EP0594657A1 - Statischer mischer. - Google Patents

Statischer mischer.

Info

Publication number
EP0594657A1
EP0594657A1 EP92913854A EP92913854A EP0594657A1 EP 0594657 A1 EP0594657 A1 EP 0594657A1 EP 92913854 A EP92913854 A EP 92913854A EP 92913854 A EP92913854 A EP 92913854A EP 0594657 A1 EP0594657 A1 EP 0594657A1
Authority
EP
European Patent Office
Prior art keywords
deflection elements
static mixer
mixer according
rows
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92913854A
Other languages
English (en)
French (fr)
Other versions
EP0594657B1 (de
Inventor
Gerhard Berner
Guenther Proebstle
Wolfgang Herr
Lothar Balling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0594657A1 publication Critical patent/EP0594657A1/de
Application granted granted Critical
Publication of EP0594657B1 publication Critical patent/EP0594657B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431973Mounted on a support member extending transversally through the mixing tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor

Definitions

  • the invention relates to a static mixer with a plurality of deflection elements arranged in a flow channel
  • Static mixers are generally installed in pipelines or in other flow channels and serve to distribute substances previously introduced into the pipeline or into the flow channel as homogeneously as possible in the flow medium. For example, it can be used to mix various previously introduced gases. It can also be used to evenly distribute liquid or dusty substances in a gas stream. Static mixers can also be used in liquids.
  • Known static mixers consist of one or two deflection elements - mostly triangular sheets - which are anchored more or less obliquely in the flow path (see Balke Dürr, special print C56, from VGB Krafttechnik H8 / 1983, pages 676 to 678).
  • a static mixer has also become known in which several small deflection elements are arranged next to one another in a plane perpendicular to the axis of symmetry of the gas channel.
  • static mixers good mixing of the gases or substances previously injected into the gas stream can already be achieved at a relatively short distance from the deflection elements.
  • it is a peculiarity of such static mixers with relatively small deflection elements that local concentration differences can be compensated for relatively well and also quickly.
  • large differences in concentration for example between two opposite sides of the flow channel, can only be compensated for inadequately.
  • the object of the invention is to develop a static mixer which, with a shortened mixing distance, is able both to equalize large-scale and local concentration differences equally.
  • a plurality of deflecting elements which are small in relation to the diameter of the flow channel are used, the deflecting elements are arranged in rows which are parallel to one another and oriented transversely to the axis of symmetry of the flow channel and the deflecting elements of each row in the same direction in the direction parallel to each row and inclined in the opposite direction to the deflection elements of the respectively immediately adjacent rows ensures that both large-scale concentration differences and local concentration differences are equally well balanced. Large-scale concentration differences are reduced by the gas streams running along the rows and crossing the entire flow channel. Local concentration differences, on the other hand, compensate for one another at the boundaries of the opposite flow directions via the edge vortices. Overall, this means that the distance of the gas until the individual components are completely mixed in the flow direction behind the deflection elements is minimized.
  • the deflection elements can be inclined by about 10 * to 45 * about axes perpendicular to the direction of the rows and perpendicular to the axis of symmetry of the flow channel. This measure contributes to faster mixing.
  • the rows can extend from one boundary wall to the opposite boundary wall of the flow channel. This promotes a large-scale concentration balance.
  • a particularly simple construction results if the deflection elements in the embodiment of the invention are fastened on a support grid extending transversely to the axis of symmetry of the gas channel. This construction is relatively simple, stable and space-saving to install.
  • a particularly intimate mixing is achieved if two in each case in a further development of the invention
  • Adjacent rows of deflection elements are arranged in close proximity to one another in pairs.
  • the turbulence in the region of these deflection elements is greatly intensified, which is equivalent to a further intensification of the local intimate mixing.
  • FIG. 1 shows a plan view of a static mixer installed in a rectangular flow channel
  • FIG. 2 shows a section along line II-II of FIG. 1
  • FIG. 3 shows a section along line III-III of FIG. 1
  • FIG. 4 shows a plan view of one in one 5 a section along the line VV of FIG. 4,
  • FIG. 6 a section along the line VI-VI of FIG. 4,
  • FIG. 7 a plan view of a static mixer with increased local turbulence used in a rectangular flow channel
  • FIG 8 shows a section along the line VIII-VIII of the figure
  • FIG. 9 shows a section along the line IX-IX of FIG. 7
  • FIG. 10 shows a view of a mixer with diagonal to the
  • FIG 11 is a section along the line XI-XI of Figure 10.
  • FIG. 1 shows a plan view of a static mixer 2 according to the invention installed in a rectangular flow channel, here a gas channel 1.
  • a support grid 8 is inserted in the gas channel 1, perpendicular to its axis of symmetry 6, which consists of struts 10 which are perpendicular to one another 11, in the exemplary embodiment made of flat steel.
  • Triangular deflection elements 12 made of sheet metal are welded on at the crossing points of the struts 10, 11 of the support grid 8. As shown in the illustrations in FIGS.
  • these deflection elements 12 are welded onto the outflow side of the support grid 8. It can be seen from FIGS. 1 and 2 that the deflection elements 8 are inclined by approximately 30 * with respect to the axis of symmetry 6 of the gas channel 1. 1 shows that the deflection elements 12 are arranged in rows on the support grid 8 and the deflection elements of each row 14, 15, 16, 17, 18 are inclined in the same direction in the direction of the row with respect to the main flow direction 4. The deflection elements of the respectively adjacent rows are inclined in the opposite direction, but by the same angle of inclination. It is also noticeable that the deflection elements are much smaller in their dimensions or with their edge length than the dimensions of the gas channel 1. In the exemplary embodiment, the edge lengths of the deflection elements 12 are less than one tenth of the width or length of the gas channel 1.
  • the deflecting elements 12 of each row 14, 15 induce , 16, 17, 18 a transverse flow 22 in the gas channel 1, which extends from one boundary thereof to the opposite boundary.
  • the immediately adjacent rows of Deflection elements 12 produce such a transverse flow 22 from one boundary of the gas channel 1 to the opposite one, but with the flow direction reversed. This achieves a large-scale mass transfer across the entire gas channel 1 at the shortest possible distance.
  • the opposite directions of flow of the gas cause ring vortices 20 at their boundaries, which ensure intimate local mixing.
  • the gas flows responsible for the large-area mixing through the gas channel are shown in FIG. 1 with straight arrows 22, the vortices responsible for the local intimate mixing are indicated in FIG. 1 by circular arrows 20.
  • FIG. 4 shows a top view of another static mixer 32 according to the invention installed in a tubular gas channel 30.
  • the static mixer comprises a support grid 34, which is installed perpendicular to the axis of symmetry 33 of the gas channel 30 and comprises struts 36, 37 which are perpendicular to one another These struts attach deflectors 38.
  • the transverse struts 36 are welded below the longitudinal struts 37 and the deflecting elements 38 are not welded to the longitudinal struts 37 at the crossing points of the struts of the supporting grid, but in between.
  • the deflection elements 38 are arranged in rows and the deflection elements of each row are identical to one another and inclined in the opposite direction to the deflection elements of the respectively adjacent row.
  • this static mixer 32 When this static mixer 32 is in operation, when the deflection elements 38 are flown against by the gas stream 39, it is similar to the exemplary embodiment in FIGS 3 through each row of equally inclined deflection elements 38, a transverse flow directed across the gas channel and crossing the entire gas channel 30 is generated, which is exactly opposite to the respectively adjacent transverse flow. Compare the straight arrows 40 in FIG. 4.
  • FIG. 7 shows a plan view of another static mixer 54 according to the invention installed in a rectangular gas channel 50 perpendicular to its axis of symmetry 52.
  • the deflection elements 56, 57 are fastened on a support grid 58 made of struts 60 oriented perpendicular to one another.
  • the deflection elements 56, 57 are arranged in rows, wherein the deflection elements of one and the same row are all inclined transversely to the gas flow 62 and the deflection elements 56, 57 of the respectively adjacent row are all inclined in the opposite direction to the gas flow.
  • Embodiments have been shortened a little further.
  • FIG. 10 shows a top view
  • FIG. 11 shows a modification of the static mixer 54 of FIG. 7 in side view
  • a flat support grid 70 made of struts 72 oriented perpendicular to one another is arranged in a rectangular gas channel 74 perpendicular to its axis of symmetry 76 .
  • the same deflection elements 78, 79 as in FIG. 7 are arranged in rows and two deflection elements 78, 79 of immediately adjacent rows are pressed close together and inclined in the opposite direction to the primary gas flow 75.
  • the pairs of deflection elements 78, 79 fastened along the same struts 72 are each arranged in mirror image, so that non-mirror image pairs of deflection elements can only be found in rows diagonally to the support grid 70.
  • this static mixer 80 is therefore particularly suitable for intensive mixing of substances which are already mixed to a certain extent evenly in the inflowing gas stream.
  • the static mixers disclosed can be used not only in process engineering for uniform mixing of different material flows, that is to say gases, liquids and / or solids transported therein. With such static mixers, even more uniform mixing of different reactants in the chemical industry can be carried out over relatively short distances.
  • the denitrification of flue gases in power plants and in waste incineration can be favorably influenced by mixing the reducing agent - usually the NH, - with the flue gas very evenly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Disintegrating Or Milling (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

