EP0577618B1 - Propulseurs pour turbines a gaz - Google Patents

Propulseurs pour turbines a gaz Download PDF

Info

Publication number
EP0577618B1
EP0577618B1 EP92905564A EP92905564A EP0577618B1 EP 0577618 B1 EP0577618 B1 EP 0577618B1 EP 92905564 A EP92905564 A EP 92905564A EP 92905564 A EP92905564 A EP 92905564A EP 0577618 B1 EP0577618 B1 EP 0577618B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
apertures
burner
burner according
fingers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92905564A
Other languages
German (de)
English (en)
Other versions
EP0577618A1 (fr
Inventor
Johann Berger
Burkhard Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0577618A1 publication Critical patent/EP0577618A1/fr
Application granted granted Critical
Publication of EP0577618B1 publication Critical patent/EP0577618B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/40Movement of component
    • F05B2250/41Movement of component with one degree of freedom
    • F05B2250/411Movement of component with one degree of freedom in rotation

Definitions

  • the invention relates to a burner according to the preamble of claim 1.
  • Relatively low pollutant emissions also result in uniform preparation of the fuel-air mixture to be fed to the primary zone and a good degree of burnout; this in particular in combination with burners that work with air support as "low pressure systems" with high fuel atomization quality and partially wall-side (fuel film on sleeve) and aerodynamic fuel evaporation. Local undesirable fuel accumulations, which could give rise to soot, should be avoided.
  • Such a burner for combustion chambers of gas turbine engines is e.g. known from DE-PS 24 42 895.
  • the known burner has, without exception, stationary, that is to say non-controllable, swirl devices for the combustion air to be supplied; there is therefore no possibility of controlling different operating states, such as starting, full load, idling, cruise flight (stationary) with respect to the variable fuel-air throughputs required for this, with as little pollution as possible.
  • Combustion chamber concepts are also complex, technically complex, prone to malfunction and expensive. In the interest of low-pollutant combustion, they provide a "variable chamber geometry" to supply combustion and possibly mixed air via holes of the hole rows that are controllable in cross-section, by pipe sections of the flame tube jacket of the combustion chamber are displaceable relative to one another in the axial or circumferential direction.
  • annular combustion chamber for a gas turbine engine which has several burners distributed over the circumference at the air inflow-side head end; for the purpose of low-pollutant combustion, each burner should be assigned an "external" swirl device which can be regulated or blocked with respect to the supply of part of the combustion air; the "external” swirl device can be assigned a nozzle-centric, axial fixed swirl device; The "external" swirl device with radial inflow is formed between radial wall parts of a nozzle-coaxial central body with obliquely arranged openings arranged uniformly over the circumference.
  • the regulation takes place by means of an orifice that can be turned on the outside in the circumferential direction on the central body; This has fingers at openings distributed over the circumference, some of which protrude lengthwise into the openings and each have an angular position which deviates from the openings in intermediate positions of the aperture.
  • the invention has for its object to provide a burner according to the type mentioned (preamble of claim 1), in which at least one swirl device enables the operationally necessary air flow for low-pollutant and homogeneous combustion while maintaining a uniformly pronounced rotation vortex.
  • the fingers practically each form a side wall of an opening which is moved along with the sleeve in the axial direction and is designed to be matched to the respective channel height and length with regard to the circumferential width or height and length.
  • the openings can therefore preferably each form a rectangular or square or rhombic channel cross section, the actual flow being formed in each case between the one movable wall and the locally exposed stationary wall sections of the openings.
  • the openings could also be defined or formed as channels or slots.
  • the invention enables the combination of at least one controllable or regulatable swirl device with a stationary swirl device which provides a constant air supply over the entire operating state, the fuel supply being varied depending on the load state, with an air supply then being "superimposed" on the variable operating states.
  • the last-mentioned air requirement can e.g. are regulated as a function of operationally increasing combustion temperature and / or pressure in the combustion chamber.
  • the invention includes the possibility, in certain engine states - as well as depending on the design and range of use of the engine - in other words when igniting and starting as well as possibly under extreme full load - for. B. to burn stoichiometrically and to burn predominantly, in cruise flight operations, airy and accordingly low in pollutants.
  • the swirl means or devices in question can produce rotating or mixed air vortices rotating approximately in the same direction or opposite to one another with respect to the burner or nozzle axis.
  • FIGS. 1 to 5 illustrate an adjustable swirl device; it has - in relation to the application - at the downstream end of a central body 1 arranged coaxially to the axis of the burner or the fuel nozzle, an annular body 2 with openings 3 distributed uniformly over the circumference; an axially displaceable sleeve 4 is seated on the central body 1 and engages in the openings 3 at the downstream end with fingers 5 which are angled vertically against the burner axis.
