EP0547310B1 - Appareil frigorifique ménager à deux températures et à cycle unique - Google Patents

Appareil frigorifique ménager à deux températures et à cycle unique Download PDF

Info

Publication number
EP0547310B1
EP0547310B1 EP92117021A EP92117021A EP0547310B1 EP 0547310 B1 EP0547310 B1 EP 0547310B1 EP 92117021 A EP92117021 A EP 92117021A EP 92117021 A EP92117021 A EP 92117021A EP 0547310 B1 EP0547310 B1 EP 0547310B1
Authority
EP
European Patent Office
Prior art keywords
channel
ceiling
evaporator
refrigerator according
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92117021A
Other languages
German (de)
English (en)
Other versions
EP0547310A1 (fr
Inventor
Friedrich Dipl.-Ing. Arnold
Roland Renner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0547310A1 publication Critical patent/EP0547310A1/fr
Application granted granted Critical
Publication of EP0547310B1 publication Critical patent/EP0547310B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • F25B39/024Evaporators with plate-like or laminated elements with elements constructed in the shape of a hollow panel

Definitions

  • the invention relates to a two-temperature single-circuit refrigerator for the household, comprising an evaporator which essentially has two sections and forms a system of connected refrigerant channels, the first section of which forms a ceiling, an upright wall and a bottom of a freezer compartment, as a room evaporator in one section serving below the freezer compartment is connected upstream, the refrigerant supplied from the injection point into the channel system flows from a downward-running supply channel in the upright wall of the first evaporator section into a channel arranged in a meandering manner in the bottom of the freezer section, which channel flows into a channel in the upright wall of the first evaporator section leading discharge channel opens, which merges in the ceiling in a channel arrangement laid in turns, the output of which is directed downward in the upright wall with the input d it is connected to the second section forming the space evaporator.
  • an evaporator for a two-temperature single-circuit refrigerator which has a freezer compartment and a section associated with its normal refrigerator compartment.
  • the freezer evaporator upstream of the defrostable normal refrigerator compartment evaporator in the refrigerant circuit is formed from an upright wall provided with refrigerant channels and two legs bent in the same direction, which serve as a ceiling and a floor and are also equipped with refrigerant channels.
  • the channel structure in the bottom of this evaporator essentially has three interconnected sections, each of which is formed from two large-volume pipelines communicating with one another via transverse channels, the predominant length of which is arranged perpendicular to the free end of the bottom.
  • One of the three sections is connected on the outlet side in the floor to two parallel duct runs, which are connected to each other in the upright wall via a transverse duct and merge into a single refrigerant duct laid in turns in the ceiling.
  • the invention has for its object to design the channel system in the freezer compartment evaporator in cooling devices of the type mentioned so that it is ensured at all times that no liquid refrigerant reaches the connection point between the freezer compartment evaporator and the refrigerator compartment evaporator during the downtime of the refrigerant compressor.
  • the object is achieved according to the invention in that the feed channel and the discharge channel are connected via a bypass arranged at a distance above the bottom of the first evaporator section, which has an increased flow resistance in the bottom compared to the bridged channel arrangement.
  • the solution according to the invention ensures that the pressure generated by the refrigerant flowing in from the condenser to the evaporator when the refrigerant compressor is at a standstill, for example caused by the cooling refrigerant compressor, is reduced without this influencing the liquid refrigerant resting in the bottom of the freezer compartment evaporator can, so that no liquid refrigerant reaches the connection point between the two evaporator sections even over long periods of time. Furthermore, the Cooling capacity in the cooling compartments is not affected by the bypass. In addition, standing time noises caused by air bubbles rising from the liquid refrigerant are significantly reduced.
  • the bypass connecting the feed channel to the discharge channel and having a higher flow resistance is arranged in the ceiling of the first evaporator section.
  • a solution according to these features has the advantage that the pressure propagating from the condenser to the evaporator is diverted to the cooling compartment evaporator shortly after it enters the ceiling.
  • the increased flow resistance of the bypass is determined by a corresponding length arranged in turns and / or in particular by a reduction in cross section.
  • the channels of the bypass are sufficiently large when the flow resistance differs from the rest of the channel arrangement if, according to a preferred embodiment of the object of the invention it is provided that the channel cross sections of the bypass and the feed channel are in a ratio of 1: 3 to 1: 7, but preferably in a ratio of 1: 5.
  • the feed channel has a main channel and at least one secondary channel running parallel thereto, the main channel being equipped with transverse channels which branch off approximately perpendicularly from it and are spaced apart from one another and which is fluidically connected to the secondary channel connect.
