EP0563448A2 - Strahlereinheit - Google Patents

Strahlereinheit Download PDF

Info

Publication number
EP0563448A2
EP0563448A2 EP92120466A EP92120466A EP0563448A2 EP 0563448 A2 EP0563448 A2 EP 0563448A2 EP 92120466 A EP92120466 A EP 92120466A EP 92120466 A EP92120466 A EP 92120466A EP 0563448 A2 EP0563448 A2 EP 0563448A2
Authority
EP
European Patent Office
Prior art keywords
base
mounting
glass tube
radiator
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92120466A
Other languages
English (en)
French (fr)
Other versions
EP0563448A3 (en
EP0563448B1 (de
Inventor
Ronald Stehling
Karl Schülke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP0563448A2 publication Critical patent/EP0563448A2/de
Publication of EP0563448A3 publication Critical patent/EP0563448A3/de
Application granted granted Critical
Publication of EP0563448B1 publication Critical patent/EP0563448B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to a radiator unit with a mounting plate with a plurality of receiving elements for the optional fastening of bases for holding at least one infrared radiator, which has a quartz glass tube which is open at the end, in which at least one heating coil runs with two electrical connections and the ends of which are each through an end piece made of ceramic, to which a base is assigned, are completed, at least one of the bases having at least one connection hole running perpendicular to the plane of the mounting surface and the electrical connections being passed through at least one of the end pieces and through the at least one connection hole of the socket associated with the respective end piece.
  • Radiator units of this type are used, for example, as individual radiators or as individual elements for infrared surface radiators, which are used for heating, drying or curing large-area material or goods which move past the surface radiator in a continuous process.
  • radiator units which have medium-wave quartz glass infrared radiators in the form of so-called twin tubes, the ends of the twin tubes being open at the front and by means of both sides on their end faces attacking, at the same time serving as an end plate, holding sockels are fixed on a mounting surface.
  • Each holding base is designed in the form of an angle, one leg of which has a slot running parallel to the underside of the leg, and the upper side of the leg of the other leg has an elongated recess.
  • the holding bases are plugged on opposite ends of the mounting plate on both sides and thereby form together with this a holding frame for the infrared radiators, these being held between two holding bases and being received with their end faces by the elongated recesses of the holding base.
  • the mounting frames are provided with retaining screws, on which the retaining base is attached by means of a wing nut and a high-temperature-resistant spring from the back of the mounting frame facing away from the heated goods, and which are to be loosened for mounting and removing the individual infrared radiators.
  • the electrical connections for the heating coil of the individual infrared radiators are led out in the form of two insulated cables on a common end face of the twin tube, bent by 90 in the direction of the mounting frame and threaded through two grooves in the holding base, which correspond to corresponding holes in the holding frame, and to the rear of the mounting frame from where they are connected to the power supply.
  • the electrical connections must be removed and relocated when the new infrared radiator is installed.
  • a plurality of infrared emitters running parallel to one another and having a length adapted to the dimensions of the mounting frame can optionally be attached to a mounting frame.
  • surface emitters can be built up, the irradiation surfaces of which are adapted to the material to be irradiated.
  • the mounting frame can also be arranged perpendicular to each other, so that the longitudinal axes of the infrared radiators mounted on them are rotated by 90 ° to each other.
  • the mounting frames are available in two different standard lengths, adapted to the infrared radiators, the length of the larger mounting frame being twice the standard width and twice the length of the smaller mounting frame.
  • these standard radiator units it is possible in the sense of a modular system to change the geometry of surface radiators and adapt them to the heating material, whereby the smallest possible change in geometry is determined by the dimensions of the smaller mounting frame.
  • the mounting frame together with the infrared radiators must be detached from one another and reassembled in the desired arrangement.
  • the wall thickness of the holding base seen in the direction of the longitudinal axis of the infrared radiator, is relatively large, because on the one hand a certain insulating distance is required to avoid flashovers between adjacent current-carrying parts, and on the other hand the bending of the electrical connections within the holding base must not be less than a minimum radius of curvature , otherwise the connecting wires would kink.
  • relatively long unheated zones are formed on the end faces of the infrared radiators, which are particularly noticeable when the radiator units are joined together in the form of a straight joint at the joints, in the sense of an inhomogeneous temperature profile at these points.
  • the present invention is therefore based on the object of specifying an inexpensive and reliable radiator unit which is simple che assembly or disassembly and a variable arrangement of the infrared radiator allowed and with the flat radiator can be produced with the shortest possible unheated zones.
  • the receiving elements are designed as continuous mounting holes and are arranged in the form of a grid, which is formed from a basic pattern with at least three-fold symmetry, that the base has at least one mounting element that runs perpendicular to the plane of the mounting plate , Continuous mounting hole for receiving a fastening element anchored in a mounting hole for the base that the base associated with the one end piece has at least one connection hole, which is designed as a through hole and is arranged in relation to the at least one mounting element such that it together with this as well as together with the at least one mounting element of the base assigned to the other end piece is compatible with the grid, that the end pieces are detachably connected to the base assigned to them, and that the electrical connections conclusions in the form of two connecting pins are led out of the at least one end piece, the free ends of which protrude at right angles to the longitudinal axis of the quartz glass tube and extend into the at least one connecting bore of the base assigned to the respective end piece, forming an electrical contact to a power supply.
  • the mounting plate has receiving elements in the form of a grid of continuous mounting holes, these being arranged in a basic pattern which has at least three-fold symmetry and bases are fastened thereon, which have at least one mounting element designed as a continuous mounting hole and at least a part of which and that for each infrared radiator at least one, furthermore has at least one connecting hole designed as a through hole and these through holes are compatible with the grid of mounting holes formed from the basic pattern, it is possible to base the base on the mounting plate by a certain angle, which can be divided by 360 ° of a full circle by the number of symmetries of the basic pattern to rotate, which ensures that each time the base is rotated by this specific angle or an integral multiple thereof, the mounting hole and the connecting b bore of the base correspond to the mounting holes in the mounting plate.
  • a base has a plurality of mounting elements, which can be designed, for example, as further fastening holes or as a pin engaging in a mounting hole
  • all of the mounting elements of the base are also arranged in such a way that they are compatible with the grid.
  • the fact that all the mounting elements of a base and, if there is one in the base, the at least one connection hole is arranged so that they and the at least one mounting element of the base assigned to the other end piece are compatible with the grid ensures that Infrared emitters held on the bases can also be rotated within the framework of the grid of the mounting holes by a certain angle without requiring a special perforation that deviates from the grid of the mounting holes.
  • compatible is to be understood to mean that, with a certain arrangement of the base or the two bases assigned to the end pieces of an infrared radiator on the mounting plate, all mounting elements and connection bores can be brought into alignment with mounting bores of the mounting plate.
  • This configuration of the mounting plate and base enables the arrangement of an infrared radiator held on the bases to be adapted to the goods to be heated or other requirements in a simple and flexible manner. An assembly or disassembly of the mounting plate is not necessary for this.
  • the basic pattern of the mounting holes can also be repeated to form a continuous pattern over a larger area of the mounting plate, so that translational displacements of the base and the infrared radiator held thereon are made possible in the same simple manner.
  • At least one of the mounting elements is designed as a continuous mounting hole extending perpendicular to the level of the mounting plate for receiving a fastening element anchored in a mounting hole, the fastening of the base to the mounting plate is ensured, the fastening element by means of which the base is fastened to the mounting plate is anchored from the easily accessible side of the base facing the infrared radiator.
  • this connection hole is also formed as a through hole and corresponds with the mounting elements with the basic pattern, is achieved for the implementation of the electrical connections to the back of the mounting plate facing away from the infrared radiator, mounting holes can be used and no additional Holes in the mounting plate are required for this. It is possible that the two electrical connections are common and isolated from each other through a connection bore or separately from one another through two connection bores, which are then either passed in a base or in two bases assigned to the respective end piece of the infrared radiator.
  • the end pieces are detachably connected to the base assigned to them and in that the electrical connections in the form of two connecting pins are led out of the at least one end piece and their free ends protrude at right angles to the longitudinal axis of the quartz glass tube and form an electrical contact extend with a power supply into the at least one connection hole of the base assigned to the respective end piece, the assembly or disassembly of the infrared radiator is made possible from the side of the mounting plate facing the material to be heated.
  • the infrared radiator, together with the end pieces can simply be pulled out of the base in the direction transverse to its longitudinal axis without one of the bases having to be released for this.
  • connection pins To make the electrical contact between the connection pins and the power supply, metallic contact bodies, for example in the form of inserted sockets, are present in the connection bores.
  • the connection pins which are made of high-temperature-resistant material due to the high temperatures in the area of the infrared radiator, can be led out of a common end of the infrared radiator or separately from both end pieces and each extend into a connection hole of the base assigned to the respective end piece.
  • connection in the form of connecting pins further allowed the ceramic end pieces to be formed with a thin wall thickness in the longitudinal axis direction of the quartz glass tube, so that, for example, when two such infrared emitters are arranged in the form of a straight joint, the unheated zone in the region of the joints is relatively short can.
