EP0543079B1 - Verfahren zum numerisch gesteuerten Schleifen von Nocken einer Nockenwelle - Google Patents

Verfahren zum numerisch gesteuerten Schleifen von Nocken einer Nockenwelle Download PDF

Info

Publication number
EP0543079B1
EP0543079B1 EP92109425A EP92109425A EP0543079B1 EP 0543079 B1 EP0543079 B1 EP 0543079B1 EP 92109425 A EP92109425 A EP 92109425A EP 92109425 A EP92109425 A EP 92109425A EP 0543079 B1 EP0543079 B1 EP 0543079B1
Authority
EP
European Patent Office
Prior art keywords
grinding
grinding wheel
cam
camshaft
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP92109425A
Other languages
English (en)
French (fr)
Other versions
EP0543079A1 (de
Inventor
Horst Josef Wedeniwski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C.NE EPO REG.20;SCHAUDT MASCHINENBAU GMBH
Original Assignee
Fortuna Werke Maschinenfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6445070&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0543079(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fortuna Werke Maschinenfabrik GmbH filed Critical Fortuna Werke Maschinenfabrik GmbH
Publication of EP0543079A1 publication Critical patent/EP0543079A1/de
Application granted granted Critical
Publication of EP0543079B1 publication Critical patent/EP0543079B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/08Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section
    • B24B19/12Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section for grinding cams or camshafts