  • Such a solution has the advantage that an uneven distribution, which is essentially independent of the channel cross-section of the main channel and the feed channel, occurs as a result of the inertia of the refrigerant flowing into the feed channel, so that essentially the main channel is exposed to liquid refrigerant, while the secondary channel has hardly any liquid Refrigerant leads.
  • the discharge channel has a main channel and at least one secondary channel running parallel to it, the main channel being equipped with transverse channels which branch off approximately perpendicularly from it and are spaced apart from one another and which is fluidically connected to the secondary channel connect.
  • both the transverse channels of the feed channel and those of the discharge channel are at a distance from one another which is greater than the height of the upright wall, but is preferably dimensioned such that the transverse channels are in the vicinity of the transition lie on the upright wall in the floor or in the ceiling.
  • the solution has the advantage that both the feed channel and the discharge channel are guided in two strands over the bending zones of the U-shaped evaporator section, so that the cross section of the two channels can be reduced compared to a single channel, whereby the influence on their flow cross section by constriction is considerably reduced , and thus the transitions do not have a flow-restricting effect on the circulating refrigerant.
  • the channel cross sections of the supply and discharge channels are particularly expedient if, according to a preferred embodiment of the subject matter of the invention, it is provided that the main and the secondary channel of the supply and discharge channels have the same cross section.
  • the liquid refrigerant is significantly more difficult to enter the bypass if, according to an advantageous embodiment of the subject of the invention, that the transverse channel of the supply channel branches in the ceiling with the bypass in such a way that the refrigerant can enter the bypass after a sharp deflection.
  • the main channel of the discharge channel downstream of its branching transverse channel in the ceiling merges into a collector-shaped channel section provided with button-like impressions, which is arranged parallel to the free end of the ceiling.
  • the feed channel merges into a channel piece in the area after its entry into the ground, the channel section opening into at least two mutually parallel, opening into the discharge channel, essentially the same cross section as the channel piece having duct sections branched, the predominant length of which is arranged parallel to the free end of the base and which cross at least in a common duct bed downstream of the branching.
  • a solution corresponding to these features on the one hand has a favorable effect on the separation of the liquid and the gaseous refrigerant, and on the other hand it is ensured in a simple manner that sufficient volume is available in the standstill phase of the refrigerant compressor for the liquid refrigerant collecting in the soil.
  • the arrangement of the feed and discharge channel in the upright wall is particularly expedient and space-saving if, according to a preferred embodiment of the object of the invention, it is provided that the channels are arranged vertically in the upright wall.
  • a channel system of a freezer evaporator provides additional security in order to prevent liquid refrigerant from being able to pass from the freezer compartment evaporator into the refrigerator compartment evaporator during the standstill phase of the refrigerant compressor, if, according to an advantageous embodiment of the object of the invention, it is provided that the ceiling duct arrangement connected downstream of the floor arrangement is in relation to the latter has lower capacity for liquid refrigerant, but has a larger capacity compared to the ceiling channel arrangement upstream of the floor.
  • a two-temperature single-circuit refrigerator 10 is shown, which, as usual, is equipped with an overhead freezer compartment 11 and a normal refrigerator compartment 13 arranged underneath and separated from this by a heat-insulating intermediate wall 12.
  • the side walls of the normal cooling compartment 13 are provided with grooves 14 formed in the inner container of the refrigerator 10 for inserting shelves (not shown).
  • the refrigerator 10 which is equipped with a refrigerant compressor (not shown), is equipped with an evaporator 15 having two sections A and B and forming a system of coherent refrigerant channels, which is formed from two circuit boards connected by roller welding and receiving the refrigerant channels between them.
  • the section of the evaporator 15, designated A, assigned to the freezer compartment 11 has a ceiling 16, an upright wall 17 serving as the rear wall and a bottom 18, which are formed from a one-piece circuit board section.
  • the section B downstream of section A is arranged in the refrigerant circuit of the evaporator 15 and is designed as a defrostable room evaporator.
  • the sections A and B of the evaporator 15 are connected to one another by a web-like connecting bridge 19 (cf. in particular FIGS. 2 and 3).
  • the evaporator 15 shown in the development in FIG. 2 from a roll-welded circuit board is formed into a U-shaped profile, shown in particular in FIG. 1, by bending along the bending zones located between the individual sections and delimited by dash-dotted lines both ends are open.
  • the legs of the U-shaped profile bent in the same direction from the upright wall 17 have a slightly larger angle than 90 ° with respect to the upright wall 17 after the bending process.