Statischer Mischer
Die Erfindung bezieht sich auf einen statischen Mischer mit mehreren in einem Strömungskanal angeordneten Auslenkelementen
Statische Mischer werden im allgemeinen in Rohrleitungen oder in anderen Strömungskanälen eingebaut und dienen dazu, zuvor in die Rohrleitung bzw. in den Strömungskanal eingebrachte Stoffe möglichst homogen im Strömungsmedium zu verteilen. So können damit zum Beispiel verschiedene zuvor eingebrachte Gase miteinander vermischt werden. Auch können damit flüssige oder staubförmige Stoffe in einem Gasstrom gleichmäßig verteilt werden. Darüber hinaus ist der Einsatz statischer Mischer auch in Flüssigkeiten möglich.
Bekannte statische Mischer bestehen aus einem oder zwei Auslenkelementen - meist dreieckige Bleche - die mehr oder weniger schräg im Strömungsweg verankert sind (vergleiche Balke Dürr, Sonderdruck C56, aus VGB Kraftwerkstechnik H8/1983, Seiten 676 bis 678. Diese Auslenkelemente erzeugen heftige Wirbel, die stromab zu einer intensiven Durchmischung des Gasstroms und aller zugegebenen Komponenten führt. Es ist jedoch eine Eigenart solcher statischer Mischer, daß die vollständige Durchmischung der Komponenten erst in einem hinreichend großen Abstand hinter dem statischen Mischer bzw. hinter den Auslenkelementen erreicht wird. Dieser Abstand beträgt in gasförmigen Medien etwa das 10- bis 20fache des Rohrquer¬ schnitts. Dies führt dazu, daß hinter den Auslenkelementen hinreichend viel Platz vorhanden sein muß, bevor die nachfolgenden Bauelemente, denen die Mischung zugeführt werden soll, angeschlossen werden können. Bei vielen industriellen Anlagen ist dieser Platz jedoch nur sehr knapp bemessen und in nicht ausreichendem Maße verfügbar.
Es ist auch schon ein statischer Mischer bekannt geworden, bei dem in einer Ebene senkrecht zur Symmetrieachse des Gaskanals mehrere kleine Auslenkelemente nebeneinander angeordnet sind. Mit solchen statischen Mischern läßt sich in relativ geringem Abstand von den Auslenkelementen bereits eine gute Vermischung der zuvor in den Gasstrom eingedüsten Gase bzw. eingebrachten Stoffe erreichen. Es ist jedoch eine Eigenart solcher statischer Mischer mit verhältnismäßig kleinen Auslenkelementen, daß lokale Konzentrationsunterschiede verhältnismäßig gut und auch schnell ausgeglichen werden können. Leider können dabei aber großr umige Konzentrationsunterschiede, etwa zwischen zwei gegenüberliegenden Seiten des Strömungskanals, nur sehr unzureichend ausgeglichen werden.
Der Erfindung liegt die Aufgabe zugrunde, einen statischen Mischer zu entwickeln, der bei verkürzter Durchmischungs¬ strecke sowohl in der Lage ist, großraumige als auch lokale Konzentrationsunterschiede gleichermaßen auszu¬ gleichen.
Diese Aufgabe ist durch die Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung sind den Ansprüchen 2 bis 12 zu entnehmen.
Dadurch, daß erfindungsgemäß eine Vielzahl von im Bezug zum Durchmesser des Strömungskanals kleinen Auslenkelemen¬ ten verwendet sind, die Auslenkelemente in untereinander parallelen, quer zur Symmetrieachse des Strömungskanals ausgerichteten Reihen angeordnet und die Auslenkelemente einer jeden Reihe gleichsinnig in Richtung parallel zur jeweiligen Reihe und gegensinnig zu den Auslenkelementen der jeweils unmittelbar benachbarten Reihen geneigt sind wird erreicht, daß sowohl großraumige Konzentrationsunter¬ schiede als auch lokale Konzentrationsunterschiede gleichermaßen gut ausgeglichen werden. Dabei werden großraumige Konzentrationsunterschiede durch die längs der Reihen verlaufenden, den gesamten Strδmungskanal durch¬ querenden Gasströme abgebaut. Lokale Konzentrationsunter¬ schiede gleichen sich hingegen an den Grenzen der gegenläufig verlaufenden Strömungsrichtungen über die Randwirbel aus. Das führt insgesamt dazu, daß die Wegstrecke des Gases bis zur vollständigen Vermischung der einzelnen Komponenten in Strömungsrichtung hinter den Auslenkelementen minimiert wird.
In besonders vorteilhafter Ausgestaltung der Erfindung können die Auslenkelemente um Achsen senkrecht zur Richtung der Reihen und senkrecht zur Symmetrieachse des Strömungskanals um ca. 10* bis 45* geneigt sein. Diese Maßnahme trägt zu einer schnelleren Durchmischung bei.
In zweckmäßiger Weiterbildung der Erfindung können die Reihen von der einen Begrenzungswand zur gegenüberliegen¬ den Begrenzungswand des Strömungskanals reichen. Hierdurch wird ein großräumiger Konzentrationsausgleich gefördert.
Eine besonders einfache Konstruktion ergibt sich, wenn die Auslenkelemente in Ausgestaltung der Erfindung auf einem sich quer zur Symmetrieachse des Gaskanals erstreckenden Traggitter befestigt sind. Diese Konstruktion ist relativ einfach, stabil und platzsparend einzubauen.
Eine besonders innige Vermischung wird erreicht, wenn in Weiterbildung der Erfindung jeweils zwei unmittelbar benachbarte Reihen von Auslenkelementen paarweise dicht nebeneinander angeordnet sind. Hierdurch wird die Verwirbelung im Bereich dieser Auslenkelemente stark intensiviert, was einer weiteren Verstärkung der lokalen innigen Vermischung gleichkommt.
Weitere Einzelheiten der Erfindung werden anhand von vier in den Figuren dargestellter Ausführungsbeispiele erläutert. Es zeigen:
FIG 1 eine Aufsicht auf einen in einem rechteckigen Strömungskanal eingebauten statischen Mischer, FIG 2 einen Schnitt längs der Linie II-II der Figur 1, FIG 3 einen Schnitt längs der Linie III-III der Figur 1, FIG 4 eine Aufsicht auf einen in einem Rohr eingebauten statischen Mischer, FIG 5 einen Schnitt längs der Linie V-V der Figur 4, FIG 6 einen Schnitt längs der Linie VI-VI der Figur 4, FIG 7 eine Aufsicht auf einen in einem rechteckigen Strömungskanal eingesetzten statischen Mischer mit verstärkter lokaler Verwirbelung, FIG 8 einen Schnitt längs der Linie VIII-VIII der Figur