  • Mounting plates on which the mounting holes have the same diameter and are arranged in the form of a grid with a square basic pattern have proven to be particularly advantageous.
  • This basic pattern enables the base mounted on the mounting plate to be rotated by 90 or an integral multiple thereof.
  • Such a grid can also be easily continued over a larger area or over the entire mounting plate, so that translational displacements of the base are also possible, the smallest unit of displacement being given by the center distance of the mounting holes.
  • the mounting plate is particularly easy and inexpensive to manufacture.
  • the base with at least two mounting elements each, which are designed as fastening bores, and to hold the base on the mounting plate in each case by means of two fastening elements.
  • the fastening elements can be anchored in the mounting plate from the easily accessible side of the base facing the infrared radiator. Fastening the base by means of two fastening elements ensures reliable fastening even under operating conditions in which the radiator unit is subjected to vibrations.
  • a radiator unit is particularly simple, in which one or those bases which have at least one connection hole are provided with two connection holes which are arranged together with the at least one mounting element in such a way that they are compatible with the grid of the mounting holes.
  • a base for the radiator unit it is possible both to lead both electrical connections out of a ceramic end piece and through the connection bores of the base, as well as one electrical connection out of the two end pieces of the infrared radiator and through one connection hole in the base.
  • a radiator unit is preferred in which, in the longitudinal axis direction of the quartz glass tube, the end of the infrared radiator formed by the end piece is flush with the base assigned to the corresponding end piece or the base is set back in the direction of the opposite end piece is, and the pins are set back from the end of the quartz glass tube a distance to the opposite end.
  • the connecting pins are set back from the end of the quartz glass tube by a distance to the opposite end ensures that the wall thickness between the connecting bores in the immediately adjacent base is sufficiently large to meet the safety requirements with regard to the risk of even with a straight joint of two radiator units Rollovers between the respective live parts to suffice; the wall thickness of the end piece in the longitudinal axis direction of the quartz glass tube can therefore be made relatively thin, so that in turn the unheated zone in the area of the joint of two infrared radiators can be made relatively short.
  • a radiator unit has proven to be particularly simple and inexpensive to produce and can be used variably, in which the base is provided with four through holes arranged in a square to one another, two adjacent holes each of which are formed as connecting holes and two adjacent holes are each formed as fastening holes.
  • a radiator unit has proven particularly useful, in which the end pieces on the side assigned to the connecting pins have a part which overlaps the quartz glass tube and is provided with a pin which runs centrally to the quartz glass tube in the longitudinal axis direction and at the same time the base on the side facing the infrared radiator has an elongated one , Has in the longitudinal axis direction extending groove in which the pin engages.
  • Such a configuration of the radiator unit ensures a non-rotatable arrangement of the infrared radiator and base relative to one another.
  • a radiator unit in which the bases are geometrically identical has also proven to be advantageous. This avoids having to take into account differently designed bases when installing the radiator unit, which can lead, for example, to additional assembly costs due to incorrect assignment of the different bases. In addition, the production of the same base is easier and cheaper. Sockets made of an electrically insulating material, preferably a ceramic material, for example steatite, have proven particularly useful.
  • a radiator unit has proven to be particularly advantageous in which the end pieces each overlap the quartz glass tube on at least two opposite sides on the outside, and / or in which the end pieces have a circumferential annular groove into which the ends of the quartz glass tube protrude.
  • Such a radiator unit is particularly easy to handle, reliable and easy to assemble.
  • the radiator unit in which the wall thickness of the regions of the end pieces adjoining the end faces of the quartz glass tube, as viewed in the direction of the longitudinal axis of the quartz glass tube, is a maximum of 10 mm , preferably is a maximum of 5 millimeters and the heating coil, viewed in the direction of the longitudinal axis of the quartz glass tube, ends at a maximum of 15 mm, preferably at most 10 mm before the end of the infrared radiator.
  • a radiator unit in which the quartz glass tube is designed as a twin tube with two quartz glass tubes running parallel to one another and connected to one another has also proven itself, in particular with regard to the most uniform possible temperature distribution over a larger surface area and a high radiation density.
  • a U-shaped spring which surrounds the quartz glass tube and whose free legs are hook-shaped and hooked into opposing recesses in the base, has proven useful for reliable holding of the infrared radiator on the assigned bases.
  • a radiator unit has proven to be advantageous in which self-tapping or self-tapping screws are provided as fastening elements and the bores are made with a diameter that is slightly smaller than the thread diameter of the screws.
  • the self-tapping or self-tapping screws can be anchored from the side of the base facing the infrared radiator in the mounting holes of the mounting plate, or can be removed therefrom. Since all mounting holes of the mounting plate are of the same diameter, you do not have to pay attention to the correct diameter of the mounting holes when mounting the base.
  • the self-tapping screws have the additional advantage that they are self-locking due to their non-circular geometry.
  • the reference number 1 in FIG. 1 designates a mounting plate, which is designed as a perforated plate and is shown in section, on which two ceramic bases 2 are fastened.
  • the holes 3 of the mounting plate 1 are arranged in a grid from a continuously repeating square basic pattern. At approximately 5 mm, the bores 3 all have the same inside diameter and keep a center distance of 15.625 mm.
  • the two bases 2 held on the mounting plate 1 each have four through bores 4 running perpendicular to the level of the mounting plate; 5, of which two each serve as fastening holes 5 for fastening the base 2 on the mounting plate 1 and two as connection holes 4 for establishing the electrical connection from a power supply (not shown) to a medium-wave infrared radiator 6 mounted on the bases 2.
  • the through holes 4; 5 of the base 2 are also arranged in a square to one another and keep a center distance of 15.625 mm from one another.
  • the infrared radiator 6 held on the bases 2 is a medium-wave radiator which has a quartz glass tube 7 which is open on both sides and is designed as a so-called twin tube, the open ends 8; 9 are each closed by a ceramic end plate 10.
  • the quartz glass tube 7 is coated on the outside with a gold layer 11, which serves as a reflector for the radiation emanating from the heating coil 12.
  • the ends 8; 9 of the quartz glass tube 7 each protrude into an annular groove of the respective end 8; 9 associated end plate 10 (indicated by the dashed line in Figure 1) and are additionally by two, the quartz glass tube 7 outside parts 13; 14 of the end plate 10 held, the upper part 13 facing away from the base 13 as a central spigot between the two tubes of the twin quartz glass tube 7, and the lower part 14 facing the base 14 extending over the entire width of the twin quartz glass tube 7 Is formed projection on which the quartz glass tube 7 rests and with which it is cemented by means of an inorganic adhesive.
  • the lower part 14 of the end plate 10 has on its side facing the base 2 an elongated web 15 (FIG.
  • the electrical connections of the heating coil 12 are led out of the end plate 10 through a common end plate 10 via grooves (not shown in the drawing) in the form of two connecting pins 17.
  • the free ends of the connecting pins 17 protrude at right angles to the longitudinal axis of the quartz glass tube 7 and are set back from the end of the quartz glass tube 7 by a distance to the opposite end.
  • connection pins 17 extend into the connection bores 4 of the base 2 and there, with the metal bushings 18 inserted in the connection bores 4, establish the electrical contact for the power supply for the heating coil 12.
  • the bases 2 themselves are each anchored on the mounting plate 1 by means of two self-tapping threaded screws 29 accessible from the side facing the infrared radiator 6.
  • the infrared radiator 7 is held on the two bases 2 with a U-shaped spring 19 which engages around the quartz glass tube 7 and whose free leg 21 (FIG. 4) is hook-shaped and hooked into mutually opposite grooves 20 of the base 2, the middle region of the spring 19 has a turn 22 which is directed in the direction of the free legs 21 and which bears against the quartz glass tube 7. Seen in the longitudinal axis direction of the quartz glass tube 7, the base 2 is flush with the end of the infrared radiator 6 formed by the end plate 10.
  • FIG. 4 From the top view of a base 2, as shown schematically in Figure 3, the arrangement of the through holes 4; 5 of the base 2 in a square arrangement to one another, can be seen.
  • lateral grooves of the base 2 are designated, in which the spring 19 holding the infrared radiator 6 on the base 2 engages with its hook-shaped free legs 21.
  • a corresponding spring 19 for holding the infrared radiator 6 on the base 2 is shown in FIG. 4. It has a U-shaped course, the free legs 21 being bent in a hook shape inwards.
  • the central region of the spring 19 is bent in the form of a turn 22 which is directed in the direction of the free legs 21 and which, as shown in FIG. 2, bears against the quartz glass tube 7 of the infrared radiator 6.
  • FIG. 5 a total of five twin-tube infrared radiators 23 to 27 (shown with a gray background in the drawing) are shown on a mounting plate 1 designed as a perforated plate, in which the bores 3 are arranged in a square basic pattern that is repeated up to the edge of the mounting plate 1 which are arranged on two, geometrically identical bases 2.
  • the base 2 each have four, in the figure with black background, in pairs as connecting bores 4 or as fastening bores 5 through bores which correspond to the square basic pattern of the bores 3 underneath it of the mounting plate 1, but have a double center distance from these.
  • the distance between the bores 3 of the mounting plate 1 determines the smallest possible offset of the respective infrared radiators to one another, as is exemplified by the three infrared radiators 23; 25; 25 is shown.
  • the length of the unheated zone is determined by the distance between the respective infrared radiators 23; 26 assigned heating coils. Since in the present case the respective end pieces 30; 31 the infrared radiator 23; 26 with a wall thickness in the longitudinal axis direction of the infrared radiators 23; 26 are formed from only 4 mm, the length of the unheated zone between the infrared radiators 23; 26 can be kept very short.
  • the infrared radiator 27 Due to the arrangement of the holes 3 in a basic pattern with fourfold symmetry, it is of course also easily possible to rotate infrared emitters by 90 degrees without additional holes having to be provided or provided for this in the mounting plate 1. This is shown, for example, by the infrared radiator 27 with its longitudinal axis rotated by 90 degrees with respect to the other infrared radiators 23 to 26. Because of its thin-walled end piece 28, the length of the unheated zone between the infrared radiator 26 and the infrared radiator 27 can also be kept relatively short in this case.