  • the liquid refrigerant is fed to the duct system of the evaporator 15 via a throttle tube 21 which is installed in a suction pipe 20 and is arranged in the ceiling 16 (cf. FIGS. 2 and 3 in this regard).
  • the refrigerant flows through the ceiling 16 in a large-volume channel part 22 which runs close to the transition to the upright wall 17 and which is still in the ceiling 16, outside the bending zone, connects to a downwardly extending feed channel 23 arranged in the upright wall 17 of the first evaporator section (see also FIG. 3).
  • connection point between the channel part 22 and the feed channel 23, which has a main channel 24 and a secondary channel 25 running parallel thereto, is designed such that the channel routing of the channel part 22 continues seamlessly in the main channel 24.
  • the main channel 24 and the secondary channel 25 have the same channel cross-section and are connected to one another in terms of flow technology with two transverse channels 26 which branch off perpendicularly from the main channel 24 and are arranged at a distance from one another and have a short channel length.
  • the distance between the two transverse channels 26 branching off from the main channel 24 is such that the respective branch point from the main channel 24 lies outside the bending zones of the evaporator section denoted by A in its ceiling 16 or in its bottom 18 in the vicinity of the transitions to the upright wall 17 (See Fig.
  • the main channel 24 of the feed channel 23 continues seamlessly in a channel piece 27. After a relatively short path, this branches symmetrically into two channels 28, which run parallel to one another and run in a meandering manner in the bottom 18, each having the same channel cross section of the channel piece 17, the predominant length of which is arranged parallel to the free end of the bottom. Downstream after the branching, the channels 28 are briefly combined in a common channel bed 29, but then separated again. For this purpose, the channel bed 29 divides both upstream and downstream symmetrically with a channel cross section corresponding to the channels 28 in each case.
  • the channels 28 are at their output end connected in the bottom 18 by an essentially circular connection piece 30, which is arranged outside the bending zone, to a discharge channel 31 rising vertically in the upright wall 17 of the first evaporator section.
  • the discharge channel 31 like the feed channel 23, has a main channel 32 and a secondary channel 33 running parallel thereto, which is arranged adjacent to the secondary channel 25 of the feed channel 23.
  • the main channel 32 of the discharge channel 31 is also equipped with transverse channels 34 branching perpendicularly from it, but the transverse channel arranged in the bottom 18 is formed by an annular sector of the annular connecting piece 30.
  • the transverse channels 34 are arranged at a distance from one another which is greater than the height of the upright wall 17 and corresponds to the distance between the transverse channels 26 of the feed channel 23.
  • the outlet-side end of the feed channel 23 is connected to the outlet-side end of the discharge channel 31 in the ceiling 16 which is arranged directly next to it, by means of a bypass 35 which has an increased flow resistance and bridges the channel arrangement in the bottom 18, the bypass 35 at the junction of the transverse channels in the Secondary channels are connected to this.
  • the increased flow resistance of the bypass 35 is achieved, in addition to a corresponding length arranged in turns, additionally by a reduced channel cross section compared to the channels of the feed channel 23 and the discharge channel 31, the ratio of the channel cross sections between the bypass 35 and the main or secondary channels of the Feed channel 23 or the discharge channel 31 is approximately 1: 5.
  • the channel section 36 designed in the manner of a collector belongs to a channel arrangement which is laid in turns in the ceiling 16 and has the same channel cross section as the expanded main channel 32.
  • the outlet of the channel arrangement is connected to a channel line 38, which is directed downward on the connecting bridge 19 and is designed as a double channel across the bending zones, with the input of the section, which is not explained in more detail and which forms the space evaporator and is designated by B (see also FIG 3).
  • the design of the feed channel 23 ensures that the liquid refrigerant flows mainly in its main channel 24 and, in relation thereto, a small proportion in its secondary channel 25.
  • the bypass 35 connected to the secondary duct 25, which is also equipped with an increased flow resistance in comparison to the duct cross-sections of the feed duct 23, is only acted on with small amounts of liquid refrigerant, so that there is no loss of performance in the freezer compartment evaporator during the running time of the refrigerant compressor .
  • the pressure drop between the condenser and evaporator which e.g. created by the cooling compressor, and which usually manifests itself in the afterflow of essentially gaseous refrigerant from the condenser to the evaporator, is reduced via the bypass 35. Due to the fact that the flow resistance for the medium flowing in the bypass 35 is less than the resistance that the liquid accumulated in the bottom 18 of the freezer evaporator during the standstill phase of the refrigerant compressor opposes the pressure of the flowing medium during its movement, the inflowing refrigerant becomes transferred to the backspace evaporator. The liquid refrigerant accumulated in the bottom 18 thus remains at rest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (13)