Definitions

  • the invention relates to a method for grinding cams of a camshaft, in which the camshaft is rotated about its longitudinal axis and at the same time, depending on a predetermined cam contour, a first grinding wheel is fed in a direction perpendicular to the longitudinal axis, the cam contour in the start-up area and in the run-out area of the cam has a concave curvature, and a second grinding wheel is used to grind the concavely curved regions, the radius of which is smaller than the minimum radius of curvature of the concave curvature, while the radius of the first grinding wheel is very much larger than the minimum radius of curvature of the concave curvature.
  • the known method is a copy grinding method, in which the camshaft is rotated in a conventional manner together with a so-called master cam, which is arranged in an extension of the camshaft and is connected to it in a rotationally rigid manner.
  • master cam which is arranged in an extension of the camshaft and is connected to it in a rotationally rigid manner.
  • the grinding spindle on a rocker is moved perpendicular to the longitudinal axis of the camshaft, while the camshaft is rotated at a constant speed. In this way you achieve that the point of engagement of the grinding wheel generates the circumferential profile of the master cam on the cams to be ground by this mechanical sequence control.
  • a grinding wheel which is spherical on its circumference. This grinding wheel is rotated around an axis that is perpendicular to the camshaft axis. The grinding wheel is fed with its parallel circumferential surface in a direction radially to the camshaft axis and then guided in a direction parallel to the camshaft axis through the concave curved region of the cam, which is stationary for this purpose.
  • a grinding wheel is also used to grind out the concavely curved section, the axis of which is perpendicular to the camshaft axis.
  • the grinding wheel is designed as a shaped wheel, the circumference of which is adapted to the entire concavely curved section of the cam is. Otherwise, the procedure is the same as for the first variant.
  • two grinding wheels are therefore required according to both alternatives, one of which (first machining step) lies with its axis perpendicular to the axis of the camshaft, while the second grinding wheel (second machining step) is arranged parallel to the camshaft.
  • flanks i.e. the connecting sections of the base circle and secondary circle do not have the usual convex shape, but rather a concave shape, which is also referred to as a "hollow flank” (DE book, page 31, FIG. 40c).
  • a CNC control of a grinding machine is known from the document "RESEARCH DISCLOSURE", No. 272, December 1986, New York, USA, page 735.
  • the control system controls two identical grinding spindles that are aligned symmetrically to each other along a common axis.
  • the common axis is parallel to the longitudinal axis of a camshaft to be ground.
  • a camshaft grinding machine is known from the document "WORKSHOP AND OPERATION", volume 110, no. 9, September 1977, Kunststoff, DE, pages 623 to 630, with which cams with concave areas can also be ground. It is stated that the grinding wheel radius should be at most two thirds of the smallest radius of curvature in the concave part of the cam.
  • the invention is based on the object of developing a method of the type mentioned in such a way that cams with a hollow flank, that is to say concave curvature, can be ground quickly, that is to say with high drive power and with a precise cam contour.
  • this object is achieved in that the cam is first grinded with the first grinding wheel over the entire circumference of the cam under numerical control of the infeed of the grinding wheels and the rotation of the camshaft, the first grinding wheel being guided along a first cam contour which is modified in the area of the concave curvature with respect to a cam end contour, such that its minimum radius of curvature is greater than or equal to the radius of the first grinding wheel, so that a zone lying within the modified first contour remains in the area of the concave curvature, and then grinding with the second grinding wheel.
  • the machining of the cam is divided into two sections, but the conventional large grinding wheel in a first machining step removes the essential portion of the oversize and is deliberately in Kauf takes that in the area of the concave curvature remains the said zone, which cannot be reached for the large grinding wheel due to its large radius.
  • This zone is then removed in a second step by means of the small grinding wheel known per se, which at the same time takes over the finishing of the desired cam contour in a subsequent step.
  • the cam is stopped after grinding with the first grinding wheel and the zone with the second grinding wheel is essentially ground out in plunge grinding.
  • This measure has the advantage that practically the entire zone can be ground out in a very fast operation, a time-consuming web operation not being necessary because the cam stands still during this phase of processing and the second, small grinding wheel only dips into the zone in the feed operation . Since the cam contour in the area of the concave curvature usually has the shape of an arc of a circle, the remaining zone can be almost completely ground out by immersing the second grinding wheel once.
  • the cam is rotated again after plunge grinding and is ground with the second grinding wheel along a second contour lying within the first contour.
  • cam 10 (not to scale) as it is used for camshafts of motor vehicle engines.
  • the cam 10 is rotatable about an axis of rotation 11, which is also the longitudinal axis of the camshaft, not shown.
  • the cam 10 has in a known manner a base circle section 12 with a radius R G , the center of which coincides with the axis of rotation 11.
  • the base circle section 12, which takes up a circumferential angle ⁇ G in the cam 10, is followed by a concave flank section 13a on the start-up side via the pre-cam region 15a / 15b and a second concave flank section 13b of the cam 10 on the opposite discharge side, each of which has a circumferential section ⁇ take k .
  • the pre-cam sections 15a and 15b of the cam 10 have a convex curved area as a transition between the base circle section 12 and the flank sections 13a and 13b at a circumferential angle ⁇ v .
  • the cam contour then has a convex section 14 in the tip region, which section is variable. Radius ⁇ S has.
  • the tip circle section 14 takes a circumferential angle ⁇ S.
  • the cam 10 is designed in its contour so that the start-up section 13a and the outlet section 13b, i.e. the cam flanks are not convex in the usual way, but rather are concavely curved. This phenomenon is also called "hollow flanks".
  • the purpose of this measure is, when actuating the bucket tappets for the valves of the engine, a faster start-up or sequence to reach from the secondary circuit section 14, so that the filling behavior of the combustion chambers is improved.
  • ⁇ k is the radius of curvature of the sections 13a, 13b, it being clear that this radius of curvature ⁇ k is opposite to the radii of curvature R G and ⁇ S of the base circle section 12 and the tip circle section 14. It is understood that the radius of curvature ⁇ k is not constant. The minimum radius of curvature ⁇ k min of the sections 13a and 13b is therefore an important variable for the machining of these sections 13a and 13b.
  • sections 13a and 13b can only be ground using a grinding wheel whose radius is smaller than the minimum radius of curvature ⁇ k min , because otherwise there would be shape errors.
  • the radius of the grinding wheel is selected to be significantly smaller in order to keep the osculation smaller, so that the contact between the grinding wheel and the workpiece in the concave region corresponds to a contact line.
  • the radius of the grinding wheel does not play a role from the point of view of shape retention, because these areas are convexly curved and therefore at least theoretically with grinding wheels of any radius can be ground.
  • FIGS. 2 and 3 a grinding machine is shown - extremely schematically - which is designated 20 overall.
  • a first grinding slide 22 is arranged in a conventional manner in the direction of an arrow 23 on a machine frame 21, not shown.
  • the arrow 23 indicates the so-called X-axis in the technical language of grinding machine construction.
  • a first drive motor 24 is located on the first grinding carriage 22 and drives a first grinding wheel 26 with a large radius via a first belt drive 25.
  • the first grinding wheel 26 is mounted in a first headstock 27.
  • the grinding machine 20 is of conventional construction.
  • the second grinding slide 30 is, for example in the side view of FIG. 2, L-shaped with a horizontal leg and a vertical leg.
  • the second grinding carriage 30 can be moved relative to the first grinding carriage 22 along an arrow 32 which runs parallel to the X axis (arrow 23).
  • the horizontal leg of the second grinding carriage 30 carries a second drive motor 33, which drives a second grinding wheel 35 via a second belt drive 34.
  • the second grinding wheel 35 is mounted in a second headstock 36, which is located at the front on the vertical leg of the second grinding carriage 30.
  • the second grinding wheel 35 has a substantially smaller radius than the first grinding wheel 26.
  • the second grinding carriage 30 has moved into its right end position in its position relative to the first grinding carriage 22, with the result that the second, small grinding wheel 35 projects to the right over the outer circumference of the first, large grinding wheel 26 .