Landscapes

  • Resistance Heating (AREA)

Abstract

Es ist eine Strahlereinheit mit einer Montageplatte und mindestens einem darauf auf Sockeln besfestigten Infrarotstrahler, der ein stirnseitig offenes Quarzglasrohr aufweist, dessen Enden durch keramische Endstücke, durch die die elektrischen Anschlüsse für die Heizwendel hindurchgeführt sind, bekannt. Um eine kostengünstige und betriebssichere Strahlereinheit anzugeben, die eine einfache Montage und eine variable Anordnung des Infrarotstrahlers erlaubt und mit der Flächenstrahler mit kurzen unbeheizten Zonen herstellbar sind, wird vorgeschlagen, die Montageplatte mit einem Raster durchgehender Montagebohrungen, das aus einem Grundmuster mit einer mindestens dreizähligen Symmetrie gebildet ist und die Sockel mit Durchgangsbohrungen für die Befestigung auf der Montageplatte und zur Durchführung der Anschlüsse zu versehen, die mit dem Raster der Montagebohrungen kompatibel sind und die elektrischen Anschlüsse in Form zweier Anschlußstifte zu bilden, deren freie Enden rechtwinklig zur Längsachse des Quarzglasrohres abstehen und die sich unter Bildung eines elektrischen Kontaktes zu einer Stromversorgung in eine Bohrung des Sockels erstrecken. <IMAGE>