7, FIG 9 einen Schnitt längs der Linie IX-IX der Figur 7, FIG 10 eine Aufsicht auf einen Mischer mit diagonal zum
Traggitter angeordneten Reihen von Auslenkelementen und FIG 11 einen Schnitt längs der Linie XI-XI der Figur 10.
Die Figur 1 zeigt eine Aufsicht auf einen in einem rechteckigen Strömungskanal, hier einem Gaskanal 1, eingebauten erfindungsgemäßen statischen Mischer 2. In der Darstellung der Figur 1 ist die Blickrichtung entgegen der Strömungsrichtung des Gasstroms 4 gewählt. Diese Strömungsrichtung erkennt man in den Seitenansichten, das heißt den Figuren 2 und 3. In der Aufsicht der Figur 1 erkennt man auch, daß im Gaskanal 1, senkrecht zu dessen Symmetrieachse 6, ein Traggitter 8 eingesetzt ist, das aus rechtwinklig zueinander stehenden Streben 10, 11, im Ausführungsbeispiel aus Flachstahl, besteht. An den Kreuzungspunkten der Streben 10, 11 des Traggitters 8 sind dreieckige Auslenkelemente 12 aus Blech aufgeschweißt. Wie die.„Darstellungen der Figuren 2 und 3 zeigen, sind diese Auslenkelemente 12 auf der Abströmseite des Traggitters 8 angeschweißt. Den Figuren 1 und 2 ist zu entnehmen, daß die Auslenkelemente 8 gegenüber der Symmetrieachse 6 des Gaskanals 1 um ca. 30* geneigt sind. Dabei zeigt die Figur 1, daß die Auslenkelemente 12 reihenweise auf dem Traggitter 8 angeordnet sind und die Auslenkelemente einer jeden Reihe 14, 15, 16, 17, 18 gleichsinnig in Richtung der Reihe gegenüber der Hauptströmungsrichtung 4 geneigt sind. Die Auslenkelemente der jeweils benachbarten Reihen sind in entgegengesetzter Richtung, jedoch um den gleichen Neigungswinkel geneigt. Des weiteren fällt auf, daß die Auslenkelemente in ihren Abmessungen bzw. mit ihrer Kantenlänge sehr viel kleiner sind als die Abmessungen des Gaskanals 1. Im Ausführungsbeispiel sind die Kantenlängen der Auslenkelemente 12 kleiner als ein Zehntel der Breite oder Länge des Gaskanals 1.
Beim Betrieb des statischen Mischers 2, das heißt, wenn das Gas mit den zu mischenden Komponenten den statischen Mischer, wie anhand der Pfeile 4 in den Figuren 2 und 3 angedeutet ist, durchströmt, induzieren die Auslenkele¬ mente 12 einer jeder Reihe 14, 15, 16, 17, 18 eine Quer¬ strömung 22 im Gaskanal 1, die von der einen Begrenzung derselben bis zur gegenüberliegenden Begrenzung reicht. Die hierzu jeweils unmittelbar benachbarten Reihen von Auslenkelementen 12 erzeugen eine ebensolche Querstrδmung 22 von der einen Begrenzung des Gaskanals 1 zur gegenüber¬ liegenden, jedoch mit umgekehrter Strömungsrichtung. Hier¬ durch wird ein großräumiger Stoffaustausch quer durch den gesamten Gaskanal 1 auf kürzestmöglicher Distanz erreicht. Zugleich bewirken die gegenläufigen Strömungsrichtungen des Gases an ihren Begrenzungen Ringwirbel 20, die für eine innige lokale Durchmischung sorgen. Die für die großraumige Durchmischung verantwortlichen Gasströme quer durch den Gaskanal sind in der Figur 1 mit geraden Pfeilen 22, die für die lokale innige Vermischung verantwortlichen Wirbel sind in der Figur 1 durch kreisförmige Pfeile 20 angedeutet.
Die Figur 4 zeigt eine Aufsicht auf einen anderen, in einem rohrför igen Gaskanal 30 eingebauten erfindungs¬ gemäßen statischen Mischer 32. Auch hier umfaßt der statische Mischer ein senkrecht zur Symmetrieachse 33 des Gaskanals 30 eingebautes Traggitter 34 aus senkrecht zueinanderstehenden Streben 36, 37 und auf diesen Streben befestige Auslenkele eπte 38. Im Unterschied zum Ausführungsbeispiel der Figuren 1 bis 3 sind hier die Querstreben 36 unter die Längsstreben 37 geschweißt und sind die Auslenkelemente 38 nicht an den Kreuzungsstellen der Streben der Traggitters, sondern dazwischen an den Längsstreben 37 angeschweißt. Auch hier sind die Auslenkelemente 38 reihenweise angeordnet und sind die Auslenkelemente einer jeden Reihe untereinander gleich und zu den Auslenkelementen der jeweils benachbarten Reihe in der entgegengesetzten Richtung geneigt.
Beim Betrieb dieses statischen Mischers 32 wird, wenn die Auslenkelemente 38 vom Gasstrom 39 angeströmt werden, - ähnlich wie bei dem Ausführungsbeispiel der Figuren 1 bis 3 durch jede Reihe gleich geneigter Auslenkelemente 38 ein quer zum Gaskanal gerichteter, den ganzen Gaskanal 30 überquerender Querstrom erzeugt, der genau entgegengesetzt zum jeweils benachbarten Querstrom verläuft. Man vergleiche hierzu die geraden Pfeile 40 in der Figur 4.
Zwischen jeweils zwei einander benachbarten Querströmen 40 entstehen, wie die kreisförmigen Pfeile 42 zeigen, lokale kleine Wirbel, die für eine innige lokale Durchmischung sorgen. Die Anordnung der Auslenkelemente zwischen den Kreuzungsstellen der Streben 36, 37 ist fertigungstech¬ nisch etwas einfacher als jene nach dem Ausführungsbei¬ spiel gemäß den Figuren 1 bis 3. Hinsichtlich der Mischfunktion besteht zwischen beiden Variationen kein nennenswerter Unterschied. Auch lassen sich beide statische Mischer 2, 32 anstatt in einem rohrförmigen Gaskanals 30 auch in einem rechteckigen Gaskanal 1 und umgekehrt einbauen.