  • the first, larger grinding wheel 26 is in engagement with a cam 41 of a schematically illustrated camshaft 40.
  • the camshaft 40 is clamped in the usual way and rotatable about its longitudinal axis 42, the so-called C-axis, such as indicated by an arrow 43.
  • the camshaft 40 is rotated in the direction of arrow 43 about the C axis 42 in the manner customary for numerically controlled grinding of cams, while at the same time the first grinding slide 22 in the direction of arrow 23, i.e. is moved forward and backward along the X-axis so that the first grinding wheel 26 engages the surface of the cam 41 along a predetermined cam contour when it is rotated.
  • the special feature of the grinding machine 20 shown in FIGS. 2 and 3 is that, alternatively, the first, larger grinding wheel 26 and then the second, smaller grinding wheel 35 can be brought into engagement with the cam 41 and the other cams of the camshaft 40.
  • the camshaft 40 is clocked relative to the first and second grinding carriages 22, 30, that is to say in the direction of its longitudinal axis 42, which runs parallel to the Z axis (arrow 45), by an increment which corresponds precisely to the distance between the grinding wheels 26, 35 Direction of the longitudinal axis 42 (arrow 45) corresponds.
  • one or the other grinding wheel 26, 35 can then be brought into engagement with the cam 41 in order to then grind the surface of the cam 41 along a predetermined contour .
  • the raw camshaft 40 is first clamped in a known manner, and the camshaft 40 is clocked relative to the grinding carriages 22 and 30 such that the first cam to be machined has the first, larger grinding wheel 26 is aligned.
  • the grinding carriages 22 and 30 are moved relative to one another in such a way that the configuration shown in FIG. 3 arises, in which the first, larger grinding wheel 26 protrudes and therefore becomes effective when the first grinding carriage 22 along the X-axis 23 hits the camshaft 40 to proceed.
  • Fig. 4 shows that the cam 41 has a raw contour 50 in the initial state, which corresponds to the raw surface of the camshaft blank.
  • An intermediate contour 51 marks the final state after the cam 41 has been roughed, while an end contour 52 denotes the final state after the cam 41 has been finished.
  • the illustration in FIGS. 4 to 7 is not to scale, because the oversize between the rough contour and the intermediate contour, ie the oversize for the roughing process, is of course significantly larger than the oversize between the intermediate contour 51 and the end contour 52, ie the oversize of the finishing process .
  • FIG. 4 now shows a state in which the first, larger grinding wheel 26 is already in engagement with the cam 41 and has already ground from the raw contour 50 onto the intermediate contour 51 over a certain part of the base circle section.
  • FIG. 1 only shows the situation in a simplified manner, because of course the grinding from the raw contour 50 to the intermediate contour 51 usually takes place in several stages and not only in one stage, as FIG. 4 shows.
  • the grinding wheel 26 was advanced in the area of the base circle in the infeed mode from the raw contour 50 to the intermediate contour 51, while rail operation is not necessary in this area, since the base circle radius (cf. FIG. 1) is constant in this area. Only after leaving the base circle section is a path operation required, in which the rotation of the cam 41 about the C-axis 42 is superimposed on an oscillating movement of the grinding wheel 26 in the direction of the X-axis 23.
  • the minimum radius of curvature ⁇ k min is significantly smaller than the radius R S1 of the grinding wheel 26.
  • the minimum radius of curvature ⁇ k min is a factor 10 lower than the radius R S1 of the grinding wheel 26 .
  • the grinding process according to FIG. 4 is carried out so that the grinding wheel 26 is not guided along the intermediate contour 51, but rather along a modified intermediate contour 51 '.
  • the modified intermediate contour 51 ' is designed such that its minimum radius of curvature is greater than the radius R S1 of the grinding wheel 26.
  • the modified intermediate contour 51' can therefore be ground using the large grinding wheel 26 without any form errors.
  • the camshaft 40 is clocked relative to the grinding wheel 26, and the second and further cams to be machined are ground in the same way along modified intermediate contours until all the cams of the camshaft 40 have been machined .
  • the grinding wheel 26 is moved in rapid traverse in the direction of the X-axis 23 into the starting position by means of the carriage 22 (FIG. 5).
  • the camshaft 40 now moves with its last machined cam into the position of the grinding wheels 35, although the Camshaft 40 is clocked by the distance that corresponds to the distance between the grinding wheels 26, 35 in the direction of the longitudinal axis 42 (arrow 45).
  • the grinding carriages 22 and 30 are moved relative to one another along the X axis 23 in such a way that the smaller, second grinding wheel 35 now projects (cf. FIG. 2).
  • the camshaft 40 is brought from the starting position at high speed (arrow 43) to an angular position (FIG. 6a) in which one of the zones 55a, 55b, in the example of FIG. 6a the zone 55a, is in the direction of the X- Axis 23, based on the line of engagement of the second, smaller grinding wheel 35, is located.
  • the second, smaller grinding wheel 35 has a radius R S2 that is smaller than the minimum radius of curvature ⁇ k min in the region of the concave curvature of the cam 41.
  • the second, smaller grinding wheel 35 is now advanced according to FIG. 6a in the direction of arrow 23 on the cam 41, so that the zone 55a in the position of the grinding wheel 35 according to FIG. 6b is essentially completely ground out by plunge grinding.
  • the grinding wheel 35 is then moved in rapid traverse in the direction of the X-axis 23 into the starting position by means of the carriage 22.
  • the cam 41 is now rotated at high speed in such a way that the other zone 55b is also ground out by plunge grinding when the cam 41 is stationary. 6c shows this process.
  • the grinding wheel 35 is then moved in rapid traverse in the direction of the X-axis 23 into the starting position by means of the carriage 22, as shown in FIG. 6a.
  • FIG. 7 now shows the final process in which the cam 41 is ground in a conventional manner from the intermediate contour 51 to the end contour 52 by means of the second grinding wheel 35, which is now guided exactly along the end contour 52.
  • the punctures are indicated by 60, which were previously made during plunge grinding according to FIG. 6.
  • the material in the region of the zones 55a, 55b was machined so far that, with the finishing according to FIG. 7, so little material can be machined in the region of the concave curvature that this can be done in one operation.
  • the grinding from the intermediate contour 51 to the finished contour 52 can also take place in several stages and not only in one stage, as shown in FIG. 7.
  • plunge grinding with a stationary workpiece (Fig. 6a, b, c) and finish grinding (Fig. 7) is now repeated by clocking the camshaft 40 relative to the second grinding wheel 35 on all other cams of the camshaft 40, so that finally, the camshaft 40 is ground on all cams.
  • a 450 mm diameter CBN grinding wheel is used as the first grinding wheel 26 in order to grind cams 41 of a steel camshaft 40.
  • the cutting speed v S can also be varied, for example in the range between 50 and 300 m / s.
  • the camshaft 40 is rotated about the C axis 42 at an angular velocity ⁇ .
  • the angular velocity ⁇ is gradually changed.
  • the machining of the base circle section 12 it is, for example, 35,000 degrees / min, during the machining of the tip circle section 14 15,000 degrees / min and during the machining of the flanks 13a, 13b, for example 8,000 degrees / min.
  • the allowance between raw contour 50 and between contour 51 during roughing is e.g. 0.55 mm, which are removed in six revolutions of the camshaft 41, so that an infeed of approximately 0.09 mm results in each revolution.
  • the minimum radius of curvature ⁇ k min in the concavely curved areas 13a, 13b of the cam 41 is, for example, 50 mm
  • a CBN grinding wheel with, for example, 80 mm diameter can be used as the second grinding wheel 35, the radius of which is thus smaller than 40 mm the minimum radius of curvature.
  • R S2 f ( ⁇ k min ; d 2nd S N d ⁇ 2nd ; ⁇ k ) where ⁇ k min is the minimum radius of curvature in the concave region of the cam 41, which is, for example, 50 mm.
  • d2 S N / d ⁇ 2 is the peripheral acceleration of the line of engagement of the second grinding wheel 35 on the cam 41 and is, for example, 0.0164 mm / degree2 for the given cam contour.
  • ⁇ k is the angular velocity of the cam 41 when rotating about the C axis 42 in the region of the hollow flanks. If ⁇ k is 8,000 degrees / min, then it is Radius R S2 of the second, smaller grinding wheel 35 is only 0.76 times the minimum radius of curvature ⁇ k min , while 0.87 times is to be used for an angular velocity ⁇ k of 4,000 degrees / min.
  • the exact functional relationship can be determined on the basis of an analytical view.
  • the elevation angle ⁇ E1 at the beginning of the elevation and the elevation angle ⁇ Ei at the points of the maximum circumferential acceleration d2 S N / d ⁇ 2, the line of engagement of the second grinding wheel 35 on the cam 47 are initially considered as further output variables.
  • ⁇ egg - ⁇ E1 .
  • the second grinding wheel 35 is driven at the same speed or cutting speed.
