EP0603795A2 - Flammglühanlage - Google Patents

Flammglühanlage Download PDF

Info

Publication number
EP0603795A2
EP0603795A2 EP93120530A EP93120530A EP0603795A2 EP 0603795 A2 EP0603795 A2 EP 0603795A2 EP 93120530 A EP93120530 A EP 93120530A EP 93120530 A EP93120530 A EP 93120530A EP 0603795 A2 EP0603795 A2 EP 0603795A2
Authority
EP
European Patent Office
Prior art keywords
flame
glow plug
air
flame glow
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93120530A
Other languages
English (en)
French (fr)
Other versions
EP0603795B1 (de
EP0603795A3 (en
Inventor
Martin Eller
Odd Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERU Ruprecht GmbH and Co KG
Beru Werk Albert Ruprecht GmbH and Co KG
Original Assignee
BERU Ruprecht GmbH and Co KG
Beru Werk Albert Ruprecht GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERU Ruprecht GmbH and Co KG, Beru Werk Albert Ruprecht GmbH and Co KG filed Critical BERU Ruprecht GmbH and Co KG
Publication of EP0603795A2 publication Critical patent/EP0603795A2/de
Publication of EP0603795A3 publication Critical patent/EP0603795A3/de
Application granted granted Critical
Publication of EP0603795B1 publication Critical patent/EP0603795B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • F02N19/06Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of combustion-air by flame generating means, e.g. flame glow-plugs