Figur 7 zeigt eine Aufsicht auf einen anderen in einem rechteckigen Gaskanal 50 senkrecht zu dessen Symmetrie¬ achse 52 eingebauten erfindungsgemäßen statischen Mischer 54. Auch hier sind die Auslenkelemente 56, 57 auf einem Traggitter 58 aus senkrecht zueinander ausgerichteten Streben 60 befestigt. Auch hier sind die Auslenkelemente 56, 57 in Reihen angeordnet, wobei die Auslenkelemente ein und derselben Reihe alle in gleicher Richtung quer zum Gasstrom 62 geneigt sind und die Auslenkelement 56, 57 der jeweils benachbarten Reihe alle in der jeweils entgegengesetzten Richtung zur Gasströmung geneigt sind.
Abweichend vom Ausführungsbeispiel nach den Figuren 1 bis 6 sind jedoch die Auslenkelemente 56, 57 jeweils zweier benachbarter Reihen dicht aneinandergerückt und dabei zugleich in Auslenkrichtung des Gasstromes 62 etwas gegeneinander verschoben. Die Neigung jeweils zweier dicht aneinandergerückter Auslenkelemente 56, 57 benachbarter Reihen sind voneinander weggerichtet. Die Anordnung läßt sich am besten unter Zuhilfenahme der Figuren 7, 8 und 9 ersehen.
Beim Betrieb dieses statischen Mischers 54 durchströmen die zu mischenden Gase das Traggitter 58 mit den Auslenkelementen 56, 57 in der Darstellung der Figur 7 von unterhalb der Zeichenebene nach oben und werden diese
Gasströmung 62 im Bereich der Auslenkelemente 56, 57, d.h. im Bereich der Gitterkreuzungsstellen, beidseitig derselben in entgegengesetzter Richtung quer zum Gasstrom 62 ausgelenkt. Man vergleiche hierzu die geraden Pfeile 68. Dadurch, daß die Auslenkelemente zu beiden Seiten der Kreuzungsstellen des Traggitters 58 voneinander weggeneigt sind, gelangt ein Teil des Querstroms in den Sogbereich des jeweils unmittelbar benachbarten Auslenkelements. Das bewirkt zwischen diesen beiden Auslenkelementen eine intensive Verwirbelung, die oberhalb der Auslenkelemente in einem Spiralwirbel 64 zum Ausdruck kommt. Dieser Spiralwirbel ist gut in den Figuren 8 und 9 zu erkennen. Im übrigen entstehen auch hier analog zu den Ausführungs¬ beispielen der Figuren 1 und 4 weitere Drehwirbel 66 zwischen den entgegengesetzten Querströmungen 68 an der Begrenzung derselben.
Während bezüglich der großräumigen Durchmischung des Gasstroms keine nennenswerten Unterschiede zu den beiden Ausführungsbeispielen nach den Figuren 1 und 4 bestehen, ist hinsichtlich der lokalen Vermischung eine starke Intensivierung beim Ausführungsbeispiel der Figur 7 festzustellen. Diese Intensivierung der lokalen Ver¬ mischung durch Erzeugung vieler kleiner, sehr intensiver Spiralwirbel 64 äußert sich in einer ganz geringfügigen Zunahme des Strömungswiderstands dieses statischen Mischers 54. Dafür aber ist hier die Nachlaufstrecke, hinter der man von einer vollständigen Durchmischung des Gasstroms sprechen kann, gegenüber den beiden ersten
Ausführungsbeispielen noch etwas weiter verkürzt worden.
Die Figur 10 zeigt in Aufsicht, die Figur 11 in Seitenan¬ sicht eine Abwandlung des statischen Mischers 54 der Figur 7. Auch hier ist ein ebenes Traggitter 70 aus senkrecht zueinander ausgerichteten Streben 72 in einem rechteckigen Gaskanal 74 senkrecht zu dessen Symmetrieachse 76 ange¬ ordnet. Auch hier sind die gleichen Auslenkelemente 78, 79 wie in Figur 7 in Reihen angeordnet und sind jeweils zwei Auslenkelemente 78, 79 unmittelbar benachbarter Reihen dicht aneinandergedrückt und entgegengesetzt zur primären Gasströmung 75 geneigt. Jedoch sind die längs der gleichen Streben 72 befestigten Paare von Auslenkelementen 78, 79 jeweils spiegelbildlich angeordnet, so daß nicht spiegelbildliche Paare von Auslenkelementen nur in Reihen diagonal zum Traggitter 70 zu finden sind.
Beim Betrieb dieses statischen Mischers 80 durchströmen die zu mischenden Gase das Traggitter 70 mit den Paaren von Auslenkelementen 78, 79 in der Darstellung der Figur 10 von unterhalb der Zeichenebene nach oben. Durch die gegensätzliche Auslenkung des Gasstroms 75 an den Auslenkelementen 78, 79 eines jeden Paares, entsteht über diesen Paaren ein Spiralwirbel 82. Diese Spiralwirbel sind in der Figur 10 durch die kreisförmigen Pfeile 84 angedeutet. Weil die diese Spiralwirbel an benachbarten Traggitterplätzen spiegelbildlichen Drehsinn haben, induzieren sie zwischen sich diagonal zum Traggitter verlaufende Querströme 86, die durch gerade Pfeile 88 angedeutet sind. Gegenüber den anderen drei Ausführungs¬ beispielen ist bei diesem statischen Mischer 80 die Intensität der lokalen Durchmischung zu Lasten der großräumigen Durchmischung noch weiter verstärkt worden. Dieser statische Mischer 80 eignet sich daher besonders zur intensiven Durchmischung von Stoffen, die bereits einigermaßen gleichmäßig im anströmenden Gasstrom vermischt sind.
Diese hier gezeigten statischen Mischer lassen sich auch in flüssigen Medien einsetzen. In diesem Fall wird man jedoch die Neigung der Auslenkelemente gegenüber der Grundströmung etwas verringern. Sowohl bei flüssigen als auch bei gasförmigen Medien ist es vorteilhaft, die Neigung der Auslenkelemente von ihrer Basisfläche, an der sie am Traggerüst befestigt ist, bis zu ihrem Kopfende allmählich zu steigen, das heißt die Auslenkelemente in sich zu krümmen. Dadurch können die Querströmungen verstärkt werden.
Die offenbarten statischen Mischer lassen sich nicht nur in der Verfahrenstechnik zur gleichmäßigen Durchmischung von verschiedenen Stoffströmen, das heißt Gasen, Flüssig¬ keiten und/oder darin transportierten Feststoffen, ein- setzen. Mit solchen statischen Mischern sind auch in der chemischen Industrie gleichmäßigere Durchmischungen ver¬ schiedener Reaktionspartner auf relativ kurzen Wegstrecken durchführbar. So kann die Entstickung von Rauchgasen in Kraftwerksanlagen und bei der Müllverbrennung durch sehr gleichmäßiges Vermischen des Reduktionsmittels - meist des NH, - mit dem Rauchgas günstig beeinflußt werden.