Description

  • Die Erfindung betrifft eine Strahlereinheit mit einer Montageplatte mit mehreren Aufnahmeelementen für die wahlweise Befestigung von Sockeln zur Halterung mindestens eines Infrarotstrahlers, der ein stirnseitig offenes Quarzglasrohr aufweist, in dem mindestens eine Heizwendel mit zwei elektrischen Anschlüssen verläuft und dessen Enden jeweils durch ein Endstück aus Keramik, dem ein Sockel zugeordnet ist, abgeschlossen sind, wobei mindestens einer der Sockel mindestens eine senkrecht zur Ebene der Montagefläche verlaufende Anschlußbohrung aufweist und die elektrischen Anschlüsse durch mindestens eines des Endstücke und durch die mindestens eine Anschlußbohrung des dem jeweiligen Endstück zugeordneten Sokkels voneinander isoliert hindurchgeführt sind.
  • Derartige Strahlereinheiten werden beispielsweise als Einzelstrahler oder als Einzelelemente für Infrarotflächenstrahler eingesetzt, die zur Erwärmung, Trocknung oder Aushärtung von großflächigen oder sich im Durchlauf an dem Flächenstrahler vorbeibewegendem Gut verwendet werden.
  • Aus dem Firmenprospekt "INFRAROT, mittelwellige Bausatz-Infrarotstrahler MBS" der Heraeus Quarzschmelze GmbH (Druckvermerk: IC 4.88NN Ku) sind Strahlereinheiten bekannt, die mittelwellige Quarzglas-Infrarotstrahler in Form sogenannter Zwillingsrohre aufweisen, wobei die Enden der Zwillingsrohre stirnseitig offen ausgebildet und beidseitig mittels an ihren Stirnseiten angreifenden, gleichzeitig als Abschlußplatte dienenden Haltesokkeln, auf einer Montagefläche fixiert sind. Jeder Haltesockel ist in Form eines Winkels ausgebildet, von dem ein Schenkel einen parallel zur Schenkelunterseite verlaufenden Schlitz, und die Schenkeloberseite des anderen Schenkels eine längliche Vertiefung aufweist. Mittels der Schlitze werden die Haltesockel beidseitig auf sich gegenüberstehenden Stirnseiten des Montagebleches aufgesteckt und bilden dadurch mit diesem zusammen einen Halterahmen für die Infrarotstrahler, wobei diese zwischen jeweils zwei Haltesockeln gehalten und dabei mit ihren Stirnseiten von den länglichen Vertiefungen des Haltesockels aufgenommen werden.
  • Die Montagerahmen sind mit Halteschrauben versehen, an denen von der dem beheizten Gut abgewandten Rückseite des Montagerahmens her, die Haltesockel mittels einer Flügelmutter und einer hochtemperaturbeständigen Feder befestigt werden, und die zur Montage und Demontage der einzelnen Infrarotstrahler zu lösen sind.
  • Die elektrischen Anschlüsse für die Heizwendel der einzelnen Infrarotstrahler werden in Form zweier isolierter Kabel an einer gemeinsamen Stirnseite des Zwillingsrohres herausgeführt, um 90 in Richtung zum Montagerahmen umgebogen und durch zwei Nuten des Haltesockels, die mit entsprechenden Bohrungen des Halterahmens korrespondieren hindurchgefädelt und zur Rückseite des Montagerahmens herausgeführt, von wo sie an die Stromversorgung angeschlossen werden. Für das Auswechseln eines Infrarotstrahlers müssen die elektrischen Anschlüsse entfernt und bei der Montage des neuen Infrarotstrahlers von neuem verlegt werden.
  • Auf einem Montagerahmen können wahlweise mehrere, parallel zueinander verlaufende Infrarotstrahler mit einer an die Abmessungen des Montagerahmens angepaßten Länge befestigt werden. Durch modulartiges Zusammenfügen mehrerer Montagerahmen zu einer größeren Einheit können Flächenstrahler aufgebaut werden, deren Bestrahlungsflächen an das zu bestrahlende Gut angepaßt sind. Falls erforderlich können die Montagerahmen auch senkrecht zueinander verlaufend angeordnet werden, so daß die Längsachsen der jeweils auf ihnen montierten Infrarotstrahler um 90 ° gegeneinander verdreht sind.
  • Die Montagerahmen sind in zwei verschiedenen, an die Infrarotstrahler angepaßten Standardlängen verfügbar, wobei die Länge des größeren Montagerahmens sowohl dem Zweifachen der Standardbreite, als auch dem Zweifachen der Länge des kleineren Montagerahmens entspricht. Mit diesen Standard-Strahlereinheiten ist es im Sinne eines Baukastensystems möglich, Flächenstrahler in ihrer Geometrie umzuändern und an das Heizgut anzupassen, wobei jedoch die kleinstmögliche Geometrieänderung von den Abmessungen des kleineren Montagerahmens bestimmt wird. Für eine Änderung der Geometrie des aus der bekannten Strahlereinheit zusammengesetzten Flächenstrahlers, müssen die Montagerahmen samt den Infrarotstrahlern voneinander gelöst und in der gewünschten Anordnung neu zusammenmontiert werden.
  • Die Wandstärke des Haltesockels, in Richtung der Längsachse des Infrarotstrahlers gesehen, ist relativ groß, da zum einen zur Vermeidung von Überschlägen zwischen benachbarten stromführenden Teilen eine gewisse Isolierstrecke vorgeschrieben ist, zum anderen das Umbiegen der elektrischen Anschlüsse innerhalb des Haltesockels einen minimalen Krümmungsradius nicht unterschreiten darf, da ansonsten die Anschlußdrähte abknicken würden. Dadurch bilden sich bei den bekannten Strahlereinheiten an den Stirnseiten der Infrarotstrahler relativ lange unbeheizte Zonen aus, die sich insbesondere beim Zusammenfügen der Strahlereinheiten in Form eines geraden Stoßes an den Stoßstellen nachteilig, im Sinne eines inhomogenen Temperaturverlaufes an diesen Stellen, bemerkbar machen.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine kostengünstige und betriebssichere Strahlereinheit anzugeben, die eine einfache Montage bzw. Demontage und eine variable Anordnung des Infrarotstrahlers erlaubt und mit der Flächenstrahler mit möglichst kurzen unbeheizten Zonen herstellbar sind.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Aufnahmeelemente als durchgehende Montagebohrungen ausgeführt und in Form eines Rasters angeordnet sind, das aus einem Grundmuster mit einer mindestens dreizähligen Symmetrie gebildet ist, daß die Sockel mindestens ein Montageelement aufweisen, das als senkrecht zur Ebene der Montageplatte verlaufende, durchgehende Befestigungsbohrung zur Aufnahme eines in einer Montagebohrung verankerten Befestigungselementes für den Sockel ausgebildet ist, daß der dem einen Endstück zugeordnete Sockel die mindestens eine Anschlußbohrung aufweist, die als Durchgangsbohrung ausgebildet und in Bezug auf das mindestens eine Montageelement derart angeordnet ist, daß sie zusammen mit diesem als auch zusammen mit dem mindestens einen Montageelement des dem anderen Endstück zugeordneten Sockels mit dem Raster kompatibel ist, daß die Endstücke mit dem ihnen jeweils zugeordneten Sockel lösbar verbunden sind, und daß die elektrischen Anschlüsse in Form zweier Anschlußstifte aus dem mindestens einen Endstück herausgeführt sind, wobei deren freie Enden rechtwinklig zur Längsachse des Quarzglasrohres abstehen und sich unter Bildung eines elektrischen Kontakts zu einer Stromversorgung in die mindestens eine Anschlußbohrung des dem jeweiligen Endstück zugeordneten Sockels erstrecken. Dadurch, daß die Montageplatte Aufnahmeelemente in Form eines Rasters durchgehender Montagebohrungen aufweist, wobei diese in einem Grundmuster angeordnet sind, das eine mindestens dreizählige Symmetrie aufweist und darauf Sockel befestigt sind, die mindestens ein als durchgehende Befestigungsbohrung ausgebildetes Montageelement aufweisen und von denen mindestes ein Teil, und zwar für jeden Infrarotstrahler mindestens einer, weiterhin mindestens eine als Durchgangsbohrung ausgebildete Anschlußbohrung aufweist und diese Durchgangsbohrungen mit dem aus dem Grundmuster gebildeten Raster der Montagebohrungen kompatibel sind, ist es möglich, die Sockel auf der Montageplatte um einen bestimmten Winkel, der sich durch Division der 360° eines Vollkreises durch die Symmetriezahl des Grundmusters ergibt, zu verdrehen, wobei gewährleistet ist, daß bei jeder Verdrehung des Sockels um diesen bestimmten Winkel oder ein ganzzahliges Vielfaches davon die Befestigungsbohrung und die Anschlußbohrung des Sockels mit Montagebohrungen der Montageplatte korrespondieren. Im Fall, daß ein Sockel mehrere Montageelemente, die beispielsweise als weitere Befestigungsbohrungen oder als ein in eine Montagebohrung eingreifender Zapfen ausgebildet sein können, aufweist, sind sämtliche Montageelemente des Sockels ebenfalls so angeordnet, daß sie mit dem Raster kompatibel sind. Dadurch, daß sämtliche Montageelemente eines Sockels sowie, sofern eine solche bei dem Sockel vorhanden ist, die mindestens eine Anschlußbohrung so angeordnet ist, daß sie und das mindestens eine Montageelement des dem anderen Endstück zugeordneten Sockels mit dem Raster kompatibel sind, wird gewährleistet, daß der auf den Sockeln gehaltene Infrarotstrahler ebenfalls im Rahmen des Rasters der Montagebohrungen um den bestimmten Winkel verdrehbar ist, ohne daß dafür eine vom Raster der Montagebohrungen abweichende Sonderlochung erforderlich wäre. Unter dem Ausdruck "kompatibel" soll verstanden werden, daß bei einer bestimmten Anordnung des Sockels bzw. der beiden, den Endstücken eines Infrarotstrahlers zugeordneten Sockel auf der Montageplatte alle Montageelemente und Anschlußbohrungen mit Montagebohrungen der Montageplatte in Deckung zueinander gebracht werden können. Durch diese Ausbildung von Montageplatte und Sockel kann die Anordnung eines auf den Sockeln gehaltenen Infrarotstrahlers auf einfache und flexible Weise dem zu erhitzenden Gut oder anderen Erfordernissen angepaßt werden. Eine Montage oder Demontage der Montageplatte ist hierfür nicht erforderlich.
  • Selbstverständlich kann sich das Grundmuster der Montagebohrungen auch unter Bildung eines fortlaufenden Musters über einen größeren Bereich der Montageplatte wiederholen, so daß auch translatorische Versetzungen des Sockels und des darauf gehaltenen Infrarotstrahlers auf gleiche einfache Weise ermöglicht werden.
  • Dadurch, daß mindestens eines der Montageelemente als senkrecht zur Ebene der Montageplatte verlaufende, durchgehende Befestigungsbohrung zur Aufnahme eines in einer Montagebohrung verankerten Befestigungselementes ausgebildet ist, wird die Befestigung des Sockels an der Montageplatte gewährleistet, wobei das Befestigungselement, mittels dem der Sockel an der Montageplatte befestigt ist, von der dem Infrarotstrahler zugewandten, leicht zugänglichen Seite des Sockels verankert werden kann.
  • Dadurch, daß bei demjenigen Sockel bzw. bei denjenigen Sockeln, die mindestens eine Anschlußbohrung aufweisen, durch die die elektrischen Anschlüsse hindurchgeführt sind, diese Anschlußbohrung ebenfalls als Durchgangsbohrung ausgebildet ist und zusammen mit den Montageelementen mit dem Grundmuster korrespondiert, wird erreicht, daß für die Durchführung der elektrischen Anschlüsse zu der dem Infrarotstrahler abgewandten Rückseite der Montageplatte, Montagebohrungen verwendet werden können und keine zusätzlichen Bohrungen in der Montageplatte hierfür erforderlich sind. Hierbei ist es möglich, daß die beiden elektrischen Anschlüsse gemeinsam und isoliert voneinander durch eine Anschlußbohrung oder getrennt voneinander durch zwei Anschlußbohrungen, die dann entweder in einem Sockel oder auch in zwei, dem jeweiligen Endstück des Infrarotstrahlers zugeordnete Sockel, hindurchgeführt sind.
  • Dadurch, daß die Endstücke mit dem ihnen jeweils zugeordneten Sockel lösbar verbunden sind und dadurch, daß die elektrischen Anschlüsse in Form zweier Anschlußstifte aus dem mindestens einen Endstück herausgeführt sind und dabei deren freie Enden rechtwinkelig zur Längsachse des Quarzglasrohres abstehen und sich unter Bildung eines elektrischen Kontaktes mit einer Stromversorgung in die mindestens eine Anschlußbohrung des dem jeweiligen Endstück zugeordneten Sockels erstrecken, wird die Montage bzw. Demontage des Infrarotstrahlers von der dem zu beheizenden Gut zugewandten Seite der Montageplatte her ermöglicht. Der Infrarotstrahler kann dabei samt den Endstücken einfach in Richtung quer zu seiner Längsachse aus dem Sockel herausgezogen werden, ohne daß hierzu einer der Sockel gelöst werden müßte. Zur Herstellung des elektrischen Kontaktes zwischen den Anschlußstiften und der Stromversorgung sind in den Aschlußbohrungen metallische Kontaktkörper, beispielsweise in Form eingesetzter Buchsen, vorhanden. Die Anschlußstifte, die aufgrund der hohen Temperaturen im Bereich des Infrarotstrahlers aus hochtemperaturbeständigem Material bestehen, können sowohl aus einem gemeinsamen Ende des Infrarotstrahlers als auch getrennt voneinander aus beiden Endstücken herausgeführt sein und sich dabei in jeweils eine Anschlußbohrung des dem jeweiligen Enstück zugeordneten Sockels erstrecken.
  • Die Ausführung der Anschlüsse in Form von Anschlußstiften erlaubte weiterhin eine Ausbildung der keramischen Endstücke mit einer dünnen Wandstärke in Längsachsenrichtung des Quarzglasrohres gesehen, so daß beispielsweise bei der Anordnung zweier derartiger Infrarotstrahler in Form eines geraden Stoßes, die unbeheizte Zone im Bereich der Stoßstellen relativ kurz sein kann.
  • Als besonders vorteilhaft haben sich Montageplatten erwiesen, auf denen die Montagebohrungen den gleichen Durchmesser aufweisen und in Form eines Rasters mit quadratischem Grundmuster angeordnet sind. Dieses Grundmuster ermöglicht eine Verdrehung der auf der Montageplatte montierten Sockel um jeweils 90 oder ein ganzzahliges Vielfaches davon. Ein derartiges Raster läßt sich auch über einen größeren Bereich oder über die gesamte Montageplatte leicht fortsetzen, so daß auch translatorische Versetzungen des Sockels ermöglicht werden, wobei die kleinste Einheit einer Versetzung durch den Mittenabstand der Montagebohrungen gegeben ist. Dadurch, daß die Bohrungen gleichen Durchmesser aufweisen, ist die Montageplatte besonders einfach und preisgünstig herstellbar. Außerdem muß beim Montieren der Sockel für den oder die Infrarotstrahler nicht auf die Größe der Bohrungen und nicht darauf geachtet werden, ob die jeweilige Bohrung als Durchführung für die elektrischen Anschlüsse oder zur Befestigung des Sockels dienen soll.
  • Es hat sich bewährt, die Sockel mit jeweils mindestens zwei Montageelementen zu versehen, die als Befestigungsbohrungen ausgeführt sind und die Sockel jeweils mittels zweier Befestigungselemente an der Montageplatte zu halten. Dabei können die Befestigungselemente von der dem Infrarotstrahler zugewandten, leicht zugänglichen Seite des Sockels in der Montageplatte verankert werden. Die Befestigung des Sockels mittels zweier Befestigungselemente gewährleistet auch bei Einsatzbedingungen, bei denen die Strahlereinheit Vibrationen unterworfen ist, eine betriebssichere Befestigung.
  • Besonders einfach gestaltet sich eine Strahlereinheit, bei der derjenige oder diejenigen Sockel, die mindestens einer Anschlußbohrung aufweisen, mit zwei Anschlußbohrungen versehen sind, die zusammen mit dem mindestens einen Montagelement so angeordnet sind, daß sie mit dem Raster der Montagebohrungen kompatibel sind. Bei Verwendung derartiger Sockel für die Strahlereinheit ist es sowohl möglich, beide elektrischen Anschlüsse aus einem keramischen Endstück heraus und durch die Anschlußbohrungen des Sockels, als auch jeweils einen elektrischen Anschluß aus den beiden Endstücken des Infrarotstrahlers heraus und durch jeweils eine Anschlußbohrung des Sockels hindurchzuführen. Aus Platzgründen und zur Vermeidung überflüssiger Montagebohrungen in der Montageplatte bietet es sich beispielsweise bei Sockeln mit zwei Montageelementen an, die beiden Montageelemente und die beiden Anschlußbohrungen mit Abständen zueinander entsprechend benachbarter Montagebohrungen des Grundmusters und im Quadrat zueinander anzuordnen.
  • Hinsichtlich der Ausbildung von Flächenstrahlern mit möglichst kurzen und unbeheizten Zonen wird eine Strahlereinheit bevorzugt, bei der in Längsachsenrichtung des Quarzglasrohres geshen, der durch das Endstück gebildete Abschluß des Infrarotstrahlers mit dem dem entsprechenden Endstück zugeordneten Sockel bündig abschließt oder der Sockel in Richtung auf das6gegenüberliegende Endstück zurückversetzt ist, und die Anschlußstifte vom Ende des Quarzglasrohres um eine Strecke zum gegenüberliegenden Ende hin zurückversetzt sind. Eine derartige Ausbildung der Strahlereinheit gewährleistet, daß bei einer Anordnung mehrerer Strahlereinheiten in Form eines geraden Stoßes die unbeheizte Zone im Bereich des Stoßes möglichst kurz gewählt werden kann, da die Sockel über die Länge des Strahlers nicht überstehen. Dadurch, daß die Anschlußstifte vom Ende des Quarzglasrohres um eine Strecke zum gegenüberliegenden Ende hin zurückversetzt sind, wird erreicht, daß auch bei einem geraden Stoß zweier Strahlereinheiten die Wandstärke zwischen den Anschlußbohrungen unmittelbar benachbarter Sockel ausreichend groß ist, um den sicherheitstechnischen Anforderungen hinsichtlich der Gefahr von Überschlägen zwischen den jeweiligen stromführenden Teilen zu genügen; die Wandstärke des Endstückes in Längsachsenrichtung des Quarzglasrohres gesehen kann daher relativ dünn ausgebildet sein, so daß wiederum die unbeheizte Zone im Bereich des Stoßes zweier Infrarotstrahler relativ kurz ausgebildet sein kann.
  • Als besonders einfach und kostengünstig herstellbar und variabel einsetzbar hat sich eine Strahlereinheit erwiesen, bei der der Sockel mit vier zueinander im Quadrat angeordneten Durchgangsbohrungen versehen ist, von denen je zwei benachbarte Bohrungen als Anschlußbohrungen und je zwei benachbarte Bohrungen als Befestigungsbohrungen ausgebildet sind.
  • Besonders bewährt hat sich eine Strahlereinheit, bei der die Endstücke auf der den Anschlußstiften zugeordneten Seite ein das Quarzglasrohr übergreifendes Teil aufweisen, das mit einem Zapfen versehen ist, der mittig zum Quarzglasrohr in Längsachsenrichtung verläuft und gleichzeitg der Sockel auf der dem Infrarotstrahler zugewandten Seite eine längliche, sich in Längsachsenrichtung erstreckende Nut aufweist, in die der Zapfen eingreift. Eine derartige Ausbildung der Strahlereinheit gewährleistet eine verdrehsichere Anordnung von Infrarotstrahler und Sockel zueinander.
  • Als vorteilhaft hat sich auch eine Strahlereinheit erwiesen, bei der die Sockel geometrisch gleich ausgebildet sind. Dadurch wird vermieden, daß bei der Montage der Strahlereinheit unterschiedlich ausgebildete Sockel berücksichtigt werden müssen, was beispielsweise zu zusätzlichem Montageaufwand durch falsche Zuordnung der verschiedenen Sockel führen kann. Außerdem ist die Herstellung gleicher Sockel einfacher und kostengünstiger. Hierbei haben sich insbesondere Sockel bewährt, die aus einem elektrisch isolierenden, vorzugsweise aus einem keramischen Material, beispielsweise aus Steatit, bestehen.
  • Hinsichtlich einer einfachen Herstellung der Infrarotstrahler und einer leichten Montage der Infrarotstrahler auf den Sockeln hat es sich als vorteilhaft erwiesen, die elektrischen Anschlüsse durch ein gemeinsames Endstück hindurchzuführen.
  • Als besonders vorteilhaft hat sich eine Strahlereinheit erwiesen, bei der die Endstücke jeweils das Quarzglasrohr auf mindestens zwei sich gegenüberliegenden Seiten außen übergreifen, und/oder bei der die Endstücke eine umlaufende Ringnut aufweisen, in die die Enden des Quarzglasrohres hineinragen. Eine derartig ausgebildete Strahlereinheit ist besonders einfach handhabbar, betriebssicher und leicht montierbar.
  • Insbesondere hinsichtlich einer möglichst kurzen unbeheizten Zone beim Zusammenfügen mehrerer Strahlereinheiten in Form eines geraden Stoßes hat sich eine Ausbildung der Strahlereinheit als vorteilhaft erwiesen, bei der die Wandstärke der an den Stirnseiten des Quarzglasrohres anliegenden Bereiche der Endstücke in Richtung der Längsachse des Quarzglasrohres gesehen maximal 10 mm, vorzugsweise maximal 5 Milimeter beträgt und die Heizwendel in Richtung der Längsachse des Quarzglasrohres gesehen maximal 15 mm, vorzugsweise maximal 10 mm vor dem Ende des Infrarotstrahlers endet. Dabei hat sich auch insbesondere im Hinblick auf eine möglichst gleichmäßige Temperaturverteilung über einen größeren Flächenbereich und eine hohe Strahlungsdichte eine Strahlereinheit bewährt, bei der das Quarzglasrohr als Zwillingsrohr mit zwei parallel zueinander verlaufenden und miteinander verbundenen Quarzglasrohren ausgebildet ist.
  • Für eine betriebssichere Halterung des Infrarotstrahlers auf den zugeordneten Sockeln hat sich eine U-förmige Feder bewährt, die das Quarzglasrohr umgreift und deren freie Schenkel hakenförmig gebogen und in sich gegenüberliegende Ausnehmungen des Sockels eingehakt sind. Dabei haben sich insbesondere solche Federn bewährt, bei denen der mittlere Bereich mindestens eine Windung aufweist, die in Richtung der freien Schenkel gerichtet ist und die an dem Quarzglasrohr anliegt.
  • Im Hinblick auf eine einfache Montage hat sich eine Strahlereinheit als vorteilhaft erwiesen, bei der als Befestigungselemente selbstschneidende oder selbstfurchende Schrauben vorgesehen sind und die Bohrungen mit einem Durchmesser ausgeführt sind, der geringfügig kleiner ist als der Gewindedurchmesser der Schrauben. Die selbstschneidenden oder selbstfurchenden Schrauben können dabei von der dem Infrarotstrahler zugewandten Seite des Sockels her in den Montagebohrungen der Montageplatte verankert, bzw. aus dieser gelöst werden. Da alle Montagebohrungen der Montageplatte mit gleichem Durchmesser ausgeführt sind, muß beim Montieren der Sockel auf den passenden Durchmesser der Montagebohrungen nicht geachtet werden. Die selbstfurchenden Schrauben bieten zusätzlich den Vorteil, daß sie aufgrund ihrer unrunden Geometrie selbsthemmend wirken.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird nachstehend beispielhaft näher erläutert. In der Zeichnung zeigen im einzelnen
    • Figur 1 in schematischer Darstellung eine Seitenansicht der erfindungsgemäßen Strahlereinheit, wobei einer der Sockel und die Montageplatte im Schnitt dargestellt sind,
    • Figur 2 in schematischer Darstellung einen Schnitt längs der Linie A in Figur 1, in Richtung der Längsachse des Quarzglasrohres gesehen,
    • Figur 3 in schematischer Darstellung eine Draufsicht auf einen Sockel einer erfindungsgemäßen Strahlereinheit,
    • Figur 4 eine Feder zur Halterung des Infrarotstrahlers auf dem Sockel der Strahlereinheit und
    • Figur 5 in schematischer Darstellung eine Draufsicht auf eine erfindungsgemäße Strahlereinheit mit mehreren auf einer Montageplatte auf Sockeln gehaltenen Infrarotstrahlern.
  • Mit der Bezugsziffer 1 in Figur 1 ist eine als Lochplatte ausgebildete, im Schnitt dargestellte Montageplatte bezeichnet, auf der zwei Keramik-Sockel 2 befestigt sind. Die Bohrungen 3 der Montageplatte 1 sind in einem Raster aus einem sich fortlaufend wiederholenden quadratischen Grundmuster angeordnet. Die Bohrungen 3 weisen mit ca. 5 mm alle den gleichen Innendurchmesser auf und halten einen Mittenabstand von 15,625 mm. Die beiden auf der Montageplatte 1 gehaltenen Sockel 2 weisen jeweils vier senkrecht zur Ebene der Montageplatte verlaufende Durchgangsbohrungen 4; 5 auf, wovon jeweils zwei als Befestigungsbohrungen 5 zur Befestigung des Sockels 2 auf der Montageplatte 1 und zwei als Anschlußbohrungen 4 zur Herstellung des elektrischen Anschlusses von einer nicht dargestellten Stromversorgung zu einem auf den Sockeln 2 montierten, mittelwelligen Infrarotstrahler 6 dienen. Die Durchgangsbohrungen 4; 5 des Sockels 2 sind ebenfalls im Quadrat zueinander angeordnet und halten einen Mittenabstand voneinander von 15,625 mm. Bei dem auf den Sockeln 2 gehaltenen Infrarotstrahler 6 handelt es sich um einen mittelwelligen Strahler, der ein beidseitig offenes, als sogenanntes Zwillingsrohr ausgebildetes Quarzglasrohr 7 aufweist, dessen offene Enden 8; 9 jeweils durch eine Keramik-Abschlußplatte 10 verschlossen sind. Auf seiner, dem Sockel 2 zugewandten Seite ist das Quarzglasrohr 7 außen mit einer Goldschicht 11 belegt, die als Reflektor für die von der Heizwendel 12 ausgehende Strahlung dient. Die Enden 8; 9 des Quarzglasrohres 7 ragen jeweils in eine Ringnut des dem jeweiligen Ende 8; 9 zugeordneten Abschlußplatte 10 hinein (mit der gestrichelten Linie in Figur 1 angedeutet) und werden zusätzlich durch zwei, das Quarzglasrohr 7 außen übergreifende Teile 13; 14 der Abschlußplatte 10 gehalten, wobei das obere, dem Sockel 2 abgewandte Teil 13 als mittig zwischen den beiden Rohren des Zwillings-Quarzglasrohres 7 übergreifender Zapfen, und das untere, dem Sockel 2 zugewandte Teil 14 über die gesamte Breite des Zwillings-Quarzglasrohres 7 reichender Vorsprung ausgebildet ist, auf dem das Quarzglasrohr 7 aufliegt und mit dem es mittels eines anorganischen Klebers verkittet ist. Der untere Teil 14 der Abschlußplatte 10 weist auf seiner dem Sockel 2 zugewandten Seite einen länglichen, sich in Längsachsenrichtung des Quarzglasrohres 7 erstreckenden Steg 15 (Figur 2) auf, der in eine entsprechende Nut 16 des Sockels 2 eingreift und dadurch ein gegenseitiges Verdrehen der Anordnung von Infrarotstrahler 6 auf dem Sockel 2 verhindert. Die elektrischen Anschlüsse der Heizwendel 12 werden durch eine gemeinsame Abschlußplatte 10 über (in der Zeichnung nicht dargestellte) Nuten in Form zweier Anschlußstifte 17 aus der Abschlußplatte 10 herausgeführt. Die freien Enden der Anschlußstifte 17 stehen dabei rechtwinklig zur Längsachse des Quarzglasrohres 7 ab und sind vom Ende des Quarzglasrohres 7 um eine Strecke zum gegenüberliegenden Ende hin zurückversetzt. Die Anschlußstifte 17 erstrecken sich in die Anschlußbohrungen 4 des Sockels 2 und stellen dort mit in den Anschlußbohrungen 4 eingesetzten Metallbuchsen 18 den elektrischen Kontakt zur Stromversorgung für die Heizwendel 12 her. Die Sockel 2 selbst sind jeweils mittels zweier von der dem Infrarotstrahler 6 zugewandten Seite her zugänglichen, selbstschneidenden Gewindeschrauben 29 auf der Montageplatte 1 verankert. Der Infrarotstrahler 7 wird an den beiden Sockeln 2 jeweils mit einer U-förmig ausgebildeten Feder 19 gehalten, die das Quarzglasrohr 7 umgreift und deren freie Schenkel 21 (Figur 4) hakenförmig gebogen und in sich gegenüberliegende Nuten 20 des Sockels 2 eingehakt sind, wobei der mittlere Bereich der Feder 19 eine Windung 22 aufweist, die in Richtung der freien Schenkel 21 gerichtet ist und die an dem Quarzglasrohr 7 anliegt. In Längsachsenrichtung des Quarzglasrohres 7 gesehen, schließt der Sokkel 2 mit dem durch die Abschlußplatte 10 gebildeten Ende des Infrarotstrahlers 6 jeweils bündig ab.
  • Sofern in den nachfolgend näher erläuterten Figuren die gleichen Bezugsziffern wie in Figur 1 verwendet werden, sollen damit gleiche oder zu den in Figur 1 dargstellten Bauteilen äquivalente Bauteile bezeichnet sein. Aus der in Figur 2 dargestellten Vorderansicht einer erfindungsgemäßen Strahlereinheit ist ersichtlich, daß der Sockel 2 die Abschlußplatte 10 auch in Richtung senkrecht zur Längsachse des Quarzglasrohres 7 gesehen nicht überragt, sondern im Gegenteil, etwas schmäler als die Abschlußplatte 10 ausgebildet ist. Der kleinstmögliche Abstand benachbarter, parallel zueinander verlaufender Infrarotstrahler 6 wird daher durch den Sockel 2 nicht beeinflußt.
  • Aus der Draufsicht auf einen Sockel 2, wie er schematisch in Figur 3 dargestellt ist, ist die Anordnung der Durchgangsbohrungen 4; 5 des Sockels 2 in quadratischer Anordnung zueinander, ersichtlich. Mittig zwischen den Anschlußbohrungen 4 und den Befestigungsbohrungen 5 verläuft eine Nut 16, in die der Steg 15 des unteren Teils 14 der Abschlußplatte 10 eingreift. Mit der Bezugsziffer 20 sind seitliche Nuten des Sockels 2 bezeichnet, in die die den Infrarotstrahler 6 auf dem Sockel 2 haltende Feder 19 mit ihren hakenförmig ausgebildeten freien Schenkeln 21 eingreift. Eine entsprechende Feder 19 zur Halterung des Infrarotstrahlers 6 auf dem Sockel 2 ist in Figur 4 dargestellt. Sie weist einen U-förmigen Verlauf auf, wobei die freien Schenkel 21 nach innen hakenförmig umgebogen sind. Der mittlere Bereich der Feder 19 ist in Form einer Windung 22 gebogen, die in Richtung der freien Schenkel 21 gerichtet ist und die, wie in der Figur 2 dargestellt, an dem Quarzglasrohr 7 des Infrarotstrahlers 6 anliegt.
  • In Figur 5 sind auf einer als Lochplatte ausgebildeten Montageplatte 1, in der die Bohrungen 3 in einem quadratischem, sich bis auf den Rand der Montageplatte 1 wiederholenden Grundmuster angeordnet sind, insgesamt fünf Zwillingsrohr-Infrarotstrahler 23 bis 27 (in der Zeichnung grau unterlegt) dargestellt, die auf jeweils zwei, geometrisch identischen Sockeln 2 angeordnet sind. Die Sockel 2 weisen je vier, in der Figur schwarz unterlegte, paarweise als Anschlußbohrungen 4 bzw. als Befestigungsbohrungen 5 ausgebildete Durchgangsbohrungen auf, die mit dem quadratischen Grundmuster der darunter liegenden Bohrungen 3 der Montageplatte 1 korrespondieren, aber den doppelten Mittenabstand gegenüber diesen aufweisen. Der Abstand der Bohrungen 3 der Montageplatte 1 bestimmt die kleinstmögliche Versetzung der jeweiligen Infrarotstrahler zueinander, wie sie beispielhaft an den drei Infrarotstrahlern 23; 25; 25 dargestellt ist. Bei einem Zusammenfügen zweier Infrarotstrahler 23; 26 in Form eines geraden Stoßes, wird die Länge der unbeheizten Zone durch den Abstand der den jeweiligen Infrarotstrahlern 23; 26 zugeordneten Heizwendeln bestimmt. Da im vorliegenden Fall die jeweiligen, einander zugekehrten Endstücke 30; 31 der Infrarotstrahler 23; 26 mit einer Wandstärke in Längsachsenrichtung der Infrarotstrahler 23; 26 gesehen von nur 4 mm ausgebildet sind, kann die Länge der unbeheizten Zone zwischen den Infrarotstrahlern 23; 26 sehr kurz gehalten werden. Aufgrund der Anordnung der Bohrungen 3 in einem Grundmuster mit vierzähliger Symmetrie ist es selbstverständlich auch leicht möglich, Infrarotstrahler um 90 Grad zu verdrehen, ohne daß hierfür zusätzliche Bohrungen in der Montageplatte 1 angebracht oder vorhanden sein müßten. Dies zeigt beispielhaft der mit seiner Längsachse gegenüber den übrigen Infrarotstrahlern 23 bis 26 um 90 Grad verdrehte Infrarotstrahler 27. Aufgrund seines dünnwandigen Endstückes 28 kann auch in diesem Fall die Länge der unbeheizten Zone zwischen dem Infrarotstrahler 26 und dem Infrarotstrahler 27 relativ kurz gehalten werden.
  • Die Figuren verdeutlichen die Möglichkeiten der variablen Anordnung der auf den Sockeln 2 montierten Infrarotstrahler, wobei auch zu beachten ist, daß bei einem Auswechseln, einem Verschieben oder bei einem Verdrehen eines Infrarotstrahlers die jeweiligen Sockel auf einfache Weise von ihrer, den Infrarotstrahlern zugewandten und leicht zugänglichen Seite, gelöst und neu befestigt werden können.

Claims (15)

1. Strahlereinheit mit einer Montageplatte mit mehreren Aufnahmeelementen für die wahlweise Befestigung von Sockeln zur Halterung mindestens eines Infrarotstrahlers, der ein stirnseitig offenes Quarzglasrohr aufweist, in dem mindestens eine Heizwendel mit zwei elektrischen Anschlüssen verläuft und dessen Enden jeweils durch ein Endstück aus Keramik, dem ein Sockel zugeordnet ist, abgeschlossen sind, wobei mindestens einer der Sockel mindestens eine senkrecht zur Ebene der Montagefläche verlaufende Anschlußbohrung aufweist und die elektrischen Anschlüsse durch mindestens eines des Endstücke und durch die mindestens eine Anschlußbohrung des dem jeweiligen Endstück zugeordneten Sockels voneinander isoliert hindurchgeführt sind, dadurch gekennzeichnet, daß die Aufnahmeelemente als durchgehende Montagebohrungen (3) ausgeführt und in Form eines Rasters angeordnet sind, das aus einem Grundmuster mit einer mindestens dreizähligen Symmetrie gebildet ist, daß die Sockel (2) mindestens ein Montageelement (5) aufweisen, das als senkrecht zur Ebene der Montageplatte (1) verlaufende, durchgehende Befestigungsbohrung (5) zur Aufnahme eines in einer Montagebohrung (3) verankerten Befestigungselementes (29) für den Sockel (2) ausgebildet ist, daß der dem einen Endstück (10; 28; 30; 31) zugeordnete Sockel (2) die mindestens eine Anschlußbohrung (4) aufweist, die als Durchgangsbohrung ausgebildet und in Bezug auf das mindestens eine Montageelement (5) derart angeordnet ist, daß sie zusammen mit diesem als auch zusammen mit dem mindestens einen Montageelement (5) des dem anderen Endstück (10; 28; 30; 31) zugeordneten Sockels (2) mit dem Raster kompatibel ist, daß die Endstücke (10; 28; 30; 31) dem ihnen jeweils zugeordneten Sockel (2) lösbar verbunden sind, und daß die elektrischen Anschlüsse in Form zweier Anschlußstifte (17) aus dem mindestens einen Endstück (10; 28; 30; 31) herausgeführt sind, wobei deren freie Enden rechtwinklig zur Längsachse des Quarzglasrohres (7) abstehen und sich unter Bildung eines elektrischen Kontakts zu einer Stromversorgung in die mindestens eine Anschlußbohrung (4) des dem jeweiligen Endstück (10; 28; 30; 31) zugeordneten Sockels (2) erstrecken.
2. Strahlereinheit nach Anspruch 1, dadurch gekennzeichnet, daß die Montagebohrungen (3) den gleichen Durchmesser aufweisen und in Form eines Rasters mit quadratischem Grundmuster angeordnet sind.
3. Strahlereinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sockel (2) jeweils mindestens zwei Montageelemente (5) aufweisen, die als Befestigungsbohrungen (5) ausgeführt sind und die Sockel (2) jeweils mittels zweier Befestigungselemente (29) an der Montageplatte (1) gehalten werden.
4. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei dem mindestens einen Sockel (2) mit Ansschlußbohrung (4) zwei Anschlußbohrungen (4) vorgesehen sind, die so angeordnet sind, daß sie zusammen mit dem mindestens einen Montageelement (3) mit dem Raster kompatibel sind.
5. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in Längsachsenrichtung des Quarzglasrohres (7) gesehen, der durch das Endstück (10; 28; 30; 31) gebildete Abschluß des Infrarotstrahlers (6) mit dem dem entsprechenden Endstück (10; 28; 30; 31) zugeordneten Sockel bündig abschließt oder der Sockel (2) in Richtung auf das gegenüberliegende Endstück (10; 28; 30; 31) zurückversetzt ist, und die Anschlußstifte (17) vom Ende (8; 9) des Quarzglasrohres (7) um eine Strecke zum gegenüberliegenden Ende (8; 9) hin zurückversetzt sind.
6. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Sockel (2) mit vier zueinander im Quadrat angeordneten Durchgangsbohrungen (4; 5) versehen ist, von denen je zwei benachbarte Durchgangsbohrungen als Anschlußbohrungen (4) und je zwei benachbarte Durchgangsbohrungen als Befestigungsbohrungen (5) ausgebildet sind.
7. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Endstücke (10; 28; 30; 31) auf der den Anschlußstiften (17) zugeordneten Seite ein das Quarzglasrohr (7) übergreifendes Teil (14) aufweisen, das mit einem Zapfen (15) versehen ist, der mittig zum Quarzglasrohr (7) in Längsachsenrichtung verläuft und der Sockel (2) auf der dem Infrarotstrahler (6) zugewandten Seite eine längliche, sich in Längsachsenrichtung erstreckende Nut (16) aufweist, in die der Zapfen (15) eingreift.
8. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Sockel (2) der Strahlereinheit gleich ausgebildet sind.
9. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Sockel (2) aus einem elektrisch isolierenden, vorzugsweise aus einem keramischen Material bestehen.
10. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die elektrischen Anschlüsse (17) durch ein gemeinsames Endstück (10; 28; 30; 31) hindurchgeführt sind.
11. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Endstücke (10; 28; 30; 31) jeweils das Quarzglasrohr (7) auf mindestens zwei sich gegenüberliegenden Seiten außen übergreifen und/oder eine umlaufende Ringnut aufweisen, in die die Enden des Quarzglasrohres (7) hineinragen.
12. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Wandstärke der an den Stirnseiten des Quarzglasrohres (7) anliegenden Bereiche der Endstücke (10; 28; 30; 31) in Richtung der Längsachse des Quarzglasrohres (7) gesehen maximal 10 mm, vorzugsweise maximal 5 mm beträgt.
13. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Heizwendel (12) in Richtung der Längsachse des Quarzglasrohres (7) gesehen maximal 15 mm, vorzugsweise maximal 10 mm vor dem Ende des Infrarotstrahlers (6) endet.
14. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Infrarotstrahler (6) an dem Sockel (2) mit einer U-förmig ausgebildeten Feder (19) gehalten wird, die das Quarzglasrohr (7) umgreift und deren freie Schenkel (21) hakenförmig gebogen und in sich gegenüberliegende Ausnehmungen (20) des Sockels (2) eingehakt sind.
15. Strahlereinheit nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß als Befestigungselemente selbstschneidende oder selbstfurchende Schrauben (29) vorgesehen sind und die Montagebohrungen (3) mit einem Durchmesser ausgeführt sind, der geringfügig kleiner ist als der Gewindedurchmesser der selbstschneidenden oder selbstfurchenden Schrauben (29).
EP92120466A 1992-03-31 1992-12-01 Strahlereinheit Expired - Lifetime EP0563448B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4210519 1992-03-31
DE4210519A DE4210519C1 (de) 1992-03-31 1992-03-31

Publications (3)

Publication Number Publication Date
EP0563448A2 true EP0563448A2 (de) 1993-10-06
EP0563448A3 EP0563448A3 (en) 1993-10-27
EP0563448B1 EP0563448B1 (de) 1995-08-02

Family

ID=6455513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92120466A Expired - Lifetime EP0563448B1 (de) 1992-03-31 1992-12-01 Strahlereinheit

Country Status (3)

Country Link
US (1) US5444813A (de)
EP (1) EP0563448B1 (de)
DE (2) DE4210519C1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419049A1 (de) 2017-06-22 2018-12-26 Meyer Burger (Germany) GmbH Beheizbarer waferträger und bearbeitungsverfahren
US11504996B2 (en) * 2019-03-29 2022-11-22 Nallen Holdings, Llc Paint removal unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1490752A1 (de) * 1962-01-18 1969-07-03 Telemecanique Electrique Elektrische Schaltgeraete tragende Tafel
FR2181568A1 (de) * 1972-04-28 1973-12-07 Heurtey Sa
US4531047A (en) * 1982-07-28 1985-07-23 Casso-Solar Corporation Clip-mounted quartz tube electric heater
EP0465766A1 (de) * 1990-07-11 1992-01-15 Heraeus Quarzglas GmbH Infrarot-Flächenstrahler

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005081A (en) * 1960-04-04 1961-10-17 Eldon E Kordes High intensity heat and light unit
US3218446A (en) * 1963-06-28 1965-11-16 New York World S Fair 1964 196 Luminary and modular unit lighting fixture therefor
US3231846A (en) * 1964-01-06 1966-01-25 Richard P Radke Support apparatus for resistance heated source holders
US3401369A (en) * 1966-06-07 1968-09-10 Ibm Connector
DE1590197A1 (de) * 1966-12-28 1970-12-17 Heinrich Benzing Fa Flaechig ausgebildeter isolierter Anschlussteil
US4532579A (en) * 1984-04-13 1985-07-30 Bill Merryman Illuminated interconnectable sign module
DE3619919C2 (de) * 1986-06-13 1995-11-09 Thermal Quarz Schmelze Gmbh Quarz-Infrarotstrahler
DE3842641A1 (de) * 1988-12-18 1990-06-21 Thermal Quarz Schmelze Gmbh Steckbarer quarz-infrarotstrahler
US5310355A (en) * 1993-03-09 1994-05-10 Irmgard Dannatt Strip lighting assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1490752A1 (de) * 1962-01-18 1969-07-03 Telemecanique Electrique Elektrische Schaltgeraete tragende Tafel
FR2181568A1 (de) * 1972-04-28 1973-12-07 Heurtey Sa
US4531047A (en) * 1982-07-28 1985-07-23 Casso-Solar Corporation Clip-mounted quartz tube electric heater
EP0465766A1 (de) * 1990-07-11 1992-01-15 Heraeus Quarzglas GmbH Infrarot-Flächenstrahler

Also Published As

Publication number Publication date
DE59203115D1 (de) 1995-09-07
EP0563448A3 (en) 1993-10-27
US5444813A (en) 1995-08-22
EP0563448B1 (de) 1995-08-02
DE4210519C1 (de) 1993-09-09

Similar Documents

Publication Publication Date Title
EP0236260B1 (de) Bauelement für Baumodelle, insbesondere Bauspielzeuge
EP1284034B1 (de) Stromschienensystem
DE60127567T2 (de) Halterungsclips und isolatoren zur verwendung in elektrischen heizern und elektrische heizer damit
DE10025648A1 (de) Stromschienensystem
DE202005019835U1 (de) Elektrisch betreibbare Flächenheizelement-Anordnung, insbesondere als Fußboden-Flächenheizelement-Anordnung
DE3144896C2 (de) Elektroheizgerät
WO2011110693A2 (de) Verbindungsstein, rahmen und anordnung zum befestigen von photovoltaik-modulen oder kollektor-modulen sowie verfahren zum befestigen von rahmen
DE3624381A1 (de) Raumbeleuchtungsvorrichtung
DE10025647A1 (de) Stromschienensystem
EP0113923B1 (de) Elektrokochplatte
DE3143518C2 (de) Halter für Stromsammelschienen
AT407906B (de) Elektrisches leuchtensystem
DE10051641B4 (de) Bestrahlungsanordnung
EP0743804B1 (de) Heizer
EP0563448B1 (de) Strahlereinheit
DE2438234C3 (de) Elektrodenbaugruppe für Mehrstrahlerzeugersysteme und Verfahren zum Betrieb dieser Baugruppe
DE3619919C2 (de) Quarz-Infrarotstrahler
DE10316908A1 (de) Heizvorrichtung
EP3446031B1 (de) Schaltschrankleuchte mit verstellbarer leuchtmittelplatine
DE2020628C3 (de) System zur Anordnung und Befestigung von Anzeige- und Bedienungselementen in Baueinheiten der Meß-, Steuer- und Regeltechnik
DE19750100C2 (de) Verbindungsvorrichtung
DE10063664C1 (de) Elektrodeneinrichtung für Heizgeräte
DE10051642B4 (de) Bestrahlungsanordnung
EP3087306B1 (de) Leuchteinheit
DE19500670C1 (de) Kühlvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19921209

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19950109

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59203115

Country of ref document: DE

Date of ref document: 19950907

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950812

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021119

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021206

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021218

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201