  • the fingers 5 run parallel to the axially spaced straight walls of the openings 3; these have a continuous four-section, in particular a rectangular cross-section; in other words, the fingers 5 represent walls in the openings 3 which can be moved axially with the sleeve 4, in order to achieve the throughput of radially supplied primary air (Arrows P) to regulate (intermediate position according to Fig. 1, 4 or 5) or to shut it off completely (Fig. 3) or to expose it completely (Fig. 2).
  • Arrows P radially supplied primary air
  • FIG. 5 - the intermediate position of the fingers 5 when the openings 3 are almost closed - the fingers 5 extend over the respective total length of an opening 5.
  • the openings 3 could also be described as "slots"; they could also have a square or, for example, rhombic cross-section, each of the same shape and size, over the entire length in question.
  • the respective radial / tangential openings 3 can - according to FIG. 4 - be formed on the central body 1 between wedge-shaped profiled end parts 6 which are evenly spaced in the circumferential direction; the end parts 6 could also be described or designed as blade profiles; this is, for example, similar to the way they are known from wedge-shaped diffuser vane profiles, but without the intention of forming a diffuser here. Otherwise, the end parts could also be described as "wedge-shaped tooth-like". For example, from FIGS.
  • the sleeve 4 engages around a wedge-shaped end part 3 or profile with two fingers 5 spaced or adjacent in the circumferential direction; in places, each between the fingers 5, the sleeve 4 is thus also axially displaceable on the outer peripheral surfaces of the end parts 3 or profiles; these outer peripheral surfaces are therefore components of the outer cylindrical peripheral contour of the central body 1 interrupted by the openings 3; this outer "seating" of the sleeve 4 is important in order to ensure that the openings 3 are shut off as perfectly as possible (FIG. 3).
  • the fingers 5 or “side walls” of the openings 3 or channels as control bodies which can be displaced axially together with the sleeve 4, on the inside of the sleeve, for example by welding; this can be advantageous when it comes to controlling several adjustable swirl devices simultaneously with one sleeve; and similar or comparable to one The arrangement according to FIG. 9 described later.
  • the relevant fingers 5 or “control body” in relation to the arrangement of a burner of a combustion chamber — are angled or bent radially from the downstream outer end face of the sleeve 4.
  • the design according to FIGS. 1 to 5 enables - despite variable air flow changes from the closed end position (FIG. 3) via intermediate positions, e.g. Fig. 1, up to the complete release (Fig.2) of the breakthroughs 3- an unchanged swirl generation, and thus rotation vortex formation.
  • the specified swirl device can, in the outlet-side wall shield, coaxially to a central fuel nozzle, possibly. can be used for the sole quantity-adjustable control for the total or predominant supply of primary air. Together with the adjustable swirl device, the remaining primary air could optionally be supplied locally through special openings in the flame tube, specifically via the outer secondary air duct, between the outer housing of the combustion chamber and the flame tube.
  • FIG. 6 illustrates an advantageous burner variant in the combination of a swirl device 7, which can be regulated with regard to the throughput of a part of the radially supplied primary air, in the sense of FIGS. 1 to 5 with an axially immediately downstream stationary swirl device 8.
  • a fuel injection nozzle arranged centrally on the burner is designated by 9 and connected to a radially upwardly bent pipe 10 for fuel.
  • the stationary swirl device 8 likewise has radial / tangential openings 11, but for the throughput of a primary air component which remains constant over the entire operating state.
  • a radial shielding wall 12 separates the openings 3, 11 axially from one another and, radially / axially bent, sits as a coaxial to the nozzle axis or to the axis 13 of the burner downstream sleeve (Venturi tube) in the direction of the Primary zone 14 continues.
  • the swirl devices 7, 8 With an end part 15 which diverges in the direction of the flow, the swirl devices 7, 8 are fixed at the downstream end to wall parts 16, 17 forming the rear wall of the flame tube 18.
  • the breakthroughs 3, 11 can be set in the same direction or radially / tangentially in opposite directions in order to impress the respectively emerging air currents (arrows L, G) in the same direction of rotation or rotating rotating vortices W, W1 in opposite directions.
  • the central body 19 of the burner, on which the sleeve 4 is axially displaceable, is made in several parts in the present case; it consists of ring-like or sleeve-like components 20, 21 flanged together, between which a radial shielding wall 22 is held with fuel nozzle 9.
  • the rounded end part 15 already mentioned is expanded aerodynamically to the full primary zone cross section with the sections 16, 17 of the rear wall, thermally shielding deflection plates 22, 23 radially outwards; In this way, an almost non-detachable air distribution via the end part 15 is also achieved on the radially outer part of the primary zone.
  • 24 and 25 denote thermally insulating shielding walls or wall parts, inside, on the flame tube 18.
  • FIG. 6 On the central body 19, a ring component 26 overlaps the sleeve 4, the sleeve 4 engaging with a pin 27 in a slot 28 of the ring component 26 which runs obliquely to the axis 13 of the burner; a circumferential rotation of the ring member 26 on the central body 19 causes an axial adjustment of the sleeve 4; an arm 29 projecting radially from the ring component 26 pivotally engages via hinge point 29 'on an adjusting ring 30 which is adjustable in the circumferential direction on the outer housing 45 (FIG. 8) and which can be subjected to an adjusting movement initiated for example by a motor.
  • a ring component 26 overlaps the sleeve 4
  • the sleeve 4 engaging with a pin 27 in a slot 28 of the ring component 26 which runs obliquely to the axis 13 of the burner
  • a circumferential rotation of the ring member 26 on the central body 19 causes an axial adjustment of the sle