Claims

Patentansprüche
1. Statischer Mischer (2, 32, 54, 80) mit mehreren in einem Strömungskanal angeordneten Auslenkelementen, d a d u r c h g e k e n n z e i c h n e t , daß eine Vielzahl von in Bezug zum Durchmesser des Strömungskanals (1, 30, 50, 74) kleinen Auslenkelementen (12, 38, 56, 57, 78, 79) verwendet sind, die Auslenkelemente in unterein¬ ander parallelen, quer zur Symmetrieachse (6, 33, 52, 76) des Strömungskanals ausgerichtete Reihen angeordnet und die Auslenkelemente einer jeden Reihe gleichsinnig in Richtung parallel zur Reihe und gegensinnig zu den Auslenkelementen der jeweils unmittelbar benachbarten Reihen geneigt sind.
2. Statischer Mischer nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Auslenkelemente (12, 38, 56, 57, 78, 79) um Achsen senkrecht zur Richtung der Reihen und senkrecht zur Symmetrieachse (6, 33, 52, 76) des Strömungskanals (1, 30, 50, 76) um ca. 10* bis 45* geneigt sind.
3. Statischer Mischer nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Reihen von der einen Begrenzungswand zur gegenüberliegen¬ den Begrenzungswand des Strömungskanals (1, 30, 50, 74) reichen.
4. Statischer Mischer nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die
Auslenkelemente (12, 38, 56, 57, 78, 79) auf einem sich quer zur Symmetrieachse (6, 33, 52, 76) des Gaskanals erstreckenden Trägergitter (8, 34, 58, 70) befestigt sind.
5. Statischer Mischer nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß jeweils zwei unmittelbar benachbarte Reihen von Auslenk¬ elementen (56, 57, 78, 79) paarweise dicht nebeneinander angeordnet sind.
6. Statischer Mischer nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die unmittelbar benachbarten Auslenkelemente (56, 57, 78, 79) der paarweise dicht nebeneinander angeordneten Reihen in Auslenkrichtung gegeneinander verschoben sind.
7. Statischer Mischer nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß die Auslenkelemente in sich eindimensional gebogen sind.
8. Statischer Mischer nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß die Auslenkelemente (12) auf den Kreuzungsstellen des Traggitters (8) befestigt sind.
9. Statischer Mischer nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß die Auslenkelemente (38, 56, 57, 78, 79) auf den Streben (37) zwischen den Kreuzungsstellen des Traggitters (34, 58, 70) befestigt sind.
10. Statischer Mischer nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß die Kantenlänge der Auslenkelemente (12, 38, 56, 57, 78, 79) kleiner als ein Fünftel des mittleren Durchmessers des Strömungskanals (1, 30, 50, 74) sind.
11. Statischer Mischer nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß die Kantenlänge der Auslenkelemente (12, 38, 56, 57, 78, 79) kleiner als ein Zehntel des mittleren Durchmessers des Strömungskanals (1, 30, 50) sind.
12. Statischer Mischer nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t , daß die Reihen gleichsinnig geneigter Auslenkelemente (78, 79) diagonal zu dem Trägergitter ausgerichtet sind.
EP92913854A 1991-07-12 1992-07-02 Statischer mischer Expired - Lifetime EP0594657B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4123161A DE4123161A1 (de) 1991-07-12 1991-07-12 Statischer mischer
DE4123161 1991-07-12
PCT/DE1992/000549 WO1993000990A1 (de) 1991-07-12 1992-07-02 Statischer mischer

Publications (2)

Publication Number Publication Date
EP0594657A1 true EP0594657A1 (de) 1994-05-04
EP0594657B1 EP0594657B1 (de) 1996-11-06

Family

ID=6436027

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92913854A Expired - Lifetime EP0594657B1 (de) 1991-07-12 1992-07-02 Statischer mischer

Country Status (9)

Country Link
US (1) US5489153A (de)
EP (1) EP0594657B1 (de)
JP (1) JP3174054B2 (de)
AT (1) ATE144912T1 (de)
CA (1) CA2113176C (de)
CZ (1) CZ284201B6 (de)
DE (2) DE4123161A1 (de)
DK (1) DK0594657T3 (de)
WO (1) WO1993000990A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731926C1 (de) * 1997-07-24 1999-01-21 Siemens Ag Abgasreinigungsanlage für einen Dieselmotor
US6401455B1 (en) 1997-07-24 2002-06-11 Siemens Aktiengesellschaft Exhaust emission control system for the exhaust gas of a diesel engine