  1. Réfrigérateur monocircuit à deux températures à usage ménager, comprenant un évaporateur (15) qui comporte pour l'essentiel deux parties et forme un système de canaux de frigorigène communicants et dont la première partie (A) formant un plafond (16), une paroi verticale (17) et un fond (18) d'un compartiment de congélation est disposée en amont de sa deuxième partie (B) servant d'évaporateur ambiant dans un compartiment de réfrigération normale situé en dessous du compartiment de congélation, le frigorigène envoyé dans le système de canaux par un point d'injection passant d'un canal d'alimentation (23) dirigé vers le bas dans la paroi verticale (17) de la première partie (A) de l'évaporateur à un canal (28) qui forme des méandres dans le fond (18) du compartiment de congélation et qui débouche dans un canal d'évacuation (31) qui est dirigé vers le haut dans la paroi verticale (17) de la première partie (A) de l'évaporateur et qui, dans le plafond (16), se prolonge par un agencement de canaux à tracé sinueux dont la sortie est reliée, par un faisceau de canaux (38) dirigé vers le bas dans la paroi verticale (17), à l'entrée de la deuxième partie (B) formant l'évaporateur ambiant, caractérisé en ce que le canal d'alimentation (23) et le canal d'évacuation (31) sont reliés par l'intermédiaire d'une dérivation (35) qui est disposée à distance au-dessus du fond (18) de la première partie de l'évaporateur et qui, par rapport à l'agencement de canaux réunis du fond (18), possède une résistance à l'écoulement plus élevée.
  2. Réfrigérateur monocircuit à deux températures selon la revendication 1, caractérisé en ce que la dérivation (35) qui relie le canal d'alimentation (23) au canal d'évacuation (31) et possède une résistance à l'écoulement plus élevée est disposée dans le plafond (16) de la première partie de l'évaporateur.
  3. Réfrigérateur monocircuit à deux températures selon la revendication 1 ou 2, caractérisé en ce que la résistance à l'écoulement plus élevée de la dérivation (35) est déterminée par une longueur correspondante à tracé sinueux et/ou en particulier par une réduction de section.
  4. Réfrigérateur monocircuit à deux températures selon la revendication 3, caractérisé en ce que le rapport entre la section du canal de la dérivation (35) et celle du canal d'alimentation (23) est compris entre 1:3 et 1:7, mais est de préférence égal à 1:5.
  5. Réfrigérateur monocircuit à deux températures selon l'une des revendications 1 à 4, caractérisé en ce que le canal d'alimentation (23) comporte un canal principal (24) et au moins un canal secondaire (25) qui lui est parallèle, le canal principal (24) étant pourvu de canaux transversaux (26) qui en partent sensiblement à angle droit et sont disposés à distance les uns des autres et qui, sur le plan de l'écoulement, le relient au canal secondaire (25).
  6. Réfrigérateur monocircuit à deux températures selon l'une des revendications 1 à 4, caractérisé en ce que le canal d'évacuation (31) comporte un canal principal (32) et au moins un canal secondaire (33) qui lui est parallèle, le canal principal (32) étant pourvu de canaux transversaux (34) qui en partent sensiblement à angle droit et sont disposés à distance les uns des autres et qui, sur le plan de l'écoulement, le relient au canal secondaire (33).