  • the angular velocities for the rotation of the cam 41 about the C-axis 42 are, however, set slightly differently compared to the roughing process according to FIG. 4, namely with 25,000 degrees / min in the base circle section 12, with 8,000 degrees / min in the tip circle section 14 and with 4,000 Degrees / min in the area of the flanks 13a, 13b.
  • the allowance between the intermediate contour 51 and the final contour 52 is, for example, 50 ⁇ m, which are ground in ten revolutions of the cam 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Schleifen von Nocken einer Nockenwelle, bei dem die Nockenwelle um ihre Längsachse gedreht und zugleich in Abhängigkeit von einer vorgegebenen Nockenkontur eine erste Schleifscheibe in einer Richtung senkrecht zur Längsachse zugestellt wird, wobei die Nockenkontur im Anlaufbereich und im Ablaufbereich des Nockens eine konkave Krümmung aufweist, und zum Ausschleifen der konkav gekrümmten Bereiche eine zweite Schleifscheibe eingesetzt wird, deren Radius kleiner als der minimale Krümmungsradius der konkaven Krümmung ist, während der Radius der ersten Schleifscheibe sehr viel größer als der minimale Krümmungsradius der konkaven Krümmung ist.
  • Ein Verfahren der vorstehend genannten Art ist aus dem Dokument DE-C-678 981 bekannt.
  • Das bekannte Verfahren ist ein Kopierschleifverfahren, bei dem in herkömmlicher Weise die Nockenwelle zusammen mit einem sogenannten Meisternocken gedreht wird, der in Verlängerung der Nockenwelle angeordnet und drehstarr mit dieser verbunden ist. Über einen geeigneten Taster am Meisternocken wird die auf einer Wippe befindliche Schleifspindel senkrecht zur Längsachse der Nockenwelle verfahren, während die Nockenwelle mit konstanter Geschwindigkeit gedreht wird. Auf diese Weise erreicht man, daß der Eingriffspunkt der Schleifscheibe durch diese mechanische Folgesteuerung das Umfangsprofil des Meisternockens an den zu schleifenden Nocken erzeugt.
  • Bei dem bekannten Verfahren ist angegeben, daß es zuvor zum Schleifen von Nocken mit konkav gekrümmten Abschnitten bekannt gewesen sei, Schleifscheiben mit einem sehr geringen Radius zu verwenden, der kleiner ist als der minimale Krümmungsradius des konkav gekrümmten Bereiches. Dabei sei jedoch als nachteilig anzusehen gewesen, daß diese sehr kleinen Schleifscheiben, wenn man sie zum Schleifen des gesamten Nockens einsetzt, einem schnellen Verschleiß unterliegen.
  • Gemäß dem bekannten Verfahren wird daher in zwei Bearbeitungsschritten vorgegangen. Während eines ersten Bearbeitungsschrittes wird ausschließlich der konkav gekrümmte Bereich des Nockenumfanges bearbeitet, während in einem zweiten Bearbeitungsschritt ausschließlich der übrige Umfangsbereich geschliffen wird.
  • Für den ersten Bearbeitungsschritt sind zwei unterschiedliche Varianten angegeben. Nach einer ersten Variante wird eine Schleifscheibe eingesetzt, die an ihrem Umfang ballig ausgebildet ist. Diese Schleifscheibe wird um eine Achse gedreht, die senkrecht zur Nockenwellenachse steht. Die Schleifscheibe wird mit ihrer parallelen Umfangsfläche in einer Richtung radial zur Nockenwellenachse zugestellt und dann in einer Richtung parallel zur Nockenwellenachse durch den konkav gekrümmten Bereich des Nockens hindurchgeführt, der zu diesem Zweck stillsteht.
  • Gemäß der zweiten Variante wird zum Ausschleifen des konkav gekrümmten Abschnittes ebenfalls eine Schleifscheibe eingesetzt, deren Achse senkrecht zur Nockenwellenachse steht. Die Schleifscheibe ist dabei jedoch als Formscheibe ausgebildet, deren Umfang an den gesamten konkav gekrümmten Abschnitt des Nockens angepaßt ist. Im übrigen ist die Vorgehensweise dieselbe wie bei der erstgenannten Variante.
  • Im zweiten Arbeitsschritt wird dann ausschließlich der übrige Nockenumfang mit einer Schleifscheibe bearbeitet, deren Radius sehr viel größer als der minimale Krümmungsradius des konkaven Abschnittes ist. Diese Schleifscheibe des zweiten Bearbeitungsschrittes wird um eine Achse gedreht, die parallel zur Nockenwellenachse verläuft.
  • Bei dem bekannten Verfahren sind somit gemäß beiden Alternativen zwei Schleifscheiben erforderlich, von denen die eine (erster Bearbeitungsschritt) mit ihrer Achse senkrecht zur Achse der Nockenwelle liegt, während die zweite Schleifscheibe (zweiter Bearbeitungsschritt) parallelachsig zur Nockenwelle angeordnet ist.
  • In dem DE-Buch "Die Steuerung des Gaswechsels in schnellaufenden Verbrennungsmotoren" von W.-D. Bensinger, Springer-Verlag, 1968, sind u.a. Nockenformen beschrieben, bei denen die Flanken, d.h. die Verbindungsabschnitte von Grundkreis und Nebenkreis nicht die übliche konvexe Form, sondern vielmehr eine konkave Form aufweisen, die auch als "hohle Flanke" bezeichnet wird (DE-Buch, Seite 31, Figur 40c).
  • Aus dem Dokument "RESEARCH DISCLOSURE", Nr. 272, Dezember 1986, New York, USA, Seite 735 ist eine CNC-Steuerung einer Schleifmaschine bekannt. Die Steuerung steuert zwei identische Schleifspindeln, die klappsymmetrisch zueinander entlang einer gemeinsamen Achse ausgerichtet sind. Die gemeinsame Achse liegt parallel zur Längsachse einer zu schleifenden Nockenwelle. Mit der bekannten Vorrichtung ist es möglich, durch simultanes Ansteuern beider Schleifschlitten zwei Nocken der Nockenwelle zur selben Zeit zu schleifen.
  • Aus dem Dokument "WERKSTATT UND BETRIEB", Band 110, Nr. 9, September 1977, München, DE, Seiten 623 bis 630 ist eine Nockenwellenschleifmaschine bekannt, mit der auch Nocken mit konkaven Bereichen geschliffen werden können. Dabei ist angegeben, daß der Schleifscheibenradius höchstens zwei Drittel des kleinsten Krümmungsradius im konkaven Teil des Nockens betragen soll.
  • Der Erfindung liegt demgegenüber die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art dahingehend weiterzubilden, daß Nocken mit hohler Flanke, das heißt konkaver Krümmung, schnell, das heißt mit hoher Antriebsleistung und mit präziser Nockenkontur, geschliffen werden können.
  • Gemäß dem eingangs genannten Verfahren wird diese Aufgabe dadurch gelöst, daß der Nocken unter numerischer Steuerung von Zustellung der Schleifscheiben sowie der Drehung der Nockenwelle zunächst mit der ersten Schleifscheibe über den gesamten Umfang des Nockens geschliffen wird, wobei die erste Schleifscheibe entlang einer ersten Nockenkontur geführt wird, die im Bereich der konkaven Krümmung gegenüber einer Nockenendkontur modifiziert ist, derart, daß deren minimaler Krümmungsradius größer als oder gleich groß wie der Radius der ersten Schleifscheibe ist, so daß in dem Bereich der konkaven Krümmung eine innerhalb der modifizierten ersten Kontur liegende Zone stehenbleibt, und daß dann mit der zweiten Schleifscheibe geschliffen wird.
  • Die der Erfindung zugrunde liegende Aufgabe wird auf diese Weise vollkommen gelöst.
  • Gemäß der Erfindung wird nämlich - wie an sich aus dem Dokument DE-C-678 981 bekannt - die Bearbeitung des Nockens in zwei Abschnitte unterteilt, wobei jedoch die herkömmliche große Schleifscheibe in einem ersten Bearbeitungsschritt den wesentlichen Anteil des Aufmaßes entfernt und man dabei bewußt in Kauf nimmt, daß im Bereich der konkaven Krümmung die genannte Zone stehenbleibt, die für die große Schleifscheibe infolge deren großen Radius nicht erreichbar ist. Diese Zone wird dann in einem zweiten Schritt mittels der an sich bekannten kleinen Schleifscheibe entfernt, die zugleich in einem nachfolgenden Schritt die Endbearbeitung der gewünschten Nockenkontur übernimmt.
  • Mit dem erfindungsgemäßen Verfahren ist es daher erstmals möglich, Nocken mit hohlen Flanken großtechnisch mit Bearbeitungszeiten zu schleifen, wie sie beim Nockenschleifen von Nockenwellen üblicher Bauart, das heißt mit konvex gekrümmten Flanken, derzeit Stand der Technik sind, das heißt etwa 3 bis 4 Sekunden pro Nocken betragen, ohne daß dadurch die Standzeit der Schleifscheiben beeinträchtigt wird.
  • Bei einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird der Nocken nach dem Schleifen mit der ersten Schleifscheibe stillgesetzt und die Zone mit der zweiten Schleifscheibe im Einstechschleifen im wesentlichen ausgeschliffen.
  • Diese Maßnahme hat den Vorteil, daß in einer sehr schnellen Operation praktisch die gesamte Zone ausgeschliffen werden kann, wobei ein zeitraubender Bahnbetrieb nicht erforderlich ist, weil der Nocken während dieser Phase der Bearbeitung stillsteht und die zweite, kleine Schleifscheibe lediglich im Zustellbetrieb in die Zone eintaucht. Da üblicherweise die Nockenkontur im Bereich der konkaven Krümmung wesentlich die Form eines Kreisbogens hat, kann durch einmaliges Eintauchen der zweiten Schleifscheibe die stehengebliebene Zone nahezu vollständig ausgeschliffen werden.
  • Bei einer Weiterbildung des vorstehend genannten Ausführungsbeispiels wird der Nocken nach dem Einstechschleifen wieder gedreht und mit der zweiten Schleifscheibe entlang einer innerhalb der ersten Kontur liegenden zweiten Kontur geschliffen.
  • Diese Maßnahme hat den bereits weiter oben erwähnten Vorteil, daß der letzte Bearbeitungsvorgang, nämlich üblicherweise das Schlichtschleifen, von der zweiten, kleinen Schleifscheibe übernommen wird, was weder unter dem Gesichtspunkt der Bearbeitungszeit, noch unter dem Gesichtspunkt der Standzeit problematisch ist, weil bei diesem letzten Schleifvorgang nur sehr geringe Materialvolumina zerspant werden.
  • Weitere Vorteile ergeben sich aus der Beschreibung und der beigefügten Zeichnung.
  • Es versteht sich, daß die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Fig. 1
    eine Seitenansicht eines Ausführungsbeispiels eines Nockens mit hohlen Flanken (nicht maßstäblich);
    Fig. 2
    eine Seitenansicht einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens;
    Fig. 3
    eine Draufsicht auf die in Fig. 2 gezeigte Anordnung;
    Fig. 4 bis 7