Definitions

  • the invention relates to a flame annealing system for heating the combustion air for a combustion device, in particular an internal combustion engine, according to the preamble of claim 1.
  • Such a flame glow system which is known for example from DE 33 42 865 C2 or DE 40 32 758 A1, serves, for example, as a cold start aid for the combustion device and in particular for preheating the intake and charge air of internal combustion engines, such as diesel engines and for suppressing smoke in the Exhaust gas during and after the start phase.
  • a switching device is provided as the control device, with which the heating element of the flame glow plug is heated up quickly and then operated with reduced heating power, which is achieved by a cycle operation with a predetermined Impulse-pause ratio is reached. The control takes place via a temperature switch or a timer.
  • control device is further designed so that the flame glow plug is supplied with both current and fuel in a clocked manner.
  • the object underlying the invention is therefore to design a flame glow system according to the preamble of claim 1 so that the air / fuel mixture of the flame glow plug always corresponds to the prevailing operating conditions of the combustion device.
  • the single figure shows the embodiment of the flame annealing plant according to the invention in a schematic Diagram.
  • the embodiment of the flame annealing system according to the invention shown in the drawing is used to heat air in the air intake duct 6 of an internal combustion engine, in particular a diesel engine.
  • a flame glow plug 1 is arranged in the air intake duct 6 and is supplied with fuel and electricity via an injection pump 2 and a control unit 3.
  • the supplied fuel is mixed with air, which enters the flame glow plug 1 via holes in a protective tube with which the flame glow plug 1 is arranged in the air intake duct 6. Due to the power supply to the heating or glow element of the flame glow plug 1, this mixture is ignited so that a flame is formed which heats the air in the air intake duct 6.
  • An air flow meter in particular an air velocity or air flow meter 5, is arranged on the upstream side of the air to be heated, the output signal of which is at control unit 3.
  • the control unit 3 controls the fuel supply to the flame glow plug 1 in accordance with the air quantity / speed in the air intake duct 6, which is reported to it by the air flow meter 5.
  • a fuel quantity suitable for the flame glow plug is metered into the branched-off air quantity entering the flame glow plug 1, which can be achieved, for example, by a plunger pump, the cycle frequency of which is changed to match the air quantity.
  • a constant amount of fuel is delivered per working stroke and the cycle frequency is controlled via the air flow meter.
  • the air speed can be measured in various ways. It can a baffle plate can be used, which performs an angular movement with increasing air speed. This angular movement is converted into an electrical signal, which is converted by the control unit into the clock frequency for the fuel delivery pump.
  • a hot wire resistance measurement method can also be used. A hot wire heated with a constant current is exposed to the air flow, which causes the hot wire to cool down and thus reduce the wire resistance, which can be used as a measure of the amount of air.
  • the use of a pressure sensor which detects the absolute pressure within the air duct is particularly suitable, it being possible to make a statement about the air speed via the pressure signal. In this way, it is possible to adapt the amount of fuel to the respective amount of air in such a way that optimal combustion is achieved, which does not lead to a flame extinction even when the air speed is increased during engine operation.
  • a multiple overload is preheated at the start of operation, the required energy being allocated taking into account the electrical operating parameters of the combustion device, for example the on-board voltage, by a corresponding choice of the amount of heating current and the preheating time becomes.
  • This is followed by a cut-off according to a predetermined map, taking into account the on-board voltage, but also the state of charge of the battery, the load from other consumers, etc., in order to specify the correct pulse-pause ratio for the clocked power supply when supplying current pulses.
  • the electrical heating energy for the fuel evaporation in the flame glow plug 1 corresponds to the fuel quantity passed through up to a maximum compatible heating energy, to avoid damaging the heating element. This maximum compatible heating energy is reached when the temperature gradient from inside to outside becomes too great and the heating and control coils in the heating element of the flame glow plug 1 tend to overheat.
  • the fuel is then evaporated and mixed with the incoming air, whereby due to the above. Control results in an ignitable mixture with high flame propagation speed, the mixture ratio of which is optimal for all load and speed ranges.
  • the heating power of the flame glow plug 1 is increased by the control unit 3 in a suitable manner so that the fuel supplied in a suitable manner can also be processed and the heat dissipation by the moving air is compensated. This increase in heating power takes place in turn until the critical heating power for the heating element is reached.
  • the design can be such that the fuel is supplied in proportion to the amount of air, the air speed or the absolute dynamic pressure with a separate pump, for which purpose a continuously delivering pump with fuel pressure generated in proportion to the amount of air, a pump proportional to the amount of air supply with variable drive speed or a plunger pump are provided be, which promotes intermittently, but is provided with facilities for equalizing the fuel outflow.
  • the heating energy can also be supplied continuously by adjusting the heating power in the fuel supply by self-regulation and in the flame glow plug a control wire with temperature jump characteristics is provided, which is cooled by the fuel and leads to a higher heating power.
  • the heating element in the Flame glow plug 1 can also be connected upstream of an electrically tuned PTC element, ie a resistance element with a positive temperature coefficient, which slowly gets hot without fuel flow and serves as a series resistor. With fuel flow, this element is cooled accordingly, so that it becomes low-resistance and allows a greater heating power on the heating element of the flame glow plug 1, which is necessary for the vaporization of the supplied fuel.
  • the flame glow plug 1 has two or more heating elements, which are supplied with heating energy in pulses after a quick preheating, in such a way that the current pulses line up without gaps and the heating energy supply takes place in heating stages in which e.g. If there are three heating elements, no heating element, one heating element, two heating elements or all three heating elements are supplied with electricity alternately or simultaneously.
  • a catalytically active element in the flame. This element is arranged in the area of the flame outlet opening and is not shown in the drawing.
  • an air flow meter 5 is thus provided in the intake duct 6 as a sensor, according to the output signals of which the fuel quantity and the electrical heating energy of the flame glow plug 1 are allocated by the control unit 3.
  • the clock frequency of which is driven in proportion to the amount of air in order to supply the amount of fuel in proportion to the amount of air, as described above, such a fuel supply can also be achieved with a throttle and with a fuel pressure proportional to the amount of air.
  • a nozzle that is adjustable in proportion to the amount of air can also be used, preferably with an approximately constant fuel pressure be provided.
  • the or the electrically heated heating elements in the flame glow plug 1 are supplied with current for fuel processing, initially with multiple electrical overloads, i.e. is heated up as quickly as possible, taking into account the state of the vehicle electrical system and then the energy supply, for example, is reduced via a variable pulse-pause ratio of the current cycle.
  • the heating energy required in each case is allocated as a function of the quantity of fuel supplied via a newly adapted variable pulse-pause ratio.
  • the allocation can be created as a map in an electronic memory.
  • a stoichiometric air-fuel mixture in the flame glow plug 1 with a high flame propagation speed is sought, which is controlled via the air flow meter 5 and the associated fuel supply, for example the clock frequency of a plunger pump. Since a quantity of fuel which is suitable for the quantity of air passed through is metered in, a maximum flame propagation rate up to a predetermined upper quantity of air is ensured after ignition of the air / fuel mixture.
  • the heating energy for the heating element of the flame glow plug 1 is allocated by measuring the amount of air so that the heating element of the flame glow plug 1 is not damaged.
  • the flame annealing plant according to the invention has the additional Advantage that the enforceable amount of fuel is higher, so that further applications open up, ie the flame annealing system can also be used, for example, for large-volume truck engines.