  7. Réfrigérateur monocircuit à deux températures selon la revendication 6, caractérisé en ce qu'aussi bien les canaux transversaux (26) du canal d'alimentation (23) que les canaux transversaux (34) du canal d'évacuation (31) présentent entre eux un écartement qui est supérieur à la hauteur de la paroi verticale (17), mais qui, de préférence, est calculé pour que les canaux transversaux (26, 34) se trouvent, dans le fond (18) et dans le plafond (16), à proximité de la transition avec la paroi verticale (17).
  8. Réfrigérateur monocircuit à deux températures selon la revendication 6 ou 7, caractérisé en ce que le canal principal (24, 32) et le canal secondaire (25, 33) du canal d'alimentation (23) et du canal d'évacuation (31) présentent une section identique.
  9. Réfrigérateur monocircuit à deux températures selon l'une des revendications 5 à 8, caractérisé en ce que, dans le plafond (16) muni de la dérivation (35), le canal transversal (26) du canal d'alimentation (23) bifurque, de façon que le frigorigène puisse pénétrer dans la dérivation (35) après un brusque changement de direction.
  10. Réfrigérateur monocircuit à deux températures selon l'une des revendications 6 à 9, caractérisé en ce que, en aval de son canal transversal dévié (33), le canal principal (32) du canal d'évacuation (31) se prolonge, dans le plafond (16), par une portion de canal (36) qui est conçue en forme de collecteur et comporte des parties en creux en forme de boutons (37) et qui est parallèle à l'extrémité libre du plafond (16).
  11. Réfrigérateur monocircuit à deux températures selon l'une des revendications 1 à 10, caractérisé en ce que, dans la zone située après son arrivée dans le fond (18), le canal d'alimentation (23) se prolonge par une portion de canal (27) qui bifurque sous forme d'au moins deux canaux (28) qui sont parallèles entre eux, débouchent dans le canal d'évacuation (31) et présentent chacun sensiblement la même section que la portion de canal (27), dont la longueur principale est parallèle à l'extrémité libre du fond (18) et qui se croisent en aval de la bifurcation pour former au moins un canal commun (29).
  12. Réfrigérateur monocircuit à deux températures selon l'une des revendications 1 à 11, caractérisé en ce que, dans la paroi verticale (18), le canal d'alimentation (23) et le canal d'évacuation (31) sont disposés verticalement.
  13. Réfrigérateur monocircuit à deux températures selon l'une des revendications 1 à 12, caractérisé en ce que l'agencement de canaux de plafond implanté en aval de l'agencement de canaux de fond présente, par rapport à celui-ci, une contenance inférieure en frigorigène liquide, mais possède une contenance supérieure à l'agencement de canaux de plafond implanté en amont du fond (18).
EP92117021A 1991-12-17 1992-10-06 Appareil frigorifique ménager à deux températures et à cycle unique Expired - Lifetime EP0547310B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4141641 1991-12-17
DE4141641A DE4141641A1 (de) 1991-12-17 1991-12-17 Zweitemperaturen-einkreiskuehlgeraet