  • a portion of the compressor air supplied in the direction of arrow V via a diffuser 31 is radially supplied to the swirl devices 7, 8 (FIG. 6) as primary air P via head-side chambers 32, 33.
  • the arrows B symbolize the fuel injected from the fuel nozzle 9 (spray cone). Portions of the supplied fuel B can flow downstream along the inner wall of the sleeve-like part of the shielding wall 12 (vortex film) and evaporate there if necessary and be integrated on the air side (L, G); the swirl devices here produce e.g.
  • FIG. 7 embodies a burner design in which the adjustable swirl device 7 is arranged after a first and second swirl device 35 and 36 containing stationary radial / tangential openings.
  • the adjustable swirl device 7 a substantial proportion of the total primary air to be supplied can be supplied to the primary zone 14 in a load-dependent manner in the interest of low-pollutant combustion.
  • the arrows G and H, K symbolize the respective flow and outflow directions of the relevant primary air fractions - seen from right to left;
  • G, H, K primary air fractions supplied under swirl - from outside to inside - decreasing in diameter, e.g. Rotating vortices directed in opposite directions are generated, into which fuel B supplied via the fuel nozzle 9 is atomized in a very fine or mist-like manner and integrated homogeneously.
  • the first stationary swirl device 35 is assigned to the fuel nozzle 9 in the direction of the flow.
  • An axially radially bent shielding wall 37 between the swirl devices 7.36 acts as a carrier of the axially displaceable sleeve 4.
  • the central body of the burner which is arranged coaxially to the axis 13 of the burner, closes - seen from left to right - a sleeve-like component 38, the radial shield wall 22 on the nozzle side, the swirl devices 35, 36, 7 Shielding wall 37 as well as the end part 15 rounded off in a divergent manner; this is arranged downstream of the adjustable swirl device 7 and is at the same time a means for holding the central body on the wall parts 16, 17 of the flame tube rear wall.
  • An axial diffuser for the air V removed on the compressor end side and fed to the combustion chamber is denoted by 31.
  • Part of the supplied air V flows as primary air P into the head end of the combustion chamber via openings 39 in a closure hood 40 of the burner, from where it is fed to the swirl devices 35, 36, 7 via the chambers 32, 33.
  • the already mentioned radial shielding wall 37 between the swirl devices 36, 7 continues as a downstream open sleeve 41, which is bent radially outward in the sense of the rounding of the end part 15; a sleeve 42 closest to the fuel nozzle 9 is part of a shielding wall between the swirl devices 35, 36.
  • a remaining part of the compressor air V supplied via the axial diffuser 31 flows as secondary air (arrows S) into annular spaces 43, 44, between outer housing walls 45, 46 and flame tube 18 of the combustion chamber, in order to, among other things, from there to the flame tube 18 as mixed air (dilution air) and as tertiary air (equalization of the temperature profile and reduction of the temperature at the combustion chamber outlet).
  • the ring component 26 is rotatably guided in the circumferential direction with the oblique guide slot 28 (FIG. 8) into which the pin 27 connected to the axially displaceable sleeve 4 projects.
  • Positions 29, 29 'and 30 - lever arm articulation point, adjusting ring - of the adjusting system are practically identical to that according to FIG. 6; 7 shows that the adjusting ring 30 is rotatably supported and supported on the outer housing 45 by means of rollers 47 in the circumferential direction.
  • FIG. 9 is a variant of the burner, modified in particular in relation to FIG. 6, according to which two adjustable swirl devices 7, 47 are provided on the central body 19 in succession; thereby engage in the openings 3,11 concerned ring body of the two swirl devices 7.47 fingers 5.48 an axially displaceable sleeve 4 '; the sleeve 4 'sits with a downstream step-widening section on a radial shielding wall 12', axially displaceable between the axially spaced openings 3,11. Upstream, the sleeve 4 '- as described in FIG. 6 is axially displaceable on the central body 19 (part 21).
  • the sleeve 4 ' is equipped with openings 49 which ensure the relevant supply of the primary air portion to the openings 3.
  • the entire primary air P or a substantial part of it can be supplied to the primary zone 14 via the two swirl devices 7, 47 depending on the load and for the purpose of combustion that is as low in pollutants as possible.
  • a pronounced swirl and rotation vortex formation (see also W, W 1- Fig. 6) is not impaired despite the variably controllable or regulatable primary air supply.
  • the exemplary embodiments according to FIGS. 6 to 9 are ring combustion chambers, with several of the burners shown being always distributed uniformly over the circumference on the head side.
  • the invention - as described and illustrated - can also be used to advantage in the case of individual combustion chambers (tubular construction) which each have only one burner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Un brûleur doit avoir à l'extrémité de tête d'une chambre de combustion au moins un gicleur (9) de combustible et au moins un dispositif à tourbillon (7) réglable en fonction de la charge pour assurer l'amenée d'air de combustion, ainsi que des passages (3) radiaux/tangentiels entre des parties radiales de la paroi d'un corps annulaire coaxial par rapport au gicleur. Des doigts (5) répartis autour de la circonférence d'un manchon (4) qui peut être déplacé par rapport au corps annulaire entrent dans lesdit passages. Le manchon avec les doigts est monté axialement mobile sur la circonférence extérieure du corps annulaire et les doigts, agencés parallèlement à des parois axialement espacées des passages, sont inclinés par rapport à l'axe central du brûleur et s'étendent sur toute la longueur des passages. On obtient ainsi une combustion émettant peu de substances toxiques, éventuellement en association avec au moins un dispositif stationnaire à tourbillon (8).

