limits per se must be observed so that the desired flow field of the mixture 9 at the outlet of the burner 1 can be set. This flow field is dependent on the swirl numbers that set themselves in the burner 1. The aim of this design is that the critical swirl number should be set at the outlet of the burner 1: In the level of the critical swirl number, a backflow zone (vortex breakdown) 10 is also formed, which triggers a stabilizing effect on the flame front 11, the The cross-sectional expansion specified there between the flow cross-section of the burner 1 and the combustion chamber 12 triggers peripheral vortex detachments, which further stabilize the flame front 11, in such a way that radial flattening of the backflow zone 10 and back-ignition of the flame 11 into the interior of the burner 1 are prevented. In general, it can be said that the critical swirl number, given the Keqel configuration of the partial bodies 2, 3, is reduced of the tangential air inlet slots 2b, 3b sets faster, so that the backflow zone 10 coinciding with the critical number of swirls may set up even before the burner 1 exits. The axial speed within the burner 1 can, however, be changed by a correspondingly large supply of an axial combustion air flow 4a. The design of the burner 1 is furthermore excellently suitable for changing the size of the tangential air inlet slots 2b, 3b, with which a relatively large operational bandwidth can be recorded without changing the overall length of the burner 1. Of course, the partial bodies 2, 3 can also be displaced relative to one another in another plane, as a result of which even an overlap thereof can be initiated. It is also possible to interleave the sub-bodies 2, 3 in a spiral manner by counter-rotating movement. It is thus possible to vary the shape, the size and the configuration of the tangential air inlet slots 2b, 3b as desired, with which the burner 1 can in turn cover wide operating conditions without changing its overall length. What the shape or As regards the configuration of the tangential air inlet slots 2b, 3b, they can easily assume a conically decreasing (tapering) or increasing flow shape (widening) to further influence the critical swirl number in the flow direction. For a better understanding, for example, the tapering of the air inlet slots in the direction of flow is illuminated: Here there is an increasing mass flow on the axis, which means that the axial component is larger than the radial one. In terms of the swirl number, this has the effect that a tapering slot width shifts the backflow zone 10 upstream in the direction of flow. Since there is an interdependency between the tangential air inlet slots 2b, 3b for the inflow of the combustion air 4 and those 6, 7 for the introduction of an LBTU gas 8, as far as the flow rate is concerned, the shapes and sizes of the respective ones Adjust slots to each other accordingly. Approximately in the plane of the backflow zone 10, the outlet opening of the burner 1 merges into a front wall 13 in which a number of bores 14 are provided. These come into operation as required and ensure that dilution or cooling air 4b is fed to the starting zone of the combustion chamber 12. The different air flows 4, 4a, 4b do not necessarily have to have the same pressure, the same temperature or the same composition.

Fig. 2 zeigt einen gleichen Brennaufbau gemäss Fig. 1, wobei dieser Brenner 1a mit einer zentalen Brennstoffdüse 15 bestückt ist, welche als Kopfstufe dieses Brenners la wirkt. An sich kann diese Düse 15 auch mit einem gasförmigen Brennstoff betrieben werden. Es ist indessen auch möglich, diese Düse mit einem flüssigen Brennstoff 16 zu betreiben, wobei der Betrieb dieses Brenners la allein über die genannte Düse 15 oder im Zusammenwirken mit dem gasförmigen Brennstoff 8, der über die tangential dafür vorgesehenen Schlitze eingebracht wird (Vgl. Fig. 1, 3). Bei der Einbringung eines flüssigen Brennstoffs 16 über die Düse 15 bildet sich im Kegelhohlraum 5, aufgrund des dort eingestellten spitzen Winkels 17, ein kegeliges Brennstoffprofil 18, das von der tangential und unter Drall einströmenden Verbrennungsluft 4 ummantelt wird. In axialer Richtung wird die Konzentration des Brennstoffes 16 fortlaufend durch die einströmenden Verbrennungsluft 4 zu einem Gemisch abgebaut. Selbst beim Einsatz eines flüssigen Brennstoffs 16 über die genannte Düse 15 wird am Ausgang des Brenners la die optimale, homogene Konzentration über den Querschnitt erreicht. Ist die Verbrennungsluft 4 vorgeheizt oder mit einem rückgeführten Abgas angereichert, so wird die Verdampfung des flüssigen Brennstoffes 16 markant gesteigert, dergestalt, dass sich am Ausgang des Brenners la ebenfalls eine Rückströmzone 10 und eine Flammenfront 11 bilden, wie dies bereits unter Fig. 1 zur Erläuterung kam. Insbesondere bei Magergasen lässt sich eine Einbringung durch eine einzige Düse wegen der hierzu notwendigen grossen Brennstoffmasse schwerlich bewerkstelligen. Bei solchen Vorgaben wird die Konfiguration gemäss Fig. 1 herangezogen.FIG. 2 shows the same burner structure according to FIG. 1, this burner 1a being equipped with a central fuel nozzle 15 which acts as the head stage of this burner la. As such, this nozzle 15 can also be operated with a gaseous fuel. However, it is also possible to operate this nozzle with a liquid fuel 16, the operation of this burner la being carried out solely via said nozzle 15 or in cooperation with the gaseous fuel 8 which is introduced via the slots provided tangentially therefor (see FIG . 1, 3). When a liquid fuel 16 is introduced via the nozzle 15, a conical fuel profile 18 is formed in the cone cavity 5 due to the acute angle 17 set there, which is encased by the combustion air 4 flowing in tangentially and swirling. In the axial direction, the concentration of the fuel 16 is continuously reduced to a mixture by the incoming combustion air 4. Even when a liquid fuel 16 is used via said nozzle 15, the optimum, homogeneous concentration over the cross section is achieved at the outlet of the burner 1a. If the combustion air 4 is preheated or enriched with a recirculated exhaust gas, the evaporation of the liquid fuel 16 is markedly increased in such a way that a return flow zone 10 and a flame front 11 also form at the outlet of the burner 1 a, as already shown in FIG. 1 Explanation came. In the case of lean gases in particular, it can be introduced by one Difficult to accomplish nozzle because of the large fuel mass required for this. With such specifications, the configuration according to FIG. 1 is used.

Aus Fig. 3 geht nunmehr die geometrische Konfiguration der Leitbleche 19, 20 sowie des restlichen Aufbaus des Brenners hervor. Diese Leitbleche 19, 20 haben Strömungseinleitungsfunktion, und sie können verschiedentlich ausgestaltet sein. Die Kanalisierung der Verbrennungsluft 4 in den Kegelhohlraum 5 kann durch Oeffnen bzw. Schliessen dieser Leitbleche 19, 20, beispielsweise um einen nicht gezeigten Drehpunkt im Bereich der tangentialen Lufteintrittsschlitze 2b, 3b, entsprechend optimiert werden. Selbstverständlich können diese dynamischen Vorkehrungen auch statisch vorgesehen werden, indem bedarfsentsprechende Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 2, 3 bilden. Ebenfalls kann der Brenner auch ohne Leitbleche betrieben werden, oder es können andere Hilfsmittel hierfür vogesehen werden. Des weiteren geht aus Fig. 3 hervor, wie die Einströmung des gasförmigen Brennstoffs 8, innenseitig der Verbrennungsluft 4, disponiert ist. Die unter Fig. 1 angetippten Trennwände 6a, 7a, welche die jeweilige Kanalbildung für die beiden Medien 4, 8 bewerkstelligen, lassen sich nunmehr aus Fig. 3 eindeutig erkennen.3 now shows the geometric configuration of the guide plates 19, 20 and the rest of the structure of the burner. These baffles 19, 20 have a flow introduction function, and they can be designed in various ways. The channeling of the combustion air 4 into the cone cavity 5 can be optimized accordingly by opening or closing these guide plates 19, 20, for example about a pivot point (not shown) in the region of the tangential air inlet slots 2b, 3b. Of course, these dynamic arrangements can also be provided statically, in that guide baffles corresponding to requirements form a fixed component with the conical partial bodies 2, 3. The burner can also be operated without baffles, or other aids can be provided for this. 3 also shows how the inflow of the gaseous fuel 8, on the inside of the combustion air 4, is determined. The partition walls 6a, 7a tapped under FIG. 1, which accomplish the respective channel formation for the two media 4, 8, can now be clearly seen from FIG. 3.

BezugszeichenlisteReference list

11
Brennerburner
2, 32, 3
TeilkörperPartial body
2a, 3a2a, 3a
TeilsymmetrieachsenPartial symmetry axes
2b, 3b2b, 3b
Tangentiale Kanäle für VerbrennungsluftTangential channels for combustion air
44th
VerbrennungsluftCombustion air
4a, 4b4a, 4b
LuftströmeAir flows
55
KegelhohlraumCone cavity
6, 76, 7
Tangentiale Kanäle für BrennstoffTangential channels for fuel
6a, 7a6a, 7a
TrennwändePartitions
88th
Brennstofffuel
99
Verbrennungsluft/Brennstoff-GemischCombustion air / fuel mixture
1010th
RückströmzoneBackflow zone
1111
FlammenfrontFlame front
1212th
BrennraumCombustion chamber
1313
FrontwandFront wall
1414
Durchlässe, BohrungenCulverts, bores
1515
BrennstoffdüseFuel nozzle
1616
Brennstofffuel
1717th
EindüsungswinkelInjection angle
1818th
BrennstoffprofilFuel profile
19, 2019, 20
LeitblecheBaffles

Claims (10)

Brenner, im wesentlichen bestehend aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (2, 3), deren Längssymmetrieachsen (2a, 3a) gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper (2, 3) in deren Längserstreckung tangentiale Kanäle (2b, 3b) für eine in Innenraum (5) des Brenners (1, 1a) strömende Verbrennungsluft (4) bilden, dadurch gekennzeichnet, dass mindestens in Wirkverbindung mit einem tangential luftführenden Kanal (2b, 3b) ein zweiter parallel oder quasi-parallel zu diesem geschalteter Kanal (6, 7) angeordnet ist, durch welchen ein Brennstoff (8) in den Innenraum (5) des Brenners (1, 1a) einleitbar ist.Burner, essentially consisting of at least two hollow, conical, part-bodies (2, 3) nested one inside the other in the direction of flow, the longitudinal axes of symmetry (2a, 3a) of which are offset with respect to one another, such that the adjacent walls of the part-bodies (2, 3) are tangential in their longitudinal extent Form channels (2b, 3b) for combustion air (4) flowing into the interior (5) of the burner (1, 1a), characterized in that at least in operative connection with a tangentially air-guiding channel (2b, 3b) a second parallel or quasi Arranged parallel to this switched channel (6, 7), through which a fuel (8) can be introduced into the interior (5) of the burner (1, 1a). Brenner nach Anspruch 1, dadurch gekennzeichnet, dass durch die brennstofführenden Kanäle (6, 7) ein gasförmiger Brennstoff (8) in den Innenraum (5) des Brenners (1, 1a) einleitbar ist.Burner according to claim 1, characterized in that a gaseous fuel (8) can be introduced into the interior (5) of the burner (1, 1a) through the fuel-carrying channels (6, 7). Brenner nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass sich die Grösse des Durchflussquerschnitts der brennstofführenden Kanäle (6, 7) gegenüber derjenigen der luftführenden Kanäle (2b, 3b) nach dem Heizwert des eingedüsten Brennstoffs (8) richtet.Burner according to claims 1 and 2, characterized in that the size of the flow cross section of the fuel-carrying channels (6, 7) compared to that of the air-carrying channels (2b, 3b) depends on the calorific value of the injected fuel (8). Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Brenner (1, 1a) als Kopfstufe mindestens eine weitere Brennstoffdüse (15) aufweist.Burner according to claim 1, characterized in that the burner (1, 1a) has at least one further fuel nozzle (15) as the head stage. Brenner nach Anspruch 4, dadurch gekennzeichnet, dass die Brennstoffdüse (15) mit einem flüssigen Brennstoff (16) betreibbar ist.Burner according to claim 4, characterized in that the fuel nozzle (15) can be operated with a liquid fuel (16). Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die brennstoffführenden Kanäle (6, 7) gegenüber den verbrennungsluftführenden Kanälen (2b, 3b) kegelhohlraumseitig angeordnet sind.Burner according to claim 1, characterized in that the fuel-carrying channels (6, 7) are arranged on the cone cavity side in relation to the channels (2b, 3b) carrying combustion air. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Teilkörper (2, 3) spiralartig ineinandergeschachtelt sind.Burner according to claim 1, characterized in that the partial bodies (2, 3) are nested in a spiral manner. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Teilkörper (2, 3) in Strömungsrichtung einen festen Winkel aufweisen.Burner according to claim 1, characterized in that the partial bodies (2, 3) have a fixed angle in the flow direction. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflussquerschnitt des Brenners (1, 1a) in Strömungsrichtung steigend zunehmend ist.Burner according to claim 1, characterized in that the flow cross-section of the burner (1, 1a) is increasing increasing in the direction of flow. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflussquerschnitt des Brenners (1, 1a) in Strömungsrichtung abnehmend ist.Burner according to claim 1, characterized in that the flow cross-section of the burner (1, 1a) is decreasing in the flow direction.
EP96810023A 1995-01-30 1996-01-10 Burner Withdrawn EP0724114A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19502796 1995-01-30
DE19502796A DE19502796B4 (en) 1995-01-30 1995-01-30 burner

Publications (2)

Publication Number Publication Date
EP0724114A2 true EP0724114A2 (en) 1996-07-31
EP0724114A3 EP0724114A3 (en) 1998-03-11

Family

ID=7752619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810023A Withdrawn EP0724114A3 (en) 1995-01-30 1996-01-10 Burner

Country Status (4)

Country Link
US (1) US5674066A (en)
EP (1) EP0724114A3 (en)
JP (1) JP3702021B2 (en)
DE (1) DE19502796B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918191A1 (en) * 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
EP0981016A1 (en) * 1998-08-19 2000-02-23 Asea Brown Boveri AG Burner and method for operating an internal combustion engine

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619873A1 (en) * 1996-05-17 1997-11-20 Abb Research Ltd burner
DE19654009B4 (en) * 1996-12-21 2006-05-18 Alstom Premix burner for operating a combustion chamber with a liquid and / or gaseous fuel
EP0924462A1 (en) 1997-12-15 1999-06-23 Asea Brown Boveri AG Burner for operating a heat exchanger
DE10049205A1 (en) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Process for supplying fuel to a premix burner for operating a gas turbine comprises introducing premix gas separately via two axially divided regions along the burner shell
DE10051221A1 (en) * 2000-10-16 2002-07-11 Alstom Switzerland Ltd Burner with staged fuel injection
GB2368386A (en) * 2000-10-23 2002-05-01 Alstom Power Nv Gas turbine engine combustion system
EP1262714A1 (en) * 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Burner with exhausts recirculation
US7097448B2 (en) * 2004-05-07 2006-08-29 Peter Chesney Vortex type gas lamp
US7421843B2 (en) * 2005-01-15 2008-09-09 Siemens Power Generation, Inc. Catalytic combustor having fuel flow control responsive to measured combustion parameters
US20090301054A1 (en) * 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
US8382565B2 (en) 2008-06-09 2013-02-26 International Business Machines Corporation System and method to redirect and/or reduce airflow using actuators
US9297306B2 (en) * 2008-09-11 2016-03-29 General Electric Company Exhaust gas recirculation system, turbomachine system having the exhaust gas recirculation system and exhaust gas recirculation control method
JP5462527B2 (en) * 2009-05-19 2014-04-02 大阪瓦斯株式会社 Tubular flame burner
JP5462526B2 (en) * 2009-05-19 2014-04-02 大阪瓦斯株式会社 Tubular flame burner
WO2011085105A2 (en) 2010-01-06 2011-07-14 The Outdoor Greatroom Company Llp Fire container assembly
US8205455B2 (en) 2011-08-25 2012-06-26 General Electric Company Power plant and method of operation
US8453462B2 (en) 2011-08-25 2013-06-04 General Electric Company Method of operating a stoichiometric exhaust gas recirculation power plant
US8266883B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant start-up method and method of venting the power plant
US8266913B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant and method of use
US8347600B2 (en) 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
US8713947B2 (en) 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system
US8453461B2 (en) 2011-08-25 2013-06-04 General Electric Company Power plant and method of operation
US8245492B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and method of operation
US9127598B2 (en) 2011-08-25 2015-09-08 General Electric Company Control method for stoichiometric exhaust gas recirculation power plant
DE102013214387B4 (en) * 2013-07-23 2020-10-22 Eberspächer Climate Control Systems GmbH Inflow element, in particular for a combustion air flow path in the vehicle heater
JP2013228207A (en) * 2013-08-15 2013-11-07 Osaka Gas Co Ltd Tubular flame burner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE413283C (en) * 1925-05-05 Faconeisen Walzwerk L Mannstae Gas firing for steam boilers and rotating drums
DE3151479A1 (en) * 1981-12-24 1983-07-14 Horst 4630 Bochum Ley Gas burner designed for industrial use
US5169302A (en) * 1989-12-22 1992-12-08 Asea Brown Boveri Ltd. Burner
US5274993A (en) * 1990-10-17 1994-01-04 Asea Brown Boveri Ltd. Combustion chamber of a gas turbine including pilot burners having precombustion chambers
DE4409918A1 (en) * 1994-03-23 1995-09-28 Abb Management Ag Low calorific value fuel burner for combustion chamber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE28736C (en) * W. GARDNER in St. Leonards, England Connection of the upper and lower guns
EP0210462B1 (en) * 1985-07-30 1989-03-15 BBC Brown Boveri AG Dual combustor
CH671449A5 (en) * 1986-07-08 1989-08-31 Bbc Brown Boveri & Cie
CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
US5193995A (en) * 1987-12-21 1993-03-16 Asea Brown Boveri Ltd. Apparatus for premixing-type combustion of liquid fuel
CH680946A5 (en) * 1989-12-19 1992-12-15 Asea Brown Boveri
DE59104727D1 (en) * 1991-12-23 1995-03-30 Asea Brown Boveri Device for mixing two gaseous components and burner in which this device is used.
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE413283C (en) * 1925-05-05 Faconeisen Walzwerk L Mannstae Gas firing for steam boilers and rotating drums
DE3151479A1 (en) * 1981-12-24 1983-07-14 Horst 4630 Bochum Ley Gas burner designed for industrial use
US5169302A (en) * 1989-12-22 1992-12-08 Asea Brown Boveri Ltd. Burner
US5274993A (en) * 1990-10-17 1994-01-04 Asea Brown Boveri Ltd. Combustion chamber of a gas turbine including pilot burners having precombustion chambers
DE4409918A1 (en) * 1994-03-23 1995-09-28 Abb Management Ag Low calorific value fuel burner for combustion chamber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918191A1 (en) * 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
US6155820A (en) * 1997-11-21 2000-12-05 Abb Research Ltd. Burner for operating a heat generator
EP0981016A1 (en) * 1998-08-19 2000-02-23 Asea Brown Boveri AG Burner and method for operating an internal combustion engine
US6263676B1 (en) 1998-08-19 2001-07-24 Asea Brown Boveri Ag Burner having a frame for operating an internal combustion machine

Also Published As

Publication number Publication date
US5674066A (en) 1997-10-07
EP0724114A3 (en) 1998-03-11
DE19502796A1 (en) 1996-08-01
JPH08233219A (en) 1996-09-10
DE19502796B4 (en) 2004-10-28
JP3702021B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
DE19502796B4 (en) burner
EP0704657B1 (en) Burner
EP0777081B1 (en) Premix burner
EP0918191B1 (en) Burner for the operation of a heat generator
EP0571782B1 (en) Gasturbine combustor and operating method
EP0694740A2 (en) Combustion chamber
EP0548396B1 (en) Device for mixing of two gaseous components and burner in which this device is applied
EP0718561B1 (en) Combustor
EP0321809A1 (en) Process for combustion of liquid fuel in a burner
CH678757A5 (en)
EP0202443A2 (en) Method and device for the combustion of liquid and/or solid pulverulent fuels
CH680084A5 (en)
DE2621496A1 (en) Eddy current burners for industrial furnaces, such as blast furnaces and the like
EP0780630A2 (en) Burner for a heat generator
EP0641971A2 (en) Method for operating a premix burner
EP0851172B1 (en) Burner and method for operating a combustion chamber with a liquid and/or gaseous fuel
EP0994300B1 (en) Burner for operating a heat generator
EP0751351B1 (en) Combustion chamber
EP0694730B1 (en) Burner
EP0777082A2 (en) Premix burner
DE4412315A1 (en) Method of operating gas turbine combustion chamber
EP0740108A2 (en) Burner
EP0961905B1 (en) Fuel combustion device and method
EP0780628B1 (en) Premix burner for a heat generator
EP0899506A2 (en) Combustion device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980912