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313393C2 (de) * 1993-04-07 2003-06-26 Siemens Ag Statischer Mischer
US5820832A (en) * 1993-05-13 1998-10-13 Siemens Aktiengesellschaft Plate-type catalytic converter
DE4323541A1 (de) * 1993-07-14 1995-01-19 Siemens Ag Kombinierte Misch- und Umlenkeinrichtung
DE59502899D1 (de) * 1994-03-25 1998-08-27 Siemens Ag Kombinierte einbring- und mischvorrichtung
WO1998028574A2 (de) 1996-12-20 1998-07-02 Siemens Aktiengesellschaft Brenner für fluidische brennstoffe, verfahren zum betrieb eines brenners und verwirbelungselement
DE19741199C2 (de) 1997-09-18 2000-10-26 Siemens Ag Statischer Mischer
US6015229A (en) * 1997-09-19 2000-01-18 Calgon Carbon Corporation Method and apparatus for improved mixing in fluids
US6254267B1 (en) 1997-11-06 2001-07-03 Hydrotreat, Inc. Method and apparatus for mixing dry powder into liquids
US6105880A (en) * 1998-01-16 2000-08-22 The Sherwin-Williams Company Mixing block for mixing multi-component reactive material coating systems and an apparatus using same
DE19820992C2 (de) * 1998-05-11 2003-01-09 Bbp Environment Gmbh Vorrichtung zur Durchmischung eines einen Kanal durchströmenden Gasstromes und Verfahren unter Verwendung der Vorrichtung
ATE299392T1 (de) 1999-04-19 2005-07-15 Sulzer Chemtech Ag Statischer wirbelmischer und methode zur verwendung desselben
DE19938854C5 (de) * 1999-08-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Verringerung des Stickoxidanteils in einem Abgas einer Verbrennungskraftmaschine
DE10060808B4 (de) * 2000-12-07 2004-12-02 Robert Bosch Gmbh Abgasreinigungsanlage
DE10129367A1 (de) * 2001-06-20 2003-01-09 Klingenburg Gmbh Luftbefeuchtungsvorrichtung
GB2381218B (en) * 2001-10-25 2004-12-15 Eminox Ltd Gas treatment apparatus
US7073534B2 (en) * 2004-03-18 2006-07-11 Blaine Darren Sawchuk Silencer for perforated plate flow conditioner
EP2256313B1 (de) * 2004-07-16 2012-03-14 Nissan Diesel Motor Co., Ltd. Abgasreinigungsvorrichtung für einen Verbrennungsmotor
ES2285577T3 (es) * 2005-01-17 2007-11-16 Balcke-Durr Gmbh Dispositivo y procedimiento para el mezclado de un fluido que circula en una direccion de circulacion.
ITMI20050655A1 (it) * 2005-04-15 2006-10-16 Iveco Spa Miscelatore statico
DE102006024778B3 (de) * 2006-03-02 2007-07-19 J. Eberspächer GmbH & Co. KG Statischer Mischer und Abgasbehandlungseinrichtung
US8622608B2 (en) * 2006-08-23 2014-01-07 M-I L.L.C. Process for mixing wellbore fluids
DE102006055036B4 (de) 2006-11-22 2023-03-02 Faurecia Emissions Control Technologies, Germany Gmbh Mischelement sowie Abgasanlage für eine Verbrennungskraftmaschine
DE102006058715B3 (de) * 2006-12-13 2008-01-10 Audi Ag Statischer Mischer für eine Abgasanlage eines brennkraftmaschinenbetriebenen Fahrzeugs, insbesondere Kraftfahrzeugs
DE102007002981B4 (de) 2007-01-19 2009-12-17 Audi Ag Statischer Mischer für eine Abgasanlage eines brennkraftmaschinenbetriebenen Fahrzeugs, insbesondere Kraftfahrzeugs
US7908845B2 (en) * 2007-04-16 2011-03-22 GM Global Technology Operations LLC Mixing apparatus for an exhaust after-treatment system
EP2156026B1 (de) * 2007-05-15 2016-10-12 Donaldson Company, Inc. Abgasströmungsvorrichtung
DE102007048558A1 (de) 2007-10-09 2009-04-16 Audi Ag Statischer Mischer für eine Abgasanlage eines brennkraftmaschinenbetriebenen Fahrzeugs, insbesondere eines Kraftfahrzeugs
US8939638B2 (en) 2008-04-21 2015-01-27 Tenneco Automotive Operating Company Inc. Method for mixing an exhaust gas flow
DE102008028627A1 (de) * 2008-04-21 2009-10-22 Heinrich Gillet Gmbh Mischelement
US9095827B2 (en) 2008-04-21 2015-08-04 Tenneco Automotive Operating Company Inc. Exhaust gas flow mixer
FR2930594B1 (fr) * 2008-04-29 2013-04-26 Faurecia Sys Echappement Element d'echappement comportant un moyen statique pour melanger un additif a des gaz d'echappement
US20100074814A1 (en) * 2008-09-25 2010-03-25 Cummins Filtration Ip Inc. Reductant decomposition mixer and method for making the same
US8172299B2 (en) * 2008-10-06 2012-05-08 Toyota Motor Engineering & Manufacturing North America, Inc. Compartment door with force and effort control