    vier Phasenbilder zur Erläuterung von Schritten des erfindungsgemäßen Verfahrens.
  • In Fig. 1 ist (nicht maßstäblich) ein Nocken 10 dargestellt, wie er für Nockenwellen von Kraftfahrzeugmotoren eingesetzt wird.
  • Der Nocken 10 ist um eine Drehachse 11 drehbar, die zugleich die Längsachse der nicht dargestellten Nockenwelle ist.
  • Der Nocken 10 weist in bekannter Weise einen Grundkreisabschnitt 12 mit einem Radius RG auf, dessen Mittelpunkt mit der Drehachse 11 zusammenfällt. An den Grundkreisabschnitt 12, der im Nocken 10 einen Umfangswinkel φG einnimmt, schließen sich über den Vornockenbereich 15a/15b an der Anlaufseite ein konkaver Flankenabschnitt 13a und an der gegenüberliegenden Ablaufseite ein zweiter konkaver Flankenabschnitt 13b des Nockens 10 an, die jeweils einen Umfangsabschnitt φk einnehmen. Die Vornockenabschnitte 15a und 15b des Nockens 10 haben einen konvexen gekrümmten Bereich als Übergang zwischen Grundkreisabschnitt 12 und Flankenabschnitt 13a und 13b unter einem Umfangswinkel φv. Die Nockenkontur weist dann in dem Spitzenbereich einen konvexen Abschnitt 14 auf, der einen variablen. Radius ρS besitzt. Der Spitzenkreisabschnitt 14 nimmt einen Umfangswinkel φS ein.
  • Wie man nun aus Fig. 1 deutlich erkennt, ist der Nocken 10 in seiner Kontur so angelegt, daß der Anlaufabschnitt 13a und der Ablaufabschnitt 13b, d.h. die Nockenflanken, nicht in der üblichen Weise konvex, sondern vielmehr konkav gekrümmt sind. Diese Erscheinung bezeichnet man auch als "hohle Flanken".
  • Der Sinn dieser Maßnahme ist, bei der Betätigung der Tassenstößel für die Ventile des Motors einen schnelleren Anlauf bzw. Ablauf vom Nebenkreisabschnitt 14 zu erreichen, so daß das Füllungsverhalten der Brennräume verbessert wird.
  • In Fig. 1 ist ferner mit ρk der Krümmungsradius der Abschnitte 13a, 13b eingezeichnet, wobei deutlich ist, daß dieser Krümmungsradius ρk den Krümmungsradien RG und ρS von Grundkreisabschnitt 12 und Spitzenkreisabschnitt 14 entgegengerichtet ist. Es versteht sich, daß der Krümmungsradius ρk nicht konstant ist. Der minimale Krümmungsradius ρk min der Abschnitte 13a und 13b ist daher eine wichtige Größe für die Bearbeitung dieser Abschnitte 13a und 13b.
  • So ist beispielsweise ohne weiteres einsichtig, daß die Abschnitte 13a und 13b nur mit einer Schleifscheibe ausgeschliffen werden können, deren Radius kleiner ist als der minimale Krümmungsradius ρk min, weil sonst Formfehler entstünden. In der Praxis wählt man den Radius der Schleifscheibe sogar noch deutlich kleiner, um die Schmiegung kleiner zu halten, so daß die Berührung zwischen der Schleifscheibe und dem Werkstück im konkaven Bereich einer Kontaktlinie entspricht.
  • In den übrigen Bereichen der Nockenkontur, nämlich im Grundkreisabschnitt 12, im Vornockenabschnitt 15a/15b und im Spitzenkreisabschnitt 14 spielt der Radius der Schleifscheibe unter dem Gesichtspunkt der Formtreue hingegen keine Rolle, weil diese Bereiche konvex gekrümmt sind und daher zumindest theoretisch mit Schleifscheiben eines beliebigen Radius geschliffen werden können.
  • In den Figuren 2 und 3 ist - äußerst schematisch - eine Schleifmaschine dargestellt, die insgesamt mit 20 bezeichnet ist.
  • Bei der Schleifmaschine 20 ist auf einem nicht näher dargestellten Maschinengestell 21 ein erster Schleifschlitten 22 in herkömmlicher Weise in Richtung eines Pfeils 23 verschiebbar angeordnet.
  • Der Pfeil 23 kennzeichnet in der Fachsprache des Schleifmaschinenbaus die sogenannte X-Achse.
  • Auf dem ersten Schleifschlitten 22 befindet sich ein erster Antriebsmotor 24, der über einen ersten Riementrieb 25 eine erste Schleifscheibe 26 mit großem Radius antreibt. Die erste Schleifscheibe 26 ist in einem ersten Spindelstock 27 gelagert.
  • Insoweit ist die Schleifmaschine 20 von herkömmlichem Aufbau.
  • Auf der Oberseite des ersten Spindelstocks 27 ist nun jedoch ein zweiter Schleifschlitten 30 angeordnet. Hierzu ist der zweite Schleifschlitten 30 beispielsweise in der Seitenansicht der Fig. 2 L-förmig mit einem waagrechten Schenkel und einem senkrechten Schenkel ausgebildet.
  • Durch eine entsprechende Längsführung mit Vorschubeinrichtung ist der zweite Schleifschlitten 30 relativ zum ersten Schleifschlitten 22 entlang eines Pfeils 32 verfahrbar, der parallel zur X-Achse (Pfeil 23) verläuft.
  • Der horizontale Schenkel des zweiten Schleifschlittens 30 trägt einen zweiten Antriebsmotor 33, der über einen zweiten Riementrieb 34 eine zweite Schleifscheibe 35 antreibt. Die zweite Schleifscheibe 35 ist in einem zweiten Spindelstock 36 gelagert, der sich vorne auf dem vertikalen Schenkel des zweiten Schleifschlittens 30 befindet. Die zweite Schleifscheibe 35 ist von wesentlich kleinerem Radius als die erste Schleifscheibe 26.
  • In der in Fig. 2 dargestellten Stellung ist der zweite Schleifschlitten 30 in seiner relativen Position zum ersten Schleifschlitten 22 in seine rechte Endstellung verfahren, mit der Folge, daß die zweite, kleine Schleifscheibe 35 nach rechts über den Außenumfang der ersten, großen Schleifscheibe 26 vorsteht.
  • In der Draufsicht der Fig. 3 sind die Verhältnisse indes umgekehrt, weil dort der zweite Schleifschlitten 30 relativ zum ersten Schleifschlitten 22 in seine rückgezogene, d.h. in Fig. 3 obere Endstellung verfahren ist, in der die erste, große Schleifscheibe 26 nach vorne (in der Darstellung der Fig. 3 nach unten) über die Außenkontur der zweiten, kleinen Schleifscheibe 35 übersteht.
  • In dieser in Fig. 3 angedeuteten Position befindet sich die erste, größere Schleifscheibe 26 im Eingriff an einem Nocken 41 einer schematisch dargestellten Nockenwelle 40. Die Nockenwelle 40 ist in üblicher Weise eingespannt und um ihre Längsachse 42, die sogenannte C-Achse drehbar, wie mit einem Pfeil 43 angedeutet.
  • Zum Schleifen des Nockens 41 wird die Nockenwelle 40 in der beim numerisch gesteuerten Schleifen von Nocken üblichen Weise in Richtung des Pfeils 43 um die C-Achse 42 gedreht, während gleichzeitig der erste Schleifschlitten 22 in Richtung des Pfeils 23, d.h. entlang der X-Achse, nach vorne und hinten verfahren wird, so daß die erste Schleifscheibe 26 entlang einer vorbestimmten Nockenkontur in Eingriff mit der Oberfläche des Nockens 41 ist, wenn dieser gedreht wird.
  • Die Besonderheit bei der in den Figuren 2 und 3 dargestellten Schleifmaschine 20 liegt nun darin, daß alternativ die erste, größere Schleifscheibe 26 und dann die zweite, kleinere Schleifscheibe 35 in Eingriff mit dem Nocken 41 und den übrigen Nocken der Nockenwelle 40 gebracht werden kann. Hierzu wird die Nockenwelle 40 relativ zum ersten und zweiten Schleifschlitten 22, 30 getaktet, d.h. in Richtung ihrer Längsachse 42, die parallel zur Z-Achse (Pfeil 45) verläuft, um ein Inkrement verfahren, das gerade dem Abstand der Schleifscheiben 26, 35 in Richtung der Längsachse 42 (Pfeil 45) entspricht.
  • Durch relatives Verfahren der Schleifschlitten 22 und 30 in Richtung der Pfeile 23, 32 zueinander kann dann jeweils die eine oder die andere Schleifscheibe 26, 35 in Eingriff mit dem Nocken 41 gebracht werden, um dann entlang einer vorbestimmten Kontur die Oberfläche des Nockens 41 zu schleifen.
  • Der Verfahrensgang soll jetzt anhand der Phasenbilder gemäß den Figuren 4 bis 7 näher erläutert werden.
  • Zum Bearbeiten der Nocken 41 einer Nockenwelle 40 gemäß Fig. 3 wird zunächst die rohe Nockenwelle 40 in bekannter Weise eingespannt, und die Nockenwelle 40 wird relativ zu den Schleifschlitten 22 und 30 so getaktet, daß der erste zu bearbeitende Nocken mit der ersten, größeren Schleifscheibe 26 fluchtet. Die Schleifschlitten 22 und 30 sind dabei so gegeneinander verfahren, daß die in Fig. 3 dargestellte Konfiguration entsteht, bei der die erste, größere Schleifscheibe 26 vorsteht und daher wirksam wird, wenn der erste Schleifschlitten 22 entlang der X-Achse 23 auf die Nockenwelle 40 zu verfahren wird.
  • Fig. 4 zeigt nun, daß der Nocken 41 im Ausgangszustand eine Rohkontur 50 aufweist, die der unbearbeiteten Oberfläche des Nockenwellen-Rohlings entspricht. Eine Zwischenkontur 51 kennzeichnet den Endzustand nach dem Schruppen des Nockens 41, während eine Endkontur 52 den Endzustand nach dem Schlichten des Nockens 41 bezeichnet. Es versteht sich, daß die Darstellung der Figuren 4 bis 7 nicht maßstäblich ist, weil das Aufmaß zwischen Rohkontur und Zwischenkontur, d.h. das Aufmaß für den Schruppvorgang, selbstverständlich wesentlich größer ist als das Aufmaß zwischen Zwischenkontur 51 und Endkontur 52, d.h. das Aufmaß des Schlichtvorganges.
  • Fig. 4 zeigt nun einen Zustand, bei dem die erste, größere Schleifscheibe 26 bereits im Eingriff am Nocken 41 ist und über einen bestimmten Teil des Grundkreisabschnittes bereits von der Rohkontur 50 auf die Zwischenkontur 51 geschliffen hat. Es versteht sich, daß Fig. 1 die Verhältnisse nur vereinfacht darstellt, weil selbstverständlich das Abschleifen von der Rohkontur 50 auf die Zwischenkontur 51 üblicherweise in mehreren Stufen geschieht und nicht nur in einer Stufe, wie Fig. 4 dies zeigt.
  • Die Schleifscheibe 26 wurde hierzu im Bereiche des Grundkreises im Zustellbetrieb von der Rohkontur 50 auf die Zwischenkontur 51 zugestellt, während ein Bahnbetrieb in diesem Bereich nicht erforderlich ist, da der Grundkreisradius (vgl. Fig. 1) in diesem Bereich konstant ist. Erst nach dem Verlassen des Grundkreisabschnittes ist ein Bahnbetrieb erforderlich, bei dem der Drehung des Nockens 41 um die C-Achse 42 eine oszillierende Bewegung der Schleifscheibe 26 in Richtung der X-Achse 23 überlagert wird.
  • Aus Fig. 4 ist nun deutlich erkennbar, daß der minimale Krümmungsradius ρk min wesentlich kleiner ist als der Radius RS1 der Schleifscheibe 26. So liegt beispielsweise der minimale Krümmungsradius ρk min um einen Faktor 10 niedriger als der Radius RS1 der Schleifscheibe 26.