Publications (2)

Publication Number Publication Date
EP0547310A1 EP0547310A1 (fr) 1993-06-23
EP0547310B1 true EP0547310B1 (fr) 1995-06-28

Family

ID=6447275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92117021A Expired - Lifetime EP0547310B1 (fr) 1991-12-17 1992-10-06 Appareil frigorifique ménager à deux températures et à cycle unique

Country Status (3)

Country Link
EP (1) EP0547310B1 (fr)
DE (2) DE4141641A1 (fr)
ES (1) ES2077951T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026641A1 (fr) * 2003-09-18 2005-03-24 Lg Electronics Inc. Distributeur de fluide frigorigene et procede de fabrication associe

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4439996C5 (de) * 1994-11-09 2006-08-10 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
DE19509571A1 (de) * 1995-03-16 1996-09-19 Bosch Siemens Hausgeraete Verdampfer, insbesondere für kompressorbetriebene Haushalt-Kältegeräte
DE29504538U1 (de) * 1995-03-16 1995-05-18 Bosch Siemens Hausgeraete Verdampferanordnung, insbesondere verdichterbetriebene Haushalts-Kältegeräte
DE29604586U1 (de) * 1996-03-12 1996-05-15 Liebherr Hausgeraete Kombinierter Verdampfer für das Sterne- und das Kühlfach eines Haushaltskühlgeräts
DE29716572U1 (de) * 1997-09-15 1997-12-04 Liebherr Hausgeraete Kühlgerät mit einem Normalkühlraum und einem Tiefkühlfach
DE19900701A1 (de) * 1999-01-11 2000-07-13 Vdm Evidal Gmbh Kapillar-Saugrohrsystem für Verdampfersysteme bzw. Kältekreislaufsysteme
DE102011013371A1 (de) * 2011-03-09 2012-09-13 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
CN104034115B (zh) * 2013-03-18 2016-08-10 海尔集团公司 直冷冰箱
CN104034112B (zh) * 2013-03-18 2016-12-28 海尔集团公司 直冷冰箱
EP4206579A1 (fr) 2021-12-28 2023-07-05 Arçelik Anonim Sirketi Dispositif de refroidissement comprenant un évaporateur
EP4206578A1 (fr) 2021-12-28 2023-07-05 Arçelik Anonim Sirketi Dispositif de refroidissement comprenant un évaporateur

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7431690U (de) * 1975-07-03 Bosch Siemens Hausgeraete Gmbh Verdampfer für Kühlgeräte, Insbesondere Zweitemperaturen-Kühlschränke
GB446078A (en) * 1934-11-01 1936-04-23 British Thomson Houston Co Ltd Improvements in evaporators for refrigerating machines
US2737785A (en) * 1951-10-09 1956-03-13 Admiral Corp Refrigerator evaporator
DE1092939B (de) * 1957-07-09 1960-11-17 Gen Motors Corp Anordnung von Kaeltemittelleitungen in Kaeltemaschinen
US2983114A (en) * 1957-07-09 1961-05-09 American Radiator & Standard Refrigerating system and valve construction
US2986901A (en) * 1959-03-13 1961-06-06 Whirlpool Co Refrigerant evaporator
US3243970A (en) * 1963-12-11 1966-04-05 Philco Corp Refrigeration system including bypass control means
DE2845032A1 (de) * 1978-10-16 1980-04-30 Licentia Gmbh Verdampferanordnung in kuehlgeraeten
DE3007589A1 (de) * 1979-02-28 1980-09-11 Alco Foodservice Equip Kaelteanlage fuer mehrere temperaturgeregelte kuehlstellen
FR2486638B1 (fr) * 1980-07-11 1986-03-28 Thomson Brandt Ensemble frigorifique a compartiments a temperatures differentes
EP0045659B1 (fr) * 1980-08-05 1984-04-18 The University Of Melbourne Régulation de systèmes de réfrigération à compression
DE3134300A1 (de) * 1981-08-29 1983-03-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verdampfer fuer ein kuehlgeraet
DE3224452A1 (de) * 1982-06-30 1984-01-05 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Kuehlmoebel, insbesondere zweitemperaturen-einkreis-kuehlschrank
DE8434381U1 (de) * 1984-11-23 1985-02-21 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Kuehlgeraet, insbesondere haushalts-kuehlschrank oder dgl.
DE3627167A1 (de) * 1986-08-11 1988-02-18 Bosch Siemens Hausgeraete Kompressions-kaeltemaschine, insbes. fuer haushalts-kuehl- u. gefriergeraete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026641A1 (fr) * 2003-09-18 2005-03-24 Lg Electronics Inc. Distributeur de fluide frigorigene et procede de fabrication associe

Also Published As

Publication number Publication date
ES2077951T3 (es) 1995-12-01
EP0547310A1 (fr) 1993-06-23
DE59202723D1 (de) 1995-08-03
DE4141641A1 (de) 1993-06-24

Similar Documents

Publication Publication Date Title
EP0547310B1 (fr) Appareil frigorifique ménager à deux températures et à cycle unique
EP1240466B1 (fr) Appareil frigorifique
EP2126482B1 (fr) Meuble de réfrigération comprenant deux compartiments thermiquement séparés l'un de l'autre
DE1601870A1 (de) Gefrierbehaelter mit Kuehlluftumwaelzung
DE1501037A1 (de) Frostfilter fuer Kuehltruhen
EP0709631A2 (fr) Appareil de congélation
EP0439815B1 (fr) Meuble de vente réfrigéré
WO1999032835A1 (fr) Appareil frigorifique
DE3224452C2 (fr)
EP1442259A1 (fr) Glissiere pour un evaporateur tubulaire a fils metalliques
EP0547316B1 (fr) Appareil frigorifique ménager à deux températures et à cycle unique
DE7431690U (de) Verdampfer für Kühlgeräte, Insbesondere Zweitemperaturen-Kühlschränke
WO2000017588A1 (fr) Systeme de refroidissement a circuit unique
EP0732553B1 (fr) Arrangement d'évaporateurs, notamment pour réfrigérateurs domestiques commandés par compresseurs
DE202006019473U1 (de) Kühl- und/oder Gefriergerät
DE3134300C2 (fr)
EP0795726A1 (fr) Evaporateur combiné d'un compartiment de congélation et d'un compartiment de réfrigération d'un réfrigérateur ménager
EP0981030A2 (fr) Dispositif de conditionnement d'air transportable
EP0992750B1 (fr) Procédé de fabrication d'un appareil frigorifique
EP1110041B1 (fr) Dispositif evaporateur
DE2153651C3 (de) Heißgasabtaueinrichtung für Kälteanlagen
DE102008042908A1 (de) Kältegerät mit Kaltluftkanal
DE1254650B (de) Kaelteanlage mit Verdampfer
EP0752563A2 (fr) Arrangement d'évaporateur pour des réfrigérateurs ménagers
DE202011104868U1 (de) Kühlmöbel, insbesondere Kühlregal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19931220

17Q First examination report despatched

Effective date: 19940818

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950629

REF Corresponds to:

Ref document number: 59202723

Country of ref document: DE

Date of ref document: 19950803

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077951

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101031

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101023

Year of fee payment: 19

Ref country code: GB

Payment date: 20101021

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111024

Year of fee payment: 20

Ref country code: FR

Payment date: 20111103

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59202723

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59202723

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121005

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121007