US7976788B2 (en) * 2008-10-16 2011-07-12 Cummins Filtration Ip, Inc. Detachable decomposition reactor with an integral mixer
US9429058B2 (en) 2008-12-01 2016-08-30 GM Global Technology Operations LLC Mixing devices for selective catalytic reduction systems
US8499548B2 (en) 2008-12-17 2013-08-06 Donaldson Company, Inc. Flow device for an exhaust system
JP2011012563A (ja) 2009-06-30 2011-01-20 Toyota Industries Corp 排気ガス浄化装置
JP2011033000A (ja) 2009-08-05 2011-02-17 Toyota Industries Corp 排気ガス浄化装置
JP2011032999A (ja) 2009-08-05 2011-02-17 Toyota Industries Corp 排気ガス浄化装置
JP2011052611A (ja) 2009-09-02 2011-03-17 Toyota Industries Corp 排気ガス浄化装置
JP2011052610A (ja) 2009-09-02 2011-03-17 Toyota Industries Corp 排気ガス浄化装置
JP2011052612A (ja) 2009-09-02 2011-03-17 Toyota Industries Corp 排気ガス浄化装置
JP2011099333A (ja) * 2009-11-04 2011-05-19 Hino Motors Ltd 排気浄化装置
WO2011066247A2 (en) 2009-11-30 2011-06-03 Corning Incorporated Honeycomb body u-bend mixers
US8539761B2 (en) * 2010-01-12 2013-09-24 Donaldson Company, Inc. Flow device for exhaust treatment system
CN102822464B (zh) 2010-01-25 2015-10-07 标致·雪铁龙汽车公司 内燃机排出气体的后处理装置
US8317390B2 (en) * 2010-02-03 2012-11-27 Babcock & Wilcox Power Generation Group, Inc. Stepped down gas mixing device
JP5540802B2 (ja) * 2010-03-22 2014-07-02 株式会社デンソー 二次空気制御弁
EP3267005B2 (de) 2010-06-22 2023-12-27 Donaldson Company, Inc. Abgasnachbehandlungsvorrichtung
KR101664494B1 (ko) * 2010-07-08 2016-10-13 두산인프라코어 주식회사 요소 수용액과 엔진 배기가스의 혼합을 위한 정적 혼합기
DE102011083636B4 (de) * 2011-09-28 2016-11-10 Eberspächer Exhaust Technology GmbH & Co. KG Misch- und/oder Verdampfungseinrichtung
DE102011085941B4 (de) * 2011-11-08 2014-06-05 Eberspächer Exhaust Technology GmbH & Co. KG Misch- und/oder Verdampfungseinrichtung
JP2015510078A (ja) * 2012-03-02 2015-04-02 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング 排ガス浄化のための装置
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
DE102012008732A1 (de) * 2012-05-04 2013-11-07 Xylem Water Solutions Herford GmbH Mischvorrichtung für UV-Wasserbehandlungsanlagen mit offenem Kanal
US9387448B2 (en) * 2012-11-14 2016-07-12 Innova Global Ltd. Fluid flow mixer
CA2900801C (en) 2013-02-15 2021-01-26 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9561482B1 (en) 2013-10-08 2017-02-07 Mitsubishi Hitachi Power Systems Americas, Inc. Static mixer assembly suitable for use with injected gas in SCR and/or other applications
JP6503173B2 (ja) * 2014-09-29 2019-04-17 三菱日立パワーシステムズ株式会社 排ガス混合装置
US10119447B2 (en) * 2014-10-15 2018-11-06 Acat Global Exhaust system and device to induce improved exhaust gas mixing prior to treatment through a catalytic converter
DE102015104540B3 (de) * 2015-03-25 2016-02-04 Tenneco Gmbh Mischvorrichtung
US9534525B2 (en) 2015-05-27 2017-01-03 Tenneco Automotive Operating Company Inc. Mixer assembly for exhaust aftertreatment system
WO2017083737A1 (en) 2015-11-13 2017-05-18 Re Mixers, Inc. Static mixer
US11193514B2 (en) * 2018-09-10 2021-12-07 The Lee Company Fluid flow resistor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US616052A (en) * 1898-12-13 Charles a
US2561457A (en) * 1950-02-03 1951-07-24 Kenneth R Beales Multidisk ribbon jet
US2567998A (en) * 1951-04-23 1951-09-18 Marvel Oil Treater Inc Device for treating oil for the separation of water
FR1372655A (fr) * 1963-08-09 1964-09-18 Synthese Et D Oxydation Synoxy Procédé et dispositif de mélange et d'homogénéisation de fluides
GB1442329A (en) * 1972-08-11 1976-07-14 Svenska Rotor Maskiner Ab Grating structures for homogenising fluids
DE2522106C3 (de) * 1975-05-17 1982-04-15 Bayer Ag, 5090 Leverkusen Vorrichtung zum kontinuierlichen Mischen fließfähiger Stoffe und Verfahren zum Herstellen eines Mischeinsatzes
DE2642105C2 (de) * 1976-09-18 1983-01-05 Fryma-Maschinen AG, 4310 Rheinfelden Statischer Mischer
DE8700259U1 (de) * 1986-01-31 1987-03-19 Gebrüder Sulzer AG, Winterthur Vorrichtung für eine Extraktionskolonne oder eine Mischeinrichtung
US4929088A (en) * 1988-07-27 1990-05-29 Vortab Corporation Static fluid flow mixing apparatus
DE3907573A1 (de) * 1989-03-09 1990-09-20 Sulzer Ag Mehrzuegige wirbelpackung
DE3920123C1 (de) * 1989-06-20 1990-12-20 Alfred Innsbruck At Hupfauf