  • Aus den weiter oben bereits erläuterten Gründen ist es daher nicht möglich, mit der Schleifscheibe 26 die Zwischenkontur 51 exakt zu schleifen, weil die große Schleifscheibe 26 im konkaven Bereich nicht bis auf den Grund der Zwischenkontur 51 reichen kann, ohne Formfehler in dem angrenzenden Vornockenabschnitt und dem Spitzenkreisabschnitt zu verursachen.
  • Aus diesem Grunde wird der Schleifvorgang gemaß Fig. 4 so abgewickelt, daß die Schleifscheibe 26 nicht entlang der Zwischenkontur 51, sondern vielmehr entlang einer modifizierten Zwischenkontur 51' geführt wird. Die modifizierte Zwischenkontur 51' ist so angelegt, daß ihr minimaler Krümmungsradius größer ist als der Radius RS1 der Schleifscheibe 26. Die modifizierte Zwischenkontur 51' kann daher ohne Formfehler mittels der großen Schleifscheibe 26 geschliffen werden.
  • Allerdings hat die Modifizierung der Zwischenkontur 51/51' zur Folge, daß im Bereich der konkaven Krümmung, d.h. im Anlaufabschnitt 13a und im Ablaufabschnitt 13b des Nockens (vgl. Fig. 1) Zonen 55a, 55b stehenbleiben, die außerhalb der an sich gewünschten Zwischenkontur 51 liegen.
  • Wenn die erste Schleifscheibe 26 die modifizierte Zwischenkontur 51' fertiggeschliffen hat, dann wird die Nockenwelle 40 relativ zur Schleifscheibe 26 getaktet, und es werden der zweite und weitere zu bearbeitende Nocken in derselben Weise entlang modifizierter Zwischenkonturen geschliffen, bis sämtliche Nocken der Nockenwelle 40 bearbeitet sind. Im Eilgang wird die Schleifscheibe 26 mittels des Schlittens 22 in Richtung der X-Achse 23 in die Ausgangsposition gefahren (Fig. 5).
  • Die Nockenwelle 40 fährt nun mit ihrem zuletzt bearbeiteten Nocken in die Position der Schleifscheiben 35, wobei jedoch die Nockenwelle 40 um den Abstand getaktet wird, der dem Abstand der Schleifscheiben 26, 35 in Richtung der Längsachse 42 (Pfeil 45) entspricht. Gleichzeitig werden die Schleifschlitten 22 und 30 relativ zueinander entlang der X-Achse 23 so verfahren, daß nunmehr die kleinere, zweite Schleifscheibe 35 vorsteht (vgl. Fig. 2). Gleichzeitig wird die Nockenwelle 40 aus der Ausgangsposition im Schnellgang (Pfeil 43) in eine Winkelposition gebracht (Fig. 6a), in der sich gerade eine der Zonen 55a, 55b, beim Beispiel der Fig. 6a die Zone 55a, in Richtung der X-Achse 23, bezogen auf die Eingriffslinie der zweiten, kleineren Schleifscheibe 35, befindet.
  • In dieser Drehposition wird die Nockenwelle 40 stillgesetzt, d.h. der Drehvorgang beendet. Die zweite, kleinere Schleifscheibe 35 hat einen Radius RS2, der kleiner als der minimale Krümmungsradius ρk min im Bereich der konkaven Krümmung des Nockens 41 ist. Die zweite, kleinere Schleifscheibe 35 wird nun gemäß Fig. 6a in Richtung des Pfeiles 23 auf den Nocken 41 zugestellt, so daß die Zone 55a in der Stellung der Schleifscheibe 35 gemäß Fig. 6b durch Einstechschleifen im wesentlichen vollständig ausgeschliffen wird.
  • Die Schleifscheibe 35 wird dann mittels des Schlittens 22 im Eilgang in Richtung der X-Achse 23 in die Ausgangsposition gefahren.
  • Der Nocken 41 wird nun im Schnellgang so gedreht, daß in der gleichen Weise die andere Zone 55b ebenfalls bei stillstehendem Nocken 41 durch Einstechschleifen ausgeschliffen wird. Fig. 6c zeigt diesen Vorgang. Anschließend wird die Schleifscheibe 35 mittels des Schlittens 22 im Eilgang in Richtung der X-Achse 23 in die Ausgangsposition gefahren, wie in Fig. 6a dargestellt.
  • Fig. 7 zeigt nun den abschließenden Vorgang, bei dem in an sich herkömmlicher Weise der Nocken 41 von der Zwischenkontur 51 auf die Endkontur 52 geschliffen wird, und zwar mittels der zweiten Schleifscheibe 35, die jetzt exakt entlang der Endkontur 52 geführt wird. In Fig. 7 sind mit 60 die Einstiche angedeutet, die beim Einstechschleifen gemäß Fig. 6 zuvor angebracht worden waren. Durch das Einstechen wurde das Material im Bereich der Zonen 55a, 55b so weit zerspant, daß beim Schlichten gemäß Fig. 7 auch im Bereich der konkaven Krümmung so wenig Material zu zerspanen ist, daß dies in einem Arbeitsgang geschehen kann.
  • Es versteht sich auch, daß das Abschleifen von der Zwischenkontur 51 auf die Fertigkontur 52 auch in mehreren Stufen erfolgen kann und nicht nur in einer Stufe, wie Fig. 7 dies zeigt. Der gleiche Vorgang, das Einstechschleifen mit stehendem Werkstück (Fig. 6a, b, c) und das Schlichtschleifen (Fig. 7) wiederholt sich nun durch Takten der Nockenwelle 40 relativ zur zweiten Schleifscheibe 35 auch an allen übrigen Nocken der Nockenwelle 40, so daß schlußendlich die Nockenwelle 40 an allen Nocken fertiggeschliffen ist.
  • Bei einem praktischen Anwendungsfall wird als erste Schleifscheibe 26 eine CBN-Schleifscheibe von 450 mm Durchmesser verwendet, um Nocken 41 einer Stahl-Nockenwelle 40 zu schleifen.
  • Zum Schruppschleifen gemäß Fig. 4 wird die erste Schleifscheibe 26 mit einer Umfangsgeschwindigkeit von vS = 100 m/s betrieben, was einer Drehzahl von etwa n = 4.300 min⁻¹ entspricht. Die Schnittgeschwindigkeit vS kann aber auch variiert werden, beispielsweise im Bereich zwischen 50 und 300 m/s.
  • Die Nockenwelle 40 wird mit einer Winkelgeschwindigkeit ω um die C-Achse 42 gedreht. Die Winkelgeschwindigkeit ω wird dabei stufenweise verändert. Während der Bearbeitung des Grundkreisabschnittes 12 beträgt sie beispielsweise 35.000 Grad/min, während der Bearbeitung des Spitzenkreisabschnittes 14 15.000 Grad/min und während der Bearbeitung der Flanken 13a, 13b beispielsweise 8.000 Grad/min.
  • Das Aufmaß zwischen Rohkontur 50 und zwischen Kontur 51 beim Schruppen beträgt z.B. 0,55 mm, die in sechs Umdrehungen der Nockenwelle 41 abgetragen werden, so daß sich pro Umdrehung jeweils eine Zustellung von ungefähr 0,09 mm ergibt.
  • Wenn der minimale Krümmungsradius ρ k min in den konkav gekrümmten Bereichen 13a, 13b des Nockens 41 z.B. 50 mm beträgt, so kann als zweite Schleifscheibe 35 eine CBN-Schleifscheibe mit beispielsweise 80 mm Durchmesser eingesetzt werden, deren Radius mit 40 mm somit kleiner ist als der minimale Krümmungsradius.
  • Zur genaueren Bestimmung des zulässigen Radius der zweiten Schleifscheibe 35 geht man davon aus, daß die dynamischen Verhältnisse zur Nockenkontur im gesteuerten Kontaktpunkt berücksichtigt werden müssen, um die Schmiegung in der Zerspanstelle klein zu halten. Dies führt zur Formel R S2 = f k min ; d 2 S N 2 ; ω k )
    Figure imgb0001
    wobei ρk min der minimale Krümmungsradius im konkaven Bereich des Nockens 41 ist, der z.B. 50 mm beträgt. d² SN/dφ² ist die Umfangsbeschleunigung der Eingriffslinie der zweiten Schleifscheibe 35 am Nocken 41 und beträgt bei der vorgegebenen Nockenkontur beispielsweise 0,0164 mm/Grad². ωk ist die Winkelgeschwindigkeit des Nockens 41 bei der Drehung um die C-Achse 42 im Bereich der hohlen Flanken. Wenn ωk 8.000 Grad/min ist, beträgt somit der Radius RS2 der zweiten, kleineren Schleifscheibe 35 nur das 0,76-fache des minimalen Krümmungsradius ρk min, während bei einer Winkelgeschwindigkeit ωk von 4.000 Grad/min das 0,87-fache anzusetzen ist.
  • Um die vorstehend wiedergegebene Formal für den zulässigen Radius RS2 der zweiten Schleifscheibe 35 genauer zu bestimmen, kann man anhand einer analytischen Betrachtung die exakte Funktionsbeziehung ermitteln. Hierzu betrachtet man zunächst als weitere Ausgangsgroßen den Erhebungswinkel φE1 am Anfang der Erhebung sowie den Erhebungswinkel φEi im Punkte der maximalen Umfangsbeschleunigung d² SN/dφ², der Eingriffslinie der zweiten Schleifscheibe 35 am Nocken 47. Als Hilfsgröße Δφ ergibt sich dann: Δφ = φ Ei - φ E1 .
    Figure imgb0002
  • Betrachten wir als weitere Hilfsgröße bmax b max = (d 2 S N /dφ 2 )(Δφ/π) 2 (Δφ/φ Ei ) 2
    Figure imgb0003
    so läßt sich die oben angegebene Formel für den Radius rS2 wie folgt schreiben: R S2 = ρ kmin (1- b max ω k Δ C.v x )
    Figure imgb0004
    wobei ΔC das eingestellte Winkelinkrement im konkaven Bereich und vx die maximale Achsgeschwindigkeit in Richtung der X-Achse sind.
  • In einem Zahlenbeispiel seien: d 2 S N /dφ 2 = 0,0164 mm/Grad 2 φ Ei = 138 Grad φ E1 = 94 Grad ρ kmin = 46,7822 mm ΔC = 1 Grad ω k = 8000/4000 Grad/min v x = 10.000 mm/min.
    Figure imgb0005
  • Dann ergeben sich die Hilfsgrößen zu: Δφ = 44 Grad b max = 0,3274 mm/rad 2
    Figure imgb0006
    und schließlich der Schleifscheibenradius R S2 = 35 mm (ω k = 8000 Grad/min) R S2 = 40 mm (ω k = 4000 Grad/min).
    Figure imgb0007
  • Hat man auf diese Weise den zulässigen Radius RS2 der zweiten, kleineren Schleifscheibe 35 ermittelt, so kann diese z.B. mit einer Schnittgeschwindigkeit vS = 100 m/s eingesetzt werden, was einer Drehzahl n = 24.000 min⁻¹ entspricht. Stellt man dann pro Umdrehung der zweiten Schleifscheibe 35 beim Einstechschleifen gemäß Fig. 6 um 0,1 µm zu, so führt dies bei einer Vorschubgeschwindigkeit von beispielsweise 23,9 mm/min und einer Tiefe der Zonen 55a, 55b von beispielsweise 0,16 mm zu einer Bearbeitungszeit von 0,4 s.
  • Zum Schlichtschleifen gemäß Fig. 7 wird die zweite Schleifscheibe 35 mit derselben Drehzahl bzw. Schnittgeschwindigkeit angetrieben. Die Winkelgeschwindigkeiten für die Drehung des Nockens 41 um die C-Achse 42 werden jedoch, verglichen mit dem Schruppvorgang gemäß Fig. 4 geringfügig anders eingestellt, nämlich mit 25.000 Grad/min im Grundkreisabschnitt 12, mit 8.000 Grad/min im Spitzenkreisabschnitt 14 und mit 4.000 Grad/min im Bereich der Flanken 13a, 13b.
  • Beim Schlichten gemäß Fig. 7 beträgt das Aufmaß zwischen Zwischenkontur 51 und Endkontur 52 beispielsweise 50 µm, die in zehn Umdrehungen des Nockens 41 abgeschliffen werden.
  • Es versteht sich, daß das vorstehend zahlenmäßig dargelegte Ausführungsbeispiel lediglich eines von vielen möglichen Ausführungsbeispielen ist und daher die Erfindung durch die angegebenen Zahlenangaben nicht eingeschränkt wird.