Abstract

Flammglühanlage zum Erwärmen der Verbrennungsluft für eine Verbrennungseinrichtung, insbesondere eine Brennkraftmaschine. Eine Flammglühkerze, die im Luftkanal der Verbrennungseinrichtung angeordnet ist, wird über eine Steuereinrichtung mit Strom und Kraftstoff versorgt und bildet zusammen mit der einströmenden Luft ein zündfähiges Luftkraftstoffgemisch, das über ein in der Flammglühkerze vorgesehenes Heizelement gezündet wird. Die dabei entstehende Flamme erwärmt die Luft im Luftkanal. Der Luftstrom im Luftkanal wird über eine Luftstrommeßeinrichtung gemessen und die Steuereinrichtung steuert darauf ansprechend die Kraftstoffversorgung der Flammglühkerze.

Description

  • Die Erfindung betrifft eine Flammglühanlage zum Erwärmen der Verbrennungsluft für eine Verbrennungseinrichtung, insbesondere eine Brennkraftmaschine, nach dem Gattungsbegriff des Patentanspruchs 1.
  • Eine derartige Flammglühanlage, die beispielsweise aus der DE 33 42 865 C2 oder der DE 40 32 758 A1 bekannt ist, dient beispielsweise als Kaltstarthilfe für die Verbrennungseinrichtung und insbesondere zur Vorwärmung der Ansaug- und Ladeluft von Brennkraftmaschinen, wie Dieselmotoren sowie zur Unterdrückung von Rauch im Abgas während und nach der Startphase.
    Bei der aus der DE 33 42 865 C2 bekannten Flammglühanlage ist als Steuereinrichtung ein Schaltgerät vorgesehen, mit dem das Heizelement der Flammglühkerze schnell aufgeheizt und anschließend mit verminderter Heizleistung weiter betrieben wird, was durch einen Taktbetrieb mit vorgegebenem Impuls-Pausen-Verhältnis erreicht wird. Die Steuerung erfolgt dabei über einen Temperaturschalter oder einen Zeitschalter.
  • Bei der aus der DE 40 32 758 A1 bekannten Flammglühanlage ist die Steuereinrichtung weiterhin so ausgebildet, daß die Flammglühkerze sowohl mit Strom als auch mit Kraftstoff getaktet versorgt wird.
  • Bei derartigen Flammglühanlagen ist es erwünscht, daß die Aufbereitung des Kraftstoffluftgemisches für die Flammglühkerze optimal über den gesamten Lastbereich der Verbrennungseinrichtung, insbesondere den gesamten Last- und Drehzahlbereich der Brennkraftmaschine erfolgt. Diese optimale Aufbereitung des Gemisches ist jedoch bei den bekannten Flammglühanlagen nicht gegeben, da die Betriebsverhältnisse der zugehörigen Verbrennungseinrichtung nicht genügend berücksichtigt werden.
  • Die der Erfindung zugrundeliegende Aufgabe besteht daher darin, eine Flammglühanlage nach dem Gattungsbegriff des Patentanspruchs 1 so auszubilden, daß das Luftkraftstoffgemisch der Flammglühkerze stets den jeweils herrschenden Betriebsbedingungen der Verbrennungseinrichtung entspricht.
  • Diese Aufgabe wird gemaß der Erfindung durch die Ausbildung gelöst, die im Kennzeichen des Patentanspruchs 1 angegegeben ist.
  • Besonders bevorzugte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Flammglühanlage sind Gegenstand der Patentansprüche 2 bis 8.
  • Im folgenden wird anhand der zugehörigen Zeichnung ein besonders bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Flammglühanlage beschrieben.
  • Die einzige Figur zeigt das Ausführungsbeispiel der erfindungsgemäßen Flammglühanlage in einem schematischen Diagramm.
  • Das in der Zeichnung dargestellte Ausführungsbeispiel der erfindungsgemäßen Flammglühanlage dient zum Erwärmen von Luft im Luftansaugkanal 6 einer Brennkraftmaschine, insbesondere eines Dieselmotors.
  • Im Luftansaugkanal 6 ist eine Flammglühkerze 1 angeordnet, die über eine Einspritzpumpe 2 und ein Steuergerät 3 mit Kraftstoff sowie mit Strom versorgt wird. In der Flammglühkerze 1 wird der zugeführte Kraftstoff mit Luft gemischt, die in die Flammglühkerze 1 über Löcher in einem Schutzrohr eintritt, mit dem die Flammglühkerze 1 im Luftansaugkanal 6 angeordnet ist. Aufgrund der Stromversorgung des Heiz- oder Glühelementes der Flammglühkerze 1 wird dieses Gemisch gezündet, so daß sich eine Flamme bildet, die die Luft im Luftansaugkanal 6 erwärmt.
  • Auf der Anströmseite der zu erwärmenden Luft im Ansaugkanal 6 ist ein Luftstrommesser, insbesondere ein Luftgeschwindigkeits- oder Luftmengenmesser 5 angeordnet, dessen Ausgangssignal am Steuergerät 3 liegt. Das Steuergerät 3 steuert die Kraftstoffversorgung der Flammglühkerze 1 nach Maßgabe der Luftmenge/geschwindigkeit im Luftansaugkanal 6, die ihm vom Luftstrommesser 5 gemeldet wird. In dieser Weise wird eine für die Flammglühkerze passende Kraftstoffmenge der abgezweigten und in die Flammglühkerze 1 eintretenden Luftmenge zudosiert, was beispielsweise durch eine Plungerpumpe erreicht werden kann, deren Taktfrequenz passend zur Luftmenge verändert wird. Dabei wird pro Arbeitshub eine konstante Kraftstoffmenge gefördert und wird die Taktfrequenz über den Luftstrommesser gesteuert. Dadurch wird die Kraftstoffördermenge weitgehend unabhängig vom Kraftstoffvordruck im Versorgungssystem und können extreme Druckspitzen leichter beherrscht werden. Die Messung der Luftgeschwindigkeit kann in verschiedener Weise erfolgen. Es kann eine Stauscheibe verwandt werden, die bei steigender Luftgeschwindigkeit eine Winkelbewegung ausführt. Diese Winkelbewegung wird in ein elektrisches Signal umgewandelt, das vom Steuergerät in die Taktfrequenz für die Kraftstofförderpumpe umgewandelt wird. Es kann auch ein Hitzdrahtwiderstandsmeßverfahren angewandt werden. Dabei wird ein mit konstantem Strom beheizter Hitzdraht der Luftströmung ausgesetzt, die eine Abkühlung des Hitzdrahtes und damit eine Senkung des Drahtwiderstandes bewirkt, der als Maß für die Luftmenge herangezogen werden kann. Besonders geeignet ist die Verwendung eines Drucksensors, der den Absolutdruck innerhalb des Luftkanals erfaßt, wobei über das Drucksignal eine Aussage über die Luftgeschwindigkeit möglich ist. In dieser Weise ist es möglich, die Kraftstoffmenge der jeweiligen Luftmenge so anzupassen, daß eine optimale Verbrennung erreicht wird, die auch bei stark erhöhter Luftgeschwindigkeit im Motorbetrieb nicht zu einem Flammenabriß führt.
  • Was die Stromversorgung der Flammglühkerze 1 durch das Steuergerät 3 anbetrifft, so wird bei Betriebsbeginn zunächst mit einer mehrfachen Überlast vorgeglüht, wobei die erforderliche Energie unter Berücksichtigung der elektrischen Betriebsparameter der Verbrennungseinrichtung, beispielsweise der Bordspannung durch eine entsprechende Wahl der Höhe des Heizstromes und der Vorglühzeit zugeteilt wird. Anschließend erfolgt eine Abregelung nach einem vorgegebenen Kennfeld, wobei wiederum die Bordspannung, aber auch der Ladezustand der Batterie, die Belastung durch andere Verbraucher usw. berücksichtigt werden, um bei einer Versorgung mit Stromimpulsen das richtige Impuls-Pausen-Verhältnis für die getaktete Stromversorgung vorzugeben.
  • Die elektrische Heizenergie für die Kraftstoffverdampfung in der Flammglühkerze 1 entspricht der durchgesetzten Kraftstoffmenge bis zu einer maximal verträglichen Heizenergie, um eine Beschädigung des Heizelementes zu vermeiden. Diese maximal verträgliche Heizenergie ist dann erreicht, wenn im Heizelement das Temperaturgefälle von innen nach außen zu groß wird und die Heiz- und Regelwendeln im Heizelement der Flammglühkerze 1 zur Überhitzung neigen.
  • In der Flammglühkerze 1 wird der Kraftstoff dann verdampft und mit der eintretenden Luft vermischt, wobei sich aufgrund der o.a. Steuerung ein zündfähiges Gemisch mit hoher Flammausbreitungsgeschwindigkeit ergibt, dessen Gemischverhältnisse für alle Last- und Drehzahlbereiche optimal ist. Wenn der Luftstrommesser 5 im Luftansaugkanal bewegte Luft meldet, dann wird die Heizleistung der Flammglühkerze 1 durch das Steuergerät 3 in geeigneter Weise erhöht, damit der dazu passend zugeführte Kraftstoff auch aufbereitet werden kann und die Wärmeabführung durch die bewegte Luft ausgeglichen wird. Diese Erhöhung der Heizleistung erfolgt wiederum bis die für das Heizelement kritsche Heizleistung erreicht ist.
  • Die Ausbildung kann derart sein, daß der Kraftstoff proportional zur Luftmenge, zur Luftgeschwindigkeit oder dem absoluten Staudruck mit separater Pumpe zugeführt wird, wozu eine kontinuierlich fördernde Pumpe mit proportional zur Luftmenge erzeugtem Kraftstoffdruck, eine proportional zur Luftmenge fördernde Pumpe mit variabler Antriebsdrehzahl oder eine Plungerpumpe vorgesehen sein, die zwar stoßweise fördert, die aber mit Einrichtungen zur Vergleichmäßigung des Kraftstoffabflusses versehen ist.
  • Die Heizenergie kann gleichfalls kontinuierlich zugeführt werden, indem bei der Kraftstoffzuführung die Heizleistung durch Selbstregelung angepaßt wird und in der Flammglühkerze ein Regeldraht mit Temperatursprungcharakteristik vorgesehen wird, der vom Kraftstoff abgekühlt wird und zu einer höheren Heizleistung führt. Dem Heizelement in der Flammglühkerze 1 kann auch ein elektrisch vorgeschaltetes abgestimmtes PTC-Element, d.h. ein Widerstandselement mit positivem Temperaturkoeffizienten vorgeschaltet sein, das ohne Kraftstoffdurchfluß langsam heiß wird und als Vorwiderstand dient. Mit Kraftstoffdurchfluß wird dieses Element entsprechend abgekühlt, so daß es niederohmiger wird und eine größere Heizleistung am Heizelement der Flammglühkerze 1 zuläßt, die zur Verdampfung des zugeführten Kraftstoffes notwendig ist.
  • Vorzugsweise weist die Flammglühkerze 1 zwei oder mehr Heizelemente auf, die nach einem schnellen Vorglühen impulsweise mit Heizenergie versorgt werden, derart, daß sich die Stromimpulse zeitlich lückenlos aneinanderreihen und die Heizenergieversorgung in Heizstufen erfolgt, in denen z.B. bei drei Heizelementen jeweils kein Heizelement, ein Heizelement, zwei Heizelemente oder alle drei Heizelemente wechselweise oder gleichzeitig mit Strom versorgt werden.
  • Es ist weiterhin bevorzugt, die Flammhaltung durch ein katalytisch wirkendes Element in der Flamme zu unterstützen. Dieses Element ist im Bereich der Flammaustrittsöffnung angeordnet und in der Zeichnung nicht dargestellt.
  • Bei der erfindungsgemäßen Flammglühanlage ist somit ein Luftstrommesser 5 im Ansaugkanal 6 als Sensor vorgesehen, nach dessen Ausgangssignalen die Kraftstoffmenge und die elektrische Heizenergie der Flammglühkerze 1 durch das Steuergerät 3 zugeteilt wird. Statt der Verwendung einer Plungerpumpe, deren Taktfrequenz proportional zur Luftmenge gefahren wird, um die Kraftstoffmenge proportional zur Luftmenge zuzuführen, wie es oben beschrieben wurde, ist auch mit einer Drossel und mit einem zur Luftmenge proportionalen Kraftstoffdruck eine derartige Kraftstoffversorgung erreichbar. Es kann auch eine proportional zur Luftmenge einstellbare Düse vorzugsweise mit in etwa konstantem Kraftstoffdruck vorgesehen sein.
  • Im Betrieb der Flammglühanlage wird das oder werden die elektrisch beheizten Heizelemente in der Flammglühkerze 1 zur Kraftstoffaufbereitung mit Strom versorgt, wobei zunächst mit mehrfacher elektrischer Überlast, d.h. möglichst schnell aufgeheizt wird und zwar unter Berücksichtigung des Zustandes des Bordnetzes und dann die Energiezufuhr, beispielsweise über ein variables Impuls-Pausen-Verhältnis des Stromtaktes reduziert wird. Sobald Kraftstoff zugeführt wird, wird über ein neu angepaßtes variables Impuls-Pausen-Verhältnis die jeweils erforderliche Heizenergie in Abhängigkeit von der zugeführten Kraftstoffmenge zugeteilt. Die Zuteilung kann als Kennfeld in einem elektronischen Speicher angelegt sein.
  • Bordnetzschwankungen können durch Änderung des Impuls-Pausen-Verhältnisses kompensiert werden. Bei mehreren Heizelementen kann Stromschwankungen bei der impulsförmigen Heizenergieversorgung dadurch entgegengewirkt werden, daß sich die Stromimpulse der Heizelemente zeitlich lückenlos aneinanderreihen.
  • Es wird ein stoichiometrisches Luftkraftstoffgemisch in der Flammglühkerze 1 mit hoher Flammausbreitungsgeschwindigkeit angestrebt, das über den Luftstrommesser 5 und die zugehörige Kraftstoffversorgung, beispielsweise die Taktfrequenz einer Plungerpumpe gesteuert wird. Da eine zur durchgesetzten Luftmenge passende Kraftstoffmenge zudosiert wird, ist nach Zündung des Luftkraftstoffgemisches eine maximale Flammausbreitungsgeschwindigkeit bis zu einer vorgegebenen oberen Luftmenge sichergestellt. Die Heizenergie für das Heizelement der Flammglühkerze 1 wird über die Messung der Luftmenge so zugeteilt, daß das Heizelement der Flammglühkerze 1 nicht beschädigt wird.
  • Die erfindungsgemäße Flammglühanlage hat den zusätzlichen Vorteil, daß die durchsetzbare Kraftstoffmenge höher ist, so daß sich weitere Anwendungsfälle erschließen, d.h. die Flammglühanlage auch beispielsweise für großvolumige LKW-Motoren einsetzbar ist.

Claims (8)

  1. Flammglühanlage zum Erwärmen der Verbrennungsluft für eine Verbrennungseinrichtung, insbesondere eine Brennkraftmaschine, mit einer Flammglühkerze, die im Luftkanal der Verbrennungseinrichtung angeordnet ist, einer Stromversorgungseinrichtung für die Flammglühkerze, einer Kraftstoffversorgungseinrichtung für die Flammglühkerze und einer Steuereinrichtung für die Strom- und Kraftstoffversorgung der Flammglühkerze, gekennzeichnet durch eine Luftstrommeßeinrichtung (5) im Luftkanal (6), auf die die Steuereinrichtung (3) anspricht und die Kraftstoffversorgung der Flammglühkerze (1) entsprechend steuert.
  2. Flammglühanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Steuereinrichtung (3) die Stromversorgung in Abhängigkeit von der Kraftstoffversorgung steuert.
  3. Flammglühanlage nach Anspruch 2, dadurch gekennzeichnet, daß die Steuereinrichtung (3) die Stromversorgung erhöht, wenn die Luftstrommeßeinrichtung (5) bewegte Luft im Luftkanal (6) feststellt.
  4. Flammglühanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuerung der Stromversorgung unter Einbeziehung von Parametern der Verbrennungseinrichtung erfolgt, die den Zustand der elektrischen Versorgung der Verbrennungseinrichtung angeben.
  5. Flammglühanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Heizstromversorgung der Flammglühkerze (1) durch eine Regelwendel selbstgeregelt wird, die in der Flammglühkerze (1) angeordnet ist und aus einem Material mit Temperatursprungcharakteristik besteht.
  6. Flammglühanlage nach Anspruch 1 oder 5, gekennzeichnet durch ein Widerstandselement mit positivem Temperaturkoeffizienten, das dem Heizelement in der Flammglühkerze (1) vorgeschaltet ist und einen proportionalen Verlauf seines Widerstandes gegenüber der Temperatur hat.
  7. Flammglühanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der Flammglühkerze zwei oder mehr Heizelemente vorgesehen sind, die mit Stromimpulsen versorgt werden, die sich zeitlich lückenlos aneinanderreihen, und die einzeln oder in Gruppen in verschiedenen Heizstufen mit Strom versorgt werden.
  8. Flammglühanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein katalytisch wirkendes Element, das im Flammbereich der Flammglühkerze (1) angeordnet ist.
EP93120530A 1992-12-23 1993-12-20 Flammglühanlage Expired - Lifetime EP0603795B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4243965 1992-12-23
DE4243965A DE4243965A1 (de) 1992-12-23 1992-12-23 Flammglühanlage

Publications (3)

Publication Number Publication Date
EP0603795A2 true EP0603795A2 (de) 1994-06-29
EP0603795A3 EP0603795A3 (en) 1994-08-24
EP0603795B1 EP0603795B1 (de) 1995-11-02

Family

ID=6476462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93120530A Expired - Lifetime EP0603795B1 (de) 1992-12-23 1993-12-20 Flammglühanlage

Country Status (5)

Country Link
US (1) US5402757A (de)
EP (1) EP0603795B1 (de)
AT (1) ATE129780T1 (de)
DE (2) DE4243965A1 (de)
ES (1) ES2079234T3 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431477C2 (de) * 1994-09-03 1996-09-26 Bosch Gmbh Robert Starthilfevorrichtung, insbesondere für einen Dieselmotor
DE19629928A1 (de) * 1996-07-24 1998-01-29 Beru Werk Ruprecht Gmbh Co A Verfahren zum Betreiben einer Flammstartanlage für eine Brennkraftmaschine und Flammstartanlage für eine Brennkraftmaschine
US6227178B1 (en) 1997-11-18 2001-05-08 Toyota Jidosha Kabushiki Kaisha Control system of combustion heater for internal combustion engine
JP3658970B2 (ja) 1997-12-08 2005-06-15 トヨタ自動車株式会社 燃焼式ヒータを有する内燃機関
DE69816579T2 (de) 1997-12-19 2004-06-03 Toyota Jidosha K.K., Toyota Brennkraftmaschine mit NOx-Katalysator für Magergemischverbrennung
JP3577961B2 (ja) 1998-02-27 2004-10-20 トヨタ自動車株式会社 燃焼式ヒータを有する内燃機関
JP3509563B2 (ja) 1998-03-10 2004-03-22 トヨタ自動車株式会社 燃焼式ヒータを有する内燃機関
DE10048608C2 (de) * 2000-09-30 2003-04-03 Bosch Gmbh Robert Verfahren und Computerprogramm zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
DE10233049B4 (de) * 2002-07-19 2004-05-13 Webasto Thermosysteme International Gmbh Heizgerät mit einem Glühstift/Flammwächter
CN112746924B (zh) * 2020-12-30 2021-09-21 北京理工大学 一种柴油机用自燃型火焰进气预热系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2807149A1 (de) * 1977-02-22 1978-08-24 Nippon Soken Zuendsystem fuer rotationskolbenmaschinen
EP0448830A2 (de) * 1990-03-29 1991-10-02 Mercedes-Benz Ag Flammglühkerze für eine luftverdichtende Einspritzbrennkraftmaschine
DE4032758A1 (de) * 1990-10-16 1992-04-30 Daimler Benz Ag Vorrichtung zum aufheizen der ansaugluft bei brennkraftmaschinen mittels einer flammstartanlage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400699A (en) * 1966-06-08 1968-09-10 Ford Motor Co Preheater unit for an internal combustion engine
US3602206A (en) * 1968-02-07 1971-08-31 Daimler Benz Ag Flame heater plug for air-compressing internal combustion engines
JPS5121012A (de) * 1974-08-14 1976-02-19 Hitachi Ltd
DE3335144A1 (de) * 1982-09-30 1984-04-05 Isuzu Motors Ltd., Tokyo Einlassbrenner
JPS59141771A (ja) * 1983-02-03 1984-08-14 Nippon Denso Co Ltd ディ−ゼル機関制御装置
DE3342865A1 (de) * 1983-11-26 1985-06-05 Daimler-Benz Ag, 7000 Stuttgart Vorrichtung zum aufheizen der gluehkerzen von brennkraftmaschinen
DE4007340C1 (de) * 1990-03-08 1990-10-11 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4041631C1 (de) * 1990-12-22 1992-02-06 Daimler Benz Ag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2807149A1 (de) * 1977-02-22 1978-08-24 Nippon Soken Zuendsystem fuer rotationskolbenmaschinen
EP0448830A2 (de) * 1990-03-29 1991-10-02 Mercedes-Benz Ag Flammglühkerze für eine luftverdichtende Einspritzbrennkraftmaschine
DE4032758A1 (de) * 1990-10-16 1992-04-30 Daimler Benz Ag Vorrichtung zum aufheizen der ansaugluft bei brennkraftmaschinen mittels einer flammstartanlage