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9300990A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731926C1 (de) * 1997-07-24 1999-01-21 Siemens Ag Abgasreinigungsanlage für einen Dieselmotor
WO1999005401A1 (de) 1997-07-24 1999-02-04 Siemens Aktiengesellschaft Abgasreinigungsanlage für einen dieselmotor
US6401455B1 (en) 1997-07-24 2002-06-11 Siemens Aktiengesellschaft Exhaust emission control system for the exhaust gas of a diesel engine

Also Published As

Publication number Publication date
DE4123161A1 (de) 1993-01-14
ATE144912T1 (de) 1996-11-15
EP0594657B1 (de) 1996-11-06
CZ284201B6 (cs) 1998-09-16
WO1993000990A1 (de) 1993-01-21
CA2113176A1 (en) 1993-01-21
CZ274693A3 (en) 1994-04-13
DE59207504D1 (de) 1996-12-12
JPH06509020A (ja) 1994-10-13
CA2113176C (en) 2003-10-07
JP3174054B2 (ja) 2001-06-11
US5489153A (en) 1996-02-06
DK0594657T3 (da) 1997-04-14

Similar Documents

Publication Publication Date Title
EP0594657B1 (de) Statischer mischer
EP0526393B1 (de) Einmischvorrichtung
DE60025887T2 (de) Statischer Mischer
EP1924346B1 (de) Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente
DE4109305A1 (de) Einrichtung zum einbringen eines reaktionsmittels in einen gasstrom
EP1681090A1 (de) Vorrichtung und Verfahren zum Mischen eines Fluidstroms in einem Strömungskanal
DE3309664A1 (de) Verteiler fuer fluide
EP0226879A1 (de) Statische Mischvorrichtung für Feststoffteilchen enthaltende oder daraus bestehende Fluide
EP0526392A1 (de) Einmischvorrichtung kleiner Fluidmengen
EP2310103A1 (de) Mischvorrichtung für die flüssigkeitschromatographie
EP1166861B1 (de) Mischer für die Mischung mindestens zweier Gasströme oder anderer Newtonscher Flüssigkeiten
DE3116557A1 (de) Vorrichtung zur invertierung und mischung von stroemenden stoffen
DE3032048A1 (de) Distanzgitter zum stuetzen eines buendels paralleler, stabfoermiger koerper
DE19544816A1 (de) Mischvorrichtung
EP1170054B1 (de) Mischer für die Mischung von Gasen und anderen Newtonschen Flüssigkeiten
EP0160661A1 (de) Vorrichtung zum pneumatischen und hydraulischen fördern von schüttgut.
EP0634207B1 (de) Komibinierte Misch- und Umlenkeinrichtung
DE19817659C1 (de) Mehrwege-Wärmeaustauscher
DE3841642A1 (de) Duesenrost fuer gaswaescher, absorber und dgl. sowie daraus bestehender kolonneneinbau
DE3229486C2 (de) Statischer Rohrmischer
DE4224691C2 (de) Aufnahmevorrichtung für Spritzrohre
DE4005094C2 (de) Schäumvorrichtung
CH693560A5 (de) Statische Mischvorrichtung für fliessfähige Stoffe.
CH702279B1 (de) Statischer Mischer.
DD161209A1 (de) Einrichtung zum statischen mischen fluider medien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK FR GB IT LI NL

17Q First examination report despatched

Effective date: 19940708

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK FR GB IT LI NL

REF Corresponds to:

Ref document number: 144912

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59207504

Country of ref document: DE

Date of ref document: 19961212

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970122

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020726

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030908

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030917

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030923

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030925

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030930

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040702

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040702

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050702