Claims (3)

  1. Verfahren zum Schleifen von Nocken (10; 41) einer Nockenwelle (40), bei dem die Nockenwelle (40) um ihre Längsachse (42) gedreht und zugleich in Abhängigkeit von einer vorgegebenen Nockenkontur (50, 51, 52) eine erste Schleifscheibe (26) in einer Richtung senkrecht zur Längsachse (42) zugestellt wird, wobei die Nockenkontur (50, 51, 52) im Anlaufbereich (13a) und im Ablaufbereich (13b) des Nockens (10; 41) eine konkave Krümmung aufweist, und zum Ausschleifen der konkav gekrümmten Bereiche eine zweite Schleifscheibe (35) eingesetzt wird, deren Radius RS2 kleiner als der minimale Krümmungsradius ρk min der konkaven Krümmung ist, während der Radius RS1 der ersten Schleifscheibe (26) sehr viel größer als der minimale Krümmungsradius ρk min der konkaven Krümmung ist, dadurch gekennzeichnet, daß der Nocken (41) unter numerischer Steuerung von Zustellung der Schleifscheiben (26, 35) sowie der Drehung der Nockenwelle (40) zunächst mit der ersten Schleifscheibe (26) über den gesamten Umfang des Nockens (41) geschliffen wird, wobei die erste Schleifscheibe (26) entlang einer ersten Nockenkontur (51) geführt wird, die im Bereich der konkaven Krümmung gegenüber einer Nockenendkontur modifiziert (51') ist, derart, daß deren minimaler Krümmungsradius größer als oder gleich groß wie der Radius RS1 der ersten Schleifscheibe (26) ist, so daß in dem Bereich der konkaven Krümmung eine innerhalb der modifizierten ersten Nockenkontur (51) liegende Zone (55a, 55b) stehenbleibt, und daß dann mit der zweiten Schleifscheibe (35) geschliffen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Nocken (41) nach dem Schleifen mit der ersten Schleifscheibe (26) stillgesetzt und die Zone (55a, 55b) mit der zweiten Schleifscheibe (35) im Einstechschleifen bei stehendem Nocken (41) im wesentlichen ausgeschliffen wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Nocken (41) nach dem Einstechschleifen wieder gedreht und mit der zweiten Schleifscheibe (35) entlang einer innerhalb der ersten Kontur (51) liegenden zweiten Kontur (52) geschliffen wird.
EP92109425A 1991-11-18 1992-06-04 Verfahren zum numerisch gesteuerten Schleifen von Nocken einer Nockenwelle Revoked EP0543079B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4137924A DE4137924C2 (de) 1991-11-18 1991-11-18 Verfahren und Vorrichtung zum numerisch gesteuerten Schleifen von Nocken einer Nockenwelle
DE4137924 1991-11-18