Also Published As

Publication number Publication date
DE4243965A1 (de) 1994-06-30
ATE129780T1 (de) 1995-11-15
DE59300858D1 (de) 1995-12-07
US5402757A (en) 1995-04-04
EP0603795B1 (de) 1995-11-02
EP0603795A3 (en) 1994-08-24
ES2079234T3 (es) 1996-01-01

Similar Documents

Publication Publication Date Title
DE2051919C3 (de) Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
DE3032067C2 (de)
DE4025112C2 (de) Startsteuervorrichtung für einen Alkoholmotor
EP0189086B1 (de) Glühelement
EP0603795B1 (de) Flammglühanlage
DE2647517C2 (de)
DE10028073A1 (de) Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze
EP0315934B1 (de) Verfahren zur Temperaturregelung von Glühkerzen bei Dieselmotoren und Schaltungsanordnung zur Durchführung des Verfahrens
DE2151774B2 (de) Kraftstoffeinspritzanlage für eine Brennkraftmaschiife
DE3422866A1 (de) Verfahren und vorrichtung zur steuerung eines hitzdraht-luftmengenmessers fuer brennkraftmaschinen
DE2150187A1 (de) Mit luftmengenmessung arbeitende, elektrisch gesteuerte kraftstoffeinspritzanlage fuer brennkraftmaschinen
DE4106308C2 (de) Verfahren und Vorrichtung zur Temperaturregelung für eine Abgassonde
DE2448304A1 (de) Elektrisch gesteuerte kraftstoffeinspritzanlage
DE3025283C2 (de) Zusatzheizvorrichtung für Kraftfahrzeuge
EP0455256B1 (de) Glühkerze
DE2057972C3 (de) Für fremdgezündete Brennkraftmaschinen bestimmte Kraftstoffeinspritzvorrichtung für den Kaltstart
DE4041631C1 (de)
DE4208609C2 (de) Verfahren zur Reduzierung der Zeitdauer bis zum Erreichen der Betriebstemperatur einer im Abgassystem einer Brennkraftmaschine angeordneten Abgasreinigungsvorrichtung
DE2848563C2 (de) Einrichtung zur in der Regel ergänzenden Kraftstoffzumessung bei einer Brennkraftmaschine mit Fremdzündung während Sonderbetriebsbedingungen mittels eines elektrisch betätigten Sonderzumeßorgans, insbesondere eines Einspritzventils
DE4032758A1 (de) Vorrichtung zum aufheizen der ansaugluft bei brennkraftmaschinen mittels einer flammstartanlage
DE4309833C2 (de) Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine oder Feuerungsstätte
EP0492084B1 (de) Verfahren zum Aufheizen der Ansaugluft bei Brennkraftmaschinen mittels einer Flammstartanlage
EP0327900B1 (de) Regeleinrichtung für Brennkraftmaschine
DE3319652A1 (de) Regelung einer brennkraftmaschine mit gluehkerzen
DE102011052324A1 (de) Fahrzeugheizgerät zum Betrieb mit mehreren Brennstoffarten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19941129

17Q First examination report despatched

Effective date: 19950328

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 129780

Country of ref document: AT

Date of ref document: 19951115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

REF Corresponds to:

Ref document number: 59300858

Country of ref document: DE

Date of ref document: 19951207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079234

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041209

Year of fee payment: 12

Ref country code: AT

Payment date: 20041209

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041213

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20041216

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051220

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051220

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051221

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051221

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101231

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59300858

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703