Claims (17)

  1. Brûleur de turbine à gaz selon lequel à l'extrémité de la tête il y a notamment une chambre de combustion annulaire avec au moins un injecteur de combustible (9) et au moins un dispositif à tourbillon (7) réglable en fonction de la charge, pour l'alimentation en air comburant, dispositif qui comporte entre les profils (6) d'un corps annulaire (2), coaxial à l'injecteur, des passages (3) radiaux/tangentiels, répartis régulièrement à la périphérie, et ayant une section constante sur toute leur longueur, passages dans lesquels viennent prendre des doigts (5) dirigés vers l'intérieur et appartenant à un manchon (4) réglable par rapport au corps annulaire (2), caractérisé en ce que :
    - les doigts (5) pénètrent de manière coulissante axialement par le manchon (4) dans les passages (3),
    - les doigts (5) sont prévus chaque fois parallèlement aux parois des passages (3), distants axialement et qui délimitent la course de réglage maximale, et qui forment des parois de canal pour les passages (3) qui sont entraînées par le manchon (4),
    - les doigts (5) ont une largeur et une longueur correspondant aux passages (3) de façon qu'en position intermédiaire, chaque doigt (5) règle une section d'écoulement constante sur toute la longueur du passage, chaque fois par rapport à une paroi.
  2. Brûleur selon la revendication 1, caractérisé en ce que les passages (3) ont une section rectangulaire ou carrée avec chaque fois les mêmes dimensions et une répartition régulière périphérique.
  3. Brûleur selon la revendication 1 ou 2, caractérisé en ce que les parois des passages écartées axialement sont en même temps les butées de fin de course du manchon (4) coulissant axialement.
  4. Brûleur selon une des revendications 1 à 3, caractérisé en ce que les passages (3) sont réalisés entre les pièces d'extrémité (6) essentiellement profilées en forme de coins ou encore en profilés de forme hélicoïdale pour le segment annulaire.
  5. Brûleur selon l'une des revendications 1 à 4, caractérisé en ce que l'anneau qui comporte le dispositif à tourbillon (7), réglable, est réalisé à l'extrémité frontale aval d'un corps central (19) monté coaxialement à l'axe de l'injecteur ou du brûleur (13), corps central qui est fermé axialement vis-à-vis de l'air comburant, fourni, et est monté coulissant axialement sur le manchon (4).
  6. Brûleur selon la revendication 4 ou 5, caractérisé en ce que les doigts (5) sont réalisés sur l'extrémité frontale aval du manchon (4), ce manchon (4) entourant chaque fois avec deux doigts (5) voisins dans la direction périphérique, une pièce d'extrémité (6) en forme de coin ou un profil et est monté avec les segments de paroi entre les doigts (5), de manière à coulisser axialement sur les surfaces périphériques extérieures des pièces d'extrémité (6) ou des profilés.
  7. Brûleur selon une des revendications 1 à 6, caractérisé par la combinaison d'au moins un dispositif à tourbillon (7), réglable ou commandé pour le débit d'air, à au moins un autre dispositif à tourbillon (8) comportant des passages fixes, radiaux/tangentiels (11), les dispositifs à tourbillon créant un tourbillon de rotation (W, W1) tournant dans le même sens ou dans des sens de rotation opposés et protégé chaque fois en sortie par des manchons de guidage (12) prévus coaxialement au brûleur ou au prolongement de l'axe (13) de l'injecteur, et qui sont protégés les uns des autres par un tracé de paroi radial/axial.
  8. Brûleur selon la revendication 1 ou 7, caractérisé en ce que le dispositif à tourbillon (7) réglé ou commandé pour la première partie d'air primaire sur le corps central (19) comporte un écran (22) avec l'injecteur de combustible (9), le dispositif à tourbillon (7), réglable, étant associé axialement à un autre dispositif à tourbillon(8) muni de passages (11), fixes, radiaux/tangentiels pour fournir une autre partie de l'air primaire, et rejoint la zone primaire (14) étendue radialement, de la chambre de combustion par une partie de paroi (15) arrondie, divergeant dans la direction de l'écoulement et coaxiale au brûleur ou à l'injecteur, et est maintenu à la paroi arrière du tube de flamme (18).
  9. Brûleur selon la revendication 1 ou 5, caractérisé en ce que le dispositif à tourbillon (7) commandé ou réglable est suivi par un premier et un second dispositif à tourbillon (35, 36) comportant des passages fixes radiaux, tangentiels et ainsi il commande une troisième partie de l'air primaire qui s'écoule principalement en direction de la partie de la zone primaire (14) développée radialement vers l'extérieur, le premier dispositif à tourbillon (35), fixe étant le plus proche par sa sortie d'air du cône d'éjection de combustible (B) de l'injecteur (9).
  10. Brûleur selon la revendication 1 ou 7, caractérisé en ce que le corps central (19) comporte deux dispositifs à tourbillon (7, 47) réglables, qui se suivent dans la direction axiale, et dans les passages (30, 11) viennent prendre des doigts (5, 48) axiaux et le cas échéant décalés dans la direction périphérique et appartenant au manchon (4′) coulissant axialement sur le corps central (19), et qui va au-delà du premier segment annulaire amont et comporte des ouvertures (49) pour fournir une première partie de l'air primaire aux premiers passages.
  11. Brûleur selon la revendication 10, caractérisé en ce que le manchon (4′) vient par un segment élargi en gradin, en pouvant coulisser axialement, sur une paroi formant écran radial (12′), entre les passages (3, 11) écartés axialement des deux dispositifs à tourbillon (7, 47).
  12. Brûleur selon la revendication 11, caractérisé en ce que la paroi formant écran (12′) se prolonge en forme de manchon entre les zones de sortie des passages (3, 11) des deux dispositifs à tourbillon (7, 47) avec un tracé de paroi recourbé radialement/axialement ainsi qu'un axe d'injecteur (13) coaxial au brûleur ou prolongé.
  13. Brûleur selon l'une des revendications 1 à 12, caractérisé en ce que le dispositif à tourbillon (47) qui est le plus loin en aval rejoint la partie radialement élargie du tube de flamme (18) par une partie de paroi (15) coaxiale au brûleur ou aux buses et qui est arrondie de manière à diverger dans la direction de l'écoulement, en étant fixée à sa paroi arrière (16, 17).
  14. Brûleur selon une ou plusieurs des revendications 1 à 13, caractérisé en ce que le corps central (19) est formé de plusieurs parties comprenant des pièces (20, 21) annulaires ou en forme de manchons.
  15. Brûleur selon une ou plusieurs des revendications 1 à 14, caractérisé en ce que pour le décalage axial du manchon (4), à l'extrémité amont du corps central (19), il y a une pièce en anneau (16) guidée de manière réglable coaxialement par rapport à l'axe (13) du corps central ou du brûleur, dans la direction périphérique, et au moins un guidage en forme de fente (28) incliné par rapport à l'un des axes (13), dans lequel vient prendre une tige (27) du manchon (4), une bague de réglage (30) montée à rotation dans la direction périphérique sur le boîtier extérieur (45) de la chambre de combustion, étant couplée de manière articulée à un levier de réglage (29) de la pièce annulaire (26).
  16. Brûleur selon une ou plusieurs des revendications 1 à 15, caractérisé en ce que le manchon (4, 4′) est réglable en fonction de la charge comme paramètre déterminant de la turbine.
  17. Brûleur selon la revendication 16, caractérisé en ce que le manchon (4, 4′) et ainsi l'alimentation en air primaire commandée ou réglable par les passages (3) ou (3, 11) en fonction des pressions et/ou températures mesurées localement dans la chambre de combustion.
EP92905564A 1991-03-30 1992-02-27 Propulseurs pour turbines a gaz Expired - Lifetime EP0577618B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4110507 1991-03-30
DE4110507A DE4110507C2 (de) 1991-03-30 1991-03-30 Brenner für Gasturbinentriebwerke mit mindestens einer für die Zufuhr von Verbrennungsluft lastabhängig regulierbaren Dralleinrichtung
PCT/EP1992/000425 WO1992017736A1 (fr) 1991-03-30 1992-02-27 Propulseurs pour turbines a gaz

Publications (2)

Publication Number Publication Date
EP0577618A1 EP0577618A1 (fr) 1994-01-12
EP0577618B1 true EP0577618B1 (fr) 1995-05-17

Family

ID=6428573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92905564A Expired - Lifetime EP0577618B1 (fr) 1991-03-30 1992-02-27 Propulseurs pour turbines a gaz

Country Status (5)

Country Link
US (1) US5490378A (fr)
EP (1) EP0577618B1 (fr)
JP (1) JP3150971B2 (fr)
DE (1) DE4110507C2 (fr)
WO (1) WO1992017736A1 (fr)

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220060C2 (de) * 1992-06-19 1996-10-17 Mtu Muenchen Gmbh Einrichtung zur Betätigung einer den Durchsatz von Verbrennungsluft steuernden Dralleinrichtung eines Brenners für Gasturbinentriebwerke
DE4228816C2 (de) * 1992-08-29 1998-08-06 Mtu Muenchen Gmbh Brenner für Gasturbinentriebwerke
DE4228817C2 (de) * 1992-08-29 1998-07-30 Mtu Muenchen Gmbh Brennkammer für Gasturbinentriebwerke
FR2704305B1 (fr) * 1993-04-21 1995-06-02 Snecma Chambre de combustion comportant un système d'injection à géométrie variable.
DE4444961A1 (de) * 1994-12-16 1996-06-20 Mtu Muenchen Gmbh Einrichtung zur Kühlung insbesondere der Rückwand des Flammrohrs einer Brennkammer für Gasturbinentriebwerke
GB2299399A (en) * 1995-03-25 1996-10-02 Rolls Royce Plc Variable geometry air-fuel injector
DE19532264C2 (de) * 1995-09-01 2001-09-06 Mtu Aero Engines Gmbh Einrichtung zur Aufbereitung eines Gemisches aus Brennstoff und Luft an Brennkammern für Gasturbinentriebwerke
US5966937A (en) * 1997-10-09 1999-10-19 United Technologies Corporation Radial inlet swirler with twisted vanes for fuel injector
US6761035B1 (en) * 1999-10-15 2004-07-13 General Electric Company Thermally free fuel nozzle
US6279323B1 (en) 1999-11-01 2001-08-28 General Electric Company Low emissions combustor
FR2827367B1 (fr) 2001-07-16 2003-10-17 Snecma Moteurs Systeme d'injection aeromecanique a vrille primaire anti-retour
US6625971B2 (en) * 2001-09-14 2003-09-30 United Technologies Corporation Fuel nozzle producing skewed spray pattern
US7104066B2 (en) * 2003-08-19 2006-09-12 General Electric Company Combuster swirler assembly
JP2005265380A (ja) * 2004-03-22 2005-09-29 Japan Aerospace Exploration Agency ガスタービン燃焼器用空気流量調節弁
US7065972B2 (en) * 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US7316117B2 (en) * 2005-02-04 2008-01-08 Siemens Power Generation, Inc. Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations
US20090031729A1 (en) * 2005-02-25 2009-02-05 Ihi Corporation Fuel injection valve, combustor using the fuel injection valve, and fuel injection method for the fuel injection valve
US7628019B2 (en) * 2005-03-21 2009-12-08 United Technologies Corporation Fuel injector bearing plate assembly and swirler assembly
DE102005022772A1 (de) * 2005-05-12 2007-01-11 Universität Karlsruhe Brenner mit Teilvormischung und -vorverdampfung des flüssigen Brennstoffs
US7987660B2 (en) * 2005-06-10 2011-08-02 Mitsubishi Heavy Industries, Ltd. Gas turbine, method of controlling air supply and computer program product for controlling air supply
US7513098B2 (en) 2005-06-29 2009-04-07 Siemens Energy, Inc. Swirler assembly and combinations of same in gas turbine engine combustors
US7617689B2 (en) * 2006-03-02 2009-11-17 Honeywell International Inc. Combustor dome assembly including retaining ring
JP5023526B2 (ja) * 2006-03-23 2012-09-12 株式会社Ihi 燃焼器用バーナ及び燃焼方法
EP1985924A1 (fr) * 2007-04-23 2008-10-29 Siemens Aktiengesellschaft Dispositif de tourbillonnement
CA2715186C (fr) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Production d'electricite a faible emission et systemes et procedes de recuperation d'hydrocarbures
WO2009121008A2 (fr) * 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Systèmes et procédés de production d’énergie à faible taux d’émission et de récupération d’hydrocarbure
JP5172468B2 (ja) * 2008-05-23 2013-03-27 川崎重工業株式会社 燃焼装置および燃焼装置の制御方法
US8147121B2 (en) * 2008-07-09 2012-04-03 General Electric Company Pre-mixing apparatus for a turbine engine
US8112999B2 (en) * 2008-08-05 2012-02-14 General Electric Company Turbomachine injection nozzle including a coolant delivery system
SG195533A1 (en) 2008-10-14 2013-12-30 Exxonmobil Upstream Res Co Methods and systems for controlling the products of combustion
US8297059B2 (en) * 2009-01-22 2012-10-30 General Electric Company Nozzle for a turbomachine
US9140454B2 (en) * 2009-01-23 2015-09-22 General Electric Company Bundled multi-tube nozzle for a turbomachine
US8539773B2 (en) * 2009-02-04 2013-09-24 General Electric Company Premixed direct injection nozzle for highly reactive fuels
US8256226B2 (en) * 2009-04-23 2012-09-04 General Electric Company Radial lean direct injection burner
MY171001A (en) 2009-06-05 2019-09-23 Exxonmobil Upstream Res Co Combustor systems and combustion burners for combusting a fuel
US8371101B2 (en) * 2009-09-15 2013-02-12 General Electric Company Radial inlet guide vanes for a combustor
MX341477B (es) 2009-11-12 2016-08-22 Exxonmobil Upstream Res Company * Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos.
US8850819B2 (en) * 2010-06-25 2014-10-07 United Technologies Corporation Swirler, fuel and air assembly and combustor
WO2012003078A1 (fr) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Combustion stœchiométrique avec recirculation du gaz d'échappement et refroidisseur à contact direct
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
CA2801499C (fr) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Systemes et procedes de production d'electricite a faible taux d'emission
JP5906555B2 (ja) 2010-07-02 2016-04-20 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式によるリッチエアの化学量論的燃焼
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
US8959921B2 (en) 2010-07-13 2015-02-24 General Electric Company Flame tolerant secondary fuel nozzle
US9903279B2 (en) 2010-08-06 2018-02-27 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
US8312724B2 (en) * 2011-01-26 2012-11-20 United Technologies Corporation Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone
US10317081B2 (en) * 2011-01-26 2019-06-11 United Technologies Corporation Fuel injector assembly
US8365534B2 (en) 2011-03-15 2013-02-05 General Electric Company Gas turbine combustor having a fuel nozzle for flame anchoring
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
RU2011115528A (ru) 2011-04-21 2012-10-27 Дженерал Электрик Компани (US) Топливная форсунка, камера сгорания и способ работы камеры сгорания
WO2013095829A2 (fr) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Production améliorée de méthane de houille
US10378775B2 (en) 2012-03-23 2019-08-13 Pratt & Whitney Canada Corp. Combustor heat shield
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9267690B2 (en) 2012-05-29 2016-02-23 General Electric Company Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same
EP2685171B1 (fr) * 2012-07-09 2018-03-21 Ansaldo Energia Switzerland AG Arrangement de brûleur
US9021812B2 (en) 2012-07-27 2015-05-05 Honeywell International Inc. Combustor dome and heat-shield assembly
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
WO2014137648A1 (fr) 2013-03-08 2014-09-12 Exxonmobil Upstream Research Company Production d'énergie et récupération de méthane à partir d'hydrates de méthane
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
CN105899878B (zh) * 2013-06-18 2018-11-13 伍德沃德有限公司 燃气涡轮燃烧室组件及发动机及相关联的操作方法
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
FR3011317B1 (fr) * 2013-10-01 2018-02-23 Safran Aircraft Engines Chambre de combustion pour turbomachine a admission d'air homogene au travers de systemes d'injection
US9482433B2 (en) 2013-11-11 2016-11-01 Woodward, Inc. Multi-swirler fuel/air mixer with centralized fuel injection
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US9587833B2 (en) 2014-01-29 2017-03-07 Woodward, Inc. Combustor with staged, axially offset combustion
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
FR3024765B1 (fr) * 2014-08-06 2016-07-29 Fives Pillard Bruleur a injection d'air ou de gaz ajustable
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
FR3050806B1 (fr) * 2016-04-28 2020-02-21 Safran Aircraft Engines Vrille d'admission d'air pour systeme d'injection de turbomachine comprenant un deflecteur aerodynamique a son entree
JP2019086245A (ja) 2017-11-08 2019-06-06 川崎重工業株式会社 バーナ装置
US11378275B2 (en) * 2019-12-06 2022-07-05 Raytheon Technologies Corporation High shear swirler with recessed fuel filmer for a gas turbine engine
EP3875742A1 (fr) 2020-03-04 2021-09-08 Rolls-Royce plc Combustion étagée
US11802693B2 (en) 2021-04-16 2023-10-31 General Electric Company Combustor swirl vane apparatus
US11846423B2 (en) 2021-04-16 2023-12-19 General Electric Company Mixer assembly for gas turbine engine combustor
US11598526B2 (en) 2021-04-16 2023-03-07 General Electric Company Combustor swirl vane apparatus
CN115711176A (zh) * 2021-08-23 2023-02-24 通用电气公司 具有集成喇叭形旋流器的圆顶
GB202112641D0 (en) * 2021-09-06 2021-10-20 Rolls Royce Plc Controlling soot
EP4202305A1 (fr) * 2021-12-21 2023-06-28 General Electric Company Buse de carburant et tourbillonneur
US20230220993A1 (en) * 2022-01-12 2023-07-13 General Electric Company Fuel nozzle and swirler

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655787A (en) * 1949-11-21 1953-10-20 United Aircraft Corp Gas turbine combustion chamber with variable area primary air inlet
CH417224A (de) * 1962-07-24 1966-07-15 Prvni Brnenska Strojirna Einrichtung zur Regelung der Menge der Primärluft bei Brennkammern von Gasturbinen
AT239007B (de) * 1962-08-01 1965-03-10 Prvni Brnenska Strojirna Zd Y Einrichtung zur Regelung der Menge der Primärluft bei Brennkammern von Gasturbinen
US3946552A (en) * 1973-09-10 1976-03-30 General Electric Company Fuel injection apparatus
US3899881A (en) * 1974-02-04 1975-08-19 Gen Motors Corp Combustion apparatus with secondary air to vaporization chamber and concurrent variance of secondary air and dilution air in a reverse sense
US3930369A (en) * 1974-02-04 1976-01-06 General Motors Corporation Lean prechamber outflow combustor with two sets of primary air entrances
US3930368A (en) * 1974-12-12 1976-01-06 General Motors Corporation Combustion liner air valve
US4155701A (en) * 1977-09-26 1979-05-22 The Trane Company Variable capacity burner assembly
US4263780A (en) * 1979-09-28 1981-04-28 General Motors Corporation Lean prechamber outflow combustor with sets of primary air entrances
GB2085146B (en) * 1980-10-01 1985-06-12 Gen Electric Flow modifying device
FR2572463B1 (fr) * 1984-10-30 1989-01-20 Snecma Systeme d'injection a geometrie variable.
FR2596102B1 (fr) * 1986-03-20 1988-05-27 Snecma Dispositif d'injection a vrille axialo-centripete
FR2601115B1 (fr) * 1986-07-03 1988-09-02 Snecma Chambre de combustion annulaire comportant un moyen de commande unique des diaphragmes d'injecteurs
DE3642122C1 (de) * 1986-12-10 1988-06-09 Mtu Muenchen Gmbh Brennstoffeinspritzvorrichtung
DE4228817C2 (de) * 1992-08-29 1998-07-30 Mtu Muenchen Gmbh Brennkammer für Gasturbinentriebwerke
DE4228816C2 (de) * 1992-08-29 1998-08-06 Mtu Muenchen Gmbh Brenner für Gasturbinentriebwerke

Also Published As

Publication number Publication date
JPH06507231A (ja) 1994-08-11
DE4110507C2 (de) 1994-04-07
DE4110507A1 (de) 1992-10-01
US5490378A (en) 1996-02-13
EP0577618A1 (fr) 1994-01-12
JP3150971B2 (ja) 2001-03-26
WO1992017736A1 (fr) 1992-10-15

Similar Documents

Publication Publication Date Title
EP0577618B1 (fr) Propulseurs pour turbines a gaz
DE4228816C2 (de) Brenner für Gasturbinentriebwerke
EP0769655B1 (fr) Buse de pulvérisation par air comprimé
EP1199516B1 (fr) Brûleur
DE3222347C2 (fr)
DE69210715T2 (de) Brenner mit geringer NOx-Produktion
DE69722093T2 (de) Emissionsarmer Wirbelbrenner
DE3007763C2 (de) Ringbrennkammer für Gasturbinentriebwerke
DE69813884T2 (de) Brennstoffeinspritzdüse
DE60017426T2 (de) Verstellbare magerbetriebene vormischbrennkammer
DE3518080C2 (fr)
DE2833027A1 (de) Brennkammerdom und brennstoffzerstaeuber oder -vergaser, insbesondere fuer gasturbinentriebwerke
EP3559551B1 (fr) Dispositif de mélange et tête de brûleur pour un brûleur à émission de nox réduite
EP1262714A1 (fr) Brûleur avec recirculation des gaz de combustion
DE2727795C2 (de) Brennkammer für eine Gasturbine
DE69005099T2 (de) Brenner für Wärmeerzeuger.
DE3819898C2 (fr)
DE4220060C2 (de) Einrichtung zur Betätigung einer den Durchsatz von Verbrennungsluft steuernden Dralleinrichtung eines Brenners für Gasturbinentriebwerke
EP1734306A1 (fr) Brûleur pour combustion à prémélange
EP0910776B1 (fr) Bruleur dote d'une buse de pulverisation
DE4424599A1 (de) Verfahren und Vorrichtung zum Betreiben eines kombinierten Brenners für flüssige und gasförmige Brennstoffe
DE4228817C2 (de) Brennkammer für Gasturbinentriebwerke
DE19618856B4 (de) Vorrichtung zum Betreiben einer mit kombinierten Brennern für flüssige und gasförmige Brennstoffe bestückten Ringbrennkammer
EP0762057A1 (fr) Dispositif de mélange de carburant et de l'air pour un combusteur de turbine à gaz
DE69724063T2 (de) Ringbrennkammer für Gasturbinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19940726

RBV Designated contracting states (corrected)

Designated state(s): CH FR GB IT LI SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB IT LI SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950518

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030130

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030204

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030206

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050227