Publications (2)

Publication Number Publication Date
EP0543079A1 EP0543079A1 (de) 1993-05-26
EP0543079B1 true EP0543079B1 (de) 1996-01-24

Family

ID=6445070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92109425A Revoked EP0543079B1 (de) 1991-11-18 1992-06-04 Verfahren zum numerisch gesteuerten Schleifen von Nocken einer Nockenwelle

Country Status (3)

Country Link
US (1) US5392566A (de)
EP (1) EP0543079B1 (de)
DE (2) DE4137924C2 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE169543T1 (de) * 1992-12-23 1998-08-15 Western Atlas Uk Ltd Werkstückschleifvorrichtung und werkstükschleifverfahren
GB9226845D0 (en) * 1992-12-23 1993-02-17 Litton Uk Ltd Workpiece gringing mechanism
DE4327807C2 (de) * 1993-08-18 1995-06-14 Erwin Junker Verfahren und Schleifmaschine zum Schleifen einer Kurbelwelle
JP3467807B2 (ja) * 1993-09-30 2003-11-17 豊田工機株式会社 研削装置
US5655953A (en) * 1994-06-07 1997-08-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Manufacturing method of wave cam for a compressor
DE4426452C1 (de) * 1994-07-26 1995-09-07 Erwin Junker Verfahren und Maschine zum Schleifen von Nocken mit konkaven Flanken
GB2292704A (en) * 1994-09-01 1996-03-06 Unicorn Abrasives Ltd Controlling the movement of dressing tools for dressing a plurality of grinding wheels by a microprocessor
DE19516711A1 (de) * 1995-05-06 1996-11-07 Schaudt Maschinenbau Gmbh Werkzeugmaschine mit zwei Arbeitsspindeln
DE19620813C2 (de) * 1996-05-23 2000-07-20 Junker Erwin Maschf Gmbh Verfahren und Vorrichtung zum Unrundschleifen von Nockenformen mit konkaven Flanken
GB9612734D0 (en) * 1996-06-18 1996-08-21 Western Atlas Uk Ltd Improvements in and relating to grinding machines
DE19635687A1 (de) * 1996-09-03 1998-03-05 Schaudt Maschinenbau Gmbh Schleifspindellagerung einer Nockenwellenschleifmaschine
US5919081A (en) * 1996-09-04 1999-07-06 Unova Ip Corporation Method and apparatus for computer numerically controlled pin grinder gauge
CA2220776A1 (en) * 1996-11-13 1998-05-13 Allen Sommers Eccentric grinder loading system
US5975995A (en) * 1997-06-25 1999-11-02 Unova Ip Corp. Machining apparatus and method
US6390907B1 (en) * 1998-02-09 2002-05-21 Joel Kym Metzler Machine tool and machine tool spindle and workpiece mounting-apparatus and grinding process
JP2898279B1 (ja) * 1998-05-26 1999-05-31 株式会社ゼクセル 研削加工装置
DE19833241C2 (de) * 1998-07-23 2001-01-11 Junker Erwin Maschf Gmbh Schleifspindeleinheit mit magnetischem Antrieb
GB2361445A (en) * 1999-02-03 2001-10-24 Unova Uk Ltd Angle head grinding
EP1224058B1 (de) * 1999-10-27 2004-01-02 Unova U.K. Limited Verfahren zum schleifen eines werkstücks mit welchem konstante anforderungen an die spindelleistung erzielt werden
GB2365806B (en) * 2000-06-21 2003-11-19 Unova Uk Ltd Grinding machine
JP4065185B2 (ja) * 2002-11-26 2008-03-19 武蔵精密工業株式会社 非円形回転体ワークの研削方法及びその装置
DE10302685A1 (de) * 2003-01-15 2004-08-05 Muhr Und Bender Kg Vorrichtung und Verfahren zum Schleifen von Nockenwellen
DE10304252A1 (de) * 2003-02-03 2004-08-26 Erwin Junker Maschinenfabrik Gmbh Vorrichtung und Verfahren zum CNC-Schleifen von Nockenwellen, Kurbelwellen und dergleichen
DE10333916B4 (de) * 2003-07-25 2010-10-14 Audi Ag Verfahren zum Schleifen der Nocken von Brennkraftmaschinen-Nockenwellen
DE102004013192B3 (de) * 2004-03-17 2005-08-25 Erwin Junker Maschinenfabrik Gmbh Verfahren und Vorrichtung zum Schleifen von Lagerstellen und Nocken einer gebauten Nockenwelle
JP2006159314A (ja) * 2004-12-03 2006-06-22 Toyoda Mach Works Ltd クランクピンの研削方法及び研削盤
JP5058460B2 (ja) * 2005-07-11 2012-10-24 Ntn株式会社 研磨装置付き旋盤及びこれを用いて行う軸状ワークの加工方法
DE102007007787A1 (de) * 2007-02-16 2008-08-21 Robert Bosch Gmbh Schleifteller für eine Exzenterschleifmaschine
JP5199015B2 (ja) * 2008-10-09 2013-05-15 コマツNtc株式会社 カム面の研削方法
DE102008061528A1 (de) 2008-12-10 2010-06-17 Wedeniwski, Horst Josef, Dr. Verfahren zum numerisch gesteuerten Schleifen von Nocken mit konkaven Flanken einer Nockenwelle
DE102010026663A1 (de) 2010-07-09 2012-01-12 Emag Holding Gmbh Schleifmaschine zum Schleifen von Nockenscheiben
CN102452030B (zh) * 2010-10-27 2016-07-06 株式会社捷太格特 磨削方法、磨削系统以及多功能磨削机床
US8500514B2 (en) * 2010-12-08 2013-08-06 Koganei Seiki Co., Ltd. Apparatus and method for processing piston
CN102303273A (zh) * 2011-10-18 2012-01-04 长春设备工艺研究所 一种小凹面凹腹凸轮轴的磨削加工方法
DE102014018784A1 (de) * 2014-12-19 2016-06-23 Thyssenkrupp Presta Teccenter Ag Verfahren zur Erzeugung eines Nockenprofils eines Nockenpaketes einer Nockenwelle und Nockenwelle
JP6645145B2 (ja) * 2015-12-02 2020-02-12 株式会社ジェイテクト カム研削装置、およびカム研削方法
JP6658178B2 (ja) * 2016-03-23 2020-03-04 株式会社ジェイテクト カム研削装置、およびカム研削方法
DE102016109444A1 (de) * 2016-05-23 2017-11-23 Thyssenkrupp Ag System aus einer Nockenwelle und einer Nockenwellenhülse
DE102018217617A1 (de) * 2018-10-15 2020-04-16 Robert Bosch Gmbh Verfahren zum Herstellen einer Getriebeschnecke, die insbesondere auf einer Ankerwelle angeordnet ist, sowie eine solche Getriebeschnecke
CN109434573B (zh) * 2018-12-28 2024-01-02 张二朋 凸曲线非圆轮廓零件的磨削方法及磨削结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE678981C (de) * 1936-10-28 1939-07-26 Friedrich Deckel Praez S Mecha Verfahren zum Schleifen von Nockenwellen
US2641874A (en) * 1950-01-21 1953-06-16 Cincinnati Milling Machine Co Grinding machine
SU785022A1 (ru) * 1976-02-17 1980-12-07 Chinchyus Vidimantas Teofilis Способ обработки криволинейных поверхностей
JPS52151957A (en) * 1976-06-14 1977-12-16 Hiroki Onodera System and apparatus for long time operatin of freezer without riduction of freezing effect by frost
US4197679A (en) * 1977-04-15 1980-04-15 Ito & Okamoto, Esq. Method for controlling the rotational speed of a rotary body
DE3724698A1 (de) * 1987-07-25 1989-02-02 Schaudt Maschinenbau Gmbh Schleifkopf
US4833834A (en) * 1987-10-30 1989-05-30 General Motors Corporation Camshaft belt grinder
US4945683A (en) * 1989-07-10 1990-08-07 J. D. Phillips Corporation Abrasive belt grinding machine

Also Published As

Publication number Publication date
US5392566A (en) 1995-02-28
DE4137924C2 (de) 1997-12-04
DE4137924C1 (de) 1993-02-04
EP0543079A1 (de) 1993-05-26
DE59205161D1 (de) 1996-03-07

Similar Documents

Publication Publication Date Title
EP0543079B1 (de) Verfahren zum numerisch gesteuerten Schleifen von Nocken einer Nockenwelle
EP3274120B1 (de) Verfahren und vorrichtung zum feinbearbeiten verzahnter und gehärteter werkräder
EP2149425B1 (de) Verfahren und Vorrichtung zum Herstellen eines Schraubenverdichterrotors
DE69127833T2 (de) Verfahren und vorrichtung zur herstellung gerad- und schrägzahnstirnräder
DE4426452C1 (de) Verfahren und Maschine zum Schleifen von Nocken mit konkaven Flanken
EP1030754B1 (de) Hs-fräsen + drehen/drehräumen/dreh-drehräumen
EP1824627B1 (de) Verfahren und Werkzeugmaschine zum Bearbeiten der Lagersitze von Wellen
EP2167275B1 (de) Schleifzentrum und verfahren zum gleichzeitigen schleifen mehrerer lager von kurbelwellen
DE19620813C2 (de) Verfahren und Vorrichtung zum Unrundschleifen von Nockenformen mit konkaven Flanken
DE4023587C2 (de) Verfahren zum meßgesteuerten Umfangsschleifen von radial unrunden Werkstücken
EP0229894A2 (de) Verfahren zum Schleifen der Verzahnung von Kegelrädern mit längsgekrümmten Zähnen sowie Werkzeug und Vorrichtung zur Durchführung des Verfahrens
WO2009013295A1 (de) Schleifzentrum und verfahren zum gleichzeitigen schleifen mehrerer lager und endseitigen flächen von kurbelwellen
EP0212338B1 (de) Verfahren zum spanabhebenden Bearbeiten der Oberfläche eines Nockens
EP3348354A1 (de) Verfahren zum bearbeiten von kegelrädern unter einsatz einer exzentrisch bewegten, abrichtbaren topfschleifscheibe
EP2851150B1 (de) Werkzeug, Verfahren und Maschine zum Erzeugen eines Verzahnungsprofils an einem Werkstück durch Wälzschälen
DE4202513C2 (de) Verfahren zum Schleifen von Hublagerzapfen einer Kurbelwelle und Schleifmaschine zur Durchführung des Verfahrens
DE4235408A1 (de) Verfahren und Vorrichtung zum Schleifen von unrunden Werkstücken
EP0885082B1 (de) Verfahren und vorrichtung zum bearbeiten der lagersitze von kurbelwellen
EP1052049B1 (de) Verfahren und Einrichtung zur spanabhebenden Bearbeitung
EP0346425B1 (de) Verfahren zum abrichten einer schleifscheibe
DE3814124C2 (de)
DE3843046C2 (de)
WO2002078897A1 (de) Verfahren zur herstellung einer festwalzrolle und festwalzrolle
DE4437907B4 (de) Verfahren zum Schleifen der Außenkontur eines Werkstückes
DE19502476A1 (de) Verfahren und Werkzeugmaschine zur Herstellung von Freistichen insbesondere an Kurbelwellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930715

17Q First examination report despatched

Effective date: 19930823

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITPR It: changes in ownership of a european patent

Owner name: C.NE EPO REG.20;SCHAUDT MASCHINENBAU GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59205161

Country of ref document: DE

Date of ref document: 19960307

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHAUDT MASCHINENBAU GMBH

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960424

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

26 Opposition filed

Opponent name: ERWIN JUNKER MASCHINENFABRIK GMBH

Effective date: 19960927

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHAUDT MIKROSA BWF GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010621

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010710

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

R26 Opposition filed (corrected)

Opponent name: ERWIN JUNKER MASCHINENFABRIK GMBH

Effective date: 19960927

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20020409

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20020409

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO